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Abstract: The rapid growth of the World Wide Web has resulted in a dramatic in-
crease in semistructured data usage, creating a growing need for effective and efficient
utilization of semistructured data. In order to verify the correctness of semistructured
data design, precise descriptions of the schemas and transformations on the schemas
must be established. One effective way to achieve this goal is through formal model-
ing and automated verification. This paper presents the first step towards this goal.
In our approach, we have formally specified the semantics of the ORA-SS (Object-
Relationship-Attribute data model for Semistructured data) data modeling language
in PVS (Prototype Verification System) and provided automated verification support
for both ORA-SS schemas and XML (Extensible Markup Language) data instances
using the PVS theorem prover. This approach provides a solid basis for verifying algo-
rithms that transform schemas for semistructured data.
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1 Introduction

As a result of the rapid growth of the World Wide Web and its technologies,
many businesses and organizations are relying more on computers to carry out
their business and services over the internet. While moving to online services
has increased convenience and efficiency a great deal, the correctness and con-
sistency of the data stored, retrieved, and updated by these services has become
even more critical. For example, inconsistencies or corruption in data transac-
tions containing account balances, confidential legal information, or credit card
payments with online shopping, could lead to disastrous results.

Semistructured data is one of the well known standards for representing and
exchanging data over the internet. The wide usage of semistructured data is
not limited to Web applications, but includes various other applications such
as digital libraries, biological databases, and multimedia data management sys-
tems [Wu et al., 2001]. In order to provide effective and efficient utilization of
semistructured data, many researchers have proposed to design and develop
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database systems for semistructured data. As a result, several database systems
have been developed for storing, manipulating, and querying semistructured data
in the form of eXtensible Markup Language (XML) [Harold and Means, 2004],
while traditional database companies, such as Oracle, have provided XML sup-
port for their existing database systems.

Consistency of data is even more important when the intention is to store the
data long term. The data is initially stored with a particular meaning and this
meaning must be enforced over time. Consider for example relational databases,
where the meaning of the data is initially captured in ER (entity relationship)
diagrams or similar, used in database design, and enforced through the design
of the database and the schema. Algorithms that transform the schema, such as
normalization, must ensure that none of the meaning is lost. The first step to
guaranteeing that the meaning is not lost is to formally describe the data model
and the semantics captured in the data model. In this paper we:

– informally describe the expected semantics of semistructured data

– formally capture the expected semantics of semistructured data

– provide a method for automatically verifying that a schema is correct with
respect to the expected semantics

– provide a method to automatically validate an instance of semistructured
data against a schema

Among many data modeling languages for semistructured data, we chose the
Object Relationship Attribute model for Semistructured Data (ORA-SS) [Dob-
bie et al., 2001; Ling et al., 2005] because ORA-SS not only captures the con-
straints that are represented in textual languages such as XML Schema [Thomp-
son et al., 2007] but also captures additional semantics that can be used for
conceptual modeling. For formal verification, the Prototype Verification System
(PVS) [Owre et al., 1992] was chosen because it has been used effectively to pro-
vide precise formal definitions and powerful automated verification support in
various research projects [Vitt and Hooman, 1996; Srivas et al., 1997; Lawford
and Wu, 2000].

Based on the semantics of ORA-SS, the standard representation for schema
and data with their associated properties and constraints can be defined and
verified in PVS. The relationship between an ORA-SS schema and its data in-
stances can be specified to provide validation of the data against its schema. Our
long term goal is depicted in Figure 1, which shows the overall structure of the
verification process. The structure of the verification process presented in Figure
1 is divided into two parts by a dashed line, where the left hand side represents
the part presented in this paper and the right hand side represents the part to be
implemented in the future. We have published earlier work related to this project
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Figure 1: Verification support for semistructured data: schema, instance and
normalization algorithm

in [Lee et al., 2005; Lee et al., 2006], and preliminary results of the future work
in [Lee et al., 2008b; Lee et al., 2008a]. For the validation of the semistructured
data against its schema, the PVS representation of semistructured data and its
schema are input into the PVS theorem prover, together with the pre-defined
ORA-SS semantics, and then the theorem prover can validate the data against
its schema. In the future to verify the transformation algorithms, PVS repre-
sentations of normalization and view creation algorithms will be passed into the
theorem prover together with the defined library of transformation operators.
PVS will then verify the algorithms to ensure the consistency of the data after
such a transformation.

The rest of the paper is organized as follows. Section 2 presents background
information about ORA-SS and PVS, which includes verification criteria of
ORA-SS schemas and data instances and the PVS language and its theorem
prover. In section 3, we present a formal semantics of the ORA-SS language and
its data models in PVS with examples. Section 4 demonstrates the verification
of ORA-SS schemas and data models using the PVS theorem prover. Section 5
compares this work with related work, and section 6 concludes the paper and
addresses future work.

2 Background

This section provides an overview of the ORA-SS data modeling language, show-
ing how ORA-SS models are described using ORA-SS diagrams and outlining
the constraints that diagrams must satisfy in order to represent meaningful data
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models (further details will be presented in section 3). We also explain informally
what it means for an XML document to be an instance of an ORA-SS schema,
and provide a brief introduction to PVS.

2.1 ORA-SS Data Modeling Language

The Object-Relationship-Attribute model for Semistructured data (ORA-SS) is
a semantically rich graphical data modeling language for semistructured data
design [Dobbie et al., 2001]. It has been used in many XML related database
applications [Ling et al., 2001; Ling et al., 2005]. ORA-SS models are based on
four basic concepts: object classes, relationship types, attributes and references.

– An object class represents a type of an entity in the domain being modeled,
such as person, student, or course. In ORA-SS diagrams, object classes are
denoted by labeled rectangles.

– A relationship type represents a relationship among object classes. In semi-
structured data, this relationship is typically a nested relationship where
an object class can relate to either an object class or a relationship type.
In ORA-SS diagrams, a relationship type is described by an edge labeled
with a tuple (name, n, p, c), where name is the name of the relationship
type, integer n indicates the degree of the relationship type which represents
whether the object class is related to another object class or a relationship
type, p represents the participation constraint of the parent object class in
the relationship type and c represents the participation constraint of the
child object class.

– An attribute represents a property of either an object class or a relationship
type. In ORA-SS diagrams, attributes are denoted by labeled circles. An
attribute may be an key attribute that has a unique value, and is represented
as a filled circle. Other types of attributes include single valued attributes,
multi-valued attributes, required attributes, and composite attributes.

– An object class can reference another object class indicating that the object
class is extended with the details of the other object class. It is similar to
the inheritance relationship in the object oriented data model. In ORA-SS
diagrams, references are represented by dashed edges.

