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Abstract: The recent literature on business process modeling notations contains nu-
merous contributions to the so-called OR-join (or inclusive merge gateway) problem.
We analyze the problem and present an approach to solve it without compromising any
of the two major concerns that are involved: a) a clear semantical definition (design),
which also clarifies what has to be implemented to achieve the intended generality
of the construct, and b) a comprehensive set of static and dynamic analysis methods
(verification of properties of business process models using the construct). We provide
a conceptually simple scheme for dynamic OR-join synchronization policies, which can
be implemented with low run-time overhead and allows the practitioner to effectively
link the design of business process models with OR-joins to an analysis of the intended
model properties. The definitions have been experimentally validated by a graph-based
simulator.2

Key Words: business processes, OR-join problem, BPMN standard

Category: D.1.7, D.2.1, D.2.4

1 Introduction

A major problem for reliable software-based system development is to guarantee
that the system does what it is supposed to do. This holds also for computer-
assisted enterprise information and management systems, where IT technologists
(system designers, software engineers and programmers) have to understand and
realize the system behaviour that is expected by business process experts. A
technical, but crucial instance of this general problem concerns the concept of
1 The work of the first author is supported by a Research Award from the Alexan-

der von Humboldt Foundation (Humboldt Forschungspreis), hosted by the Chair
for Information Systems Engineering of the third author at the Computer Science
Department of the University of Kiel, Germany.

2 The simulator has been developed by the second author and is part of his Diplom
Thesis [Sörensen, 2008].
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OR-join. This concept is present in various workflow and business process mod-
eling languages and seems to be used with different understandings in different
commercial workflow systems or even worse, for some workflow languages, dif-
ferently by users of the language and by the implementation. Our goal in this
paper is to clarify the issues involved and to contribute to solving the problem
by an accurate definition that is easy to understand, can be experimentally val-
idated, is not biased by the underlying framework used for the definition, puts
the various approaches in the literature into a clear perspective and provides
a rigorous basis for implementing various verifiable synchronization policies for
business process models with OR-joins.

The OR-join problem has various aspects which have been dealt with in
numerous papers. First of all it is a problem of semantics, in the sense that in
some languages the behavioral meaning of the OR-join is not defined in a precise
enough way to exclude undesired ambiguity. Two examples of such languages
are the language of event process chains (EPCs) [A.-W.Scheer, 1994] (see for
example the analysis in [van der Aalst et al., 2002], [Mendling et al., 2006])
and the current BPMN standard [BPMI.org, 2006] (see for example the analysis
in [Dijkman et al., 2007], [Grosskopf, 2007]). Furthermore, even if the semantics
of the OR-join is mathematically well-defined, this definition may be regarded as
too complicated to support practitioners in their design work where they need a
reliable understanding of the expected behavior of the business process models
they are defining; see for example the view expressed in [Gruhn and Laue, 2007]
for the fixpoint-semantics-based definition of the semantics of EPCs in [Kindler,
2004], [Kindler, 2005].

The OR-join problem appears in the literature also as a verification method
problem in the sense that even where a behavioral definition is given, the compu-
tational cost of mechanically verifying some desired properties of models based
upon that definition of OR-joins may be deemed to be too expensive, so that
restrictions are imposed on the allowed process models. See for example the OR-
join treatment in the YAWL language [van der Aalst and ter Hofstede, 2005],
which for reasons of complexity does not consider nested OR-joins. In [Wynn
et al., 2006a], which seems to be a reelaboration of [Wynn et al., 2005], two
“problems with OR-join semantics as defined in [van der Aalst and ter Hofstede,
2005]”(quote of the title of [Wynn et al., 2006a, Sect.2.2]) are identified and the
restriction is eliminated, based upon the work in [Wynn, 2006] (see also [Wynn
et al., 2006b]). However, the general solution in [Wynn, 2006] comes with a com-
putational complexity that is considered as too high by the authors of [Dumas
et al., 2007] and [Grosskopf, 2007, Sect.4.5.3] and motivated the proposal there
of a less expensive algorithm for a more restricted interpretation of OR-joins.

Complexity concerns seem to have motivated also the proposal in [Gruhn
and Laue, 2005], [Gruhn and Laue, 2006], [Gruhn and Laue, 2007] to use an
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experimentally justified recursive set of rules for defining a comprehensive class
of ‘structured’ models without OR-join problems.

What one can observe here are efforts to trade the generality of a semantically
well-defined OR-join concept for the complexity of checking properties of models
containing such OR-joins, notably the enabledness property for OR-joins. The
perspective of such a dichotomy may also have influenced the fact that many
commercial workflow tools simply impose syntactic restrictions on the OR-join,
as came out of the study [Russel et al., 2006].

However, from the conceptual point of view the situation is not as bad as
it appears from the discussion in the literature, which is largely influenced by
a bias towards some conventional but unnecessarily restrictive ways of defining
and verifying workflow features, in particular Petri nets and various ad hoc ex-
tensions. Concerning verification it should be remembered that as in traditional
engineering disciplines, also in software engineering verification is not limited to
mechanical (whether static or runtime) property checks. Professional reasoning
to provide quality assurance in an engineering discipline typically exploits the
full range of available rigorous scientific methods, which goes from well-founded
testing of characteristic patterns through traditional mathematical reasoning to
interactive computer-assisted or—in the limit case—even fully automated proofs
or exhaustive model checking. This holds also for correctness considerations for
business process models, which ultimately need to be deeply rooted in the ap-
plication domain knowledge one can hardly expect to be ever completely auto-
mated and analyzable by static analysis tools (see the notion of ground model
in [Börger, 2007a]).

Concerning definition methods, it should be remarked that the need for ap-
plication domain based reasoning goes together with the need NOT to restrict
the range of descriptive means by an a priori imposed formal language, as too
often has happend in computer science theory and seems to happen again in the
workflow and business process modeling domain (as a recent example see the
fight for Petri nets versus Pi-calculus [van der Aalst, ], a representative for many
such detrimental battles that happened in the so called Formal Methods domain
of computer science). If one wants to be successful with high-level models, from
where code can be generated using sophisticated application-independent com-
pilation techniques, one has to avoid the straitjacket of specific formal languages
as long as the main concerns are related to application domain problems and
not to their formal (let alone software) representation. This applies in particular
to the OR-join construct as it is used in most business process languages.

