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Abstract: We investigate properties of coincidence ideals in subattribute lattices that
occur in complex value datamodels, i.e. sets of subattributes, on which two complex
values coincide. We let complex values be defined by constructors for records, sets,
multisets, lists, disjoint union and optionality, i.e. the constructors cover the gist of
all complex value data models. Such lattices carry the structure of a Brouwer algebra
as long as the union-constructor is absent, and for this case sufficient and necessary
conditions for coincidence ideals are already known. In this paper, we extend the char-
acterisation of coincidence ideals to the most general case. The presence of the disjoint
union constructor complicates all results and proofs significantly. The reason for this is
that the union-constructor causes non-trivial restructuring rules to hold. The charac-
terisation of coincidence ideal is of decisive importance for the axiomatisation of (weak)
functional dependencies.
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1 Introduction

Complex values are around in database theory since the 1970’s. First, so called
semantic data models have been developed (see e.g. [Chen, 1976; Hull and King,
1987]), which were originally just meant to be used as design aids for relational
databases, as application semantics was assumed to be easier captured by these
models (see the argumentation in [Batini et al., 1992; Chen, 1983; Tjoa and
Berger, 1993]). Later on some of these models, especially the nested relational
model (see e.g. [Paredaens et al., 1989]), object oriented models (see e.g. [Schewe
and Thalheim, 1993]) and object-relational models, the gist of which are captured
by the higher-order Entity-Relationship model (HERM, see [Thalheim, 1992;
Thalheim, 2000]) have become interesting as data models in their own right
and some dependency and normalisation theory has been carried over to these
advanced data models (see [Hartmann, 2001; Mok et al., 1996; Özsoyoglu and
Yuan, 1987; Paredaens et al., 1989; Tari et al., 1997] as samples of the many
work done on this so far). Most recently, the major research interest is on the
model of semi-structured data and XML (see e.g. [Abiteboul et al., 2000]), which
may also be regarded as some kind of object oriented model.
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We refer to all these models as higher-order data models. This is, because
the most important extension that came with these models was the introduction
of constructors for complex values. These constructors usually comprise bulk
constructors for sets, lists and multisets, a disjoint union constructor, and an
optionality or null-constructor. In fact, all the structure of higher-order data
models (including XML as far as XML can be considered a data model) is
captured by the introduction of (some or all of) these constructors. This leads
to lattices of subattributes, which even carry the structure of a Brouwer algebra
as long as the union-constructor is absent.

A key problem is to develop dependency theories (or preferably a unified the-
ory) for the higher-order data models. The development of such a dependency
theory will have a significant impact on understanding application semantics and
laying the grounds for a logically founded theory of well-designed non-relational
databases. In doing so we come across the problem to characterise coincidence
ideals, i.e. sets of subattributes, on which two complex values coincide. Such a
characterisation is indeed essential for the completeness proofs for axiomatisa-
tions of functional dependencies.

For the relational model this was a triviality, but even if only few construc-
tors are used, the characterisation of coincidence ideals is already non-trivial.
The work in [Hartmann et al., 2006] covers the case of all constructors combined
except the union constructor. This has been slighly extended in [Sali and Schewe,
2006] to capture also the union-constructor, provided that counter-attributes are
excluded. In this paper we are now able to present sufficient and necessary condi-
tions for the most general case, when all constructors are present simultaneously.
The technical effort to achieve this characterisation compared with previous work
is, however, enormous. In [Sali and Schewe, 2008] this result is used to extend
the axiomatisation of weak functional dependencies to the most general case.

In Section 2 we define the preliminaries for our theory. We start with the
definition of nested attributes that are composed of simple attributes using the
constructors that have been mentioned above. Each nested attribute defines a
set of complex values called its domain, and each complex value can be repre-
sented as a finite tree. We then define subattributes, which give rise to canonical
projection maps on the domains. The presence of the union constructor leads to
restructuring rules, which define non-trivial equivalences the set of subattributes
of a given nested attribute. We obtain a lattice, which is even a Brouwer alge-
bra, if the union constructor is absent. Nevertheless, also in the general case it
is advantageous to define the notion of relative pseudo-complement.

In Section 3 we study certain ideals in such lattices of subattributes, focusing
on the set of subattributes, on which two complex values coincide. These ide-
als are therefore called coincidence ideals. The objective is to obtain a precise
characterisation in the sense that whenever an ideal satisfies the given set of
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properties, we can guarantee the existence of two complex values that coincide
exactly on the given ideal. This leads to the Central Theorem on coincidence
ideals.

2 Algebras of Nested Attributes

In this section we define our model of nested attributes, which covers the gist
of higher-order data models including XML. In particular, we investigate the
structure of the set S(X) of subattributes of a given nested attribute X . We
show that we obtain a lattice, which in general is non-distributive. This lattice
becomes a Brouwer algebra, if the union constructor is not used.

