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1 Introduction

In this note we continue the constructive study of rings and ideals begun in
[Bridges 2001], by examining two constructively distinct, but classically equiva-
lent, notions of maximality for ideals. By (Bishop-style) “constructive” we mean
“using intuitionistic logic and an appropriate set theory” such as that described
in [Aczel and Rathjen 2001]. The use of intuitionistic logic enables us to perceive
certain fine distinctions that are obscured under classical logic. Every proof that
is constructive in our sense embodies an algorithm that can be extracted and im-
plemented; moreover, the proof itself shows that the extracted algorithm meets
its specifications.

Let R be a commutative ring with an identity element e and a ring inequal-
ity: that is, a binary relation �= that satisfies not only the usual constructive
conditions for an inequality,

x �= y ⇒ y �= x,

x �= y ⇒ ¬ (x = y) ,

but also e �= 0 and the following:

x �= y ⇔ x − y �= 0,

x + y �= 0 ⇒ x �= 0 ∨ y �= 0,

xy �= 0 ⇒ x �= 0 ∧ y �= 0.

Note that as a consequence of the first of the last three conditions we have

x �= y ⇔ ∀z∈R (x + z �= y + z) .
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The complement of a subset S of R is the set

∼S = {x ∈ R : ∀y∈S (x �= y)} .

In general this is not the same, constructively, as the logical complement,

¬S = {x ∈ R : x /∈ S} ,

of S: for example, in the ring R of real numbers—or, more generally, in any
Banach algebra—the inequality is defined by

x �= y ⇔ ‖x − y‖ > 0

and, in the absence of Markov’s principle, is stronger than the denial inequality
¬ (x = y) .

We call the ring R

– discrete if for all x ∈ R, either x �= 0 or x = 0, and

– quasidiscrete if for all x ∈ R, either x �= e or x is invertible.

If R is discrete, then for all x, y in R either x = y or x �= y. Clearly, a discrete
ring is quasidiscrete. A Banach algebra A is quasidiscrete, since for each x ∈ A,

either x �= e or ‖e − x‖ < 1, and in the latter case x is invertible; but if even the
Banach algebra R were discrete, then we would be able to prove the essentially
nonconstructive principle

LPO: For each binary sequence (an)n�1 , either an = 0 for all n or
else there exists n such that an = 1.

We denote by 〈S〉 the ideal generated by a subset S of R. In the special case
where S = T ∪ {x} for some T ⊂ R and x ∈ R, we write 〈T, x〉 for 〈S〉 ; if,
further, T = ∅, we write 〈x〉 rather than 〈{x}〉 .

We say that an ideal I of R is

� proper if e ∈ ∼I;

� maximal if it is proper and for each x ∈ ∼I the ideal 〈I, x〉 equals R;

� weakly maximal if (i) it is proper and (ii) for each x ∈ R, if 〈I, x〉 is a
proper ideal, then x ∈ I.

� stable if ∼∼I = I.

Note that a proper ideal I is weakly maximal if and only if M = I whenever M

is a proper ideal that includes I.
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Although the notions of “maximal” and “weakly maximal” are classically
equivalent, they can be distinguished constructively, as the following Brouwerian
example shows. In the (discrete) ring Z of integers consider the ideal I generated
by the set

S ≡ {n ∈ Z : n = 4 ∨ (n = 2 ∧ (P ∨ ¬P ))} ,

where P is any syntactically correct mathematical statement. It is easy to see
that, since ¬ (P ∨ ¬P ) is false, ∼I is the set of odd integers and therefore I is
maximal. Now, 〈I, 2〉 = 〈2〉 is a proper ideal; but if 〈I, 2〉 = I, then P ∨ ¬P

holds. Thus the statement

Every maximal ideal of Z is weakly maximal

implies the law of excluded middle (LEM). However, as we shall see later (Corol-
lary 15), every weakly maximal ideal of Z is maximal.

2 Stability

We begin our exploration of the links between maximality, weakly maximality,
and stability with a couple of simple lemmas.

Lemma1. If I is a proper ideal in R and if x ∈ R is invertible, then x ∈ ∼I.

Proof. For each y ∈ I we have x−1y ∈ I, so x−1y �= e = x−1x and therefore
x−1(y − x) �= 0; whence y �= x. Thus x ∈ ∼I.

Lemma2. Let I be an ideal in R. Let p ∈ I, q ∈ R, and x ∈ R be such that
p + qx ∈ ∼I. Then x ∈ ∼I.

Proof. For each y ∈ I, since p + qy ∈ I, we have p + qx �= p + qy; whence
q(x − y) �= 0 and therefore x �= y.

