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Abstract: We study inference systems of weak functional dependencies in relational
and complex-value databases. Functional dependencies form a very common class of
database constraints. Designers and administrators proficiently utilise them in everyday
database practice. Functional dependencies correspond to the linear-time decidable
fragment of Horn clauses in propositional logic. Weak functional dependencies take
advantage of arbitrary clauses, and therefore represent full propositional reasoning
about data in databases. Moreover, they can be specified in a way that is very similar
to functional dependencies.

In relational databases the class of weak functional dependencies is finitely axiomati-
sable and the associated implication problem is coNP-complete in general. Our first
main result extends this axiomatisation to databases in which complex elements can
be derived from atomic ones by finitely many nestings of record, list and disjoint
union constructors. In particular, we construct two nested tuples that can serve as a
counterexample relation for the implication of weak functional dependencies. We fur-
ther apply this construction to show an equivalence to truth assignments that serve as
counterexamples for the implication of propositional clauses. Hence, we characterise the
implication of weak functional dependencies in complex-value databases in completely
logical terms. Consequently, state-of-the-art SAT solvers can be applied to reason about
weak functional dependencies in relational and complex-value databases.

Key Words: Relational database, Complex-value database, Weak functional depen-
dency, Axiomatisation, Propositional logic
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1 Introduction

The semantics of databases is usually captured at the time of designing their
database schemata. While a schema itself imposes structural constraints the
specification of additional constraints can further restrict the number of possi-
ble future database instances to those which are considered meaningful to the
application at hand. A common approach formally declares so-called dependen-
cies that form a common class of constraints. Intuitively, dependencies mean
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that the occurrence of data satisfying certain properties enforce the existence or
properties of other data. In this sense, the latter data entries are dependent on
the former ones. While this rough intuition is useful for verbal communication
the exact formal meaning and a correct understanding by users and administra-
tors requires a strictly formal treatment of mathematical rigour. For relational
databases almost 100 different classes of dependencies are known [Fagin and
Vardi, 1986; Thalheim, 1991].

In database practice only a few of these classes are actually utilised. Func-
tional dependencies form a prime example of such a class. Informally, a relation
exhibits a functional dependency if whenever two table rows agree on a set of
columns, then they also agree on another set of columns. Possible reasons for
the frequent utilisation of functional dependencies are their significance for cap-
turing essential requirements, their simplicity, the proficiency with which data
administrators can employ them, and their robustness in terms of maintenance
and understanding. For instance, the interaction of functional dependencies cor-
responds exactly to the interaction of Horn clauses in propositional logic. This
limited expressiveness, however, explains why functional dependencies cannot
capture several properties that are desirable in many database applications. In
reality, administrators find it difficult to specify more expressive dependencies.
This bottleneck constricts further when the structure of the database schema
cannot be represented as a table but by means of more sophisticated schemata
such as nested schemata [Levene, 1992] or document type definitions [Bray et al.,
2006].

We propose to use weak functional dependencies as an expressive class of
database dependencies that can be specified in a way similar to functional depen-
dencies. Informally, a relation exhibits a weak functional dependency if whenever
two table rows agree on a set of columns, then they also agree on at least one
column out of a set of columns. This appears to be just a minor modification
of the semantics for functional dependencies, but yields the full expressiveness
of propositional logic. Indeed, as we will show, the specification of a finite set of
weak functional dependencies corresponds to a formula of propositional logical
in conjunctive normal form (with each clause corresponding to a weak functional
dependency in that set).

Example 1. Consider the relation schema Department with attributes ID,
Staff, Level, Semester, Project, Teaching which keeps record of staff members’
teaching duties and involvement in projects. The department has the policy
that a professor teaches one course per semester and is involved in at least one
project. Other staff members must teach at least one course and participate in
one project. An instance of Department is shown in Table 1. According to the
department’s policy, whenever two tuples coincide on Staff and Semester, then
these two tuples coincide on Teaching (in case of a professor) or they coincide
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ID Staff Level Semester Project Teaching
123 John Do Professor 2005-01 Weak FDs Relational Databases
123 John Do Professor 2005-01 Strong FDs Relational Databases
123 John Do Professor 2005-02 Weak FDs XML
123 John Do Professor 2005-02 Data Exchange XML
123 John Do Professor 2005-02 Query Answering XML
234 Frank Gorge Professor 2005-01 Strong FDs Temporal Databases
234 Frank Gorge Professor 2005-01 XQuery Temporal Databases
345 Bo Candle Lecturer 2005-01 XPath Relational Databases
345 Bo Candle Lecturer 2005-01 XPath Temporal Databases
345 Bo Candle Lecturer 2005-01 XPath Spatial Databases
345 Bo Candle Lecturer 2005-02 Data Exchange Database Security

Table 1: A relation over Department

on Project (in case of a staff member who is not a professor). Therefore, every
legal instance over Department is to satisfy the weak functional dependency

{Staff, Semester} →w {Project, Teaching}.
Furthermore, the staff member is functionally determined by its ID, and ev-
ery staff member is associated with one level. We can express these functional
dependencies as weak functional dependencies

ID →w Staff and Staff →w Level .

We choose {ID, Semester, Teaching, Project} as primary key for Department,
i.e., every two distinct tuples disagree on at least one attribute in {ID, Semester,
Teaching, Project}. ��

Example 1 shows that weak functional dependencies can be used to express
keys and functional dependencies, but also many other properties.
Previous Work. Weak functional dependencies have been introduced and stud-
ied for the relational model of data in [Demetrovics and Gyepesi, 1981]. Recently,
there has been interest in extending dependencies to databases that can han-
dle data elements that are derived from atomic ones by finite recursive nestings
of certain type constructors [Hartmann and Link, 2008; Hartmann et al., 2004;
Hartmann et al., 2005; Hartmann et al., 2006a; Hartmann et al., 2006b; Sali and
Schewe, 2006; Schewe, 2005]. Weak functional dependencies are treated as a sub-
class of disjunctive functional dependencies in [Hartmann et al., 2004; Hartmann
et al., 2005]. The underlying framework is based on non-trivial restructuring rules
that result in a very sophisticated axiomatisation.
Contributions. In this article we make the following contributions:
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1. We prove the soundness and completeness for a set of inference rules for the
implication of weak functional dependencies in relational databases.

2. Based on type constructors for records, lists and disjoint unions we intro-
duce nested database schemata that capture the structural information on
complex-value databases. These schemata carry the structure of a Brouw-
erian algebra which deviates from previously studied algebras in the sub-
typing rules for deriving subschemata. The new Brouwerian algebra carries
additional domain information which is especially suitable in the presence
of disjoint union types and weak functional dependencies. In sharp contrast
to the work in [Hartmann et al., 2004; Hartmann et al., 2005] we do not
consider any restructuring rules. This results in an orthogonal and easily
comprehensible theory.

3. We extend the definition of weak functional dependencies from relational
to complex-value databases. In particular, it is sufficient to focus on the
join-irreducible subschemata of a nested attribute. This is different to the
situation when set- or multiset constructor are present [Hartmann et al.,
2006a].

4. We extend the axiomatisation for the implication of weak functional depen-
dencies to complex-value databases. The major difficulty is the construction
of two nested data elements that can serve as a counterexample for an in-
stance of the implication problem. The combination of list and disjoint union
constructor imposes additional challenges on the construction.

5. We characterise the implication of weak functional dependencies in complex-
value databases in completely logical terms. In fact, truth assignments that
serve as counterexamples for the implication of propositional formulae have
a one-to-one correspondence to the two-element relations that serve as coun-
terexamples for the implication of weak functional dependencies. The corre-
spondence shows that weak functional dependencies form a very robust class
of dependencies, and that well-studied state-of-the-art reasoning tools can
be applied to reason about them. On the one hand, the data administrator
can take advantage of her proficiency in specifying functional dependencies
to define weak functional dependencies. On the other hand, the full propo-
sitional expressive power is at her disposal. Indeed, functional dependencies
correspond to propositional Horn clauses, weak functional dependencies cor-
respond to propositional clauses in general.

Organisation. We study weak functional dependencies for relational databases
in Section 2. In Section 3 we introduce the complex-value data model and es-
tablish an axiomatisation for the implication of weak functional dependencies in
that framework. The correspondence between weak functional dependencies and
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propositional formulae is established in Section 4. We conclude in Section 5 and
briefly comment on future work.

2 Weak Functional Dependencies in Relational Databases

Let A = {A1, A2, . . .} be a (countably) infinite set of distinct symbols called
attributes. A relation schema is a non-empty finite set R = {A1, . . . , Ak} of
attributes. Each attribute Ai of a relation schema has a non-empty, possibly
infinite, domain dom(Ai). If X and Y are sets of attributes, then we may write
XY for X ∪ Y . If X = {A1, . . . , Am}, then we may write A1 · · ·Am for X. In
particular, we may write simply A to represent the singleton {A}. A tuple over
R = {A1, . . . , Ak} (R-tuple or simply tuple, if R is understood) is a function

t : R →
n⋃

i=1

dom(Ai) with t(Ai) ∈ dom(Ai) for i = 1, . . . , k. For X ⊆ R let t[X]

denote the restriction of the tuple t over R to X, and dom(X) =
∏

A∈X dom(A)
the Cartesian product of the domains of attributes in X. A relation r over R (or
R-relation for short) is a finite set of tuples over R. Let r[X] = {t[X] | t ∈ r}
denote the projection of the relation r over R on X ⊆ R.

2.1 Weak FDs and Clauses in Boolean Propositional Logic

Originally, weak functional dependencies have been introduced for relational
databases in [Demetrovics and Gyepesi, 1981] as generalisations of functional
dependencies.

A weak functional dependency (wFD) on the relation schema R is an expres-
sion X →w Y where X,Y ⊆ R. A relation r over R satisfies the wFD X →w Y ,
denoted by |=r X →w Y , if and only if for every pair of distinct tuples in r that
agree on each of the attributes in X, they also agree on at least one attribute in
Y . That is, |=r X → Y if and only for every distinct t1, t2 ∈ r such that for all
A ∈ X, t1[A] = t2[A] holds, there is some B ∈ Y such that t1[B] = t2[B] holds.

We will assume from now on that the domain dom(A) of every attribute A

contains at least two distinct elements. In practice, an attribute with a singleton
as its domain is not really required as the value of this attribute will be fixed.
Hence, it may therefore be omitted completely.

For a set Σ ∪ {ϕ} of wFDs on a relation schema R we say that Σ implies
ϕ if and only if every R-relation r ⊆ dom(R) that satisfies all the wFDs in Σ

also satisfies ϕ. Hence, Σ implies ϕ precisely when there is no counterexample
relation r that satisfies all the wFDs in Σ but violates ϕ. The implication problem
for weak functional dependencies is to decide whether for an arbitrary relation
schema R and an arbitrary set Σ ∪ {ϕ} of wFDs on R the wFD ϕ is implied by
Σ.
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For the design of a relational database schema dependencies are normally
specified as semantic constraints on the relations which are intended to be in-
stances of the schema. The design process requires the data administrator to
determine further dependencies which are implied by the given ones. In order to
determine the logical consequences of a set of dependencies one can use inference
rules of the form

premise
conclusion

and inference rules without a premise are called axioms.
Let Σ ∪ {ϕ} be a set of wFDs on the relation schema R. We use S to

denote a set of inference rules. Let Σ �S ϕ denote the inference of ϕ from Σ

with respect to S. Let Σ+
S = {ϕ | Σ �S ϕ} denote the syntactic hull of Σ

under inference using only rules from S. An inference rule is called sound if
the set of dependencies in the premise of the rule implies the dependency in
the conclusion. The set S is sound for the implication of wFDs if and only
if for every relation schema R and for every set Σ of wFDs on R we have
Σ+

S ⊆ Σ∗
R = {ϕ | Σ implies ϕ}. The set S is called complete for the implication

of wFDs if and only if for every relation schema R and for every set Σ of wFDs
on R we have Σ∗

R ⊆ Σ+
S.

In what follows we assume familiarity with basic notions from propositional
logic [Enderton, 2001]. Weak functional dependencies form a subclass of Boolean
dependencies [Sagiv et al., 1981; Sagiv et al., 1987]. In fact, every wFD A1 . . . An

→w B1 . . . Bm, denoted by ϕ, represents the clause ¬A1 ∨ · · · ∨¬An ∨B1 ∨ · · · ∨
Bm, denoted by ϕ′, where A1, . . . , Bm are interpreted as propositional variables.
With this mapping (·)′ of wFDs to propositional clauses in mind, the wFD ϕ

is implied by the set Σ of wFDs if and only if the corresponding propositional
clause ϕ′ is logically implied by the set Σ′ = {σ′ | σ ∈ Σ} ∪ {(R →w ∅)′} of
corresponding propositional clauses. The proof utilises a strong correspondence
between two-tuple counterexample relations r for the implication of ϕ by Σ

and counterexample truth assignments θr for the logical implication of ϕ′ by
Σ′∪{(R →w ∅)′}. More precisely, the variable A is assigned the truth value true
under θr if and only if the two tuples of r agree on the attribute A [Sagiv et al.,
1981]. In particular, the propositional clause (R →w ∅)′ corresponds to the set
semantics of database relations, i.e., every pair of distinct tuples must disagree
on some attribute.

Recall that the satisfiability problem, i.e. the problem of deciding whether an
arbitrary finite set of propositional clauses has a model, is NP-complete [Cook,
1971; Levine, 1973].

Theorem1. The implication problem of weak functional dependencies is coNP-
complete. ��
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If we restrict our attention to wFDs in which the right-hand sides contain at
most one attribute, then we have an equivalence to propositional Horn clauses,
i.e., to functional dependencies in relational databases [Fagin, 1977a]. The fol-
lowing corollary follows from the linear-time decidability of propositional Horn
clauses [Dowling and Gallier, 1984].