The main result of this paper is a simple, precise and unbiased definition of
the OR-join scheme. It captures the originally intended generality in a direct way
and clearly shows the problems this generality brings for the concept itself as
well as for its implementations. The definition uses only general, process-related
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and accurately definable notions every business analyst and system designer un-
derstands so that it can serve as a basis for communication when it comes to
decide upon appropriate instances of the general definition. The general purpose
algorithmic language we use allows one also to use any rigorous method what-
soever to establish specific properties of interest for such instances. In addition
we show that by our definition the various OR-join approaches in the literature
can be put into a uniform perspective. Since in doing this we will refer to most
of the relevant literature, there will be no specific Related Work section in this
paper.3

Our definition is based upon a framework developed recently in [Börger and
Thalheim, 2008], motivated by the goal to define a complete rigorous semantical
model for the current BPMN standard [BPMI.org, 2006] and its forthcoming
extension 2.0.4 We start here from scratch and recapitulate a few of the defi-
nitions from [Börger and Thalheim, 2008] that are useful for the discussion of
the OR-join construct. To graphically represent our examples we use the BPMN
notation without further explanation.

In [Section 2] we review the intuitive understanding of the OR-join as it
appears from related investigations in the literature and explain what is called
the OR-join problem. In [Section 3] we sketch the framework that is used in
[Section 4] to define a precise semantics for the general intuitive understanding
of the OR-join. In [Sörensen, 2008] this definition is extended to provide better
structuring for the case when multiple tokens may occur in a cyclic diagram.

To introduce the OR-join model, we will use the technique of stepwise ASM
refinement [Börger, 2003]. Adopting a token-based view of workflow semantics,
we start out with the base case of acyclic workflows where joins can determine
their enabledness locally (this includes XOR- and AND-joins). Next, we add
OR-joins to the – still cycle-free – model where the non-local information about
the state of the entire workflow that the intuitive OR-joins semantics requires is
provided by introducing a special type of synchronization token that firing flow
objects place in their downstream.

As the next refinement step we consider cyclic workflows. They are BPMN
standard conform, but their semantics is under-specified. This is due to the un-
derlying synchronization problem. One has to expand on the BPMN standard
if one wants to account for this. As a first step we desynchronize cyclic control
3 Just before submitting the final version of this paper to the editor we found a

paper [van Hee et al., 2006] which also proposes to use run-time information for
defining the precise behavior of OR-joins. The authors propose for this purpose a
global history log on all consumed or produced tokens. Our model works with a
less expensive and simpler run-time information structure, which is tailored to the
synchronization problem of OR-joins. In [van Hee et al., 2006] only rather special
cyclic workflow diagrams can be proved to be without deadlocks.

4 The attribute business happens to be part of the established nomenclature, although
the processes described by the BPMN as well as the OR-join problem are of general
nature and not restricted to modeling business applications.
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flow by associating a token set to each cyclic token. This approach is extended
in [Sörensen, 2008] to the case where multiple tokens may occur within a cy-
cle. Essentially two new types of flow objects are added to describe barrier-like
behaviour, used to create cleanly nested structures inside a workflow that syn-
chronize control flow between multiple cycle-iterations and can be proved to be
free from deadlocks. For the experimental validation of these extensions and of
the definitions in this paper the second author has developed a simulator that
can visualize the execution of BPMN workflows [Sörensen, 2008].

The reader who is acquainted with the problem may go immediately to [Sec-
tion 4] and consult [Section 3] only should the need be felt.

2 Analysis of OR-Join Requirements

In this section we try to review the intuition behind the OR-join concept. The
literature offers a variety of interpretations of the OR-join as a control flow
construct where different computation paths are synchronized in a way that
depends on runtime conditions and ranges from the XOR (select exclusively
exactly one) to the AND-join (synchronize all) behavior.

To start we quote two typical descriptions. The first one is the BPMN stan-
dard document description, which uses the naming Inclusive Gateway used as a
Merge:

If there are multiple incoming Sequence Flow, one or more of them will
be used to continue the flow of the Process. That is, Process flow SHALL
continue when the signals (tokens) arrive from all of the incoming Se-
quence Flow that are expecting a signal based on the upstream structure
of the Process . . . Some of the incoming Sequence Flow will not have
signals and the pattern of which Sequence Flow will have signals may
change for different instantiations of the Process. [BPMI.org, 2006, p.81]

The standard document leaves it open how to determine when an incoming
sequence flow (read: an arc leading to the OR-join node) is “expecting a signal
based on the upstream structure of the Process”, except for the indication that
this is a process instance feature and therefore data-dependent and runtime-
defined. Also the notion of upstream structure is not further described (except
for calling loops downstream activities, see below).

In [Rittgen, 1999] one can find an analysis, carried out in terms of EPCs, of
some natural definitions for which paths an OR-join should wait for to complete
their computation. In the presence of a parenthesis structure, which links the
incoming arcs of the OR-join one-to-one to the outgoing arcs of a preceding OR-
split, it appears to be natural to require the OR-join to synchronize the threads
on all and only those paths that have been activated at that OR-split (see the
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Occam-like OR-join semantics in [Section 4.2].). If there is no such underlying
syntactical graph structure, one could ask the OR-join node to take a special
action for one completing thread (e.g. the first one if there is any) and then wait
for the others to complete5, or to react upon each path completion (en bloc for
multiple simultaneous completions or choosing among them one after the other,
as happens in the Multi-Merge pattern interpretation in [Russel et al., 2006]),
or in the limit case to behave as the AND-join.

A similar (possibly intended) specification hole is found in the description
of the workflow pattern analogue of the OR-join in [van der Aalst et al., 2003],
called there synchronizing merge:

A point in the workflow process where multiple paths converge into one
single thread. If more than one path is taken, synchronization of the ac-
tive threads needs to take place. If only one path is taken, the alternative
branches should reconverge without synchronization. It is an assumption
of this pattern that a branch that has already been activated, cannot be
activated again while the merge is still waiting for other branches to
complete.

Nothing is said to explain when a “path is taken” or a “branch has been ac-
tivated” except for the further clarification that there is a notion of a round
in which other (all?) branches are expected “to complete” (how? normally?
abruptly due to some failure?). For details see the critical analysis in [Börger,
2007b].

The common feature of the above two and other descriptions in the literature
seems to be that some synchronization is to be performed6 and that this should
happen only for currently active threads. The debated question is how to deter-
mine whether a thread is (potentially?) active. In [Wynn et al., 2006a, Sect.2.1]
the attempt is made to answer this question on the basis of the following more
detailed definition of what there is called the informal semantics of an OR-join.

An OR-join task is enabled at a marking iff at least one of its input
conditions is marked and it is not possible to reach a marking that still
marks all currently marked input conditions (possibly with fewer tokens)
and at least one that is currently unmarked. If it is possible to place
tokens in the unmarked input conditions of an OR-join in the markings
reachable from the current marking, then the OR-join task should not
be enabled and wait until either more input conditions are marked or
until it is no longer posible to mark more input conditions.