Figure 2 presents an ORA-SS schema diagram for a Course-Student data
model. This ORA-SS schema diagram essentially consists of three tree structures
(ignoring the dashed lines) describing various relationships, linked by references.
The part of the diagram on the left represents the relationships between ‘course’,
‘prerequisite’, ‘student ’, and ‘tutor ’ object classes, where appropriate attributes
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Figure 2: An ORA-SS schema diagram of a Course-Student data model.

are related to each object class to specify properties of the object classes. There
are also several attributes, e.g., the ‘grade’ of relationship ‘cs ’, describing prop-
erties associated with relationships. The attributes with filled circles, such as
‘code’, represent the primary keys of object classes. The ‘*’ in a circle indicates
that the attribute can occur zero or more times, that is a ‘tutor ’ can have zero or
more ‘preferredAreas ’. The ‘|’ in a circle represents a disjunctive attribute, so a
‘course’ has an ‘examVenue’ which is either a ‘lectureTheatre’ or a ‘laboratory’.
The relationship ‘sm’ represents the membership of a student in a sport club,
while the relationship ‘sh’ describes a property of students. In fact ‘sh’ is a dis-
junctive relationship which means that the object class can have a relationship
with either of the object classes in the disjunctive relationship, i.e. a student can
live in either a hostel or at home.

Note that the ‘student details ’ object class is referenced by both the ‘student ’
object class and the ‘member ’ object class. Referencing provides properties of
one object class to another object classes without duplicating the information.
That is a ‘member ’ object class has the same properties as a ‘student details ’
object class, with one additional property, ‘joinDate’. Similarly a prerequisite is
simply a course, so there is a reference from object class ‘prerequisite’ to object
class ‘course’. In Figure 2, we have deliberately introduced three semantic errors
for the purpose of illustrating the constraints discussed in sections 2.2 and 2.3,
where we describe how they are detected.
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2.2 Constraints on ORA-SS Schema Model

In order to define meaningful data models, an ORA-SS schema diagram must
satisfy a number of additional constraints. For example:

– A relationship type r with degree two relates a parent object class with a
child object class.

– In a relationship type r with degree n greater than two, there must be
another relationship type with degree n − 1, relating n − 1 ancestors of the
child object class of relationship r.

– A disjunctive relationship type relates a parent object class to two or more
child object classes.

– A composite attribute or disjunctive attribute relates an attribute to two or
more sub-attributes.

– A candidate key of an object class is a set of attributes selected from the
attributes of the object class. A composite key of an object class is a set of
attributes selected from two or more attributes of the object class.

– There can only be one primary key per object class, and it must be a can-
didate key of the object class.

– Relationship attributes have to belong to an existing relationship type.

– An object class can reference one object class only, but an object class can
be referenced by multiple object classes.

These constraints can be used to check whether an ORA-SS data model
is consistent. For example, examining the Course-Student schema diagram in
Figure 2 reveals three semantic errors:

1. the degree of relationship ‘cs ’ between object class ‘course’ and ‘student’ is
described as 3, representing a ternary relationship where it is actually binary,
which violates the second constraint;

2. two attributes are described as primary keys for the object class ‘student ’,
which violates the sixth constraint; and

3. the candidate key ‘staffNumber ’ is represented as an attribute of the rela-
tionship ‘cst ’, violating the fifth constraint which says that candidate keys
can only be composed of attributes that belong to object classes.
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In a small example like this, these errors can be easily detected by examin-
ing the schema diagram. However, examining large ORA-SS schema models for
semistructured data can be error-prone — manually checking diagrams does not
guarantee the consistency of the schema since it is likely that inconsistencies are
not revealed when the schema structure is complicated. The formal specification
of ORA-SS semantics presented in section 3 will be used in section 4 to detect
inconsistencies such as these.

2.3 Constraints on ORA-SS Data Instance

In order for a semistructured data instance, such as an XML document, to con-
form to an ORA-SS schema, its structure must satisfy the constraints embodied
in the ORA-SS schema. For example:

– Relationship instances must conform to their parent and child participation
constraints, i.e., the number of child objects related to a single parent object
or relationship instance should be consistent with the parent participation
constraints; and the number of parent objects or relationship instances that a
single child object relates to should be consistent with the child participation
constraints.

– In a disjunctive relationship/attribute, only one object class/attribute can
be associated to a particular parent instance.

– The value of a candidate key (single or composite) should uniquely identify
an object in its object class.

– The number of values of a multi-valued attribute must be limited by the
minimum and maximum cardinality values of the attribute.

A semistructured data instance can be represented as either a text-based
XML document or a tree structured directed graph called an ORA-SS instance
diagrams [Ling et al., 2005]. Figure 3 shows a semistructured data instance in the
form of an XML document. This XML document does not conform to the ORA-
SS schema in Figure 2, even after the semantic errors identified in the previous
section are rectified. Inspecting this data instance, we can see that there are
three inconsistencies:

1. the student in course ‘compsci101 ’ is related to two tutors, violating the
cardinality constraint of relationship ‘cst ’ which is defined as ‘1:1 ’;

2. there are two identical values for the ‘studentNumber ’ primary key for two
different students, violating the constraint that candidate keys and therefore
primary keys must uniquely identify an object in an object class; and
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<course>
<code> compSci101 </code>

<student idref = s123>
...

<grade> A </grade>
<tutor staffNumber = 186>

<staffName> Scott Lee </staffName>
<feedback> good </feedback>

</tutor>
<tutor staffNumber = 35>

<staffName> John Smith </staffName>
<feedback> ok </feedback>

</tutor>
</student>...

</course>
...

<student_details studentNumber = 123, id = s123>
<studentName> Kevin Jones </studentName>
<hostel>

<hostelName> Int. House </hostelName>
</hostel>
<home>

<streetNumber> 3 </streetNumber>
<streetName> Queen St </streetName>

</home>
</student_details>
<student_details studentNumber = 123, id = s215>

<studentName> Karl Thompson </studentName>
<hostel>

<hostelName> Orakei </hostelName>
</hostel>

</student_details>
...

Figure 3: An XML data instance for a Course-Student data model.

3. the student ‘KevinJones ’ is related to both ‘hostel ’ and ‘home’ where this
is represented as a disjunctive relationship in the schema showing that a
student can relate to either a hostel or a home, but not both.

One can see that it is not trivial to reveal the errors using only the schema
diagrams and XML document. Consider examining a large database consisting
of a number of XML documents that conform to a complicated ORA-SS schema
model, it is almost impossible to verify all the data manually. Therefore, auto-
mated verification support based on formal specification can be beneficial. The
automated verification support enables prompt and effective verification of a
large number of data against the complicated ORA-SS schema models. In addi-
tion, it eliminates the possibility of undetected errors included in the result of a
verification process.

2.4 Prototype Verification System (PVS)

PVS is a typed higher-order logic verification system, where a formal specifica-
tion language is integrated with supporting tools [Owre et al., 1992]. It provides
formal specification and verification through type checking and theorem proving.
PVS has a number of language constructs including user-defined types, built-in
types, functions, sets, tuples, records, enumerations, and recursively-defined data
types such as lists and binary trees. Predicate subtypes and dependent types are
included in PVS to introduce constraints in other types such as the type of prime
numbers. These types that represent constraints increase the expressiveness and
naturalness of the specifications, and the constraints on the types can be proved
automatically by the theorem prover. With the provided language constructs,
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PVS specifications are represented in parameterized theories that contain as-
sumptions, definitions, axioms, and theorems. Definitions of PVS also support
recursive functions, inductively-defined relations and its expressions provide the
usual arithmetic and logic operators, function application, lambda abstraction,
and quantifiers. The definitions and expressions of PVS allow composition of
complex specifications which lead to the easier construction of real world prob-
lems and the represented problems can be solved and verified using the built-in
theories and theorem prover. PVS is considered one of the most popular and
effective verification systems, because it provides an automated type checker, a
rich library of predefined theorems and a powerful theorem prover. Many appli-
cations have adopted PVS to provide formal verification support to their system
properties [Vitt and Hooman, 1996; Srivas et al., 1997; Lawford and Wu, 2000].