Corollary 2. The implication problem of wFDs with at most one attribute in the
right-hand side can be decided in time linear in the total number of attributes
occurring in the input instance. ��

2.2 Weak Functional Dependencies and Keys

The relation r satisfies the wFD X →w ∅ if and only if the projections t1[X]
and t2[X] deviate from one another for every pair t1, t2 of distinct tuples in r.
In other words, the attribute set X forms a key. That is, no relation over R

contains two distinct tuples with the same projection on X. A wFD X →w ∅
on R is called a key dependency on R. Given a set Σ of key dependencies on R,
what are the key dependencies implied by Σ? The following two inference rules

R →w ∅
X →w ∅

XY →w ∅
are sound and complete for the implication of key dependencies. The soundness of
the rules is not difficult to see. For the completeness assume that X →w ∅ /∈ Σ+

for some X ⊆ R. Then R−X �= ∅ since otherwise X →w ∅ ∈ Σ+ by application of
the first inference rule. Define two tuples t1, t2 ∈ dom(R) such that t1[A] = t2[A]
if and only if A ∈ X. Note that this defines indeed a relation with two distinct
tuples. It follows that r = {t1, t2} does not satisfy X →w ∅. It remains to
show that r satisfies every key dependency in Σ. Let U →w ∅ ∈ Σ. If U ⊆ X,
then X →w ∅ ∈ Σ+ according to the second inference rule. Consequently, there
is some attribute A ∈ U − X. This means that t1[A] �= t2[A] and therefore
|=r U →w ∅. We conclude that X →w ∅ /∈ Σ∗, i.e., the completeness follows.

Example 2. Consider again Example 1. The weak functional dependency X →w ∅
expresses that X = {ID,Semester,Teaching,Project} is a key for Department,
i.e., every pair of distinct tuples must deviate on at least one attribute in X. ��

2.3 An Axiomatisation of Weak FDs

Weak functional dependencies have been axiomatised before [Demetrovics and
Gyepesi, 1981; Thalheim, 1991]. However, we provide a new proof for the com-
pleteness of the set R of inference rules from Table 2. Instead of using combi-
natorial arguments to show the completeness [Demetrovics and Gyepesi, 1981;
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X →w Y
X ∩ Y �= ∅

R →w ∅
X →w Y

X →w Z
Y ⊆ Z

(Axiom 1) (Axiom 2) (Rule 1)

X →w Y

Z →w Y
X ⊆ Z

{XV →w Y (U − V )}V ⊆U

X →w Y
(Rule 2) (Rule 3)

Table 2: An Axiomatisation of wFDs in relational databases

Thalheim, 1991], for each wFD ϕ that cannot be derived by a set Σ of wFDs we
construct a two tuple relation that forms a counterexample for the implication
of ϕ by Σ. The proof will also serve as a good preparation for the more technical
proof that is required in the framework of complex-value databases.

Theorem3. The set R of inference rules from Table 2 is sound and complete
for the implication of wFDs.

Proof. We show the soundness of the inference rules first. Consider Axiom 1. If
X ∩ Y �= ∅, then there is some A ∈ X ∩ Y . For an arbitrary R-relation r and
any two distinct tuples t1, t2 ∈ r with t1[X] = t2[X] we have t1[A] = t2[A] as
A ∈ X, in particular. Consequently, |=r X →w Y .

Consider Axiom 2. For an arbitrary R-relation r any pair t1, t2 of distinct
tuples in r there is at least one attribute A ∈ R with t1[A] �= t2[A]. That is,
|=r R →w ∅.

Consider Rule 1. Let r be some arbitrary R-relation that satisfies the wFD
X →w Y . For any two distinct t1, t2 ∈ r with t1[X] = t2[X] there is then
some A ∈ Y with t1[A] = t2[A]. Consequently, there is also some A ∈ Z with
t1[A] = t2[A] since Y ⊆ Z. This shows that r also satisfies the wFD X →w Z.

Consider Rule 2. Let r be some arbitrary R-relation that satisfies the wFD
X →w Y . For any two distinct t1, t2 ∈ r with t1[Z] = t2[Z] it follows that
t1[X] = t2[X] as X ⊆ Z holds. Consequently, there is some A ∈ Y with t1[A] =
t2[A] since |=r X →w Y . This shows that r also satisfies the wFD Z →w Y .

Consider Rule 3. Let r be some arbitrary R-relation that satisfies all wFDs
XV →w Y (U − V ) for all subsets V ⊆ U of some U ⊆ R. Let t1, t2 ∈ r be
distinct with t1[X] = t2[X]. Since r satisfies the wFD X →w Y U there is some
A ∈ Y U with t1[A] = t2[A]. If A ∈ Y , then there is nothing more to show.
Otherwise, A ∈ U . Since r satisfies the wFD XA →w Y (U − A) there is then
some B ∈ Y (U − A) with t1[B] = t2[B]. If B ∈ Y , then there is nothing more
to show. Otherwise, we continue this line of reasoning until we have found that
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t1[XU ] = t2[XU ]. Since r also satisfies XU →w Y there is some D ∈ Y with
t1[D] = t2[D]. Consequently, r satisfies also the wFD X →w Y .

The soundness of the inference system follows from the soundness of the
inference rules by a simple induction on the length of an inference.

We will now show the completeness of the rules. Let Σ ∪{X →w Y } be a set
of wFDs on the relation schema R. Suppose that X →w Y /∈ Σ+. We need to
show that X →w Y /∈ Σ∗. We will construct a two-tuple relation r that satisfies
all wFDs in Σ, but violates X →w Y .

First, it follows that X ∩ Y = ∅ since, otherwise, X → Y ∈ Σ+ by Axiom 1.
It also follows that R−X �= ∅ since, otherwise, X = R and Y = ∅ and, therefore,
X → Y ∈ Σ+ by Axiom 2.

Define U := R − (XY ). Then there is some V ⊆ U such that XV →w

Y (U − V ) /∈ Σ+. Otherwise, X →w Y ∈ Σ+ by Rule 3. We conclude that
Y (U − V ) �= ∅ since, otherwise, Y = ∅, V = U and XV = R which implies
XV → Y (U − V ) ∈ Σ+ by Axiom 2. Note that the sets X,Y, V, U − V form a
partition of R. Define tuples t1, t2 ∈ dom(R) such that

t1[A] = t2[A] if and only if A ∈ XV.

The tuples t1 and t2 are indeed distinct since Y (U − V ) ⊆ R − (XV ) and
Y (U − V ) �= ∅.

It follows that t1[X] = t2[X] since X ⊆ XV . However, t1[A] �= t2[A] for all
A ∈ Y since Y ⊆ R − (XV ). Therefore, r does not satisfy X →w Y .

We will show now that r does satisfy all wFDs in Σ. Therefore, let W →w

Z ∈ Σ such that t1[W ] = t2[W ] holds. Otherwise, W →w Z is satisfied by r. We
show that there is some attribute A ∈ Z on which t1 and t2 agree.

Since t1[W ] = t2[W ] we conclude that W ⊆ XV by the construction of r.
Since W →w Z ∈ Σ and W ⊆ XV it follows that XV →w Z ∈ Σ+ by Rule 2.
Assume that Z ⊆ Y (U −V ). Then Rule 1 implies that XV →w Y (U −V ) ∈ Σ+,
a contradiction to our previous choice of V . This means Z �⊆ Y (U−V ). However,
Y (U − V ) = R − (XV ) by definition of U . Consequently, Z �⊆ R − (XV ) which
means that Z ∩ (XV ) �= ∅. Consequently, there is some attribute A ∈ Z ∩ (XV ),
and t1[A] = t2[A] by construction of r. We conclude that r satisfies W →w Z.

We have shown that r satisfies every wFD in Σ which implies that r satisfies
every wFD in Σ∗. Since r does not satisfy X →w Y it follows that X →w Y /∈
Σ∗. This shows the completeness. ��

The following example demonstrates the applicability of the inference rules
in R.

Example 3. Consider the relation schema Department from Example 1. We
may apply (Rule 1) to the wFD ID →w Staff in order to infer ID →w {Staff,
Level}. Furthermore, we apply (Rule 2) to the wFD Staff →w Level to infer {ID,
Staff} →w Level. If U = {Staff}, then we may apply (Rule 3) to the wFDs
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{ID, Staff} →w Level and ID →w {Staff, Level}
and infer the wFD ID →w Level. This inference corresponds to an application
of the transitivity rule for functional dependencies.

We apply (Rule 1) and (Rule 2) to infer {ID, Semester}→w {Name, Teaching,
Project} from ID →w Name. Moreover, we apply (Rule 2) to infer {ID, Name,
Semester} →w {Teaching, Project} from {Name, Semester} →w {Teaching,
Project}. If U = {Name}, then we can apply (Rule 3) to infer

{ID, Semester} →w {Teaching, Project}. ��

3 Weak FDs in the Presence of Complex-values

Complex-value data models have been proposed to overcome severe limitations of
the relational model of data when designing many practical database applications
[Abiteboul et al., 1995].

In this section we will study weak functional dependencies in data models
that can deal with complex data. In order assess the impact of complex type
constructors on the theory of wFDs we will not restrict our attention to any
specific data model. Instead, we will use nested attributes that can be generated
from flat attributes by an arbitrary but finite number of recursive applications
of record, list and disjoint union operators. Subsequently, our findings may be
applied and adjusted to other, more specific data models. For instance, concate-
nation, Kleene closure and optionality in document type definitions for XML
[Bray et al., 2006] represent applications of the record, list and union construc-
tor, respectively.

3.1 Nested Attributes

We start with the definition of flat attributes and values for them. A universe is
a finite set U together with domains (i.e. sets of values) dom(A) for all A ∈ U .
The elements of U are called flat attributes. Flat attributes will be denoted by
upper-case characters from the start of the alphabet such as A,B,C etc.

In the following we will use a finite set L of labels that is disjoint from U .
These labels are used to improve the readability of nested database schemata.
This situation extends the relational case where the symbol R may denote the
relation schema {A1, . . . , Ak}. For each label L ∈ L there is a distinguished sym-
bol λL /∈ L∪ U . Moreover, for each flat attribute A ∈ U there is a distinguished
symbol λA /∈ L ∪ U .

Database schemata in our data model will be given in form of nested at-
tributes. Let U be a universe and L a set of labels. The set N (U ,L) of nested
attributes over U and L is the smallest set satisfying the following conditions:
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– λL ∈ N (U ,L) for every L ∈ L,

– λA ∈ N (U ,L) for every A ∈ U ,

– U ⊆ N (U ,L),

– for L ∈ L and N1, . . . , Nk ∈ N (U ,L) with k ≥ 1 we have L(N1, . . . , Nk) ∈
N (U ,L),

– for L ∈ L and N ∈ N (U ,L) we have L[N ] ∈ N (U ,L)

– for L ∈ L and N1, . . . , Nk ∈ N (U ,L) with k ≥ 2 we have L(N1⊕· · ·⊕Nk) ∈
N (U ,L).

We call λL the null attribute of label L, λA the null attribute of flat attribute
A, L(N1, . . . , Nk) record-valued attribute, L[N ] list-valued attribute and L(N1 ⊕
· · · ⊕ Nk) union-valued attribute. From now on, we assume that a set U of flat
attribute names, and a set L of labels is fixed, and write N instead of N (U ,L).
Null attributes are distinguished attributes whose domain is a single null value
which indicates that some information exists but has currently been masked out.
Notice that in previous approaches towards defining nested attributes [Hartmann
et al., 2004; Hartmann et al., 2005; Hartmann and Link, 2008; Hartmann et al.,
2006a; Sali and Schewe, 2006; Schewe, 2005] different null attributes were not
considered. Notice that the different null attributes can provide useful domain
information.

Example 4. Consider the record-valued attribute R(A1, . . . , Ak). This is just a
different notation of a relation schema R = {A1, . . . , Ak}. Similarly, the record-
valued attribute R(A1, A2, λA3 , . . . , Ak) may represent the subset {A1, A2} of
R.

Consider the nested attribute N = K(L[M(A,B)]⊕C). It models a disjoint
union of lists of pairs of elements from A and B, and elements of C. The nested
attribute K(L[M(λA, B)]⊕C) models elements of the same structure as before,
but the information on the elements of A has been masked out. Finally, the
nested attribute K(L[λM ]⊕λC) models a disjoint union of lists of elements that
have a structure modelled by M and elements from the domain of C. ��

We can extend the mapping dom from flat attributes to nested attributes,
i.e., we define a set dom(N) of values for every nested attribute N ∈ N . For a
nested attribute N ∈ N we define the domain dom(N) as follows:

– dom(λL) = {okL},
– dom(λA) = {okA},
– dom(A) for A ∈ U as before,
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– dom(L(N1, . . . , Nk)) =
∏k

i=1 dom(Ni), i.e., the set of all k-tuples (v1, . . . , vk)
with vi ∈ dom(Ni) for all i = 1, . . . , k,

– dom(L[N ]) = dom(N)∗, i.e., the set of all finite lists [v1, . . . , vn] with ele-
ments in dom(N),

– dom(L(N1⊕· · ·⊕Nk)) =
k⋃

i=1

dom(Ni), i.e., the disjoint union of the domains

for N1, . . . , Nk.

We assume for the remainder of the paper that domains dom(A) of flat
attributes A contain at least two different elements. The empty list is denoted
by [ ].

Example 5. Consider the nested attribute N = K(L[M(λA, B)] ⊕ C). If b, b′

denote elements of dom(B) and c denotes an element of dom(C), then

[(okA, b), (okA, b′), (okA, b′)]

and c denote two elements of dom(N). Consider now the nested attribute N ′ =
K(L[λM ]⊕ λC). Then [okL, okL, okL] and okC denote elements of dom(N ′). ��

3.2 Subattributes

The replacement of attributes by their corresponding null attributes within a
nested attribute decreases the amount of information that is being modelled.
This observation allows us to introduce an order between nested attributes.

The subattribute relation ≤ on the set of nested attributes N over U and L
is defined by the following rules, and the following rules only:

– N ≤ N ,

– λA ≤ A for all flat attributes A ∈ U ,

– λL ≤ L[M ] and λL ≤ L(N1⊕· · ·⊕Nk) for nested attributes M,N1, . . . , Nk ∈
N ,

– L(N1, . . . , Nk) ≤ L(M1, . . . ,Mk) whenever Ni ≤ Mi for all i = 1, . . . , k,

– L[N ] ≤ L[M ] whenever N ≤ M , and

– L(N1⊕· · ·⊕Nk) ≤ L(M1⊕ . . .⊕Mk) whenever Ni ≤ Mi for all i = 1, . . . , k.