5 This is a form of the so-called Discriminator pattern in [van der Aalst et al., 2003].
6 Therefore the naming OR-join is rather misleading: synchronization has much more

to do with AND (logical conjunction) than with OR (logical disjunction). The fact
that a certain runtime variation is involved in establishing which threads are to be
synchronized is closer to choice and non-determinism than to disjunction. In this
sense synchronizing merge or simply synchronization are more appropriate names.
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This description reveals what some authors call the non-local nature of the
OR-join semantics. More accurately one should speak about the non-local char-
acter of means needed to determine, for this interpretation of the construct,
whether or not an OR-join is enabled: it does not suffice to check for tokens
in its incoming (or somehow nearby) arcs, as done to establish enabledness of
transitions in Petri net and coloured Petri net workflow descriptions, but one has
to evaluate some global markings, namely all those reachable from the current
marking, in order to check whether some of them enable an additional incom-
ing arc of the OR-join without disabling any of the ones already enabled in the
current marking. Since it can turn out to be difficult to implement efficient algo-
rithms for such an evaluation, some workflow systems and some authors prefer
to restrict the semantics of OR-joins in order to obtain simple means of checking
the enabledness condition.

We advocate to separate the two different concerns involved. We first pro-
vide in [Section 4] a simple precise definition of the desired intuitive meaning of
the OR-join, without making any restrictive assumptions and without inventing
for the purpose yet another workflow language [van der Aalst and ter Hofst-
ede, 2005], [Wynn et al., 2006d], [Russel et al., 2007b] (how often a new one
[Russel et al., 2007a]?) or extension of Petri nets [Wynn et al., 2006a], [Wynn
et al., 2006b], [Wynn et al., 2006c]. Our definition reflects the global features of
the intended synchronization in a direct way, avoiding the well-known problems,
discussed for example in [Grosskopf, 2007], one has with Petri net based formu-
lations of the semantics of business process models. These problems are due to
the local nature of what a Petri net transition can do and have motivated various
extensions of Petri nets and related verification techniques to cope with OR-join
and cancellation features in business process models, see for example [Wynn
et al., 2006d], [Wynn et al., 2006b], [Wynn et al., 2006c]. Only after a clear defi-
nition one should use whatever scientific or mathematical means are available to
decide upon and to analyze instances of the general definition and to establish
or check properties of models with OR-joins. Obviously this includes, but is not
restricted to, mechanical checks of the enabledness condition by existing tool
sets. We believe that the need to solve the challenging correctness problem when
modeling business processes makes it compulsory to have an easy to understand
definition of the OR-join behavior and its properties, even more if it is felt that
tricky and difficult algorithms to compute such properties are unavoidable.

3 The Modeling Framework

In this section we borrow from [Börger and Thalheim, 2008] that part of the
business process modeling framework that allows one to capture the intuition
of the OR-join by a concise and clear definition. For the sake of definiteness
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we use for the discussion of workflow constructs a BPMN-based terminology,
without making conceptually or methodologically restricted assumptions so that
our results can be applied to other business process model notations as well.

3.1 Abstract State Machines

We use for our descriptions Abstract State Machines(ASMs), an extension of
Finite State Machines by a concept of most general state and of synchronous
parallelism for state transformations. Per step an arbitrary number of simulta-
neous updates is allowed, which are described by finitely many rules that at each
‘step’ are executed simultaneously (synchronous parallelism). The form of the
rules is as follows:

if cond then Updates

where Updates stands for a set of function updates f (t1, . . . , fn) := t built from
expressions ti , t and an n-ary function symbol f . Equivalently one can use the
graphical or textual FSM notation depicted in [Fig. 1], where i , j1, . . . , jn are
internal (control) states as known from FSMs.

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen
ctl state := jn

Figure 1: Viewing (control state) ASM rules as generalized FSM instructions

Since the mathematical definition of the semantics of ASMs supports their
intuitive understanding as pseudo-code working over abstract data types, we
abstain from repeating the definition here and refer the interested reader for this
to the AsmBook [Börger and Stärk, 2003]. To define the various interpretations
of the OR-join as different instantiations of one abstract model we make use of
the ASM refinement method defined in [Börger, 2003].

3.2 Business Process Diagrams

As common in the field, we mathematically represent any business process as a
graph. The nodes represent the workflow objects, where activities are performed
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depending on a) resources being available, b) data or control conditions to be
true and c) events to happen, as described by transition rules associated to
nodes. These rules define the meaning of the corresponding workflow constructs.
The arcs define the graph traversal, i.e. the order in which the workflow objects
are visited for the execution of the associated rules.

We freely use the usual graph-theoretic concepts, for example source(arc),
target(arc) for source and target node of an arc, pred(node) for the set of source
nodes of arcs that have the given node as target node, inArc(node) for the set
of arcs with node as target node, similarly succ(node) for the set of target nodes
of arcs that have the given node as source node, outArc(node) for the set of arcs
with node as source node, etc.

All the workflow transition rules, associated to nodes to describe the mean-
ing of the workflow construct associated to this node, take the following form
(usually instantiated by additional parameters). They state upon which events
and under which further conditions on the control flow, the underlying data and
the availability of resources, the rule can fire to perform specific operations on
the underlying data (‘how to change the internal state’) and control (‘where
to proceed’), to possibly trigger new events (besides consuming the triggering
ones) and to operate on the resource space to take possession of the needed (or
to release not any more needed) resources.

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

A workflow or business process modeling language interpreter is a set of such
rules, covering all language constructs, together with a scheduler to choose at
each moment a node where a rule can be fired, which is the case when its guard is
true in the current state. In this way one can define for example the semantics of
the BPMN standard by an interpreter with rules (more precisely rule schemes)
for each BPMN flow object (activities, events, gateways) [Börger and Thalheim,
2008]. For the discussion of the OR-join problem we can focus the discussion
on gateways only (see [Section 3.4]). Furthermore, for this discussion events and
resources play no role and therefore will not be mentioned any more.

3.3 Token-Based Sequence Flow Interpretation

Although the BPMN standard document declares to use the token-based inter-
pretation of control flow only for illustrative purposes [BPMI.org, 2006, p.35], for
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the sake of definiteness we represent it mathematically by associating tokens—
elements of a set Token—to arcs, using a dynamic function token(arc).7 A token
typically includes information on (the processID of) the process instance to which
it belongs. Typically token(arc) denotes a multiset of tokens currently residing
on arc.

token : Arc → Multiset(Token)

In the token based approach to control, for a rule at a target node of incoming
arcs to become fireable some (maybe all) arcs must be enabled. This condition
is typically required to be an atomic quantity formula stating that the number
of tokens currently associated to in (read: the cardinality of token(in), denoted
| token(in) |) is at least the input quantity inQty(in) required at this arc.