Lemma3. If R is quasidiscrete and I is a proper ideal of R, then for each
x ∈ ∼∼I, the ideal 〈I, x〉 is proper.

Proof. Given x ∈ ∼∼I, consider any element p + qx of 〈I, x〉 , where p ∈ I and
q ∈ R. Suppose that p+qx is invertible. Then by Lemmas 1 and 2, x ∈ ∼I, which
is absurd. Hence p + qx is not invertible, and therefore, by quasidiscreteness,
p + qx �= e. Since p ∈ I and q ∈ R are arbitrary, we conclude that e ∈ ∼〈I, x〉.

The trick used in the foregoing proof to prove that p + qx �= e is used
again, twice, in the proof of Proposition 5 below. First, though, we deal with the
stability of weakly maximal ideals.
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Proposition4. If R is quasidiscrete, then every weakly maximal ideal in R is
stable.

Proof. Let I be a weakly maximal ideal in R, and x ∈ ∼∼I. Since I is proper,
Lemma 3 shows that the ideal 〈I, x〉 is proper. The weak maximality of I now
ensures that 〈I, x〉 = I and therefore x ∈ I. Hence ∼∼I ⊂ I and so ∼∼I = I.

What about the stability of maximal ideals? In the Brouwerian example
preceding Lemma 1 we cannot prove that the maximal ideal I is stable: for,
2 ∈ ∼∼I, but if 2 ∈ I, then we have P∨¬P . For maximal ideals in a quasidiscrete
ring we have this stability result:

Proposition5. If R is quasidiscrete, then for each maximal ideal I of R, ∼∼I

is a stable maximal ideal.

Proof. Let x, y ∈ ∼∼I and a ∈ R. To show that x − ay ∈ ∼∼I, first consider
the case where x ∈ I. Since I is maximal, for each z ∈ ∼I there exist p ∈ I

and q ∈ R such that e = p + qz. Suppose that p + q(x − ay) is invertible. Then,
by Lemmas 1 and 2, x − ay ∈ ∼I. For each y′ ∈ I, since x − ay′ ∈ I, we have
x − ay �= x − ay′; whence a (y − y′) �= 0 and therefore y �= y′. Thus y ∈ ∼I, a
contradiction from which we conclude that p + q(x− ay) is not invertible. Since
the inequality is quasidiscrete,

p + q(x − ay) �= e = p + qz

and therefore x−ay �= z. Since z ∈ ∼I is arbitrary, it follows that x−ay ∈ ∼∼I.

This disposes of the case x ∈ I.

In the general case, let z, p, q be as before, and consider any x′ ∈ I. By the
foregoing, x′ − ay ∈ ∼∼I. If p + q(x − ay) is invertible, then, by Lemmas 1 and
2, x − ay ∈ ∼I and therefore x − ay �= x′ − ay; whence x �= x′. Since x′ ∈ I is
arbitrary, this yields x ∈ ∼I, again a contradiction from which we conclude that
p + q(x − ay) is not invertible. Arguing as at the end of the case x ∈ I, we now
obtain x − ay ∈ ∼∼I. Since x, y ∈ ∼∼I and a ∈ R are arbitrary, it follows that
∼∼I is an ideal in R.

Now, since
e ∈ ∼I = ∼∼∼I

and
∼∼ (∼∼I) = ∼ (∼∼∼I) = ∼∼I,

the ideal ∼∼I is both proper and stable. If x ∈ ∼ (∼∼I) , then x ∈ ∼I; so
〈I, x〉 = R and therefore 〈∼∼I, x〉 = R. Hence ∼∼I is maximal.
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If I is an ideal of R such that ∼∼I is maximal (resp., weakly maximal), is I

itself maximal (resp., weakly maximal)? To see that this is not so constructively
even for a discrete ring, let P be any syntactically correct statement such that
¬¬P holds, and let I be the ideal generated in the ring Z of integers by the set

G ≡ {n ∈ Z : n = 2 ∧ P} .

Then ∼∼I is the prime, maximal, and weakly maximal ideal 〈2〉. But if I is
maximal, then we can find m ∈ I and n ∈ Z such that m + 3n = 1; since m ∈ I

and, clearly, m �= 0, we must have P . On the other hand, being a subset of ∼∼I,
the ideal 〈I, 2〉 is proper; so if I is weakly maximal, then 2 ∈ I and again we
obtain P . Thus the statement

Every proper ideal I of Z such that ∼∼I is a maximal (resp., weakly
maximal) ideal is itself maximal (resp. weakly maximal)

implies LEM. (Note that even with intuitionistic logic, the law (¬¬P ⇒ P ) is
equivalent to LEM.)