For N,M we say that M is a subattribute of N if and only if M ≤ N holds. We
write M �≤ N if M is not a subattribute of N , and M < N in case M ≤ N and
M �= N .

Lemma4. The subattribute relation is a partial order on nested attributes. ��

123Hartmann S., Link S.: Weak Functional Dependencies...



The subattribute relationship between nested attributes generalises the in-
clusion relationship between sets of attributes in the relational data model.

Example 6. Consider again the relation schema

Department={ID, Staff, Level, Semester, Project, Teaching}
from Example 1. Alternatively, we may view the name Department as a label
and the relation schema as the nested attribute

N = Department(ID,Staff,Level,Semester,Project,Teaching).

For instance, the subset {Staff,Semester,Project} of the relation schema De-

partment becomes the subattribute

Department(λID,Staff, λLevel,Semester,Project, λTeaching)

of the nested attribute N . In fact, the powerset algebra induced by the subset
relationship on Department is isomorphic to the Boolean algebra induced by
the subattribute relationship on N , see Theorem 5.

Consider now the nested attribute N = K(L[M(A,B)] ⊕ C). The subat-
tributes

K(L[M(λA, B)] ⊕ C), K(L[M(λA, B)] ⊕ λC), K(L[λM ] ⊕ λC)

form a ≤-descending chain of subattributes on N . ��

Informally, M is a subattribute of N if and only if M comprises at most
as much information as N does. The informal description of the subattribute
relation is formally documented by the existence of a projection function πN

M :
dom(N) → dom(M) in case M ≤ N holds. For M ≤ N the projection function
πN

M : dom(N) → dom(M) is defined as follows:

– if N = M , then πN
M = iddom(N) is the identity on dom(N),

– if N = A ∈ U and M = λA, then πN
M : dom(A) → {okA} is the constant

function that maps every a ∈ dom(A) to okA,

– if N = L[N ′] or N = L(N1 ⊕ · · · ⊕ Nk) and M = λL, then πN
M : dom(N) →

{okL} is the constant function that maps every v ∈ dom(N) to okL,

– if N = L(N1, . . . , Nk) and M = L(M1, . . . ,Mk), then πN
M = πN1

M1
×· · ·×πNk

Mk

which maps every tuple (v1, . . . , vk) ∈ dom(N) to (πN1
M1

(v1), . . . , πNk

Mk
(vk)) ∈

dom(M),

– if N = L[N ′] and M = L[M ′], then πN
M : dom(N) → dom(M) maps every

list [v1, . . . , vn] ∈ dom(N) to the list [πN ′
M ′(v1), . . . , πN ′

M ′(vn)] ∈ dom(M), and
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– if N = L(N1 ⊕ · · · ⊕Nk) and M = L(M1 ⊕ . . .⊕Mk), then πN
M : dom(N) →

dom(M) maps every v ∈ dom(Ni) to πNi

Mi
(v) ∈ dom(M).

The domain dom(N) of the union-valued attribute N = L(N1 ⊕ · · · ⊕Nk) is
the disjoint union of the domains dom(Ni). That is, every v ∈ dom(N) belongs
to exactly one dom(Ni).

Example 7. Consider again the nested attribute N = K(L[M(A,B)] ⊕ C), its
subattribute X = K(L[M(λA, B)] ⊕ λC) and the tuples t1 = [(a′, b), (a, b′)] ∈
dom(L[M(A,B)]) and t2 = c ∈ dom(C). The projections of t1 and t2 on X are

πN
X (t1) = [(okA, b), (okA, b′)] and πN

X (t2) = okC , respectively.

The projections of t1 and t2 on K(λL ⊕ λC) are okL and okC , respectively. ��

3.3 Brouwerian Algebra

The relational data model is based on the powerset P(R) of a relation schema
R. In fact, P(R) is a powerset algebra with partial order ⊆, set union ∪, set
intersection ∩ and set difference −. We will now extend these operations to
nested attributes. The inclusion order ⊆ has already been generalised by the
subattribute relationship ≤. The finite set Sub(N) of subattributes of N is
Sub(N) = {M | M ≤ N}. Lemma 4 shows that the restriction of ≤ to Sub(N)
defines a poset.

We study the algebraic structure of the poset (Sub(N),≤). A Brouwerian al-
gebra [McKinsey and Tarski, 1946] is a lattice (L,�,�,�, .−, 1) with top element
1 and a binary operation .− which satisfies a .−b � c iff a � b � c for all c ∈ L.
In this case, the operation .− is called the pseudo-difference. The Brouwerian
complement ¬a of a ∈ L is then defined by ¬a = 1 .−a. A Brouwerian algebra
is also called a co-Heyting algebra or a dual Heyting algebra. The system of all
closed subsets of a topological space is a well-known Brouwerian algebra, see
[McKinsey and Tarski, 1946]. The definition of the subattribute relationship ≤
completely determines the operations of join, meet and pseudo-difference. The
following theorem generalises the fact that (P(R),⊆,∪,∩,−, ∅, R) is a Boolean
algebra for a relation schema R in the relational data model. It is a simple
consequence of the following observations: Sub(λA) and Sub(λL) are isomor-
phic to the Boolean algebra of order 0, Sub(A) is isomorphic to the Boolean
algebra of order 1, Sub(L(N1, . . . , Nk)) is isomorphic to the directed product
of Sub(N1), . . . , Sub(Nk), Sub(L[N ]) is isomorphic to Sub(N) augmented by a
new minimum, and Sub(L(N1 ⊕ . . . ⊕ Nk)) is isomorphic to the directed prod-
uct of Sub(N1), . . . , Sub(Nk) augmented by a new minimum. Since Brouwerian
algebras are closed under (finite) directed products and augmentations of a new
bottom element [McKinsey and Tarski, 1946] this shows that (Sub(N),≤) car-
ries the structure of a Brouwerian algebra. Notice that the use of different null
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K(L[M(A,B)]⊕C)

K(L[M(A,B)]⊕λC) K(L[M(A,λB)]⊕C) K(L[M(λA,B)]⊕C)

K(L[M(A,λB)]⊕λC) K(L[M(A,λB)]⊕λC) K(L[M(λA,λB)]⊕C)

K(L[M(λA,λB)]⊕λC) K(λL⊕C)

K(λL⊕λC)

λK

Figure 1: Brouwerian algebra of K(L[M(A,B)] ⊕ C)

attributes resulted in a partial order of subattributes that is different from pre-
vious approaches. However, we still obtain a Brouwerian algebra, cf. [Hartmann
et al., 2005; Hartmann et al., 2006a; Hartmann et al., 2006b].

Theorem5. (Sub(N),≤,�N ,�N , .−N , N) forms a Brouwerian algebra for every
N ∈ N . ��

The nested attribute N is the top element of (Sub(N),≤). The bottom ele-
ment λN of Sub(N) is given by

λN =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λL , if N = λL

λA , if N = A ∈ U
L(λN1 , . . . , λNk

) , if N = L(N1, . . . , Nk)
λL , if N = L[M ]
λL , if N = L(N1 ⊕ · · · ⊕ Nk)

The Brouwerian algebra for K(L[M(A,B)] ⊕ C) is illustrated in Figure 1.

If the context allows, we omit the index N from the operations �N ,�N , .−N

and from λN .
Recall that an element a of a lattice with bottom element 0 is called join-

irreducible if and only if a �= 0 and if a = b�c holds for any elements b and c, then
a = b or a = c [Graetzer, 1998]. The set of join-irreducible elements of (Sub(N),≤
,�,�, λN ) is denoted by J (N). We refer to elements of J (N) as join-irreducible
elements of N . For instance, the join-irreducibles of K(L[M(A,B)] ⊕ C) are
underlined in Figure 1.
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[(a,b)]

[(a,b)] [(a,okB)]) [(okA,b)]

[(a,okB)]) [(okA,b)] [(okA,okB)]

[(okA,okB)] okL

okL

okK

c

okC c c

okC okC c

okC c

okC

okK

Figure 2: Projections of elements [(a, b)] and c from dom(K(L[M(A,B)] ⊕ C))

As an example for projections of actual domain elements consider Figure 2 in
which the list [(a, b)] and c from the domain of K(L[M(A,B)]⊕C) are projected
on the subattributes of K(L[M(A,B)] ⊕ C).

3.4 The Definition of Weak Functional Dependencies and its
Justification

In this part we will first introduce and illustrate weak functional dependencies
on nested attributes. It is our aim to generalise Theorem 3 to the presence of
record, list and disjoint union type. Therefore, we have to study the interactions
between the structure of nested attributes and weak functional dependencies
first.

Definition 6. A weak functional dependency (wFD) on the nested attribute N

is an expression X →w Y where X ,Y ⊆ J (N). An instance r ⊆ dom(N) satisfies
the wFD X →w Y on N , denoted by |=r X →w Y, if and only if for every distinct
pair of tuples in r that agree on each of the elements in X , the tuples also agree
on at least one element in Y. That is, |=r X →w Y if and only if for all distinct
t1, t2 ∈ r such that for all X ∈ X , πN

X (t1) = πN
X (t2) holds, there is some Y ∈ Y

such that πN
Y (t1) = πN

Y (t2) holds. ��

It is not obvious that Definition 6 takes the presence of our type constructors
into account. For instance, in the presence of set- or multiset constructor it is
insufficient to consider only join-irreducible subattributes. In that case, distinct
tuples may agree on the projections to all join-irreducibles [Hartmann and Link,
2008; Hartmann et al., 2006a]. However, the next lemma shows that this situa-
tion cannot occur in the presence of record, list, and disjoint union constructor,
i.e., distinct nested tuples disagree on at least some (maximal) join-irreducible.

Lemma7. Let N be a nested attribute, X,Y ∈ Sub(N) and t1, t2 ∈ dom(N). If
πN

X (t1) = πN
X (t2) and πN

Y (t1) = πN
Y (t2), then πN

X�Y (t1) = πN
X�Y (t2).
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Proof. We proceed by induction on the structure of N . The cases where X ≤ Y ,
Y ≤ X, and N is a record- or list-valued attribute are done exactly as in the
proof of [Hartmann et al., 2006b, Lemma 3.1].

It remains to consider the case where N = L(N1 ⊕ · · · ⊕ Nk) denotes a
union-valued attribute. The hypothesis tells us that for all i = 1, . . . , k, for all
Xi, Yi ∈ Sub(Ni) and for all t1, t2 ∈ dom(Ni) such that πNi

Xi
(t1) = πNi

Xi
(t2) and

πNi

Yi
(t1) = πNi

Yi
(t2) holds, we also have πNi

Xi�Yi
(t1) = πNi

Xi�Yi
(t2). It remains to

consider the case where X = L(X1 ⊕ · · · ⊕ Xk) and Y = L(Y1 ⊕ · · · ⊕ Yk). Let
t1, t2 ∈ dom(N) such that πN

X (t1) = πN
X (t2) and πN

Y (t1) = πN
Y (t2). It follows

that for some i ∈ {1, . . . , k} we have t1, t2 ∈ dom(Ni), πNi

Xi
(t1) = πNi

Xi
(t2) and

πNi

Yi
(t1) = πNi

Yi
(t2). Consequently, we conclude by hypothesis that

πN
X�Y (t1) = πNi

Xi�Yi
(t1) = πNi

Xi�Yi
(t2) = πN

X�Y (t2).

This concludes the proof. ��

In the literature there are different approaches toward defining dependencies
in complex-value databases, e.g. in [Arenas and Libkin, 2004; Hara and Davidson,
1999; Vincent et al., 2004; Weddell, 1992]. We have compared our framework to
such approaches in previous work [Hartmann and Link, 2006; Hartmann et al.,
2006a].

3.5 Trivial Weak Functional Dependencies

Before we can attempt to generalise Theorem 3 we need to study the inter-
action of weak functional dependencies with the structure imposed by nested
attributes. In fact, there are weak functional dependencies that are satisfied by
every instance of some nested attributes. It is the goal of this section to describe
such trivial weak functional dependencies by syntactical means.

We begin with an example that illustrates why weak functional dependencies
trivially appear in the presence of unions.

Example 8. Let N = Nat(Odd ⊕ Even) where dom(Odd) are the odd positive
integers and dom(Even) are the even non-negative integers. Then

J (N) = {Nat(Odd ⊕ λEven),Nat(λOdd ⊕ Even),Nat(λOdd ⊕ λEven)}.

Take two distinct n,m ∈ dom(N) such that

πN
Nat(λOdd⊕λEven)(n) = πN

Nat(λOdd⊕λEven)(m).

That is, either both n and m are even or both n and m are odd. In the first case
we have

πN
Nat(Odd⊕λEven)(n) = πN

Nat(Odd⊕λEven)(m),
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and in the second case we have

πN
Nat(λOdd⊕Even)(n) = πN

Nat(λOdd⊕Even)(m).

That is, the wFD

Nat(λOdd ⊕ λEven) →w {Nat(λOdd ⊕ Even),Nat(Odd ⊕ λEven)}

is satisfied by every instance r ⊆ dom(N), i.e., the wFD is in fact trivial. ��

Notice the structure of the nested attributes that occur in the trivial wFD

Nat(λOdd ⊕ λEven) →w {Nat(λOdd ⊕ Even),Nat(Odd ⊕ λEven)}

in Example 8. We will need to characterise those nested attributes syntactically
before we can attempt to find a sound and complete set of inference rules.

The following definition will enable us to syntactically capture all left-hand
sides of those trivial weak functional dependencies that are similar to the ones
we have just encountered in Example 8.

Definition 8. Let N be a nested attribute. The set N⊕ of ⊕-join-irreducibles
of N is recursively defined by

– if N = λA for some A ∈ U or N = λL for some L ∈ L, then N⊕ = ∅,
– if N = A ∈ U , then N⊕ = ∅,
– if N = L[M ], then N⊕ = ∅,
– if N = L(N1, . . . , Nk), then

N⊕ =
k⋃

i=1

{L(λN1 , . . . ,Mi, . . . , λNk
) | Mi ∈ N⊕

i },

– if N = L(N1 ⊕ · · · ⊕ Nk), then

N⊕ = {L(λN1 ⊕· · ·⊕λNk
)}∪

k⋃
i=1

{L(λN1 ⊕· · ·⊕Mi⊕· · ·⊕λNk
) | Mi ∈ N⊕

i }.