Enabled(in) = (| token(in) |≥ inQty(in))

Correspondingly the control operation CtlOp of a workflow usually consists
of two parts, one describing how many tokens are Consumed on which incoming
arcs and one describing which tokens are Produced on which outgoing arcs in
a quantity as indicated by a function outQty(out). We use macros to describe
consuming resp. producing tokens on a given arc and then generalize them to
produce or consume all elements of a given set. We also define the most frequent
case where tokens are simply Passed from an incoming to an outgoing arc.
outQty(out) denotes the number of tokens one wants to be produced on arc out .
In many applications inQty(in), outQty(out) are assumed to take the default
value 1.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))
Pass(t , in, out) =

Delete(t , inQty(in), token(in))
Insert(t , outQty(out), token(out))

The macro is easily generalized to sets of pairs of tokens and arcs:

ConsumeAll(X ) = forall x ∈ X Consume(x )
ProduceAll(Y ) = forall y ∈ Y Produce(y)

Remark This use of macros allows one to easily adapt the abstract token
model to its extensions, like the ones we use in [Section 4], and to different
instantiations by a concrete token model. For example, if a token is simply
7 We deliberately avoid introducing yet another category of graph items, like the

so-called places in Petri nets, whose only role would be to hold these tokens.
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defined as a pair (proc(t), pos(t)) of the process instance it belongs to and the
arc where it is pos itioned, then it suffices to refine the macro for Passing a
token t from in to out by updating the second token component, namely from
its current pos ition value in to its new value out :

Pass(in, out , t) = (pos(t) := out)

The use of abstract Delete and Insert operations instead of directly updat-
ing token(a) serves to make the macros usable in a concurrent context, where
multiple agents may want to simultaneously operate on the tokens on an arc.
Note that it is also consistent with the special case that in a transition with both
Delete(in, t) and Insert(out , t) one may have in = out .

3.4 Gateway Nodes

Gateways are used to describe the splitting (divergence) or merging (conver-
gence) of control flow in the sense that tokens can ‘be merged together on input
and/or split apart on output’ [BPMI.org, 2006, p.68]. Both splitting and merg-
ing come usually in two forms, which are related to the propositional operators
and and or, namely a) to create parallel or synchronize multiple actions and b)
to select (one or more) among some alternative actions. For the sake of a clear
separation of the different merge/split features and without loss of generality,
we start from the BPMN best practice normal form assumption whereby each
gateway performs only one of the two possible functions, either divergence or
convergence of multiple control flow. It is easy to show that each BPMN process
can be transformed into a semantically equivalent BPMN Best Practice Normal
Form.

BPMN Best Practice Normal Form. [BPMI.org, 2006, p.69] Only gate-
ways have multiple incoming or multiple outgoing arcs and furthermore they
never have both multiple incoming and multiple outgoing arcs.

For the sake of illustration we formulate and explain now the two AND
gateway node rule specializations of the general WorkflowTransition rule
scheme, to prepare the reader for the discussion of the OR-join gateway rule in
the next section. Since the focus of the OR-join analysis is on token-based control,
we skip here and for the AND-join below the formulation of the not control
related conditions and operations, like the DataOp(node), which in BPMN is
an AssignOperation performed at each outgoing arc.

To fire an AND-split node requires—besides the node-specific conditions on
data, events and resources—that Enabled holds for its unique incoming arc in.
Upon firing, the rule in particular Consumes the prescribed number of to-
kens and Produces on each of the finitely many outgoing arcs (elements of
outArc(node)) the prescribed number of tokens. These outgoing tokens are typ-
ically viewed as triggering parallel subprocesses, which may be required to be
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synchronized later within the process where they have been generated. For this
reason, tokens produced at split gateways are often assumed to carry some in-
formation about the origin and maybe also about their brothers and sisters with
whose descendants they may have to be synchronized at a later stage. This is
the case in BPMN where tokens serve the purpose of “dividing of the Token for
parallel processing within a single Process instance” [BPMI.org, 2006, p.35]. We
describe this by an abstract function andSplitToken whose values may depend
on the incoming token and the outgoing arc. We will use this function below for
the discussion of the OR-join gateway rule, where for the sake of definiteness we
represent the function concretely as follows, concatenating the incoming token
with the chosen arc to record the information about the path the token went
through at this split node:

andSplitToken(t , o) = t .o

We also take here the view of BPMN where the prescribed quantity for con-
suming or producing tokens on incoming respectively outgoing arcs of AND and
OR gateways is 1. To express that upon firing the AndSplitGateTransition

one has to select on the unique incoming arc in one of its token(in) to be
Consumed we use a function firingToken({in}). For later reference we use this
function as defined on non-empty subsets of inArc(node).

AndSplitGateTransition(node) = WorkflowTransition(node)
where

let {in} = inArc(node)
CtlCond(node) = Enabled(in)
CtlOp(node) =

let t = firingToken({in})
Consume(t , in)
ProduceAll({(andSplitToken(t , o), o) | o ∈ outArc(node)})

Frequently splitting a computation into finitely many branches comes with
a later join of these branches (or even more branches that may be due to fur-
ther intermediate splits). To fire an AND-join node requires—besides the node-
specific conditions on data, events and resources—that Enabled holds for each
of its finitely many incoming arcs in ∈ inArc(node). Upon firing, the gateway
Consumes the prescribed number (here 1) of the tokens on every incoming arc
and Produces on its unique outgoing arc out the prescribed number (here 1)
of tokens. Since a join node typically has a synchronization purpose, the relation
between the incoming token and the outgoing token often reflects this feature.
We formulate this dependence by a function andSplitToken whose values depend
on the incoming tokens. The function firingToken chooses here a set of tokens,
containing one token from token(in) for each incoming arc in.
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AndJoinGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = forall in ∈ inArc(node) Enabled(in)
CtlOp(node) =

let {in1, . . . , inn} = inArc(node)
let {t1, . . . , tn} = firingToken(inArc(node))

ConsumeAll({(ti , ini)) | 1 ≤ i ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)

The reader will have noticed that we did not specify the firing tokens by
let ti = firingToken(ini ), because this would mean that one can select the
tokens on the incoming arcs independently from each other. Instead the function
firingToken typically will select “matching tokens” with respect to a to be defined
matching condition.

4 OR-Join Definition

In this section we use the framework explained in [Section 3] to define a precise
semantics for the general supposedly intuitive understanding of the OR-join.
We first define in [Section 4.1] the OR-split gateway rule along the lines of the
AND-split gateway rule, but adding a mechanism to describe how to choose
among alternative subsets of outgoing arcs (instead of selecting the entire set
outArc(node)). We then adapt this selection mechanism to describe the synchro-
nization features of the OR-join rule. To separate two different concerns related
to the OR-join problem we split the discussion into two parts, one for acyclic
graphs [Section 4.2] and one for graphs with cycles [Section 4.3].