3 Formal Semantics of ORA-SS Data Model

In this section, we define the structure and semantics of ORA-SS data mod-
els and data instances using the PVS specification language. We have limited
ourselves to a subset of the ORA-SS data model that demonstrates the major
concepts in the language. Our approach consists of three theories as shown in
Figure 4: one defining ORA-SS schemas, one defining data instances, and one
defining the relationship between an instance and a schema. Specific ORA-SS
schema diagrams and instances can then be translated into the vocabulary pro-
vided by these theories, to obtain PVS representations that can then be used for
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verification, as described in section 4.1 Due to the space limitation, not all the
semantic definitions for ORA-SS are presented here. A complete PVS semantics
of ORA-SS can be found at www.cs.auckland.ac.nz/~scott/files/JUCS/.

3.1 The ORA-SS Schema Theory

We first define a PVS theory describing the structure and semantics of ORA-SS
schemas. Every ORA-SS schema is built on a set of object class names and a
set of attribute names, which (must both be non-empty and) are provided as
arguments, OC and ATT, to a generic theory:

orassSchemaDef
ˆ
OC, ATT: type+

˜
: theory

3.1.1 Schema Type

To capture the meaning of an ORA-SS schema diagram, we need to describe the
relationships, attributes and keys embodied in the diagram. In our formal model,
a schema is represented using a record type, with components representing these
aspects of a diagram, with various kinds of attributes (object attributes, rela-
tionship attributes, composite attributes and disjunctive attributes) and keys
(candidate keys and primary keys) represented separately:

Schema: type =
{s: ˆ

# relList: list
ˆ
Relationship

˜
, oAttList: list

ˆ
ObjectAtt

˜
,

rAttList: list
ˆ
RelationshipAtt

˜
, cAttList: list

ˆ
CompositeAtt

˜
,

dAttList: list
ˆ
DisjunctiveAtt

˜
, cKeyList: list

ˆ
CandidateKey

˜
,

pKeyList: list
ˆ
PrimaryKey

˜
#

˜
|

noRelRepeat?(relList(s)) ∧
noOAttRepeat?(oAttList(s)) ∧ noRAttRepeat?(rAttList(s)) ∧
noCAttRepeat?(cAttList(s)) ∧ noDAttRepeat?(dAttList(s)) ∧
noCKeyRepeat?(cKeyList(s)) ∧ noPKeyRepeat?(pKeyList(s)) ∧
cKeyCorrect?(cKeyList(s), oAttList(s)) ∧
pKeyCorrect?(pKeyList(s), cKeyList(s))}

The types of these components will be defined below. Note that we use lists
to represent sets of relationships, attributes and keys, because these are pro-
cessed more efficiently by PVS. The use of lists has introduced definitions of the
functions such as ‘noRelRepeat? ’, ‘noOAttRepeat? ’ and ‘noCKeyRepeat? ’ for the
record type to prevent the same components repeating multiple times in a list. In
order for a schema to be valid, it must satisfy the additional constraints shown
in the definition: there can be no repeated elements in the lists (because they are
really intended to be sets), and keys must satisfy correctness constraints, which
are described below.
1 The standard PVS syntax [Owre et al., 1992] is used in specifying formal semantics

of the ORA-SS language and examples.
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3.1.2 Relationship Type

To describe a relationship type, we must record the object classes that participate
in the relationship, the degree of the relationship, and the parent and child
participation constraints. A relationship type is thus represented as a record
with these four components:

Relationship: type =
{r: ˆ

# rel: RelType, degree: posnat,

pConstraint:
ˆ
nat, posnat

˜
, cConstraint:

ˆ
posnat, posnat

˜
#

˜
|

degree(r) = length(rel(r)) ∧
(length(rel(r)) > 2 ⇒ (∃(subRel: RelType): subRel = cdr(rel(r))))}

The degree is declared as a positive integer (in fact, the degree must be at
least 2) and the parent and child participation constraints are ordered pairs of
numbers giving the minimum and maximum number of occurrences permitted.
The minimum for parent participation is a natural number, since the parent
objects in a relationship are not required to have any child objects. The others
are all positive integers. The name of the relationship is not included in the type
definition since it can be represented as a variable name of the relationship type
in schema instances.

In this definition, ‘rel ’ lists the object classes participating in the relationship,
starting with the one occurring deepest in the ORA-SS diagram, and working
upwards. Its length must be the same as ‘degree’. We define ‘rel ’ as a list of sets
of object classes, and use sets containing more than one object class to represent
disjunctive relationships. Since a relationship must involve at least object classes,
the list must contain at least two elements, and since relationships must not be
circular, the list must not contain cycles:

RelType: type =
{ocSetList: list

ˆ
set

ˆ
OC

˜˜
|

length(ocSetList) > 1 ∧ no cycle?(ocSetList)}

no cycle?(ocSetList: list
ˆ
set

ˆ
OC

˜˜
): recursive bool =

cases ocSetList of
null: true,
cons(head, tail): (∀(ocSet: set

ˆ
OC

˜
): member(ocSet, tail) ⇒

disjoint?(head, ocSet)) ∧ no cycle?(tail)
endcases

measure length(ocSetList)

The definition of ‘Relationship’ requires that if a relationship has degree n

greater than two, then there is also a relationship with degree n− 1 relating the
ancestors of the child object class of the relationship in the same hierarchical
order. This ensures that a relationship has the right number of participants.
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3.1.3 Attributes of Object Class and Relationship

In ORA-SS schema diagrams, object classes and relationships can both have
attributes, and these attributes may be composite or disjunctive. The set of
attributes for an object class is defined as a record with two components, giv-
ing the object class (oc) and its attributes (attList); similarly for attributes of
relationships. As usual, there can be no repeated attributes.

ObjectAtt: type =
{oAtt:

ˆ
# oc: OC, attList: list

ˆ
ATT

˜
#

˜
|

noAttRepeat?(attList(oAtt))}

RelationshipAtt: type =
{rAtt:

ˆ
# rel: RelType, attList: list

ˆ
ATT

˜
#

˜
|

noAttRepeat?(attList(rAtt))}

Composite attributes are defined using the ‘CompositeAtt ’ record type which
has two components giving the attribute (att) and its component attributes
(attList).

CompositeAtt: type =
{cAtt:

ˆ
# att: ATT, attList: list

ˆ
ATT

˜
#

˜
|

length(attList(cAtt)) > 1 ∧ noAttRepeat?(attList(cAtt)) ∧
¬ member(att(cAtt), attList(cAtt))}

A composite attribute must have at least two components and must not have
repeated components. Also, an attribute must not be listed as one of its own
components. Disjunctive attributes are defined in a similar way with similar type
constraints.