��

Intuitively, Definition 8 identifies those union-valued nested attributes that
are generated from null attributes only (see item five) as ⊕-join-irreducibles, but
also those complex union-valued nested attribute (item five again) and record-
valued nested attribute (item four) that are generated from null attributes and
⊕-join-irreducibles.
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Example 9. Let N = L(K(M(A⊕B⊕C),D)⊕O[P (E⊕F )]). Then N⊕ consists
of L(K(λM , λD) ⊕ λO) and L(K(M(λA ⊕ λB ⊕ λC), λD) ⊕ λO). ��

List-valued attributes do not define any ⊕-join-irreducibles, cf. Definition 8
(item three). The following examples illustrate the reason. That is, list-valued
attributes do not exhibit those trivial weak functional dependencies we have
encountered before.

Example 10. Let N = Seq[Nat(Odd ⊕ Even)]. The wFD

Seq[Nat(λOdd ⊕ λEven)] →w {Seq[Nat(Odd ⊕ λEven)],Seq[Nat(λOdd ⊕ Even)]}

is not trivial. Consider for instance the two distinct lists t1 = [2, 3] and t2 = [4, 5].
We see that

πN
Seq[Nat(λOdd⊕λEven)]

(t1) = [okEven, okOdd] = πN
Seq[Nat(λOdd⊕λEven)]

(t2),

but

πN
Seq[Nat(Odd⊕λEven)](t1) = [okEven, 3] �= [okEven, 5] = πN

Seq[Nat(Odd⊕λEven)](t2)

and

πN
Seq[Nat(λOdd⊕Even)](t1) = [2, okOdd] �= [4, okOdd] = πN

Seq[Nat(λOdd⊕Even)](t2).

The instance r = {t1, t2} shows therefore that the wFD above is not trivial. ��

Example 11. Consider the following list-valued attribute

Nucleotide[Base(Purine⊕Pyrimidine)]

where

dom(Purine)={A(denine), G(uanine)} and
dom(Pyrimidine)={C(ytosine),T(hymine)}.

This database schema describes nucleotide sequences. The database consisting
of the four sequences

[ATG TCG GCG GGA]
[ACG TCG GCG GGA]

[TAC AGT CGT]
[TAC GAT CAT]

satisfies the weak functional dependency

Nucleotide[λBase)] →w

{Nucleotide[Base(Purine⊕λPyrimidine)],Nucleotide[Base(λPurine⊕Pyrimidine)]} .
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Notice that only the first two tuples and the last two tuples match on

Nucleotide[λBase)],

but no other pairs of distinct tuples. There is no case of different Purine occurring
in the same position of the first two tuples, i.e., the first two tuples also match
on

Nucleotide[Base(Purine⊕λPyrimidine).]

There is also no case of different Pyrimidine occurring in the same position of
the last two tuples, i.e., the last two tuples also match on

Nucleotide[Base(λPurine⊕Pyrimidine)].

However, the database consisting of the two sequences

[TAC AGT CGT]
[CAT GAT CGT]

does not satisfy this weak functional dependency. In fact, the two sequences
match on

Nucleotide[λBase)]

but do not match on neither

Nucleotide[Base(Purine⊕λPyrimidine)] nor
Nucleotide[Base(λPurine⊕Pyrimidine)].

��

In Definition 8 we have captured the nested attributes that occur on the left-
hand side of certain trivial wFDs. It remains to identify the right-hand sides.
Therefore, we look at an example first.

Example 12. Let N = L(A ⊕ K(M(B ⊕ C),D)). Then N⊕ consists of O1 =
L(λA ⊕K(λM , λD)) and O2 = L(λA ⊕K(M(λB ⊕λC), λD)). The maximal join-
irreducibles are W = L(A ⊕ K(λM , λD)), X = L(λA ⊕ K(M(B ⊕ λC), λD)),
Y = L(λA ⊕K(M(λB ⊕C), λD)) and Z = L(λA ⊕K(λM ,D)). The situation is
illustrated in Figure 3.

Let t1 = (b, d) and t2 = (b′, d) be elements from dom(N) where b, b′ are
distinct elements from dom(B). It follows that πN

O2
(t1) = (okB, okD) = πN

O2
(t2).

We can also see that πN
Y (t1) = (okB, okD) = πN

Y (t2). This is not a random case.
We will see soon that such O2,X, Y carry the trivial weak functional dependency
O2 →w {X,Y }.

However, the situation is subtle. Let t1 = (b, d) and t2 = (c, d) be el-
ements from dom(N) where b ∈ dom(B) and c ∈ dom(C). It follows that
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X=L(λA⊕K(M(B⊕λC),λD)) Y =L(λA⊕K(M(λB⊕C),λD))

W=L(A⊕K(λM ,λD)) O2=L(λA⊕K(M(λB⊕λC),λD)) Z=L(λA⊕K(λM ,D))

O1=L(λA⊕K(λM ,λD))

Figure 3: Branched Pairs of Join-Irreducibles

πN
O1

(t1) = (okM , okD) = πN
O1

(t2). However, we can also see that πN
X (t1) =

(b, okD) �= (okC , okD) = πN
X (t2) and πN

Y (t1) = (okB, okD) �= (c, okD) = πN
Y (t2).

Hence, the weak functional dependency O1 →w {X,Y } is not trivial. ��

The following definition enables us to identify the correct pairs X,Y with
respect to an ⊕-join-irreducible O of N such that O →w {X,Y } holds indeed in
every nested relation over the underlying nested attribute.

Definition 9. Let N ∈ N be a nested attribute and O ∈ N⊕. A pair X,Y ∈
J (N) is called branched with respect to O if and only if O < X,Y and at least
one of the following conditions is satisfied

– N = L(N1 ⊕ · · · ⊕ Nk), O = L(λN1 ⊕ · · · ⊕ Oi ⊕ · · · ⊕ λNk
) with Oi ∈ N⊕

i ,
X = L(λN1 ⊕ · · · ⊕ Xi ⊕ · · · ⊕ λNk

) and Y = L(λN1 ⊕ · · · ⊕ Yi ⊕ · · · ⊕ λNk
)

and Xi, Yi ∈ Sub(Ni) are branched with respect to Oi,

– N = L(N1, . . . , Nk), O = L(λN1 , . . . , Oi, . . . , λNk
) with Oi ∈ N⊕

i , X =
L(λN1 , . . . ,Xi, . . . , λNk

), Y = L(λN1 , . . . , Yi, . . . , λNk
) and Xi, Yi ∈ Sub(Ni)

are branched with respect to Oi,

– N = L(N1 ⊕ · · · ⊕ Nk), O = L(λN1 ⊕ · · · ⊕ λNk
), X ≤ L(λN1 ⊕ · · · ⊕ Ni ⊕

· · · ⊕ λNk
) and Y ≤ L(λN1 ⊕ · · · ⊕ Nj ⊕ · · · ⊕ λNk

) with i �= j. ��

Intuitively, the pair X,Y ∈ J (N) is branched with respect to O if X and
Y occur in different branches of the underlying union-valued attribute N (item
three), or they are union-valued attributes generated from null attributes and
nested attributes that are branched with respect to the same branch of O (item
one) or they are record-valued attributes generated from null attributes and
nested attributes that are branched with respect to the same branch of O (item
two). List-valued attributes are not included in this definition as this kind of
trivial weak functional dependency does not occur in the presence of lists, see
Examples 10 and 11.
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Example 13. Consider Example 12 and Figure 3 again. The pairs W,X, and
W,Y , and W,Z and Y,Z and X,Z are O1-branched. The pair X,Y is O2-
branched, but X,Y is not O1-branched. ��

We will now show that our definitions capture trivial weak functional depen-
dencies. Indeed, the next lemma shows that branched pairs of join-irreducibles
exhibit trivial weak functional dependencies. In fact, if two tuples agree on some
O ∈ N⊕, then they also agree on one of the elements in any pair X,Y that is
branched with respect to O.

Lemma10. Let N ∈ N , O ∈ N⊕ and X,Y ∈ J (N) branched with respect to
O. Let t1, t2 ∈ dom(N) such that πN

O (t1) = πN
O (t2). Then πN

X (t1) = πN
X (t2) or

πN
Y (t1) = πN

Y (t2).

Proof. We proceed by induction on the structure N of nested attributes. In the
case where N = λA, N = λL, N = A and N = L[M ] there is nothing to show
since N⊕ = ∅.

Let N = L(N1, . . . , Nk) and O = L(λN1 , . . . , Oi, . . . , λNk
) where Oi ∈ N⊕

i .
Let X = L(λN1 , . . . ,Xi, . . . , λNk

) and Y = L(λN1 , . . . , Yi, . . . , λNk
) such that

Xi, Yi ∈ Sub(Ni) are branched with respect to Oi. Let t1 = (t11, . . . , tk1), t2 =
(t12, . . . , tk2) ∈ dom(N) such that πN

O (t1) = πN
O (t2) holds. This implies, in par-

ticular, that πNi

Oi
(ti1) = πNi

Oi
(ti2). However, we can conclude by hypothesis that

πNi

Xi
(ti1) = πNi

Xi
(ti2) or πNi

Yi
(ti1) = πNi

Yi
(ti2) holds. This is just the same as saying

that πN
X (t1) = πN

X (t2) or πN
Y (t1) = πN

Y (t2) holds.
Let N = L(N1⊕· · ·⊕Nk), O = L(λN1 ⊕· · ·⊕Oi⊕· · ·⊕λNk

) where Oi ∈ N⊕
i .

Let X = L(λN1 ⊕ · · · ⊕ Xi ⊕ · · · ⊕ λNk
) and Y = L(λN1 ⊕ · · · ⊕ Yi ⊕ · · · ⊕ λNk

)
and Xi, Yi ∈ Sub(Ni) are branched with respect to Oi. Let t1, t2 ∈ dom(N) such
that πN

O (t1) = πN
O (t2). We distinguish between two cases. In the first case we

have t1, t2 ∈ dom(Nj) where j �= i. In this case πN
X (t1) = πN

O (t1) = πN
O (t2) =

πN
X (t2) and πN

Y (t1) = πN
O (t1) = πN

O (t2) = πN
Y (t2). In the remaining case we have

t1, t2 ∈ dom(Ni). This means that πNi

Oi
(t1) = πNi

Oi
(t2) and the hypothesis shows

that πNi

Xi
(t1) = πNi

Xi
(t2) or πNi

Yi
(t1) = πNi

Yi
(t2) holds. This, however, is just the

same as πN
X (t1) = πN

X (t2) or πN
Y (t1) = πN

Y (t2), respectively. We do not have to
consider other cases since we assume that πN

O (t1) = πN
O (t2) holds.

Let N = L(N1⊕· · ·⊕Nk), O = L(λN1⊕· · ·⊕λNk
), X ≤ L(λN1⊕· · ·⊕Ni⊕· · ·⊕

λNk
) and Y ≤ L(λN1 ⊕· · ·⊕Nj ⊕· · ·⊕λNk

) such that i �= j. Let t1, t2 ∈ dom(N)
such that πN

O (t1) = πN
O (t2) holds. This means that t1, t2 ∈ dom(Nl) for some l

with 1 ≤ l ≤ k. If l = i, then πN
Y (t1) = πN

Y (t2). If l = j, then πN
X (t1) = πN

X (t2).
Finally, if l �= i and l �= j, then πN

X (t1) = πN
X (t2) and πN

Y (t1) = πN
Y (t2). This

completes the proof. ��
Example 14. Consider Example 12 again. The first choice of tuples t1, t2 reflects
Lemma 10. The second choice of tuples t1, t2 illustrates that the notion of branch-
ing captures the right pairs of join-irreducibles. ��
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X →w Y ∃X∈X .∃Y ∈Y.Y ≤X J (N) →w ∅
X →w Y
X →w Z Y⊆Z

(Axiom 1) (Axiom 2) (Rule 1)

X →w Y
Z →w Y X⊆Z

X ↓ →w Y
X →w Y

X →w Y↑

X →w Y
(Rule 2) (Rule 3) (Rule 4)

{XV↓ →w Y(U − V↓)} V⊆U
X →w Y O →w {X,Y } O∈N⊕,X,Y are O-branched

(Rule 5) (Axiom 3)

Table 3: An Axiomatisation of wFDs in complex-value databases

3.6 An Axiomatisation

We will use this section to establish an axiomatisation for the implication of
weak functional dependencies on nested attributes generated by record, list and
disjoint union constructor. We outline the completeness proof in this section,
but devote the next section to complete our description of generating the two
tuple database instance required for the completeness argument.

Before we generalise Theorem 3 from relational databases to complex-value
databases we introduce some more notation. Let X ⊆ J (N). The downward
closure of X with respect to ≤ is denoted by X ↓ = {Y ∈ J (N) | Y ≤
X for some X ∈ X}. Correspondingly, X ↑ = {Y ∈ J (N) | X ≤ Y for some X ∈
X} denotes the upward closure of X with respect to ≤. In particular, if X ↓ and
X ↑ are non-empty, then they denote ideals and filters, respectively.

Theorem11. Let S denote the set of inference rules from Table 3. Then S is
sound and complete for the implication of wFDs in complex-value databases.

Proof. Our first step is to verify the soundness of the inference rules. Consider
Axiom 1. Let N be some nested attribute and r ⊆ dom(N) be arbitrary. Assume
there are any distinct t1, t2 ∈ r such that πN

X (t1) = πN
X (t2) holds for all X ∈ X .

For some X ∈ X there is some Y ∈ Y such that Y ≤ X holds. Since X ∈ X
we have πN

X (t1) = πN
X (t2), but since Y ≤ X we also have πN

Y (t1) = πN
Y (t2) by

definition of the projection function. This means that r satisfies X →w Y.
Consider Axiom 2. Let N be some nested attribute and r ⊆ dom(N) be

arbitrary. Any distinct t1, t2 ∈ r must satisfy πN
X (t1) �= πN

X (t2) for some X ∈
J (N) by contraposition of Lemma 7. This means that r satisfies J (N) →w ∅.
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Consider Axiom 3. Let N be some nested attribute and r ⊆ dom(N) be arbi-
trary, and O ∈ N⊕. Assume there are any distinct t1, t2 ∈ r such that πN

O (t1) =
πN

O (t2) holds. Let X,Y be any pair of join-irreducibles that are branched with
respect to O. Lemma 10 shows that πN

X (t1) = πN
X (t2) or πN

Y (t1) = πN
Y (t2) holds.