4.1 OR-Split Gateway Rule

An OR-split is similar to the AND-split, but instead of producing tokens on
every outgoing arc, this may happen only on a non-empty subset of them.
The chosen alternative depends on certain conditions OrSplitCond(o) to be
satisfied that are associated to outgoing arcs o. For example in the BPMN
standard, OrSplitCond(o) is an associated GateCond(o) or a GateEvent(o).
We reflect this choice among the various alternatives by an abstract function
selectProduce(node), which is constrained to select at each invocation a non-empty
subset of arcs outgoing node that satisfy the OrSplitCond ition. The BPMN stan-
dard document for example imposes default gates to guarantee for a valid process
that every call of this function yields a non empty set. A special version of this
interpretation of OR-split nodes is to additionally require that with each se-
lection a singleton set (exclusive choice) is determined, whether based upon an
event or a data condition, e.g. by trying the alternatives out in an a priori fixed
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manner (in BPMN called data-based or event-based XOR-split). However, by
the nature of their role these selection functions often are not static (compile-
time definable), but dynamic functions, whose values depend on the runtime
state. We will exploit this in the next section for the description of the OR-join
behavior.

Constraints for selectProduce

selectProduce(node) �= ∅
selectProduce(node) ⊆ {out ∈ outArc(node) | OrSplitCond(out)}8

This leads to the following instantiation of the WorkflowTransition(node)
scheme for OR-split gateway nodes. The involvement of process data or gate
events for the decision upon the alternatives is formalized by letting DataCond
and EventCond in the rule guard and their related operations in the rule body
depend on the parameter O for the chosen set of alternatives. As in the AND-
split rule we use a function, here orSplitToken, to express the type of tokens to
be produced on outgoing arcs. in denotes the unique incoming arc.

OrSplitGateTransition(node) = WorkflowTransition(node)
where

let {in} = inArc(node)
let O = selectProduce(node) in

CtlCond(node) = Enabled(in)
CtlOp(node,O) =

let t = firingToken({in})
Consume(t , in)
ProduceAll({(orSplitToken(t , o), o) | o ∈ O})

As AndSplitGateTransition is an instance of OrSplitGateTransition,
namely with the selection function required to yield the entire set outArc(node),
we speak in the following only of split nodes when we mean an AND split or OR
split gateway at a node; similarly for join nodes with correspondingly specialized
synchronization condition.

4.2 OR-Join for Cycle-Free Models

In this section the graphs are assumed to be acyclic. For simplicity of exposition
but without loss of generality we add here and in the next section to the BPMN
Best Practice Normal Form assumption the Unique Start Node Assumption
8 Instead of requiring this constraint once and for all for each such selection

function, one could include the condition as part of DataCond(node, O) and
EventCond(node, O) in the guard of OrSplitGateTransition.
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that each graph has exactly one start node.9 Thus every node in the graph is
connected to the start node by a path.

Sometimes it is claimed that “the non-locality of OR-joins can even raise
problems to the effect that it is impossible to define a formal semantics . . . that is
fully compliant with the informal semantics” [Gruhn and Laue, 2007, p.6], but as
the authors of [Dumas et al., 2007] point out, the problem is not in the definition
of what they call the OR-join firing rule, but in a) the definition of when this rule
should be considered as enabled and b) in finding efficient algorithms to compute
this enabledness property. In fact, to describe the OR-join gate transition rule
it suffices to adapt to a function selectConsume the mechanism used above to
describe via selectProduce the (decisions taken about the) possible alternatives
when firing an OR-split transition rule.

We explicitly separate the two distinct features one has to consider for the
constraints to impose on such a selectConsume function: the enabledness condition
for each selected arc and the synchronization condition that the selected arcs are
exactly the ones to synchronize. We represent the undisputed conventional to-
ken constraint as part of the control condition in the OrJoinGateTransition

rule below, namely that the selected arcs are all enabled and that there is at
least one enabled arc. What is disputed in the literature is the synchronization
constraint for selectConsume functions. Before investigating it we formulate the
transition rule for an abstract OR-join semantics, which leaves the various syn-
chronization options open as additional constraints to be put on selectConsume .
Thus selectConsume(node) plays the role of an interface for triggering for a set
of to-be-synchronized incoming arcs the execution of the rule at the given node,
with the usual effect.

OrJoinGateTransition(node) = WorkflowTransition(node)
where

let I = selectConsume(node) in
CtlCond(node, I ) = (I �= ∅ and forall i ∈ I Enabled(i))
CtlOp(node, I ) =

Produce(orJoinToken(firingToken(I )), out)
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n}) where
{t1, . . . , tn} = firingToken(I )
{in1, . . . , inn} = I

The selectConsume function in the OrJoinGateTransition serves to ex-
press on which arcs one has to wait for tokens of the indicated type from the
9 To a graph with multiple nodes that can be used for starting a sequence flow, one can

add a split gateway that splits to the multiple start nodes from a new unique starting
node. This can be an AND-split or an OR-split, depending on the interpretation of
the use of multiple start nodes. In BPMN it is disjunctive for start events and
conjunctive for implicit start nodes.
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to-be-synchronized threads [van der Aalst et al., 2003], in terms of the BPMN
standard document on which arcs we “are expecting a signal based on the up-
stream structure of the Process” [BPMI.org, 2006, p.81]. The real question is
first of all which synchronization condition one wants to impose as constraint on
the selectConsume function,10 and then which means we have to compute values
of the function once it is defined (read: the enabledness condition for OR-join
rule instances).

It is surprising to see that the workflow and business process oriented liter-
ature on the theme deals with this issue without ever referring to well known
and sophisticated techniques to handle synchronization problems in distributed
computing. This may be another theme where “business process modelers can
learn from programmers” [Gruhn and Laue, 2007]. In the following we try to
investigate some variations of the OrJoinGateTransition rule proposed in
the literature to put them into a unified perspective. We hope that by doing this
the sometimes hidden assumptions or motivations of those proposals become
clear and can be evaluated for an informed decision on the intended OR-join
synchronization behavior.

4.2.1 “Informal semantics” of OR-join

We start with an analysis of the proposal quoted in [Section 2] for what is called
the informal semantics of the OR-join. The literature contains some sophisti-
cated algorithms to compute the OR-join enabledness property for this inter-
pretation of the OR-join, see for example [Dumas et al., 2007] which improves
on [Wynn et al., 2005]. It comes down to determine (why restricted to static
analysis means?) all computation paths that may lead to enabling additional
arcs entering this node. One can specify this requirement in an accurate way
by providing some additional (in an optimized version not really expensive to
produce) runtime information on what is of concern, namely for which poten-
tial synchronization requests a join gateway node may still have to handle the
synchronization.

Since by the unique start node assumption we know that synchronization re-
quests are produced only at split gateway nodes, we can capture the requirement
for the “informal” OR-join semantics in our model by “informing” all synchro-
nization points, which are reachable from a split node, as soon as possible about
tokens that may have to be synchronized at the join node and to keep this in-
formation up to date during subsequent decision points. The latter may exclude
some of the—up to this decision point possible—paths for a token. This comes up
10 Although this question is in no way related to the meaning of OR as expressing

some alternatives for firing the join rule, we keep the name selectConsume , instead
of (for example) synchronize, to show that different interpretations of this function
correspond to different choices made for the synchronization discipline at OR-joins.
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to send an advance notice, for each token created at a split node, to all reachable
join nodes and to maintain this information up to date until the token arrives
at the synchronization point or takes a path from where that point cannot be
reached. This can be described in the model by the following refinement:

add in the split and join node transition rules synchronization analogues to
the token production and consumption submachines in CtlOp,
add the intended synchronization counterpart CtlCondSync(node, I ) to the
CtlCond(node, I ) in the join node rules, checking whether for each synchro-
nization token an enabling token is present.