3.1.4 Candidate Key and Primary Key

In ORA-SS schema diagrams, an object class may have any number of sets of
attributes, called candidate keys, each having a unique value for each instance
of that object class. A candidate key consisting of more than one attribute is
called a composite candidate key. The set of candidate keys for an object class
is defined as a record with two components, giving the object class (oc) and its
candidate keys (keyList).

CandidateKeys: type =
{cKey:

ˆ
# oc: OC, keyList: list

ˆ
list

ˆ
ATT

˜˜
#

˜
|

(∀(attList: list
ˆ
ATT

˜
): member(attList, keyList(cKey)) ⇒

noAttRepeat?(attList)) ∧ noKeyRepeat?(keyList(cKey))}

The recursive predicate function ‘cKeyCorrect? ’ is defined for the candidate
key definition to apply constraints of ORA-SS semantics on a candidate key. The
semantics of ORA-SS specifies that a candidate key should be selected from the
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set of attributes that belong to the object class, hence the ‘cKeyCorrect? ’ func-
tion checks whether the entire candidate keys for all object classes satisfy this
condition using the ‘correctOAtt4CKey? ’ function. The ‘correctOAtt4CKey? ’
function uses various other functions to provide the constraint checking for the
candidate keys.

cKeyCorrect?(cKeyList: list
ˆ
CandidateKeys

˜
, oAttList: list

ˆ
ObjectAtt

˜
):

recursive bool =
cases cKeyList of

null: true,
cons(head, tail): correctOAtt4CKey?(oAttList, head) ∧

cKeyCorrect?(tail, oAttList)
endcases

measure length(cKeyList)

In ORA-SS schema diagrams, an object class has a primary key which is
selected from the set of candidate keys. The primary key is defined similarly as
a record type that consists of an object class and list of attributes. The list of
attribute refers to the primary key or composite primary key that belongs to
the object. Also there is a recursive predicate function that checks whether a
primary key is selected from candidate keys as specified in ORA-SS semantics.

3.2 Representing a Schema Diagram in PVS

To illustrate how a ORA-SS schema diagram can be represented using the defi-
nitions presented above, we will show how, the Course-Student schema diagram
in Figure 2 can be represented in a PVS theory called ‘schemaEx ’ as follows.

schemaEx: theory
begin

importing OC
importing ATT
importing orassSchemaDef

ˆ
OC, ATT

˜

cp: RelType = (:singleton(prerequisite), singleton(course):)

cs: RelType = (:singleton(student), singleton(course):)
...
cpRel: Relationship =

(# rel := cp, degree := 2,
pConstraint := (0, 5), cConstraint := (1, many) #)

csRel: Relationship =
(# rel := cs, degree := 3,
pConstraint := (4, many), cConstraint := (3, 8) #)

...
courseAtt: ObjectAtt =

(# oc := course, attList := (:code, title, examVenue:) #)
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tutorAtt: ObjectAtt =
(# oc := tutor, attList := (: staffName, preferredArea:) #)

...
csRelAtt: RelationshipAtt =

(# rel := cs, attList := (:grade:) #)

cstRelAtt: RelationshipAtt =
(# rel := cst, attList := (:staffNumber, feedback:) #)

...
examVenueDAtt: DisjunctiveAtt =

(# att := examVenue, attList := (:lectureTheatre, laboratory:) #)

courseCKey: CandidateKey =
(# oc := course, keyList := (:(:code:):) #)

tutorCKey: CandidateKey =
(# oc := tutor, keyList := (:(:staffNumber:):) #)

...
coursePKey: PrimaryKey = (# oc := course, keyList := (:code:) #)

tutorPKey: PrimaryKey = (# oc := tutor, keyList := (:staffNumber:) #)
...
courseStudent: Schema =

(# relList := (:cpRel, csRel, cstRel, shRel, smRel:),
oAttList := (:courseAtt, tutorAtt, studentAtt, ... sportClubAtt:),
rAttList := (:csRelAtt, cstRelAtt, smRelAtt:),
cAttList := null, dAttList := (:examVenueDAtt:),
cKeyList := (:courseCKey, tutorCKey, studentCKey, sportClubCKey:),
pKeyList := (:coursePKey, tutorPKey, ... sportClubPKey:) #)

end schemaEx

The ‘schemaEx ’ theory imports the OC and ATT data types constructed for
the Course-Student schema, and the ‘orassSchemaDef ’ theory. It then defines
several local variables holding the components for the Course-Student schema,
as shown in the diagram in Figure 2, and finally defines courseStudent as a
schema, using these local variables. The complete Student-Course representation
in ‘SchemaEx ’ theory is defined in schemaEx.pvs.

3.3 The ORA-SS Data Instance Theory

An ORA-SS data instance is an abstract representation of an XML document.
The general structure and properties of ORA-SS data instances are constructed
on a non-empty sets of object classes (OC ), attributes (ATT ), objects (OB-
JECT ) and attribute values (ATTVALUE), which are provided as arguments
to a generic theory:

orassDataDef
ˆ
OC, OBJECT, ATT, ATTVALUE: type+

˜
: theory

To capture the meaning of an ORA-SS data instance, we need to describe
the instances of relationships and instances of attributes. The data instance
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is defined using record type, with object relationships (oRelList), object tree
path (oRelTreeList) representing relationship instances, and with attribute val-
ues (attInstList, cAttValList and dAttValList) representing attribute instances.
The types of these components will be described in the following sub-sections.
The additional constraints of the above definition specifies that there can be no
repeated elements in the list of each components.

Data: type =
{d: ˆ

# oRelList: list
ˆ
ObjRelationship

˜
, oRelTreeList: list

ˆ
ObjRelTree

˜
,

attInstList: list
ˆ
AttInstance

˜
, cAttValList: list

ˆ
CompositeAttVal

˜
,

dAttValList: list
ˆ
DisjunctiveAttVal

˜
#

˜
|

noORelRepeat?(oRelList(d)) ∧ noORelTreeRepeat?(oRelTreeList(d)) ∧
attInstRepeat?(attInstList(d)) ∧ cAttValRepeat?(cAttValList(d)) ∧
dAttValRepeat?(dAttValList(d))}

A complete PVS semantics of the constructs for data is defined in orassDataDef.

pvs.

3.3.1 Basic Types

In ORA-SS data instance diagram, an instance of object class and an instance of
attribute are described by an object with its object class and an attribute value
with its attribute respectively. In our formal model, an instance of object class is
represented using a record type, with components representing object class and
its instance (object). An instance of attribute is represented with components
representing attribute and its instance (attribute value). These basic types are
defined initially to construct a formal specification of ORA-SS semantics for a
data instance.

OBJ: type+ =
ˆ
# class: OC, object: OBJECT #

˜

ATTVAL: type+ =
ˆ
# attribute: ATT, value: ATTVALUE #

˜

3.3.2 Object Relationships

To describe an instance of relationship, the relationship between objects and
the tree structure of the related objects must be recorded. Thus two PVS types
representing the above two aspects in the ORA-SS data instance are both defined
as a list of objects.