This means that r satisfies O →w {X,Y }.
Consider Rule 1. Let N be some nested attribute and r ⊆ dom(N) be arbi-

trary such that r satisfies X →w Y. Assume there are any distinct t1, t2 ∈ r such
that πN

X (t1) = πN
X (t2) holds for all X ∈ X . It follows that πN

Y (t1) = πN
Y (t2) holds

for some Y ∈ Y since r satisfies X →w Y by assumption. However, since Y ⊆ Z
holds by assumption it follows that Y ∈ Z, too. Consequently, πN

Y (t1) = πN
Y (t2)

holds for some Y ∈ Z. We conclude that r satisfies X →w Z.
Consider Rule 2. Let N be some nested attribute and r ⊆ dom(N) be arbi-

trary such that r satisfies X →w Y. Assume there are any distinct t1, t2 ∈ r such
that πN

Z (t1) = πN
Z (t2) holds for all Z ∈ Z. Since X ⊆ Z holds by assumption it

follows that πN
X (t1) = πN

X (t2) holds for all X ∈ X . However, r satisfies X →w Y,
i.e.,πN

Y (t1) = πN
Y (t2) holds for some Y ∈ Y. We conclude that r satisfies Z →w Y.

Consider Rule 3. Let N be some nested attribute and r ⊆ dom(N) be arbi-
trary such that r satisfies X ↓ →w Y. Assume there are any distinct t1, t2 ∈ r

such that πN
X (t1) = πN

X (t2) holds for all X ∈ X . It follows that πN
Z (t1) = πN

Z (t2)
holds for all Z ∈ X ↓ since for every Z ∈ X ↓ there is some X ∈ X such that
Z ≤ X holds. Since r satisfies X ↓ →w Y we conclude that πN

Y (t1) = πN
Y (t2)

holds for some Y ∈ Y. Hence, r satisfies X →w Y.
Consider Rule 4. Let N be some nested attribute and r ⊆ dom(N) be arbi-

trary such that r satisfies X →w Y↑. Assume there are any distinct t1, t2 ∈ r

such that πN
X (t1) = πN

X (t2) holds for all X ∈ X . It follows that there is some
Z ∈ Y↑ such that πN

Z (t1) = πN
Z (t2) holds since r satisfies X →w Y↑. However,

that means there is some Y ∈ Y with Y ≤ Z by definition of Y↑. We conclude
that πN

Y (t1) = πN
Y (t2) holds for some Y ∈ Y by definition of the projection

function. Hence, r satisfies X →w Y.
Consider Rule 5. Let N be some nested attribute and r ⊆ dom(N) be some

arbitrary instance that satisfies all wFDs XV↓ →w Y(U − V↓) for all V ⊆ U of
some U ⊆ J (N). Assume there are some distinct t1, t2 ∈ r such that πN

A (t1) =
πN

A (t2) for all A ∈ X . Since r satisfies the wFD X →w YU there is some Y1 ∈
YU with πN

Y1
(t1) = πN

Y1
(t2). If Y1 ∈ Y, then there is nothing more to show.

Otherwise, Y1 ∈ U . Since r satisfies the wFD XY ↓
1 →w Y(U −Y ↓

1 ) there is some
Y2 ∈ Y(U − Y ↓

1 ) with πN
Y2

(t1) = πN
Y2

(t2). If Y2 ∈ Y, then there is nothing more
to show. Otherwise, we continue this line of reasoning until we have found that
πN

X (t1) = πN
X (t2) holds for all X ∈ XU . Since r also satisfies XU →w Y there

is some Y ∈ Y with πN
Y (t1) = πN

Y (t2). Consequently, r satisfies also the wFD
X →w Y.

The soundness of the inference system follows from the soundness of its in-
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dividual rules by a simple induction on the length of the inference.
We will now verify the completeness of the inference rules for the implication

of weak functional dependencies in complex-value databases. We need to show
that Σ∗ ⊆ Σ+ holds. Let X →w Y /∈ Σ+. We will show that X →w Y /∈ Σ∗

holds as well by constructing a two-element instance r ⊆ dom(N) that satisfies
all wFDs in Σ but violates X →w Y.

Since X →w Y /∈ Σ+ we conclude that X ↓ →w Y /∈ Σ+ as otherwise
X →w Y ∈ Σ+ holds by Rule 3. Moreover, we conclude that X ↓ →w Y↑ /∈ Σ+

as otherwise X ↓ →w Y ∈ Σ+ by Rule 4. According to Axiom 1 the following
holds since X ↓ →w Y↑ /∈ Σ+: ∀Y ∈ Y↑.∀X ∈ X ↓.Y �≤ X. That is, no Y ∈ Y↑ is
a subattribute of any X ∈ X ↓. Moreover, J (N) − X ↓ �= ∅ as otherwise Y↑ = ∅
held, and therefore also X ↓ →w Y↑ ∈ Σ+ by Axiom 2.

We define U := J (N) − (X ↓ ∪ Y↑). Then there is some V ⊆ U such that
X ↓V↓ →w Y↑(U − V↓) /∈ Σ+ as otherwise X ↓ →w Y↑ ∈ Σ+ by Rule 5.

Assume that Y↑(U − V↓) = ∅, i.e., Y↑ = ∅ and U ⊆ V↑. By definition of U
we then have J (N) − X ↓ = U ⊆ V↓ and, therefore, J (N) ⊆ X ↓V↓ ⊆ J (N).
However, this would imply that X ↓V↓ →w Y↑(U − V↓) ∈ Σ+, a contradiction.
Hence, Y↑(U − V↓) �= ∅.

Assume there is some O ∈ N⊕ such that O ∈ X ↓V↓ and there are X,Y ∈
J (N) that are branched with respect to O and X,Y ∈ J (N) − (X ↓V↓) =
Y↑(U − V↓). In this case we conclude that O →w {X,Y } ∈ Σ+ by Axiom 3.
According to our assumptions we conclude that X ↓V↓ →w {X,Y } ∈ Σ+ by Rule
2 and X ↓V↓ →w Y↑(U − V↓) ∈ Σ+ by Rule 1, a contradiction. Consequently,
the ≤-downward closure X ↓V↓ has the following property: for all O ∈ N⊕ with
O ∈ X ↓V↓ and for all pairs X,Y ∈ J (N) that are branched with respect to O

it follows that X ∈ X ↓V↓ or Y ∈ X ↓V↓.
According to Lemma 12 we can define an instance r = {t1, t2} ⊆ dom(N)

such that for all X ∈ J (N) we have

πN
X (t1) = πN

X (t2) if and only if X ∈ X ↓V↓ holds.

Notice that the tuples t1 and t2 are distinct since J (N)− (X ↓V↓) = Y↑(U −
V↓) �= ∅. We observe that r does not satisfy X →w Y since X ⊆ X ↓V↓ and Y ⊆
Y↑(U −V↓). It remains to show that r satisfies all weak functional dependencies
in Σ.

Let W →w Z ∈ Σ. Suppose πN
W (t1) = πN

W (t2) holds for all W ∈ W. Other-
wise it is immediate that r satisfies W →w Z. According to the definition of r it
follows that W ⊆ X ↓V↓. This, however, implies that X ↓V↓ →w Z ∈ Σ+ by Rule
2. Assume that Z ⊆ Y↑(U −V↓). It follows that X ↓V↓ →w Y↑(U −V↓) ∈ Σ+ by
Rule 3, a contradiction to our assumptions. Consequently, Z �⊆ Y↑(U − V↓) =
J (N)−(X ↓V↓). We conclude that Z∩X ↓V↓ �= ∅ and, therefore, πN

Z (t1) = πN
Z (t2)

holds for some Z ∈ Z according to the definition of r. This means that r satisfies
W →w Z. ��

136 Hartmann S., Link S.: Weak Functional Dependencies...



In order to complete the proof of Theorem 11 we must show that it is possible
to generate the two-element relation r = {t1, t2} ⊆ dom(N) whose two nested
tuples agree on precisely those subattributes that belong to a ≤-downward clo-
sure.

Example 15. Consider Example 8 again. The attributes X = Nat(Odd ⊕ λEven)
and Y = Nat(λOdd⊕Even) are branched with respect to O = Nat(λOdd⊕λEven).
Let X = {O} be a ≤-ideal in J (N). Then Lemma 10 shows that there are no
tuples t1, t2 ∈ dom(N) such that πN

O (t1) = πN
O (t2), but πN

X (t1) �= πN
X (t2) and

πN
Y (t1) �= πN

Y (t2). ��
Example 15 shows that the construction of such two tuples is not possible

for arbitrary downward closures of join-irreducibles. Fortunately, however, we do
not require this property for arbitrary downward closures. In fact, our downward
closures are rather special, i.e., possess an additional property which guarantees
the ability to generate the desired tuples.

Lemma12. Let N ∈ N be a nested attribute and X ⊂ J (N) be a proper subset
of J (N) that is closed downwards with respect to ≤. Furthermore, X has the
following property: for all O ∈ N⊕ with O ∈ X and all Y,Z ∈ J (N) that are
branched with respect to O we have Y ∈ X or Z ∈ X . Then there are distinct
t1, t2 ∈ dom(N) such that for all X ∈ J (N)

πN
X (t1) = πN

X (t2) if and only if X ∈ X
holds.

Proof. Lemma 13 deals with the case where X is empty. We can therefore assume
that X is non-empty, i.e., a ≤-ideal. We proceed by induction on the structure
of N . If N = λL or N = λA for some A ∈ U , then J (N) = ∅. Consequently, the
hypotheses of the lemma are not met as X is supposed to be a proper subset of
J (N). Hence, there is nothing to show.

If N = A ∈ U , then there is nothing to show as X �= {A} cannot occur since
X �= J (N).

The case where N = L[M ] is a list-valued attribute is dealt with separately
in Lemma 19.

Suppose N = L(N1, . . . , Nk) is a record-valued attribute. We then know that

X =
k⋃

i=1

{L(λN1 , . . . ,Xi, . . . , λNk
) | Xi ∈ Xi}

for some ≤ downward closures Xi ⊆ J (Ni) for all i = 1, . . . , k. Suppose Oi ∈ N⊕
i ,

Oi ∈ Xi and Xi
1,X

i
2 ∈ J (Ni) are branched with respect to Oi. Then

L(λN1 , . . . ,X
i
1, . . . , λNk

) and L(λN1 , . . . ,X
i
2, . . . , λNk

)
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are branched with respect to O = L(λN1 , . . . , Oi, . . . , λNk
) ∈ X . Consequently,

L(λN1 , . . . ,X
i
1, . . . , λNk

) ∈ X or L(λN1 , . . . ,X
i
2, . . . , λNk

) ∈ X , i.e., Xi
1 ∈ Xi or

Xi
2 ∈ Xi. Hence, the ≤ downward closures X1, . . . ,Xk satisfy the hypothesis

of the lemma. We can conclude, by hypothesis, that for i = 1, . . . , k there are
ti1, t

i
2 ∈ dom(Ni) such that for all Xi ∈ J (Ni) we have πNi

Xi
(ti1) = πNi

Xi
(ti2) if

and only if Xi ∈ Xi. We now choose t1 := (t11, . . . , t1k) ∈ dom(N) and t2 :=
(t21, . . . , t2k) ∈ dom(N). For all X ∈ J (N) we then have πN

X (t1) = πN
X (t2) if and

only if X ∈ X holds.
Suppose N = L(N1 ⊕ · · · ⊕ Nk) is a union-valued attribute. For X �= ∅ we

then have

X = {L(λN1 ⊕ · · · ⊕ λNk
)} ∪

k⋃
i=1

{L(λN1 ⊕ · · · ⊕ Xi ⊕ · · · ⊕ λNk
) | Xi ∈ Xi}

for some ≤ downward closures Xi ⊆ J (Ni) for all i = 1, . . . , k. For Oi ∈ N⊕
i

with O ∈ Xi and Xi
1,X

i
2 ∈ J (Ni) that are branched with respect to Oi we have

that

X1 = L(λN1 ⊕ · · · ⊕ Xi
1 ⊕ · · · ⊕ λNk

) and X2 = L(λN1 ⊕ · · · ⊕ Xi
2 ⊕ · · · ⊕ λNk

)

are branched with respect to O = L(λN1⊕· · ·⊕Oi⊕· · ·⊕λNk
) ∈ X . Consequently,

X1 ∈ X or X2 ∈ X , and therefore Xi
1 ∈ Xi or Xi

2 ∈ Xi. Consequently, X1, . . . ,Xk

satisfy the hypothesis of the lemma. We can conclude, by hypothesis, that for
i = 1, . . . , k there are ti1, t

i
2 ∈ dom(Ni) such that for all Xi ∈ J (Ni) we have

πNi

Xi
(ti1) = πNi

Xi
(ti2) if and only if Xi ∈ Xi. Since L(λN1 ⊕· · ·⊕λNk

) ∈ X it follows
from Definition 9 and the assumptions of the lemma that there is exactly one
i with 1 ≤ i ≤ k such that L(λN1 ⊕ · · · ⊕ Ni ⊕ · · · ⊕ λNk

) /∈ X . We choose
t1 := ti1 ∈ dom(Ni) and t2 := ti2 ∈ dom(Ni). It remains to show that for
all X ∈ J (N) we have πN

X (t1) = πN
X (t2) if and only if X ∈ X holds. For

X = L(λN1 ⊕ · · · ⊕ λNk
) ∈ X we have πN

X (t1) = oki = πN
X (t2). Let X =

L(λN1 ⊕ · · · ⊕ Y ⊕ · · · ⊕ λNk
) ∈ J (N). If Y �≤ Ni, then X ∈ X and also

πN
X (t1) = oki = πN

X (t2). If Y ≤ Ni, then πNi

Y (ti1) = πNi

Y (ti2) if and only if Y ∈ Xi.
Consequently, πN

X (t1) = πN
X (t2) if and only if X ∈ X . ��

The next lemma shows that it is always possible to find tuples that dis-
agree on every join-irreducible. However, it depends on our assumption that the
domain of every flat attribute contains at least two distinct elements.