Here are the details of this refinement step.

Split gate transition refinement. Let node be a split node and out any
arc outgoing node where a token t enabling the unique incoming arc in
Produces a token t .out . This starts a new computation path at out that
may need to be synchronized with other computation paths started simulta-
neously at this node (or with some final segment of some computation paths
started upstream, i.e. at nodes from where node can be reached11). We place
an additional synchronizer copy of t .out on each reachable arc that enters a
join node, more precisely for each path that starts with out and leads to an
arc a entering a join node, we place a synchronizer copy of t .out on a. We
denote the set of these join arcs by AllJoinArc(out) and record the synchro-
nizer token copy placed there in a location syncToken(arc). This allows us
to define analogues Produce(All)Sync of Produce(All) to handle the
placement of synchronizer tokens. By calling a corresponding submachine
ConsumeSyncAll we also delete the synchronization copy of the fired t
for each o ∈ outArc(node) from each i ∈ AllJoinArc(o). This reflects that
once t is fired, the request for its potential synchronization is replaced by
a request for potential synchronization of the children token Produced by
(firing the rule triggered by) t , and only those. The refined rule is formulated
below in [Section 4.3].
Join gate transition refinement. Let node be a join node. The rule
CtlOp is refined as for split nodes by adding the ConsumeSyncAll and
ProduceSyncAll submachines, called upon appropriate sets of tokens to
a) consume the synchronization tokens that, once the to-be-synchronized
tokens have been fired, have served their purpose, and to b) produce new
synchronization tokens for the tokens the join produces. In addition we re-
fine the CtlCond(node, I ) by adding the intended synchronization condition
CtlCondSync. In the case of the informal OR-join semantics we are formaliz-

11 This complication is needed as long as it is allowed to synchronize computation paths
started at different split nodes, as for example in the BPMN standard [BPMI.org,
2006]. It is avoided for example in Occam-like OR-join interpretations discussed
below.
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ing here, CtlCondSync expresses that I is a synchronization family at node,
which means a set of incoming arcs with non-empty syncToken sets such
that all other incoming arcs (i.e. those not in I ) have empty syncToken set
(read: are arcs where no token is still announced for synchronization so that
no token will arrive any more (from upstream) to enable such an arc).

The definition of the macros Produce, Consume and their extensions to sets
can be copied for synchronization tokens by replacing token with syncToken.12

The quantity functions inQty, outQty are skipped because by assumption at split
or join rules, on each involved arc only 1 token is consumed or produced.

ProduceSync(t , in) = Insert(t , syncToken(in))
ConsumeSync(t , in) = Delete(t , syncToken(in))
ProduceSyncAll(Y ) = forall y ∈ Y ProduceSync(y)
ConsumeSyncAll(X ) = forall x ∈ X ConsumeSync(x )

For split gate transition rules the CtlOp(node) submachine is refined
by adding the following two submachines. We use the instance of the functions
orSplitToken and andSplitToken explained already above, namely the trace no-
tation t .out , to record the start at out of a computation path triggered by t ,
a path which is (potentially) to be synchronized with other computation paths
started at the same node (or upstream) so that the same t .out is placed into
syncToken.

ProduceSyncAll({(t .o, i) | i ∈ AllJoinArc(o), o ∈ O})
ConsumeSyncAll({(t , i) | i ∈ AllJoinArc(o) forsome o ∈ outArc(node)})

For join gate transition rules the CtlOp(node) submachine is refined
by a refinement of the function firingToken(I ) and by adding the following two
submachines.

ProduceSyncAll({(joinToken(t1, . . . , tn), in) | in ∈ AllJoinArc(out)})
ConsumeSyncAll({(ti , in) | in ∈ AllJoinArc(out), 1 ≤ i ≤ n} ∪ {(ti , ini) |
1 ≤ i ≤ n})

firingToken(I ) is refined to select among the enabling and synchronization
tokens on arcs in I a maximal common token prefix t such that the following
condition holds:

forall 1 ≤ i ≤ n ti = t .resti ∈ token(ini ) ∩ syncToken(ini ).

12 The reader who knows the ASM refinement method [Börger, 2003] knows that one
could avoid this repetition by parameterizing the macros by a function tok , which
can then be instantiated to token or syncToken. Similarly for an instantiation of
FireForAll(rule,Z ) for rule = Produce,Consume, etc.
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Correspondingly we refine orJoinToken and andJoinToken, respectively, to
joinToken(t1, . . . , tn) = t .

The synchronization counterpart CtlCondSync(node, I ) added as conjunct to
CtlCond(node, I ) expresses that all the selected arcs are involved in a potentially
forthcoming synchronization, but no other incoming arc.

CtlCondSync(node, I ) =
forall i ∈ I syncToken(i) �= ∅ and

forall i ∈ inArc(node) \ I syncToken(i) = ∅
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Figure 2: Acyclic OR splits and joins

4.2.2 Illustration by Example

[Fig. 2] illustrates the preceding definition. Here are some typical cases.
Case 1: at split1 only one token is produced, a token entering A2. Then

the arcs entering join1, join3, join4, join5 on the path from A1 to End1 and
only those receive synchronization tokens, so that the rule at these join nodes
can fire immediately when the token coming from A2 arrives, since no further
synchronization has to take place.

Case 2: at split1 only two tokens are produced, one entering A1 and one
entering A2. Subcase 2.i (i=1,2): at split2 only one token is produced, namely
to enter Bi . Then synchronization tokens are produced on the path from A2
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to End1 as in case 1. The additional synchronization tokens produced at join3,
join4, join5 on the two paths from A1 to End1 have three effects. They prevent
the rule at join3 from firing until in case 2.1 the decision to produce a token
to enter activity B1 (and not B2) has been taken (whereby the synchronization
token is deleted from the arc connecting B2 with join3 as well as from the arcs
entering join4 and join5 on the path from B2 to End1), or in case 2.2 until
the token produced at the exit from B2 has arrived to be synchronized with
the token coming from A2. At join5 two potential synchronizations are required
when a token leaves split1 to enter A1, one on the arc exiting D1 and one on the
arc exiting join4. The first of these two synchronization requests holds in case 2.1
until the token produced upon exiting split2 to enter B1 arrives at join5, in case
2.2 until the decision to produce a token to enter activity B2 (and not B1) has
been taken. Symmetrically for the second synchronization request. At join4 still
no synchronization is necessary since the synchronization tokens produced there
between exiting split1 and entering join3 are deleted upon entering join3 and
by assumption no (synchronization) token is produced on paths going through
A3 or A4.