ObjRelationship: type = {oList: list
ˆ
OBJ

˜
| length(oList) = 2}

ObjRelTree: type = {oList: list
ˆ
OBJ

˜
| noObjCycle?(oList)}

The ‘ObjRelationship’ type represents the relationship between objects where
its constraint specifies that the object relationship in the list is always a binary.
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This constraint is applied to the type since n-ary relationship is not possible
between objects in a ORA-SS data instance. The ‘ObjRelTree’ type are defined
to represent the structural information (tree path) of the instance diagram as a
list of objects where the constraints specifies that there is no repeated objects in
the list. This definition is essential for reconstructing the data instance diagram
from the PVS representation of the diagram.

3.3.3 Instances of Attributes, Composite Attributes, and Disjunctive
Attributes

In ORA-SS data instance diagrams, instances of relationship attributes and ob-
ject attributes are both represented as attribute values that belong to objects.
Whereas, the instances of composite attribute and disjunctive attribute similar
to their representation in a schema diagram. The instances of attribute for both
object class and relationship are defined as a single record with two components,
giving the objects (objList) and the attribute values (attValList) that belongs
to them. The instances of composite and disjunctive attributes are defined as a
record with two components, giving the attribute value and list attribute val-
ues for the instances of composite attributes; giving two attribute value for the
instances of disjunctive attributes. As usual, there can be no repeated attributes.

AttInstance: type =
ˆ
# objList: list

ˆ
OBJ

˜
, attValList: list

ˆ
ATTVAL

˜
#

˜

CompositeAttVal: type =
{cAttVal:

ˆ
# attVal: ATTVAL, attValList: list

ˆ
ATTVAL

˜
#

˜
|

noAttValRepeat?(attValList(cAttVal))}

DisjunctiveAttVal: type =
ˆ
# attVal1: ATTVAL, attVal2: ATTVAL #

˜

In the ‘AttInstance’ type definition, the list of objects is used to specify the
exact object in the tree structure because the same object can appear many
times in different tree paths. The ‘DisjunctiveAttVal ’ type is defined similarly to
the definition for disjunctive attributes in the ORA-SS schema diagram. How-
ever, attribute value is used instead of list of attribute values because only one
attribute can be selected from a set of disjunctive attributes.

3.4 Representing a Data Instance in PVS

To illustrate how an ORA-SS data instance can be represented using the defi-
nitions presented above, we will show how, the XML data instance for ‘Course-
Student ’ schema in Figure 3 can be represented in a PVS theory called ‘dataEx ’
as follows. The ‘dataEx ’ theory imports the OC, ATT, OBJECT and ATTVALUE
data types constructed for the instance of the Course-Student schema, and the
‘orassDataDef ’ theory. It then defines several local variables holding the com-
ponents for the instance of Course-Student schema, as shown in the diagram in
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Figure 3, and finally defines ‘courseStudentInst ’ as a data instance, using these
local variables.

dataEx: theory
begin

importing OC
...
importing orassDataDef

ˆ
OC, OBJECT, ATT, ATTVALUE

˜

course1Obj: OBJ =
(# class := course, object := course1 #)

student1Obj: OBJ =
(# class := student, object := student1 #)

...
compSci101AV: ATTVAL =

(# attribute := code, value := compSci101 #)

examVenue101AV: ATTVAL =
(# attribute := examVenue, value := examVenue101 #)

...
cs1: ObjRelationship = (:student1Obj, course1Obj:)

st1: ObjRelationship = (:tutor1Obj, student1Obj:)
..
cstTree1: ObjRelTree = (:tutor1Obj, student1Obj, course1Obj:)

cstTree2: ObjRelTree = (:tutor1Obj, student2Obj, course1Obj:)
..
c1attInst: AttInstance =

(# objList := (:course1Obj:),
attValList := (:compSci101AV, pOPAV, examVenue101AV:) #)

c2attInst: AttInstance =
(# objList := (:course2Obj:),
attValList := (:compSci105AV, pOCSAV, examVenue105AV:) #)

...
eV101dAttVal: DisjunctiveAttVal =

(# attVal1 := examVenue101AV, attVal2 := plt2AV #)
...
courseStudentInst: Data =

(# oRelList := (:cs1, cs2, cs3, cs4, cs5, cs6, cs7, ... sm2:),
oRelTreeList := (:cstTree1, cstTree2, cstTree3, cstTree4, ... smTree2:),
attInstList := (:c1attInst, c2attInst, c3attInst, ... s1m2attInst:),
cAttValList := null,
dAttValList := (:eV101dAttVal, eV105dAttVal, eV111dAttVal:) #)

A complete Student-Course instance representation in ‘dataEx ’ theory is de-
fined in dataEx.pvs.
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3.5 Relating ORA-SS Schemas and Data Instances

With the semantics of the ORA-SS schema diagram and data instance defined,
we can specify the generic constraints of the mappings between an ORA-SS
schema diagram and its data instance in PVS as shown below. The mappings
are defined in a generic theory with the arguments of OC, OBJECT, ATT, and
ATTVALUE.

orassSchemaNDataDef
ˆ
OC, OBJECT, ATT, ATTVALUE: type+

˜
: theory

The PVS theories previously defined to describe the semantics of ORA-SS
schema diagram and data instance (orassSchemaDef and orassDataDef ) are
imported to define the mappings between ORA-SS schema and its data instance.

importing orassSchemaDef
ˆ
OC, ATT

˜

importing orassDataDef
ˆ
OC, OBJECT, ATT, ATTVALUE

˜

3.5.1 Instances of Relationships

In ORA-SS data instance diagrams, instances of relationships are defined very
differently to the definition of relationships for the ORA-SS schema. The instance
of relationship are defined as list of binary object relationships and list of objects
representing the structure of the objects in the data instance. The mapping
for relationship and its instances is defined as a record type that consists of a
relationship and a list of list of object relationships. The inner list is used to
represent the ordered collection of binary object relationships that make up the
instance of binary, ternary, and n-ary relationships. The outer list is used to
represent the set of relationship instances.

RelInstance: type =
{rInst:

ˆ
# rel: RelType, relInst: list

ˆ
list

ˆ
ObjRelationship

˜˜
#

˜
|

isRelInstAll?(toObjListAll(relInst(rInst)), rel(rInst)) ∧
noRepeatingObjRel?(toObjListAll(relInst(rInst)))}

The additional constraints of relationship instance specifies that the object
in the object relationships is an instance of corresponding object class in the
relationship. The type constrains of ‘RelInstance’type transforms each list of
‘ObjRelationship’ into a list of objects where each object corresponds to an object
class in its relationship and checks whether each object in the list is an instance of
the object class in the relationship. The other constraint of ‘RelInstance’ record
type specifies that there should not be any repeated relationship instances in the
outer list.
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3.5.2 Cardinalities of Relationships and Relationship Instances

In the ORA-SS data model, a set of relationship instances must satisfy the spec-
ified participation constraints of the corresponding relationship in the ORA-SS
schema diagram. The predicate function called ‘correctConstraints? ’ is defined
to verify whether the relationship instances satisfies both parent and child par-
ticipation constraints.