Lemma13. Let N ∈ N be a nested attribute such that J (N) �= ∅. Then there
are distinct t1, t2 ∈ dom(N) such that for all X ∈ J (N) we have πN

X (t1) �=
πN

X (t2).

Proof. We proceed by structural induction on N . If N = λL or N = λA for
some A ∈ U , then J (N) = ∅ and there is nothing to show. Suppose N = A ∈ U .
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Then choose t1 := a and t2 := a′ with distinct values a, a′ ∈ dom(A) (recall that
we assume that the domain of each flat attribute contains at least two distinct
elements).

Let N = L(N1, . . . , Nk) be a record-valued attribute with J (N) �= ∅. Then

J (N) =
k⋃

i=1

{L(λN1 , . . . ,Xi, . . . , λNk
) | Xi ∈ J (Ni)}.

It follows that there is some i such that 1 ≤ i ≤ k and J (Ni) �= ∅. The hypothesis
tells us further that for all i = 1, . . . , k where J (Ni) �= ∅ there are distinct
ti1, t

i
2 ∈ dom(Ni) such that for all Xi ∈ J (Ni) we have πNi

Xi
(ti1) �= πNi

Xi
(ti2). For

those i ∈ {1, . . . , k} where J (Ni) = ∅ holds let ti1 = ti2 ∈ dom(Ni). We choose
t1 := (t11, . . . , t1k) ∈ dom(N) and t2 := (t21, . . . , t2k) ∈ dom(N).

Let N = L[M ] be a list-valued attribute. We have that

J (N) = {L[λM ]} ∪ {L[M ′] | M ′ ∈ J (M)}.

In this case we choose t1 := [ ] and t2 := [v] with some value v ∈ dom(M). Note
that πN

L[λM ](t1) �= πN
L[λM ](t2) and every element of J (N) is a superattribute

of L[λM ]. It remains to consider the case where N = L(N1 ⊕ · · · ⊕ Nk) is a
union-valued attribute. We then have

J (N) = {L(λN1 ⊕· · ·⊕λNk
)}∪

k⋃
i=1

{L(λN1 ⊕· · ·⊕Xi⊕· · ·⊕λNk
) | Xi ∈ J (Ni)}.

Since L(λN1 ⊕· · ·⊕λNk
) is subattribute of any other join-irreducible of N it suf-

fices to find t1, t2 ∈ dom(N) such that πN
L(λN1⊕···⊕λNk

)(t1) �= πN
L(λN1⊕···⊕λNk

)(t2).
Since k ≥ 2 we choose t1 ∈ dom(N1) and t2 ∈ dom(N2). ��

3.7 List-valued attributes

In this section we will finalise the completeness proof of Theorem 11. In fact, it re-
mains to prove Lemma 12 in case that we are dealing with a list-valued attribute.
Given some ≤-ideal we will construct two lists that have matching projections
on precisely those subattributes that belong to the ideal. The elements of the
list are determined by i) the maximal join-irreducibles of the underlying nested
attribute and ii) the maximal join-irreducibles that belong to the ideal.

The record constructor uses aggregation to enforce a more complex nesting
structure. In other words, a complex nested data element derived by means of
the record constructor is aggregated out of more basic data elements. The next
definition captures these more basic elements, or components, on the attribute
level.
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Definition 14. Let N ∈ N . The set C(N) ⊆ Sub(N) of components of N is
inductively defined as follows

– C(λL) = {λL} for L ∈ L, C(λA) = {λA} for A ∈ U ,

– C(A) = {A} for A ∈ U ,

– C(L(N1, . . . , Nk)) =
k⋃

i=1

{L(λN1 , . . . ,Mi, . . . , λNk
) | Mi ∈ C(Ni)},

– C(L[N ′]) = {L[M ] | M ∈ C(N ′)}, and

– C(L(N1 ⊕ · · · ⊕ Nk)) = {L(N1 ⊕ · · · ⊕ Nk)}. ��

Intuitively, an element of the domain of a nested attribute is an aggregation
of elements from its component’s domains.

Example 16. For N = L(M(A⊕K[O(B⊕C)]), P (Q(D⊕E⊕F ), G)) the following
three subattributes form the set of components of N :

– L(M(A ⊕ K[O(B ⊕ C)]), P (λQ, λG)),

– L(λM , P (Q(D ⊕ E ⊕ F ), λG)),

– L(λM , P (λQ, G)). ��

One may wonder why in Definition 14 union-valued attributes only have
themselves as component (item five). This can be explained as follows. The
presence of the union constructor leaves us with a choice between elements of
different domains. For instance, a value from the domain of Q(D ⊕ E ⊕ F ) is a
value from either the domain of D, or E or F . However, we cannot choose two
different values at the same time. When defining the elements of the lists in our
two-element nested database instance we need to make such a choice (any choice
will do).

Let MaxJ (N) denote the set of those subattributes of N that are maximal
in J (N)∪{λN} with respect to ≤. Notice that MaxJ (N) is always non-empty,
i.e., contains either all maximal join-irreducibles or λN if J (N) = ∅.

Definition 15. A choice of a nested attribute N is a set Ch(N) ⊆ MaxJ (N)
such that for all C ∈ C(N) there is precisely one M ∈ Ch(N) with M ≤ C. An
M -choice of N is a pair (M,Ch(N)) where M ∈ Ch(N) and Ch(N) is a choice
of N . ��

Example 17. Consider the nested attribute N of Example 16. One possible choice
of N consists of the following three maximal join-irreducibles of N :

– L(M(λA ⊕ K[O(B ⊕ λC)]), P (λQ, λG)),

140 Hartmann S., Link S.: Weak Functional Dependencies...



– L(λM , P (Q(D ⊕ λE ⊕ λF ), λG)),

– L(λM , P (λQ, G)). ��

We will now define generic elements τN
Ch(N)(X) from the domain of a nested

attribute N based on a subattribute X ∈ Sub(N) and with respect to a choice
Ch(N). Suppose we are given some ≤-ideal, a maximal join-irreducible M and a
subattribute Y that is ≤-maximal with the property that it is both a subattribute
of M and a member of the ideal. The definition of τN

Ch(N)(X) is such that the
projections of the elements τN

Ch(N)(Y ) and τN
Ch(N)(M) coincide on precisely those

subattributes that belong to ideal. Notice that the following definition is based
on our assumption that the domain of each flat attribute contains at least two
distinct values.

Definition 16. Let N ∈ N , Ch(N) a choice of N , and X ∈ J (N) ∪ {λN}.
The identifying term τN

Ch(N)(X) ∈ dom(N) of X in N with respect to Ch(N) is
inductively defined as follows:

– τλL

{λL}(λL) = okL, and τλA

{λA}(λA) = okA,

– τA
{A}(λA) = a′ ∈ dom(A) and τA

{A}(A) = a ∈ dom(A) where a �= a′,

– if N = L(N1, . . . , Nk) and X = L(X1, . . . ,Xk), then

τN
Ch(N)(X) = (τN1

Ch(N1)
(X1), . . . , τNk

Ch(Nk)(Xk)),

– if N = L[N ′], then

τN
Ch(N)(X) =

{
[τN ′

Ch(N ′)(X
′)] , if X = L[X ′]

[ ] , if X = λL

– if N = L(λN1 ⊕ · · · ⊕ λNk
), then

τN
{N}(X) =

⎧⎨
⎩ τ

λN1
{λN1}(λN1) , if X = L(λN1 ⊕ · · · ⊕ λNk

)

τ
λN2
{λN2}(λN2) , if X = λL

– if N = L(N1⊕· · ·⊕Nk), M = L(λN1⊕· · ·Mi · · ·⊕λNk
) and Mj ∈ MaxJ (Nj)

such that j �= i, then

τN
{M}(X) =

{
τNi

{Mi}(Xi) , if X = L(X1 ⊕ · · · ⊕ Xk)

τ
Nj

{Mj}(λNj ) , if X = λL

��
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In order to emphasise that M ∈ MaxJ (N) is part of a choice Ch(N) of N

we denote the identifying term τN
Ch(N)(X) by τN

(M,Ch(N))(X).
The next lemma establishes the first property of the identifying terms. Given

some ≤-ideal, a maximal join-irreducible M and a subattribute Y ≤ M that is
maximal with this property in the ideal, then the identifying terms of M and Y

coincide on projections to any elements of the ideal.

Lemma17. Let N ∈ N be a nested attribute, Y ⊂ J (N)∪{λN} some ≤-ideal,
M ∈ MaxJ (N) and Y ∈ {Z ∈ Y | Z ≤ M and ∀Z′ ∈ Y.(Z ≤ Z′ and Z′ ≤
M) ⇒ Z′ = Z}. Then for all Z ∈ Ymax = {Z ∈ Y | ∀Z′ ∈ Y.Z ≤ Z′ ⇒ Z′ = Z}

πN
Z (τN

(M,Ch(N))(M)) = πN
Z (τN

(M,Ch(N))(Y )) (3.1)

holds.

Proof. If M = λN , then Y = λN and (3.1) is true. Moreover, if Y = {λN}, then
Ymax = {λN} and (3.1) is true. We will therefore assume for the remainder of
the proof that M �= λN and Y �= {λN}.

We show (3.1) by induction on the structure of N .
If N = λL or N = λA for some L ∈ L and A ∈ U , then M = λN . In case

that N = A ∈ U , then all possible cases have already been covered.
Consider the case where N = L(N1, . . . , Nk). For i = 1, . . . , k let

Yi = {Wi ∈ J (Ni) ∪ {λNi} | L(λN1 , . . . ,Wi, . . . , λNk
) ∈ Y}.

Let M = L(λN1 , . . . ,Mi, . . . , λNk
) such that Mi ∈ MaxJ (Ni), and let Y =

L(λN1 , . . . , Yi, . . . , λNk
) with Yi ∈ {Zi ∈ Yi | Zi ≤ Mi and ∀Z′

i ∈ Yi.(Zi ≤
Z′

i and Z′
i ≤ Mi) ⇒ Z′

i = Zi}. Moreover, for all i = 1, . . . , k let

Yi
max = {Wi ∈ J (Ni) ∪ {λNi | L(λN1 , . . . ,Wi, . . . , λNk

) ∈ Ymax},

an antichain with respect to ≤.
Consider first the case where Z = L(λN1 , . . . , Zi, . . . , λNk

) with Zi ∈ Yi
max.

Induction hypothesis shows then that

πNi

Zi
(τNi

(Mi,Ch(Ni))
(Mi)) = πNi

Zi
(τNi

(Mi,Ch(Ni))
(Yi))

holds, and therefore πN
Z (τN

(M,Ch(N))(M)) = πN
Z (τN

(M,Ch(N))(Y )).
Consider now the case where Z = L(λN1 , . . . , Zj , . . . , λNk

) with Zj ∈ Yj
max

and j �= i. Then also πN
Z (τN

(M,Ch(N))(M)) = πN
Z (τN

(M,Ch(N))(Y )) since

πNi

λNi
(τNi

(Mi,Ch(Ni))
(Mi)) = πNi

λNi
(τNi

(Mi,Ch(Ni))
(Yi))

and
π

Nj

Zj
(τNj

Ch(Nj)
(λNj )) = π

Nj

Zj
(τNj

Ch(Nj)
(λNj ))
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and for m ∈ {1, . . . , k} with m �= i and m �= j we have

πNm

λNm
(τNm

Ch(Nm)(λNm)) = πNm

λNm
(τNm

Ch(Nm)(λNm)).

This shows that (3.1) holds in this case.
The cases where N is a list-valued attribute and a union-valued attribute,

respectively, can be shown in a similar way. ��

The next lemma establishes the second property of the identifying terms.
Given some ≤-ideal, a maximal join-irreducible M and a subattribute Y ≤ M

that is maximal with this property in the ideal, then the identifying terms of M

and Y differ on projections to any subattribute X where Y < X ≤ M holds.

Lemma18. Let N ∈ N be a nested attribute, Y ⊂ J (N)∪{λN} some ≤-ideal,
M ∈ MaxJ (N) and Y ∈ {Z ∈ Y | Z ≤ M and ∀Z′ ∈ Y.(Z ≤ Z′ and Z′ ≤
M) ⇒ Z′ = Z}. For all X ∈ J (N) where Y < X ≤ M we have

πN
X (τN

(M,Ch(N))(M)) �= πN
X (τN

(M,Ch(N))(Y )) . (3.2)

Proof. If M = λN , then Y = λN and (3.2) is true as there is no X ∈ J (N) such
that Y < X ≤ M holds. For the remainder of the proof we therefore assume
that M �= λN .

We proceed by induction on the structure of N . There is nothing to show for
N = λL and N = λA for some L ∈ L and A ∈ U . In case that N = A ∈ U the
only case to consider is where M = A and Y = {Y } with Y = λA, and X = A.
However, in this case we have

πA
A(τA

(A,{A})(A)) = a �= a′ = πA
A(τA

(A,{A})(λA)).

Consider now the case where N = L(N1, . . . , Nk). For i = 1, . . . , k let

Yi = {Wi ∈ J (Ni) ∪ {λNi} | L(λN1 , . . . ,Wi, . . . , λNk
) ∈ Y}.

Let M = L(λN1 , . . . ,Mi, . . . , λNk
) such that Mi ∈ MaxJ (Ni), and let Y =

L(λN1 , . . . , Yi, . . . , λNk
) with Yi ∈ {Zi ∈ Yi | Zi ≤ Mi and ∀Z′

i ∈ Yi.(Zi ≤
Z′

i and Z′
i ≤ Mi) ⇒ Z′

i = Zi}. Moreover, for all i = 1, . . . , k let

Yi
max = {Wi ∈ J (Ni) ∪ {λNi | L(λN1 , . . . ,Wi, . . . , λNk

) ∈ Ymax},

an antichain with respect to ≤. Let X ∈ J (N) such that Y < X ≤ M holds.
We conclude that X = L(λN1 , . . . ,Xi, . . . , λNk

) where Yi < Xi ≤ Mi holds. In
particular, since (M,Ch(N)) is an M -choice of N we know that (Mi, Ch(Ni))
is an Mi-choice of Ni. We conclude by hypothesis that

πNi

Xi
(τNi

(Mi,Ch(Ni))
(Mi)) �= πNi

Xi
(τNi

(Mi,Ch(Ni))
(Yi))
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holds. For Ch(N) =
k⋃

i=1

{L(λN1 , . . . ,Mi, . . . , λNk
) : Mi ∈ Ch(Ni)} we therefore

know that

(πN1
λN1

(τN1
Ch(N1)

(λN1)), . . . , π
Ni

Xi
(τNi

(Mi,Ch(Ni))
(Mi)), . . . , πNk

λNk
(τNk

Ch(Nk)(λNk
)))

and

(πN1
λN1

(τN1
Ch(N1)

(λN1)), . . . , π
Ni

Xi
(τNi

(Mi,Ch(Ni))
(Yi)), . . . , πNk

λNk
(τNk

Ch(Nk)(λNk
)))

are different. That is,

πN
X (τN

(M,Ch(N))(M)) �= πN
X (τN

(M,Ch(N))(Y )).