The next three results shed more light on the stability of maximal ideals.

Proposition6. Let I be a maximal ideal of R, and J a proper ideal of R that
includes I. Then ∼I = ∼J .

Proof. Let x ∈ ∼I. Then there exist p ∈ I and q ∈ R such that e = p + qx.

For each y ∈ J we have p + qy ∈ J and so p + qy �= e; whence q(x − y) �= 0
and therefore x �= y. Thus x ∈ ∼J. Since x ∈ ∼I is arbitrary, we conclude that
∼I ⊂ ∼J. The reverse inclusion is trivial.

Corollary 7. Let I be a maximal ideal of R, and J a proper ideal of R that
includes I. Then J ⊂ ∼∼I.

Proof. By Proposition 6, J ⊂ ∼∼J = ∼∼I.

Corollary 8. A stable maximal ideal of a ring R is weakly maximal.

Proof. Use the previous corollary.

As an aside, we now consider the question: if an ideal I of a ring is proper,
is 〈∼∼I〉 proper? If the ring is discrete, then the answer is “yes”.

Proposition9. Let R be quasidiscrete, and I a proper ideal of R, that is coad-

ditive in the sense that

∀x,y∈R (x + y ∈ ∼I ⇒ x ∈ ∼I ∨ y ∈ ∼I) .

Then 〈∼∼I〉 is proper.
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Proof. For 1 � k � n, let pk ∈ R and xk ∈ ∼∼I. Either

e �= p1x1 + · · · + pnxn (1)

or else p1x1 + · · · + pnxn is invertible. In the latter case, Lemma 1 shows that
p1x1 + · · ·+pnxn ∈ ∼I; whence, by coadditivity, there exists k such that pkxk ∈
∼I. For each x ∈ I we then have pkxk �= pkx, so pk (xk − x) �= 0 and therefore
xk �= x. Thus xk ∈ ∼I, a contradiction. We conclude that (1) holds. Since
p1x1 + · · · + pnxn is an arbitrary element of 〈∼∼I〉, it follows that 〈∼∼I〉 is
proper.

Constructively, not every proper ideal of Z can be proved coadditive. Consider
the ideal I generated by

{6} ∪ {n ∈ Z : n = 2 ∧ P} ∪ {n ∈ Z : n = 3 ∧ ¬P} ,

where P is any syntactically correct mathematical statement: we have 2+3 ∈ ∼I,
but if 2 ∈ ∼I, then ¬P , while if 3 ∈ ∼I, then ¬¬P .

3 Does weakly maximal imply maximal?

When is a weakly maximal ideal of R maximal? To answer this, we first prove

Proposition10. If I is a maximal ideal in R, then for all x ∈ R,

x ∈ ∼I ⇒ x2 ∈ ∼I. (2)

Proof. Let x ∈ ∼I. There exist a ∈ I and b ∈ R such that e = a + bx; then
bx2 = x − ax. For each y ∈ I we have ax + by ∈ I and therefore

b
(
x2 − y

)
= bx2 − by

= x − (ax + by) �= 0.

Thus x2 − y �= 0 and therefore x2 �= y.

An ideal I of R is said to be semiprime if

(xy ∈ I ∧ x ∈ ∼I) ⇒ y ∈ I.

Proposition11. Let I be a weakly maximal ideal in R such that (2) holds. Then
I is semiprime.
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Proof. Consider x, y ∈ R such that xy ∈ I and x ∈ ∼I. Let M = 〈I, y〉 . For
each a ∈ I and b ∈ R, we have

x (x − a − by) = x2 − (ax + bxy) �= 0,

since ax + bxy ∈ I and, by Proposition 10, x2 ∈ ∼I. Hence x − a − by �= 0 and
therefore x �= a+by. It follows that x ∈ ∼M, so M is a proper ideal that includes
I. Since I is weakly maximal, we must have M = I and therefore y ∈ I. Thus I

is semiprime.

We now recall from [Bridges 2001] some properties of our ring. We call R

� a cancellation domain if for all x, y in R,

(xy = 0 ∧ x �= 0) ⇒ y = 0;

� an FGP ring if every finitely generated ideal in R is principal;

� a principal ideal ring if it is an FGP ring and satisfies the divisor chain
condition: for each ascending chain I1 ⊂ I2 ⊂ · · · of principal ideals in R

there exists n such that In = In+1 (See page 110 of [Mines et al. 1988] for
more on the divisor chain condition.)

The ring of integers is the primary example of a principal ideal cancellation
domain: that is, a principal ideal ring that is also a cancellation domain.