parentSet(objListList: list
ˆ
list

ˆ
OBJ

˜˜
, loParent: list

ˆ
OBJ

˜
): recursive nat =

cases objListList of
null: 0,
cons(head, tail): (if (¬(head = null) ∧ (¬loParent = null) ∧

loEqual?(cdr(head), cdr(loParent))) then 1
else 0 endif) + parentSet(tail, loParent)

endcases
measure length(objListList)

correctPC?(oRelListList: list
ˆ
list

ˆ
ObjRelationship

˜˜
, objListList: list

ˆ
list

ˆ
OBJ

˜˜
,

pConst:
ˆ
nat, posnat

˜
): recursive bool =

cases oRelListList of
null: true,
cons(head, tail):

(PROJ 1(pConst) ≤ parentSet(objListList, toObjList(head))) ∧
(PROJ 2(pConst) ≥ parentSet(objListList, toObjList(head))) ∧
correctPC?(tail, objListList, pConst)

endcases
measure length(oRelListList)

correctConstraints?(r: Relationship, oRelListList: list
ˆ
list

ˆ
ObjRelationship

˜˜
):

bool =
if (oRelListList = null) then (PROJ 1(pConstraint(r)) = 0)
else (correctPC?(oRelListList, toObjListAll(oRelListList), pConstraint(r)) ∧

correctCC?(oRelListList, toObjListAll(oRelListList), cConstraint(r)))
endif

The predicate function ‘correctConstraints? ’ uses a recursive predicate func-
tion ‘correctPC? ’ and ‘correctCC? ’ to verify whether the relationship instances
satisfy the participation constraints of the relationship. The ‘correctPC? ’ func-
tion checks whether the number of relationship instances with the same parent
object or parent object relationship is between ’min:max ’ notation of parent
participation constraint of the relationship for the entire relationships and its
instances. The ‘parentSet ’ function is defined and used in ’corrrectPC? ’ function
to calculate the number of relationship instance with the same parent object or
parent object relationship existing in a list of relationship instance for a rela-
tionship. The verification for child participation constraint for relationships is
defined very similarly.
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3.5.3 Instances of Object Attributes and Relationship Attributes

In the ORA-SS model, schema diagrams clearly distinguish attributes of object
classes and attribute of relationship types, but data instance diagrams does not
distinguishes between these two attribute instances. By examining the schema
and data instance, instances of object attributes and instances of relationship
attributes can be distinguished and defined for the mappings between schema
and data.

ObjAttInstance: type =
ˆ
# obj: OBJ, objAttInst: list

ˆ
ATTVAL

˜
#

˜

RelAttInstance: type =
ˆ
# relInst: list

ˆ
OBJ

˜
, relAttInst: list

ˆ
ATTVAL

˜
#

˜

correctAttInst?(attValList: list
ˆ
ATTVAL

˜
, attList: list

ˆ
ATT

˜
): bool =

if (attList = null) then false
else (list2set(attVal2Att(attValList)) ⊆ list2set(attList)) endif

The instances of object attributes and the instances of relationship attributes
are distinguished using record types ‘ObjAttInstance’ and ‘RelAttInstance’ re-
spectively. The ‘ObjAttInstance’ record type consists of an object and list of
attribute values representing the set of attribute values that belong to the ob-
ject. The ‘RelAttInstance’ record type consists of a list of objects and list of
attribute values representing the set of attribute values that belong to the rela-
tionship instance. There is also a ‘correctAttInst? ’ predicate function that checks
whether the list attribute values is a correct instance of list of attributes. This
predicate function can be used for both object or relationship attribute instances
since both record types represent attribute instances as a list of attribute values
and attribute as a list of attributes.

3.5.4 Instances of Candidate Keys

In the ORA-SS model, a value of a candidate key of an object instance is defined
to be unique. In the definition of mappings between schema and data, verifica-
tion of this property must be provided. For this verification the ‘correctCKey? ’
predicate function is defined to check uniqueness of each attribute value for a
given candidate key.

correctCKey?(attListList: list
ˆ
list

ˆ
ATT

˜˜
,

attValList1, attValList2: list
ˆ
ATTVAL

˜
):

recursive bool =
cases attListList of

null: true,
cons(head, tail): ¬(attValListEqual?(findCKeyInst(head, attValList1),

findCKeyInst(head, attValList2))) ∧
correctCKey?(tail, attValList1, attValList2)

endcases
measure length(attListList)
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The ‘correctCKey? ’ recursive predicate function takes in the candidate key
and two object attributes to check whether the values of the candidate key that
belong to the two different objects is unique or not for all combinations of objects.
The recursive function ‘findCKeyInst ’ is needed to find the instances of candi-
date key among the object attribute instances because ORA-SS data instance
diagrams do not contain any information about candidate keys. A primary key
and its instances inherit this property of uniqueness from candidate key since
primary keys are selected from the candidate keys. Hence, a separate predicate
function for checking uniqueness of primary key values is not necessary.

3.5.5 Mappings between Schemas and Data Instances

Similarly to ‘Schema’ type and ‘Data’ type definition, the entire mappings be-
tween schema and data is also defined as a single record type called ‘Schema-
Data’.

SchemaData: type =
{sd: ˆ

# relInstList: list
ˆ
RelInstance

˜
, oAttInstList: list

ˆ
ObjAttInstance

˜
,

rAttInstList: list
ˆ
RelAttInstance

˜
#

˜
|

noRelInstRepeat?(relInstList(sd)) ∧ noOAttInstRepeat?(oAttInstList(sd)) ∧
noRAttInstRepeat?(rAttInstList(sd)) ∧
disjointRelInst?(toObjListAll(allRelInst?(relInstList(sd))))}

The ‘SchemaData’ type is defined as a record type that consists of entire
mappings between relationships, attributes, keys and their instances. Similarly
to schema type and data type, list is used and there are type constraints to check
whether each of these lists has any repeating elements in it. Also there is a extra
constraint for mappings between a relationship and its instances that checks
whether a set of instances for a relationship is disjoint from a set of instances for
a different relationship. This constraint for checking disjointness of relationship
instances is necessary because the instance of a relationship can only belong to
a single relationship type.

3.5.6 Data Validation against Schema

In the ‘SchemaNDataDef ’ theory, data can be validated against its schema using
the mappings between schema and data defined. This data validation against the
schema is defined using a predicate function called ‘correctSchemaNData? ’ with
‘Schema’ type, ‘Data’ type, and ‘SchemaData’ type as its arguments.

correctSchemaNData?(s: Schema, d: Data, sd: SchemaData): bool =
relInstCorrectConstraints?(relList(s), relInstList(sd)) ∧
oAttInstCorrect?(oAttInstList(sd), oAttList(s)) ∧
rAttInstCorrect?(rAttInstList(sd), rAttList(s)) ∧
cAttValCorrect?(cAttValList(d), cAttList(s)) ∧
dAttValCorrect?(dAttValList(d), dAttList(s)) ∧
cKeyCorrect?(cKeyList(s), oAttInstList(sd))
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The ‘correctSchemaNData? ’ predicate function checks whether every rela-
tionship instance meets the participation constraints of the relationship using
‘relInstCorrectConstraints? ’, which utilizes ‘correctConstraints? ’ function. The
predicate function also provides validation of attribute instances against the
object attributes, relationship attributes, composite attributes, and disjunctive
attributes. All the functions that checks for validity of the attribute instances
uses the ‘correctAttinst? ’ function mentioned earlier. Finally, the predicate func-
tion checks the uniqueness of each candidate key instance for every object class
using ‘cKeyCorrect? ’ that utilizes the ‘correctCKey? ’ function. When all these
predicate functions in ‘correctSchemaNData? ’ are verified the data is validated
against its schema. A complete PVS semantics of the ORA-SS constructs are
defined in SchemaNDataDef.pvs.