The other possible cases are analogous.
Remark on cancellation. To include the consideration of cancellation re-
gions [Wynn, 2006], [Wynn et al., 2006b] in a business process diagram it suf-
fices to update, in addition to a cancellation action that takes place at a node,
syncToken at all synchronization points that are downstream a node in the can-
cellation region of node.

4.2.3 Variations of OR-join semantics

Neither the literature nor the BPMN standard clarify satisfactorily what are
the required properties for the OR-join semantics. This implies that there is
no binding contract against which one could verify the correctness of a rigorous
definition for the semantics of the OR-join. It also implies that it is not clear how
to define that a concrete BPMN diagram is actually well-specified. Instead, there
are some variations of the OR-join semantics we are going to shortly characterize
here.

In the above description of the “informal semantics” for the OR-join, every
potential synchronization token is dismissed from syncToken(node) whenever a
runtime choice made in a transition upstream node excludes a path. Therefore
CtlCondSync(node, selectConsume (node)) becomes true only when all these deci-
sions have been taken. One could replace this cautious approach by a definition
of an eager synchronization model, where at a join node only synchronization
requests from the next preceding split node are taken, as for example in a sit-
uation where nested synchronizations are not needed. Our model can easily be
adapted to this case, namely by refining the AllJoinArc function to a function
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NextJoinArc(o) that yields the set of all next arcs downstream o that enter
a join node. In the same way one can treat other forms of “scope controlled”
synchronization schemes, e.g. the Occam-like interpretation sketched below.

In a similar way one can adapt our model by refining CtlCondSync(node, I )
to describe synchronization schemes with timeout conditions or similar runtime
features.

The very special interpretation of OR-joins by the Synchronizing Merge pat-
tern [van der Aalst et al., 2003] needs neither synchronization tokens nor a
CtlCondSync, since every token on any single incoming arc is enough to fire the
rule. To describe this as an instance of the OrJoinGateTransition(node) it
suffices to refine selectConsume(node) to yield singleton sets.

4.2.4 Occam-like OR-join semantics

An OR-join semantics in the style of the parallel programming language Occam
and its Transputer implementation [Graham, 1990], [INMOS, 1989] has for each
split node a well-defined synchronization node sync(node) where all the pro-
cesses triggered by a token t at node are synchronized before one can proceed
with the next task after sync(node). In particular, selectConsume(sync(node)) =
inArc(sync(node)) holds. This also yields a well-structured discipline for nested
synchronizations, which makes the synchronization method explained for acyclic
graphs work also in the presence of parallel subprocesses created by parallel pro-
cesses. Since sync(node) is known at design time, the production of synchroniza-
tion tokens is reduced to send from a split node each produced token t .o to its
corresponding synchronization arc sync(o); the synchronization token consump-
tion is reduced to consume at join nodes these tokens once all to be synchronized
processes are ready for their synchronization.

4.3 OR-Join for Models with Cycles

In a non-Occam like OR-join semantics one has the problem to define whether
and how the synchronization of “upstream” started processes should be com-
bined with the synchronization of “downstream” started processes, e.g. itera-
tions, since such cases are not excluded by the informal and similarly unstruc-
tured interpretations of the OR-join semantics. This problem has triggered var-
ious research efforts. It is mentioned also in the BPMN standard document,
where however no indication about the intended solutions is provided:

Incoming Sequence Flow that have a source that is a downstream activity
(that is, is part of a loop) will be treated differently than those that have
an upstream source. They will be considered as part of a different set of
Sequence Flow from those Sequence Flow that have a source that is an
upstream activity. [BPMI.org, 2006, p.82]
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Thinking of tokens in terms of up-/downstream does not solve the problem
of cyclic workflows. According to the definition of “upstream” in the BPMN
standard [BPMI.org, 2006, p.25], a node is “upstream” regarding some other
node, if there is a path in the workflow from the first to the second node. The
BPMN standard gives no definition for “downstream”, but seems to implicitly
refer to the inverse of “upstream” whenever “downstream” is mentioned. Thus
in cyclic workflows, two flow objects can easily be upstream (or downstream)
regarding each other in both directions. Therefore this property cannot be used
as a discriminator for synchronization. Instead, we will individually group each
token that can potentially exhibit cyclic behaviour.

Some further structure is needed to appropriately deal with cyclic workflows.

4.3.1 Token Sets

To speak about the synchronization of tokens in cycles needs the ability to
express that certain tokens belong together, whereas others do not. To express
such a concept we introduce token sets, i.e. sets of tokens which are viewed as a
coherent group when a join fires. We will use the token sets to assign new token
sets to tokens at paths that have later to be synchronized and to distinguish
tokens in cycles by appropriately assigned token sets. In this section we prepare
the needed purely syntactical refinement, which is used in the next section to
handle the problem of cycles.

We will make sure that each token t is a member of exactly one token set
tokenSet(t). We assume that upon a start event a token set tokenSet(t) is gener-
ated for the start token t . When new tokens t ′ appear during the computation,
their tokenSet(t ′) has to be defined, as happens in particular in the join rules.
In the purely syntactical refinement defined in this section, the new tokens are
declared to belong to the same token set as the firing tokens.

We also have to refine the concept of Enabledness to guarantee that each
time only tokens of one token set ts are considered.

Enabled(in, ts) = (| token(in) ∩ ts |≥ inQty(in))

Similarly we impose on firingToken that each time only tokens belonging to
one token set are selected.

if firingToken(node) = {t1, . . . , tn} then forall 1 ≤ i ≤ n tokenSet(ti) =
tokenSet(t1)

This leads to the following refinement of the AND-join rule:

AndJoinGateTransition(node) = WorkflowTransition(node)
where
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let {in1, . . . , inn} = inArc(node)
let {t1, . . . , tn} = firingToken(inArc(node))
let ts = tokenSet(t1)

CtlCond(node) = forall in ∈ inArc(node) Enabled(in, ts)
CtlOp(node) =

ConsumeAll({(ti , ini) | 1 ≤ i ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)
tokenSet(andJoinToken({t1, . . . , tn})) := ts
ConsumeSyncAll({(ti , in)|in ∈ AllJoinArc(out), 1 ≤ i ≤ n}
∪ {(ti , ini) | 1 ≤ i ≤ n})

ProduceSyncAll

({(andJoinToken(t1, . . . , tn), in)|in ∈ AllJoinArc(out)})
Synchronization at an OR-join only happens among tokens of the same token

set. We therefore refine the synchronization part of the control condition as
follows, where ts is the given token set:

CtlCondSync(node, I , ts) =
forall i ∈ I syncToken(i) ∩ ts �= ∅ and

forall i ∈ inArc(node) \ I syncToken(i) ∩ ts = ∅
With these preparations we can now refine the Or-join to work only on tokens

of the token set underlying the to-be-fired tokens on the selected arcs:

OrJoinGateTransition(node) = WorkflowTransition(node)
where

let I = {in1, . . . , inn} = selectConsume(node)
let {t1, . . . , tn} = firingToken(I )
let ts = tokenSet(t1) in

CtlCond(node) = (I �= ∅ and forall i ∈ I Enabled(i , ts) and
CtlCondSync(node, I , ts))
CtlOp(node) =

Produce(orJoinToken(firingToken(I )), out)
tokenSet(orJoinToken(firingToken(I ))) := ts
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n})
ConsumeSyncAll({(ti , in)|in ∈ AllJoinArc(out), 1 ≤ i ≤ n}
∪ {(ti , ini) | 1 ≤ i ≤ n})

ProduceSyncAll

({(orJoinToken(t1, . . . , tn), in)|in ∈ AllJoinArc(out)})
Obviously this refinement is purely incremental (conservative). Therefore the

refined model is backwards compatible with the previous one. We are now ready
to assign new token sets to tokens at paths that have later to be synchronized
and to distinguish tokens in cycles by appropriately assigned token sets.
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4.3.2 Breaking the Cycles

We use token sets to create tokens that can be distinguished from other tokens
in a process instance. This happens at the outgoing arcs of splits that are part
of a cycle. We make here the assumption, which is released in the furthermore
refined model in [Sörensen, 2008], that for each cycle and token set, in each path
in that cycle there is at each moment at most one token of that token set. Here
is the definition of cycle we are using, where the upper index + denotes the
transitive closure:

cycle(a) :⇔ source(a) ∈ succ+(target(a))

We modify the OrSplitGateTransition to create on its outgoing cyclic
arcs tokens that belong to a new (completely fresh) token set. The new token
sets are assumed to be created by a function genTokenset , so that for each
chosen outgoing arc which is part of a cycle a different token set is created. As
a consequence tokens belonging to such a set cannot be synchronized with any
other token; however, to exit a cycle XOR-joins can be used.

OrSplitGateTransition(node) = WorkflowTransition(node)
where

let {in} = inArc(node)

let O = selectProduce(node)
let t = firingToken({in})

CtlCond(node) = Enabled(in, tokenSet(t))
CtlOp(node,O) =

Consume(t , in)
ConsumeSyncAll({(t , i) | i ∈ AllJoinArc(o)

forsome o ∈ outArc(node)})
ProduceSyncAll

({(orSplitToken(t , o), i) | i ∈ AllJoinArc(o), o ∈ O})
forall o ∈ O

if cycle(o)
Produce(orSplitToken(t , o), o)
tokenSet(orSplitToken(t , o)) := genTokenset(t , o)

else
Produce(orSplitToken(t , o), o)
tokenSet(orSplitToken(t , o)) := tokenSet(t)

We apply the same changes to the AndSplitGateTransition submachine.
Since token sets can no longer pass splits if the outgoing token might return to
the split, AllJoinArc need no longer refer to all reachable incoming edges of joins.
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Rather, we need it to refer to those incoming edges of joins that are reachable
without creating a new token set. Because we use AllJoinArc to block joins with
synchronization tokens, this modification translates the independence of cycles
that we gained by creating new token sets at the cyclic edges of splits to the
blocking discipline. The definition of AllJoinArc(o) is refined to refer to exactly
those incoming edges of joins in the workflow that are reachable from target(o)
via a path that contains no outgoing cyclic edge of a split.

OAssemble Configure Test 1 X

Test 2

O

X

Package

Figure 3: Production Example from the BPMN Standard

The refined model is again a conservative extension of the previous one and
thus “backwards-compatible” with the BPMN standard. In fact, in the acyclic
case, the token set created by the start event will be the only one that is active in
a process instance. Because all tokens belong to this token set, the refined ASM
behaves just like the one in the last section. If there are cycles, the behaviour
is ‘defined’ in [BPMI.org, 2006] by some examples of cyclic workflows with a
suggested mapping to BPEL.

The workflow depicted in [Fig. 3] is the most complex cyclic example in the
standard. The reader will identify the split nodes by their unique incoming arc
and the join nodes by their unique outgoing arc. Note that all the splits are
XOR-splits, so there is only one token in the cycle at any given time and the
intuitive semantics of the workflow is quite obvious. In our model, tokens can
enter the cycle because the join leading to the “Configure Product” task can only
be reached from outside of the cycle (starting it), or via cyclic edges of splits
(from inside the cycle). This means that the only incoming edge of the initial
join that contains a synchronization token corresponding to a token that just
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triggered the “Assemble Components” is the one on which the very same token
was placed after it triggered “Assemble Components”. In a similar manner, the
first join is enabled when “Test Level 1” determines that “Test Level 2” need
not be conducted and the control flow loops directly back to that join.

The BPMN standard allows what is named “Infinite Loop” [BPMI.org, 2006,
p.200], better called “Closed Loop”. A closed loop is a cycle without any split.
Tokens that enter a closed loop are forever lost to the rest of the workflow. In our
model, this leads to a deadlock, because each token entering the closed loop will
have a synchronization copy of itself placed on the incoming edge of the initial
join that loops back from the cycle. It is hard to imagine a sensible real-world
example that contains a closed loop (the BPMN standard document admits this).
Banning closed loops from workflows is thus not a serious restriction, especially
since infinitely looping cycles are still possible as long as they are not closed.

This model for OR-joins is furthermore refined in [Sörensen, 2008], extending
the refinement technique introduced here for synchronization tokens, to the more
general case where multiple tokens can be present in a cycle with multiple entry
and exits points. The following properties are proved:

Acyclic workflow diagrams are deadlock free.
Workflow diagrams with cycles, but without sync-splits or sync-joins and
without closed loops, are deadlock free.
A class of stratified workflows is defined which is proved to be free of dead-
locks (if there are no closed loops).
An algorithm is defined for arbitrary workflow diagrams such that if the
algorithm yields output “deadlock free”, then the workflow has no deadlocks.
Acyclic workflow diagrams terminate and each flow object fires at most once.
Progress is made in deadlock free cyclic workflow diagrams.

A simulator has been derived from the model presented here, which makes
the specification executable.

5 Concluding Remarks

Based upon the definitions provided in this paper for various OR-join seman-
tics, one can apply any rigorous technique to the validation and verification of
business process diagrams containing OR-joins. For example the simulator de-
veloped in [Sörensen, 2008] for the visualization of BPMN workflows has been
used for the validation of the definitions in this paper; as a verification example
one finds there also a proof that stratified workflows are deadlock free. There
is no limitation to tool sets of specific modeling frameworks. One can use the
definitions to design business process diagram schemes and their instantiations
in parallel with proving properties of interest for them, using the feature-based
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approach illustrated in [Batory and Börger, 2008] and choosing appropriate tools
to support theorem proving, model checking, static analysis etc.
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