Suppose N = L[N ′]. Let M = L[M ′] with M ′ ∈ MaxJ (N ′). Let Y = {λL}.
Then Y = λL. Let X ∈ J (N) such that Y < X ≤ M holds. We conclude that
X = L[X ′] where X ′ ≤ M ′ holds. However, for Y = λL we have

πN
X (τN

(M,Ch(N))(M)) = [πN ′
X′ (τN ′

(M ′,Ch(N ′))(M
′))] �= [ ] = πN

X (τN
(M,Ch(N))(Y )).

Let now Y �= {λL}. That is, Y ′ = {W ′ ∈ J (N ′) ∪ {λN ′} | L[W ′] ∈ Y} �= ∅.
Let Y ′ ∈ {Z ∈ Y ′ | Z ≤ M ′ and ∀Z′ ∈ Y ′.(Z ≤ Z′ and Z′ ≤ M ′) ⇒ Z′ = Z}.
Let X ∈ J (N) such that Y < X ≤ M holds. We conclude that X = L[X ′]
where Y ′ < X ′ ≤ M ′ holds. Consequently,

πN
X (τN

(M,Ch(N))(M)) = [πN ′
X′ (τN ′

(M ′,Ch(N ′))(M
′))]

�= [πN ′
X′ (τN ′

(M ′,Ch(N ′))(Y
′))]

= πN
X (τN

(M,Ch(N))(Y )).

Consider the case where N = L(N1⊕· · ·⊕Nk). For i = 1, . . . , k let Yi = {Wi ∈
J (Ni)∪{λNi} | L(λN1⊕· · ·Wi · · ·⊕λNk

) ∈ Y}. According to our assumption that
M > λL we have that M = L(λN1 ⊕ · · ·Mi · · · ⊕ λNk

) where Mi ∈ MaxJ (Ni)
holds. Let Mi > λNi . Let X = L(λN1 ⊕ · · ·Xi · · · ⊕ λNk

) ∈ J (N) such that
Y < X ≤ M holds. If Y = λL, then for some Mj ∈ Ch(Nj) such that j �= i we
have

πN
X (τN

(M,Ch(N))(M)) = πNi

Xi
(τNi

(Mi,Ch(Ni))
(Mi))

�= π
Nj

λNj
(τNj

Ch(Nj)
(λNj ))

= πN
X (τN

(M,Ch(N))(Y )).

For Y = L(λN1 ⊕ · · ·Yi · · · ⊕ λNk
) with Yi ∈ Yi and Yi < Xi ≤ Mi we apply the

induction hypothesis to conclude that

πN
X (τN

(M,Ch(N))(M)) = πNi

Xi
(τNi

(Mi,Ch(Ni))
(Mi))

�= πNi

Xi
(τNi

(Mi,Ch(Ni))
(Yi))

= πN
X (τN

(M,Ch(N))(Y )).
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It remains to consider the case where Ni = λNi for all i = 1, . . . , k. Then
N = M = X = L(λN1 ⊕ · · · ⊕ λNk

) and Y = λL. We then have

πN
X (τN

(M,Ch(N))(M)) = τ
λN1
{λN1}(λN1)

�= τ
λN2
{λN2}(λN2)

= πN
X (τN

(M,Ch(N))(Y )).

This concludes the proof of (3.2). ��
We will now combine Lemmata 17 and 18 to finalise our construction of the

desired two-element nested database instance by providing the construction for
list-valued attributes.

Lemma19. Let L[N ] ∈ N be a list valued attribute and ∅ �= X ⊂ J (L[N ])
some ≤-ideal. Then there are distinct t1, t2 ∈ dom(L[N ]) such that for all X ∈
J (L[N ]) we have

π
L[N ]
X (t1) = π

L[N ]
X (t2) if and only if X ∈ X .

Proof. Since X �= ∅ we have X = {L[Y ] | Y ∈ Y} for some ≤-ideal Y ⊆
J (N) ∪ {λN} with λN ∈ Y. Since X �= J (L[N ]) we also have Y �= J (N). Let
{M1, . . . ,Ml} = {M ∈ MaxJ (N) | M /∈ Y}. For i = 1, . . . , l let Yi ∈ Y such
that Yi ≤ Mi and for all Z ∈ Y with Z ≤ Mi and Yi ≤ Z follows Z = Yi. For
i = 1, . . . , l let (Mi, Chi(N)) be an Mi-choice of N . Define t1, t2 ∈ dom(L[N ])
by

t1 := [τN
(M1,Ch1(N))(M1), . . . , τN

(Ml,Chl(N))(Ml)], and
t2 := [τN

(M1,Ch1(N))(Y1), . . . , τN
(Ml,Chl(N))(Yl)] .

For X ∈ J (L[N ]) we have X = L[X ′] with X ′ ∈ J (N)∪ {λN}. By definition of
t1, t2 the statement of this lemma, i.e.,

π
L[N ]
X (t1) = π

L[N ]
X (t2) if and only if X ∈ X

becomes equivalent to

πN
X′(τN

(Mi,Chi(N))(Mi)) = πN
X′(τN

(Mi,Chi(N))(Yi))∀i = 1, . . . , l iff X ′ ∈ Y.

Note that π
L[N ]
L[λN ](t1) = π

L[N ]
L[λN ](t2) holds. Lemma 17 demonstrates that for all

i = 1, . . . , l and for all ≤-maximal elements X ′ ∈ Y we have

πN
X′(τN

(Mi,Chi(N))(Mi)) = πN
X′(τN

(Mi,Chi(N))(Yi)).

Moreover, for each X ′ ∈ J (N) − Y there is some i ∈ {1, . . . , l} such that Yi <

X ′ ≤ Mi holds. Lemma 18 demonstrates that

πN
X′(τN

(Mi,Chi(N))(Mi)) �= πN
X′(τN

(Mi,Chi(N))(Yi))

holds. This completes the proof. ��
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K(M(A ⊕ λB), λP )K(M(λA ⊕ B), λP )K(λM , P [Q(C ⊕ λD)])K(λM , P [Q(λC ⊕ D)])

K(M(λA ⊕ λB), λP ) K(λM , P [Q(λC ⊕ λD)])

K(λM , P [λQ])

K(λM , λP )

Figure 4: Structure of Join Irreducibles in Example 18

The description of generating the desired two-element relation is now com-
plete. This finalises the proof of Theorem 11. The following example illustrates
the construction described in the proof of Lemma 19.

Example 18. Consider the list-valued attribute L[N ] where

N = K(M(A ⊕ B), P [Q(C ⊕ D)]).

The structure of J (N)∪ {λN} is illustrated in Figure 4. Suppose the ≤-ideal X
on L[N ] is

{ L[K(M(λA ⊕ λB), λP )], L[K(λM , P [λQ])], L[K(λM , λP )] }
and therefore the corresponding ≤-ideal Y ⊆ J (N) ∪ {λN} is

Y = { K(M(λA ⊕ λB), λP ), K(λM , P [λQ]), K(λM , λP ) }.
None of the maximal join-irreducibles of N are in Y, i.e., we have

– M1 = K(M(A ⊕ λB), λP ) and Y1 = K(M(λA ⊕ λB), λP ),

– M2 = K(M(λA ⊕ B), λP ) and Y2 = K(M(λA ⊕ λB), λP ),

– M3 = K(λM , P [Q(C ⊕ λD)]) and Y3 = K(λM , P [λQ]),

– M4 = K(λM , P [Q(λC ⊕ D)]) and Y4 = K(λM , P [λQ]).

According to the proof of Lemma 19 we form the following identifying terms
with respect to some choices of N :

– τN
(M1,{M1,M3})(M1)= (τM(A⊕B)

{M(A⊕λB)}(M(A ⊕ λB)), τP [Q(C⊕D)]
{P [Q(C⊕λD)])}(λP ))

= (a, [ ]),

– τN
(M1,{M1,M3})(Y1)= (τM(A⊕B)

{M(A⊕λB)}(M(λA ⊕ λB)), τP [Q(C⊕D)]
{P [Q(C⊕λD)])}(λP ))

= (a′, [ ]),
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– τN
(M2,{M2,M3})(M2) = (b, [ ]) and τN

(M2,{M2,M3})(Y2) = (b′, [ ]),

– τN
(M3,{M2,M3})(M3) = (a′, [c]) and τN

(M3,{M2,M3})(Y3) = (a′, [d′]),

– τN
(M4,{M1,M4})(M4) = (b′, [d]) and τN

(M4,{M1,M4})(Y4) = (b′, [c′]).

We therefore obtain the following two lists

t1 = [(a, [ ]), (b, [ ]), (a′, [c]), (b′, [d])]
t2 = [(a′, [ ]), (b′, [ ]), (a′, [d′]), (b′, [c′])]

and for all X ∈ J (N) we have π
L[N ]
X (t1) = π

L[N ]
X (t2) if and only if X ∈ X . ��

Example 19. Let N = K(M(A ⊕ B), P [Q(C ⊕ D)]) just as in the previous ex-
ample. Hence, the structure of the join-irreducibles is illustrated in Figure 4.
Suppose

Σ = {K(λM , P [λQ]) →w K(M(λA ⊕ λB), λP )}.
It is relatively easy to see that the wFD

ϕ1 = K(λM , P [Q(C ⊕ λD)]) →w K(M(A ⊕ λB), λP )

is not implied by Σ. In fact, the two tuples

t1 = (a, [c]) and t2 = (a′, [c])

with distinct elements a, a′ ∈ dom(A) form a counterexample for the implication
of ϕ1 by Σ. However, the wFD

ϕ2 = K(λM , P [Q(C ⊕ λD)]) →w {K(M(A ⊕ λB), λP ),K(M(λA ⊕ B), λP )}
is indeed implied by Σ. In fact, we will now show an inference of ϕ2 from Σ. In
a fist step we infer the wFD

{K(λM , P [λQ]),K(λM , P [Q(λC ⊕ λD)]),K(λM , P [Q(C ⊕ λD)])} →w

K(M(λA ⊕ λB), λP )}
from Σ by an application of Rule 2. Subsequently, we apply Rule 3 to infer

K(λM , P [Q(C ⊕ λD)]) →w K(M(λA ⊕ λB), λP ).

Moreover, we apply Rule 1 to infer

K(λM , P [Q(C ⊕ λD)]) →w

{K(M(λA ⊕ λB), λP ),K(M(A ⊕ λB), λP ),K(M(λA ⊕ B), λP )}. (3.3)

On the other hand, we can apply Axiom 3 to infer

K(M(λA ⊕ λB), λP ) →w {K(M(A ⊕ λB), λP ),K(M(λA ⊕ B), λP )}
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and then Rule 2 to obtain

{K(M(λA ⊕ λB), λP ),K(λM , P [Q(C ⊕ λD)])} →w

{K(M(A ⊕ λB), λP ),K(M(λA ⊕ B), λP )}. (3.4)

Finally, we apply Rule 5 to (3.3) and (3.4) to infer ϕ2 where U = {K(M(λA ⊕
λB), λP )}. Since every rule is sound, ϕ2 is indeed implied by Σ. ��

4 Logical Characterisation

In this section we will characterise the implication of weak functional depen-
dencies in logical terms. Therefore, we will first define a mapping of wFDs to
propositional clauses. Subsequently, we encode the non-trivial structure of the
join-irreducibles as clauses as well. Finally, we also encode those wFDs that can
be inferred by Axiom 3 as clauses, too. This enables us to prove the desired
equivalence. A database designer can take advantage of these equivalences to
reduce database design problems to well-studied problems in Boolean proposi-
tional logic. For instance, state-of-the-art SAT solvers [Hirsch and Kojevnikov,
2005; Prasad et al., 2005] may be applied to reason about wFDs. Finally, the
equivalences further show that relational database design solutions can be reused
to solve problems for nested databases.

4.1 Weak Functional Dependencies and Clauses

Let φ : J (N) → V denote a bijection between the join-irreducibles of N and the
set V of Boolean propositional variables. We will now extend this bijection to
weak functional dependencies over the nested attribute N and Boolean propo-
sitional clauses over V.

It follows from the soundness of the inference rules Rule 1, Rule 2, Rule 3,
and Rule 4 that an instance r ⊆ dom(N) satisfies the wFD X →w Y if and only
if r satisfies the wFD max(X ) →w min(Y) where max(X ) = {X ∈ X | ∀Z ∈
X .X ≤ Z ⇒ X = Z} and min(Y) = {Y ∈ Y | ∀Z ∈ Y.Z ≤ Y ⇒ Y = Z}.
Indeed, X →w Y can be inferred from max(X ) →w min(Y) by an application
of Rule 1 and an application of Rule 2. Vice versa, max(X ) →w min(Y) can be
inferred from X →w Y by an application of Rule 3 and an application of Rule
4. Without loss of generality, we assume for the remainder of this section that
every wFD X →w Y is of the form max(X ) →w min(Y).

Consider the weak functional dependency ϕ : {X1, . . . ,Xn} →w {Y1, . . . , Yk}
on N . Define Φ(ϕ) to be the propositional formula

ϕ′ = ¬φ(X1) ∨ · · · ∨ ¬φ(Xn) ∨ φ(Y1) ∨ · · · ∨ φ(Yk).
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If Σ is a set of wFDs on N , then let Σ′ = {σ′ | σ ∈ Σ} denote the correspond-
ing set of propositional formulae over V. Furthermore, if {J1, . . . , Jm} denotes
the set of maximal join-irreducibles of N , then let φN = ¬φ(J1)∨ · · · ∨ ¬φ(Jm).
The formula φN is the Boolean equivalent for the set semantics of database
relations in which the same tuple cannot occur more than once.