3.6 Representing Mappings between Schema Diagrams and Data
Instances in PVS

To illustrate how a mapping between a schema diagram and its data instance can
be represented using the definitions presented above. We will show how the map-
pings between the ‘Course-Student ’ schema diagram in Figure 2 and its XML
data instance in Figure 3 can be represented in a PVS theory called ‘schemaN-
Data’ as follows. The representation of the mappings imports the ‘schemaEx ’,
‘dataEx ’, and ‘orassSchemaNDataDef ’ theory to provide formal specification
for the mappings between the schema diagram example and XML data exam-
ple according to the mapping definition. It then defines several local variables
holding the components for the mappings and finally defines courseStudentMap
as a entire mappings between ‘schemaEx ’, ‘dataEx ’, using these local variables.
The ‘schemaNData’ relationship representation also includes a conjecture called
‘correctSchemaNData con’ which can be used to validate the ‘dataEx ’ against
the ‘schemaEx ’ by verifying the conjecture.

schemaNdata: theory
begin

importing schemaEx
importing dataEx
importing orassSchemaNDataDef

ˆ
OC, OBJECT, ATT, ATTVALUE

˜

cpRelInst: RelInstance =
(# rel := cp, relInst := null #)

csRelInst: RelInstance =
(# rel := cs, relInst := (:(:cs1:), (:cs2:), (:cs3:), (:cs4:), (:cs5:),
(:cs6:), (:cs7:), (:cs8:), (:cs9:), (:cs10:), (:cs11:), (:cs12:):) #)

...
c1OAttInst: ObjAttInstance =

(# obj := course1Obj,
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objAttInst := (:compSci101AV, pOPAV, examVenue101AV:) #)

c2OAttInst: ObjAttInstance =
(# obj := course2Obj,
objAttInst := (:compSci105AV, pOCSAV, examVenue105AV:) #)

...
c1s1RAttInst: RelAttInstance =

(# relInst := (:student1Obj, course1Obj:),
relAttInst := (:aAV:) #)

c1s2RAttInst: RelAttInstance =
(# relInst := (:student2Obj, course1Obj:),

relAttInst := (:bAV:) #)
...
courseStudentMap: SchemaData =

(# relInstList := (:cpRelInst, csRelInst, cstRelInst, shRelInst, smRelInst:),
oAttInstList := (:c1OAttInst, c2OAttInst, c3OAttInst, ... sp1OAttInst:),
rAttInstList := (:c1s1RAttInst, c1s2RAttInst, ... s1m2RAttInst:) #)

correctSchemaNData con: conjecture
correctSchemaNData?(courseStudent, courseStudentInst, courseStudentMap)

A complete representation for the mappings is defined in schemaNdata.pvs.

4 Formal Verification of ORA-SS Data Model

Using the formally defined ORA-SS semantics, we can perform automatic ver-
ification on both schema diagrams and data instances via the PVS theorem
prover. For example, the Course-Student schema example in Figure 2 can be
verified against the ORA-SS semantics, and the XML data instance of Course-
Student schema in Figure 3 can be validated against its schema. In this section,
we demonstrate that the pre-introduced errors in both Figure 2 and Figure 3
can be successfully detected by PVS. The verification and validation will be con-
ducted using the type checker and theorem prover of PVS. For each theory, the
PVS type checker uses the theorem prover to automatically prove all the Type
Correctness Conditions (TCCs), which refers to type constraints applied to vari-
ous types in the theories. If there is a complicated type constraint that cannot be
verified automatically by the theorem prover, the type checker returns unproved
TCCs. These unproved TCCs can be proved interactively using the predefined
theorems and lemmas of PVS with little effort. After type checking the theories,
the conjectures in the theories must be proven to complete the verification and
validation. Similar to the proving of unproven TCCs, the conjectures can also be
proven interactively. Once all the theories are type checked and all the conjec-
tures are proven, verification of the schema instance and validation of the data
instance are complete proving that the schema is consistent with respect to the
ORA-SS semantics and the data is consistent with respect to its schema.
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Figure 5: Verifying the type correctness condition for primary key

4.1 Formal Verification of ORA-SS Schema Diagram

We demonstrate the verification of the Course-Student schema diagram in Figure
2 as follows. This verification is conducted through type checking because all
the constraints for the schema definition in the ORA-SS semantics are applied
using type constraints. The ‘schemaEx ’ theory is verified to be consistent to the
semantics of ORA-SS only if the type checking and theorem prover proves all
the Type Correctness Conditions (TCCs).

The type checking of the ‘schemaEx ’ theory produces several unproved Type
Correctness Conditions (TCCs) that must be proved. When the TCC for re-
lationship ‘cs ’ is verified using the theorem prover, it results in a state, ‘3 =
2 ’, which is improvable. This shows that the definition of cs degree is incorrect
unless the ‘3 = 2 ’ clause is proved.

After correcting the incorrect representation, type checking the schemaEx ’
theory again returned several TCCs. When the TCCs for schema type ‘cours-
eStudent ’ is proved, it results in an improvable state as shown in Figure 5. The
figure shows that the recursive predicate function ‘noPKeyRepeat? ’ cannot be
proved after a manual attempt of verification. The ‘noPKeyRepeat? ’ function
checks whether there is more than one primary key for a single object class or
not. In this case, Figure 5 indicates that there are two primary keys defined for
‘student details ’ object class.

After correcting the incorrect representation, type checking the ‘schemaEx ’
theory again returned several TCCs. When the TCCs for schema type ‘cours-
eStudent ’ is proved, it results in an improvable state as shown in Figure 6.
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Figure 6: Verifying the type correctness condition for candidate key

The figure shows that the recursive predicate function ‘cKeyCorrect? ’ cannot
be proved. The ‘cKeyCorrect? ’ function checks whether all the attributes in the
candidate key are chosen from the objects attribute. In this case, Figure 6 shows
that candidate key ‘staffNumber ’ for ‘tutor ’ object class does not belong to ob-
ject class ‘tutor ’ as an attribute of the object class. When all three introduced
errors are corrected and all the TCCs for the ‘schemaEx ’ theory are verified, the
schema diagram example in Figure 2 is verified to be semantically correct.