Theorem 12. If R is a principal ideal cancellation domain, then the following
are equivalent conditions on a weakly maximal ideal I.

(i) I is maximal.

(ii) ∀x∈R

(
x ∈ ∼I ⇒ x2 ∈ ∼I

)
.

(iii) I is semiprime.

Proof. Proposition 10 shows that (i) implies (ii), and Proposition 11 that (ii)
implies (iii). That (iii) implies (i) is just Theorem 12 of [Bridges 2001].

Proposition13. If R is quasidiscrete, then every weakly maximal ideal of R is
semiprime.

Proof. Let I be a weakly maximal ideal of R, and let x, y be elements of R such
that xy ∈ I and x ∈ ∼I. For all a ∈ I and b ∈ R, either e �= a + by or a + by has
an inverse z. In the latter case,

x = xe = (xz)a + (bz)xy ∈ I,

a contradiction. It now follows that e ∈ ∼〈I, y〉 . Since I is weakly maximal, we
have 〈I, y〉 = I and hence y ∈ I.
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Theorem 14. Every weakly maximal ideal of a quasidiscrete principal ideal can-
cellation domain is maximal.

Proof. This follows from Proposition 13 and Theorem 12.

Corollary 15. A weakly maximal ideal in Z is maximal.

Proof. Since Z is (quasi)discrete and a principal ideal cancellation domain, The-
orem 14 applies.

Corollary 16. The following are equivalent conditions on an ideal I in a qua-
sidiscrete principal ideal cancellation domain.

(i) I is weakly maximal.

(ii) I is stable and maximal.

Proof. This follows from Theorem 14, Proposition 4, and Corollary 8.

If we consider ideals in a Banach algebra A, then, although we trade in the
discrete inequality of Z, we gain as partial compensation the existence of inverses
of nonzero elements. Does the Banach algebra structure enable us to prove that
if I ⊂ A is an ideal such that ∼∼I is a maximal ideal, then I is maximal? Our
concluding example shows that this is not the case. For that example we assume
Markov’s principle:

For each binary sequence, if it is impossible that all terms are 0, then
there exists a term equal to 1,

which is equivalent to the statement

∀x∈R (¬ (x = 0) ⇒ x �= 0) .

In R, as in any metric space, x �= y means that the elements x and y are a
positive distance apart.

Let A be the Banach algebra C[0, 1] with the usual sup norm, let P be any
syntactically correct mathematical statement, and let

S ≡ {f ∈ A : f(0) = 0 ∧ (P ∨ ¬P )} .

Let I be the (clearly proper) closed ideal of A generated by the set
{
x2

} ∪ S,
where we abuse notation by writing 1, x, x2, . . . for the power functions. Then
f(0) = 0 for each f ∈ ∼∼I. On the other hand, for each g ∈ ∼I, if g(0) = 0,
then ¬ (P ∨ ¬P ), since if P ∨ ¬P , then g ∈ I. But ¬ (P ∨ ¬P ) is absurd; so
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¬ (g(0) = 0) and therefore, by Markov’s principle, g(0) �= 0. It follows that if
f ∈ A and f(0) = 0, then f ∈ ∼∼I. Hence

∼∼I = {f ∈ A : f(0) = 0} ,

which, as is well known, is a maximal ideal of A. Now suppose that I itself is
maximal. Then, since 1 + x ∈ ∼I,

A = 〈I, 1 + x〉 . (3)

Let V be the finite-dimensional subspace of A with basis
{
1, x, x2

}
. Since, as is

easily proved, x3 ∈ ∼V , we see from Bishop’s lemma ([Bishop and Bridges 1985],
page 92, Lemma (3.8)) that

0 < d ≡ ρ
(
x3, V

)
.

By (3), there exist complex numbers ζ0, . . . , ζm+1, and elements f1, . . . , fm of S

such that

sup
0�t�1

∣∣∣∣∣t
3 − ζ0t

2 −
m∑

k=1

ζkfk(t) − ζm+1 (1 + t)

∣∣∣∣∣ <
1
2
d.

Then
∥∥∥∥∥

m∑

k=1

ζkfk

∥∥∥∥∥ � sup
0�t�1

∣∣t3 − (
ζm+1 + ζm+1t + ζ0t

2
)∣∣ − 1

2
d

� ρ
(
x3, V

) − d =
1
2
d > 0.

It follows that there exists k such that ζkfk �= 0. Hence S is inhabited, and
therefore P ∨ ¬P holds. Thus, under the assumption of Markov’s principle, the
statement

If I is a proper closed ideal of a Banach algebra such that ∼∼I is a
maximal ideal, then I is maximal

implies LEM.
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