Furthermore, the set

ΣJ
N = {¬φ(U) ∨ φ(V ) | U, V ∈ J (N), U covers1V }

denotes those clauses which encode the structure of (the join-irreducibles of)
N . Finally, the set

ΣB
N = {¬φ(O) ∨ φ(X) ∨ φ(Y ) | O ∈ N⊕,X, Y branched with respect to O}

denotes those clauses which represent the trivial weak functional dependencies
from Axiom 3.

4.2 The Equivalence

We will now present the main results of this paper. They generalise results from
the relational data model [Fagin, 1977a; Sagiv et al., 1981; Sagiv et al., 1987]
where

1. only nested attributes are considered that result from a single application of
the record constructor to a finite number of flat attributes,

2. and the join-irreducibles of these nested attributes form an anti-chain.

In order to capture the implication of weak functional dependencies we re-
quire the propositional formula φN . This is already the case in the relational
model of data [Sagiv et al., 1987]. As in the presence of record, list, set and
multiset constructor [Hartmann and Link, 2008] we also require the formulae in
ΣJ

N . However, in the presence of record, list and disjoint-union constructor we
also require the formulae in ΣB

N .

Theorem20. [Equivalence Theorem for Weak Functional Dependencies] Let
N ∈ N be a nested attribute, and Σ ∪ {ϕ} a set of weak functional depen-
dencies on N . Let Σ′ denote the corresponding set of propositional formulae for
Σ. Then

1. Σ implies ϕ,

2. Σ implies ϕ in the world of two-element relations, and
1 U covers V iff U < V and for all W ∈ J (N) with U ≤ W ≤ V we have U = W

or V = W , this is just the standard definition of a cover relation for posets, see
[Anderson, 1987]
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3. Σ′ ∪ ΣJ
N ∪ ΣB

N ∪ {φN} logically implies ϕ′

are equivalent. ��

We will now prove Theorem 20. We start off by showing the equivalence of 1)
and 2) in Theorem 20. It is immediate that 1) implies 2) since every two-element
relation is also a relation. The converse implication follows from Definition 6.
Assume that 1) does not hold. That is, there is some r ⊆ dom(N) such that
|=r σ for all σ ∈ Σ, but not |=r ϕ. According to Definition 6 there must be some
distinct t1, t2 ∈ r such that not |={t1,t2} ϕ holds. Since {t1, t2} ⊆ r we must
have |={t1,t2} σ for all σ ∈ Σ. Consequently, Σ does not imply ϕ in the world of
two-element relations, i.e., not 2).

In order to complete the proof of Theorem 20 it remains to show the equiv-
alence between 2) and 3). The key idea is to define truth assignments based on
two-element relations and vice versa. In fact, one interprets a variable as true
precisely if the two nested data elements coincide on their projections to the
corresponding extended join-irreducible of that variable.

Lemma21. Let ϕ be a weak functional dependency on the nested attribute N ,
and r = {t1, t2} ⊆ dom(N) such that t1 �= t2. Then |=r ϕ if and only if |=θr ϕ′

where

θr(V ) =

{
true , if πN

φ−1(V )(t1) = πN
φ−1(V )(t2)

false, else

for all V ∈ φ(J (N)).

Proof. Let ϕ denote the weak functional dependency

{X1, . . . ,Xn} → {Y1, . . . , Yk}

on N . That is, ϕ′ denotes the clause ¬φ(X1)∨· · ·∨¬φ(Xn)∨φ(Y1)∨· · ·∨φ(Yk).
We show the if -part first. Suppose θr makes ϕ′ true. This means, θr must

make at least one of φ(X1), . . . , φ(Xn) false or at least one of φ(Y1), . . . , φ(Yk)
true. If θ(φ(Xi)) = false, then πN

Xi
(t1) �= πN

Xi
(t2) and r satisfies ϕ. If θ(φ(Yj)) =

true, then πN
Yj

(t1) �= πN
Yj

(t2) and r satisfies ϕ again.
It remains to show the only if -part. Suppose r satisfies ϕ, i.e., πN

Xi
(t1) �=

πN
Xi

(t2) for some i ∈ {1, . . . , n} or πN
Yj

(t1) = πN
Yj

(t2) for some j ∈ {1, . . . , k}. If
πN

Xi
(t1) �= πN

Xi
(t2), then θr(φ(Xi)) = false and θr makes ϕ′ true. If πN

Yj
(t1) =

πN
Yj

(t2), then θr(φ(Yj)) = true and θr makes ϕ′ true again. ��

We are now prepared to show the equivalence between 2) and 3). Suppose 2)
does not hold. Then there are t1, t2 ∈ dom(N) such that t1 �= t2 and |={t1,t2} σ for
all σ ∈ Σ, but not |={t1,t2} ϕ. According to Lemma 21 we know that |=θ{t1,t2} σ′

for all σ′ ∈ Σ′ and not |=θ{t1,t2} ϕ′. Since t1 and t2 are distinct it follows also
that |=θ{t1,t2} φN .
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We will show that |=θ{t1,t2} ΣJ
N . Let ¬φ(U) ∨ φ(V ) ∈ ΣJ

N . According to the
definition of ΣJ

N we have V ≤ U . Suppose that θ{t1,t2}(φ(U)) = true. Then
πN

U (t1) = πN
U (t2) according to the definition of the truth assignment θ{t1,t2}.

Since V ≤ U it follows that πN
V (t1) = πN

V (t2) holds as well. This means, however,
that θ{t1,t2}(φ(V )) = true, too.

We will show that |=θ{t1,t2} ΣB
N . Let ¬φ(O) ∨ φ(X) ∨ φ(Y ) ∈ ΣB

N . Suppose
that θ{t1,t2}(φ(O)) = true. Then πN

O (t1) = πN
O (t2) according to the definition of

the truth assignment θ{t1,t2}. We conclude, by Lemma 10, that πN
X (t1) = πN

X (t2)
or πN

Y (t1) = πN
Y (t2) holds.

Consequently, ϕ′ is not logically implied by Σ′∪ΣJ
N ∪ΣB

N∪{φN} as witnessed
by θ{t1,t2}. That means 3) does not hold and it remains to show that 2) implies
3).

Suppose 3) does not hold. Then there is some truth assignment θ which
makes every formula in Σ′∪ΣJ

N ∪ΣB
N ∪{φN} true, but makes ϕ′ false. It is now

sufficient to find some r = {t1, t2} ⊆ dom(N) such that t1 �= t2 and θ = θr. In
this case, Lemma 21 shows that |=r σ for all σ ∈ Σ and not |=r ϕ, i.e., 2) does
not hold.

Let X = {X ∈ J (N) | θ(φ(X)) = true} ⊆ J (N). The set X has several
properties:

1. J (N) − X �= ∅: since |=θ φN it follows that θ(φ(X)) = false for some ≤-
maximal join-irreducible X ∈ J (N).

2. X is closed downwards with respect to ≤ in J (N): let X ∈ X and Y ≤ X

with Y ∈ J (N). Since X ∈ X we have θ(φ(X)) = true. As |=θ ΣJ
N we also

have |=θ ¬φ(X) ∨ φ(Y ). Consequently, θ(φ(Y )) = true which means that
Y ∈ X holds as well.

3. ∀O ∈ N⊕ ∩ X .∀X,Y ∈ J (N) such that X,Y are branched with respect to
O we have X ∈ X or Y ∈ X : O ∈ X implies that θ(φ(O)) = true. Since
|=θ ¬φ(O) ∨ φ(X) ∨ φ(Y ) holds we have θ(φ(X)) = true or θ(φ(Y )) = true.
Hence, X ∈ X or Y ∈ X .

According to these properties Lemma 12 shows that there are distinct t1, t2 ∈
dom(N) such that for all X ∈ J (N) we have: πN

X (t1) = πN
X (t2) if and only if

X ∈ X . Let r = {t1, t2}. We conclude,

θr(φ(X)) = true ⇔ πN
X (t1) = πN

X (t2) (by Definition of θr)
⇔ X ∈ X (by Definition of r)
⇔ θ(φ(X)) = true (by Definition of X )

This completes the proof of Theorem 20.
We illustrate the equivalence between weak functional dependencies in com-

plex value databases and propositional clauses by an example.
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Example 20. Consider Σ,ϕ1 and ϕ2 from Example 19. We will now consider the
implication problems whether Σ implies ϕ1 and ϕ2, respectively, from a logical
point of view. First, we define the following mapping φ from join-irreducibles to
propositional variables as follows:

– φ(K(M(A ⊕ λB), λP )) = V1, φ(K(M(λA ⊕ B), λP )) = V2,

– φ(K(λM , P [Q(C ⊕ λD)])) = V3, φ(K(λM , P [Q(λC ⊕ D)])) = V4,

– φ(K(M(λA ⊕ λB), λP )) = V5, φ(K(λM , P [Q(λC ⊕ λD)])) = V6,

– φ(K(λM , P [λQ])) = V7, and φ(K(λM , λP )) = V8.

We then have Σ′ = {¬V7∨V5}, ϕ′
1 = ¬V3∨V1 and ϕ′

2 = ¬V3∨V1∨V2. Moreover,
we obtain

ΣJ
N = {¬V1 ∨ V5,¬V2 ∨ V5,¬V3 ∨ V6,¬V4 ∨ V6,¬V5 ∨ V8,¬V6 ∨ V7,¬V7 ∨ V8}

and
ΣB

N = {¬V5 ∨ V1 ∨ V2}
as well as φN = ¬V1 ∨ ¬V2 ∨ ¬V3 ∨ ¬V4.

Recall that ϕ1 is not implied by Σ as witnessed by the tuples t1, t2 from
Example 19. Accordingly, ϕ′

1 is not logically implied by Σ′ ∪ ΣJ
N ∪ ΣB

N ∪ {φN}.
In fact, the truth assignment θ that assigns false to V1 and true to all the
remaining variables satisfies all formulae in Σ′ ∪ΣJ

N ∪ΣB
N ∪{φN} but makes ϕ′

1

false. Notice the strong correspondence between {t1, t2} and θ: t1 and t2 agree
on precisely those join-irreducibles whose associated variables are evaluated to
true by θ. However, there is no truth assignment that satisfies all formulae in
Σ′ ∪ ΣJ

N ∪ ΣB
N ∪ {φN} but violates ϕ′

2. ��

4.3 Encoding with Relational Weak Functional Dependencies

A direct consequence of the Equivalence Theorem 20 is that relational database
design solutions can be applied to problems for databases that are not in first
normal form (and vice versa). We will now make this correspondence explicit. In
particular, the relationship implies that the lower bounds on the time-complexity
of the implication problem in relational databases also apply to nested databases.

Let N ∈ N . We interpret the join-irreducible elements of N as attributes in
a relation schema, i.e., the corresponding relation schema of N is RN = J (N).
Let Σ be a set of wFDs on N . Each wFD ϕ: X →w Y in Σ is mapped to the
relational wFD ϕ′: max(X ) →w min(Y). Therefore, the corresponding set of
relational wFDs is

Σ′ = {σ′ | σ ∈ Σ} ∪ {U →w V | U, V ∈ J (N), U covers V }∪
{O →w {X,Y } | X,Y ∈ J (N) are branched with respect to O ∈ N⊕}.
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Corollary 22. Let N ∈ N , and Σ ∪ {ϕ} be a set of wFDs on N . Then ϕ is
implied by Σ if and only if ϕ′ is implied by Σ′ on RN . ��
Example 21. Recall Example 20 again. We can view the propositional variables
as attributes of the relation schema R = {V1, . . . , V8}. The corresponding set of
weak functional dependencies is

Σ′ = {V7 → V5} ∪ {V1 → V5, V2 → V5, V3 → V6, V4 → V6,

V5 → V8, V6 → V7, V7 → V8} ∪ {V5 → {V1, V2}}.
Notice that {V1, V2, V3, V4} forms a minimal key for R with respect to Σ′. The
functional dependency V3 → V1 is not implied by Σ′ (a counterexample relation
consists of two tuples that differ on the attribute V1 and coincide on all other
attributes). However, the weak functional dependency V3 → {V1, V2} is implied
by Σ′. ��

5 Conclusion and Future Work

We have studied weak functional dependencies in relational and complex-value
databases with record, list, and disjoint union constructor. While these con-
straints can be specified in a way similar to traditional functional dependencies
they enable a database designer to express every propositional sentence instead
of just Horn clauses. Our first major contribution is an axiomatisation of weak
functional dependencies in the presence of complex data elements that can be
derived by an arbitrary finite number of recursive nestings by record, list and dis-
joint union constructors. The second contribution establishes an analogy between
the implication of weak functional dependencies and propositional formulae in
classical propositional logic. Hence, well-studied reasoning tools become appli-
cable to design problems for databases in non-first normal form. We believe that
data administrators who are experienced in specifying functional dependencies
will find it not much more difficult to specify weak functional dependencies. No-
tice that this corresponds to the use of clauses instead of arbitrary propositional
formulae in propositional logic.

An interesting extension of this research is to incorporate set and multiset
constructor into the type system without considering restructuring rules. It is
known that join-irreducibles do not suffice in the presence of these construc-
tors in order to obtain a correspondence between the implication of functional
dependencies and propositional Horn clauses [Hartmann and Link, 2006; Hart-
mann and Link, 2008]. However, the interactions between set/multiset and dis-
join union constructors are not obvious at all. Furthermore, it would also be in-
teresting to include identifiers and the reference constructor into the treatment.
It is also worthwhile to extend this research to other classes of dependencies and
data formats, e.g. to multivalued dependencies in partial databases [Lien, 1982;
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Link, 2008] and full-hierarchical dependencies in undetermined universes [Hart-
mann et al., 2007]. Moreover, multivalued dependencies [Fagin, 1977b] have also
been studied in the presence of record and list constructor [Hartmann et al.,
2006b]. It would be interesting to extend this research to the presence of the
disjoint union constructor, too.
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