4.2 Formal Validation of ORA-SS Data Instance

We demonstrate the validation of the XML data instance in Figure 3 as follows.
This validation will be conducted through the type checking and verification of
predicate functions represented as conjectures. The PVS representation for the
XML data example and mappings between the schema diagram example and
the XML data example must be verified to prove whether the definitions satisfy
the type constraints applied. Then the ‘correctSchemaNData con’ conjecture
in ‘schemaNData’ theory must be verified through the theorem to prove the
predicate function that checks the data validity against its schema.
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Figure 7: Validating the participation constraint of relationship instance cst

The type checking of ‘dataEx ’ and ‘schemaNData’ theories proves all Type
Correctness Conditions (TCCs) automatically because there are only a small
number of type constraints applied. The theorem proving of ‘correctSchemaN-
Data con’ conjecture in ‘schemaNData’ theory results in an improvable state as
shown in Figure 7. It shows that the relationship instances of ‘cst ’ relationship
does not conform the participation constraint of the ‘cst ’ relationship. In the
proof step for this part of the conjecture, it shows that two instances of tutor,
‘tutor1 ’ and ‘tutor2 ’, are related to a single ‘cs ’ relationship for ‘student details1 ’
in ‘course1 ’ where the parent participation constraint is 1:1.

After correcting the above error, theorem proving of the ‘correctSchemaN-
Data con’ conjecture in ‘schemaNData’ theory results in an improvable state
similar to the previous state. It shows that the relationship instances of ‘sh’ re-
lationship do not conform to the participation constraint of the ‘sh’ relationship
which is a disjunctive relationship. The disjunctive relationship always has 1:1 for
its parent participation constraint since only one of the disjunctive objects can
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Figure 8: Validating the uniqueness of primary key studentNumber

be related to its parent. But the proof step for this part of the conjecture shows
that the ‘student details1 ’ is related to both ‘home1 ’ and ‘hostel1 ’ violating the
parent participation constraints for disjunctive relationship ‘sh’.

After correcting the above incorrect representation, theorem proving of the
‘correctSchemaNData con’ conjecture in the ‘schemaNData’ theory has resulted
in another improvable state as shown in Figure 8. It shows that the candidate
key instances of ‘student details ’ object does not satisfy the constraints. The
candidate key has a constraint that specifies that the value of a candidate key
must be unique. But the ‘oAtt14cKey’ function used by ‘correctCkey’ function
to check this constraint shows that the candidate key value ‘no123 ’ is related to
two different students.

When all three introduced error are corrected and the ‘correctSchemaN-
Data con’ conjecture is verified, the XML data example in Figure 3 is verified
to be valid against its schema. With automated verification support, predefined
theorems and lemmas the definitions of schema instance can be verified and its
data instance can be validated with little effort.

5 Related Work

There has been other research that provides a formal semantics for semistruc-
tured data. For example, the formalization of DTD (Document Type Definition)
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and XML declarative description documents using a description logic has been
presented by Calvanese et al. [Calvanese et al., 1999]. Anutariya et al. presented
a similar formalization with a theoretical framework developed using declar-
ative description theory [Anutariya et al., 2000]. Also spatial tree logics have
been used to formalize semistructured data by Conforti and Ghelli [Conforti
and Ghelli, 2003]. More recently, hybrid multimodal logic was used to formalize
semistructured data by Bidoit et al. [Bidoit et al., 2004]. Moreover, we applied a
similar approach to formalize semistructured data using ORA-SS and Z/EVEs
[Lee et al., 2005]. While this work has helped us develop a better understand-
ing of the semantics of semistructured data, none of it has provided automated
verification. In other research we presented a formalization of the ORA-SS nota-
tion in Alloy [Wang et al., 2006]. Although automated verification was available
using the Alloy Analyzer, it had a scalability problem making verification im-
possible for a large set of semistructured data. The Alloy Analyzer uses a model
checking approach to perform verification where it checks the possibility of coun-
terexamples from every possible example of a model derived from the given set
of data [Jackson, 2006]. With a larger set of data, this approach requires the
checking of a huge number of examples which can be beyond the capability of
the Alloy Analyzer causing a scalability problem. The formalization of ORA-SS
in OWL [Li et al., 2006] was presented with improved verification performance
in terms of scalability and time taken. The PVS approach to formalize ORA-SS
[Lee et al., 2006] was also presented with type checking and theorem proving
abilities and does not exhibit any scalability issues. According to the compar-
isons presented in [Dobbie et al., 2006; Dobbie et al., 2007], the OWL approach
has limitations in verifying the scope of properties of ORA-SS whereas PVS can
verify the correctness of all the properties.

In other research involving schema transformation and verification, Arenas
and Libkin established a normalization algorithm for XML using DTD as its
schema [Arenas and Libkin, 2004]. Later, Arenas et al. derived consistency check-
ing for XML specifications using DTD [Arenas et al., 2002]. Also Jagadish et al.
developed an XML query optimizing algebra called TAX for manipulating XML
data [Jagadish et al., 2001]. However, again none of this research has gone as
far as automated verification and its applications has been restricted to a sin-
gle form of semistructured data, i.e., XML. Furthermore, the approaches fail
to consider the more complex semantics of semistructured data, as DTD was
used to model the schema. Hence, none of the related work can be adequately
used to automatically verify whether a set of transformations on a schema for
semistructured data produces a result that is semantically consistent with the
original schema.
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6 Conclusion and Future Work

Semistructured data is a fast growing and widely used standard for informa-
tion storage and exchange. The developed database systems for semistructured
data use various algorithms to perform schema and data transformations such
as normalization and view creation. It is critical to ensure the consistency of the
data during manipulation. Thus, a mathematical foundation for semistructured
data design is essential. One of the most effective approaches for such verifica-
tion is to use a formalism to specify the semantics for semistructured data and
perform automated verification on schema models, data instances and trans-
formation algorithms. This paper presents the first step towards this goal. In
our research, we have formally specified the semantics of ORA-SS in PVS and
provided verification. The specification of the ORA-SS semantics is divided into
specifications for schema, data, and mappings between schema and data, where
verification of each definition against the semantics of ORA-SS and validation
of data against its schema are established. The specification and verification for
the semantics of ORA-SS in PVS is more powerful compared to existing research
that use XML schema or DTD to validate the semistructured data, because the
ORA-SS data modeling language is richer than the other data modeling lan-
guages for semistructured data enabling deeper semantic checking. For example,
validation of semistructured data with XML Schema or DTD will not be able to
recognize data inconsistency or redundancies in ternary or n-ary relationships,
disjunctive relationships, nor relationship attributes, where these are possible
in our approach. In addition, verification support of PVS allows the automated
verification on large models for most parts of the specification, where interactive
verification requires a little effort. In this research, it is clear that the formal
specifications of ORA-SS semantics provides deeper semantic-based checking for
semistructured data. Furthermore, our work shows that the semantics of ORA-SS
is appropriate for expressing normalization algorithms. Therefore, this research
also provides a solid basis for establishing a formal specification and verification
of schema and data transformations to verify the correctness of semistructured
data normalization.

In the future, we plan to extend and concentrate our work on defining crite-
ria and standard transformation operators that are used to transform ORA-SS
schemas for normalization. These standard operators will be defined and verified
on top of the formal specification of the ORA-SS semantics. With the formally
specified standard transformation operators, it will be possible to verify the re-
sult of the application of the operators. Furthermore, various transformation
algorithms can be compared to find the best algorithms for specific contexts. In
addition, we also plan to define and verify the extended PVS semantics of the
ORA-SS language to model the normalization process in semistructured data
design.
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