2.1 Nested Attributes

We start with a definition of simple attributes and values for them.

Definition 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A ∈ U. The elements of U are called simple attributes.

For the relational model a universe was sufficient, as a relation schema could
be defined by a subset R ⊆ U. For higher-order data models, however, we need
nested attributes. In the following definition we use a set L of labels, and tacitly
assume that the symbol λ is neither a simple attribute nor a label, i.e. λ /∈ U∪L,
and that simple attributes and labels are pairwise different, i.e. U ∩ L = ∅.

Definition 2. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and L) is the smallest set with λ ∈ N, U ⊆ N, and satisfying
the following properties:

– for X ∈ L and X ′
1, . . . , X

′
n ∈ N we have X(X ′

1, . . . , X
′
n) ∈ N;

– for X ∈ L and X ′ ∈ N we have X{X ′} ∈ N, X [X ′] ∈ N, and X〈X ′〉 ∈ N;

– for X1, . . . , Xn ∈ L and X ′
1, . . . , X

′
n ∈ N we have X1(X ′

1)⊕· · ·⊕Xn(X ′
n) ∈ N.

We call λ a null attribute, X(X ′
1, . . . , X

′
n) a record attribute, X{X ′} a set

attribute, X [X ′] a list attribute, X〈X ′〉 a multiset attribute and X1(X ′
1) ⊕ · · · ⊕

Xn(X ′
n) a union attribute.

In the following we will overload the use of symbols such as X , Y , etc. for
nested attributes and labels. As record, set, list and multiset attributes have a
unique leading label, this will not cause problems anyway. In all other cases it
is clear from the context, whether a symbol denotes a nested attribute in N or
a label. Usually, labels never appear as stand-alone symbols.
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We also take the freedom to change the leading label X in a set, list or
multiset attribute to X{1,...,n}, if the component attribute is a union attribute,
say X1(X ′

1)⊕ · · · ⊕Xn(X ′
n). This emphasises the factors in the union attribute.

We will see in the next two subsections that this notation will become important,
when restructuring is considered.

We can now extend the association dom from simple to nested attributes,
i.e. for each X ∈ N we will define a set of values dom(X).

Definition 3. For each nested attribute X ∈ N we get a domain dom(X) as
follows:

– dom(λ) = {
};
– dom(X(X ′

1, . . . , X
′
n)) = {(v1, . . . , vn) | vi ∈ dom(X ′

i) for i = 1, . . . , n};
– dom(X{X ′}) = {{v1, . . . , vk} | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k},

i.e. each element in dom(X{X ′}) is a finite set with (pairwise different)
elements in dom(X ′);

– dom(X [X ′]) = {[v1, . . . , vk] | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X [X ′]) is a finite (ordered) list with (not necessarily
different) elements in dom(X ′);

– dom(X〈X ′〉) = {〈v1, . . . , vk〉 | k ∈ N and vi ∈ dom(X ′) for i = 1, . . . , k}, i.e.
each element in dom(X〈X ′〉) is a finite multiset with elements in dom(X ′),
or in other words each v ∈ dom(X ′) has a multiplicity m(v) ∈ N in a value
in dom(X〈X ′〉);

– dom(X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)) = {(Xi : vi) | vi ∈ dom(X ′
i) for i = 1, . . . , n}.

Note that the relational model is covered, if only the record constructor is
used. Thus, instead of a relation schema R we will now consider a nested attribute
X , assuming that the universe U and the set of labels L are fixed. Instead of an
R-relation r we will consider a finite set r ⊆ dom(X).

2.2 Subattributes

In the relational model a functional dependency X → Y for X, Y ⊆ R ⊆ U is
satisfied by an R-relation r iff any two tuples t1, t2 ∈ r that coincide on all the
attributes in X also coincide on the attributes in Y . Crucial to this definition is
that we can project R-tuples to subsets of attributes.

Therefore, in order to define FDs on a nested attribute X ∈ N we need a
notion of subattribute. For this we define a partial order ≥ on nested attributes
in such a way that whenever X ≥ Y holds, we obtain a canonical projection
πX

Y : dom(X) → dom(Y ). However, this partial order has to be defined on
equivalence classes of attributes, as some domains may be identified.
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Definition 4. ≡ is the smallest equivalence relation on N satisfying the follow-
ing properties:

– λ ≡ X();

– X(X ′
1, . . . , X

′
n) ≡ X(X ′

1, . . . , X
′
n, λ);

– X(X ′
1, . . . , X

′
n) ≡ X(X ′

σ(1), . . . , X
′
σ(n)) for any permutation σ ∈ Sn;

– X1(X ′
1)⊕ · · · ⊕Xn(X ′

n) ≡ Xσ(1)(X ′
σ(1))⊕ · · · ⊕Xσ(n)(X ′

σ(n)) for any permu-
tation σ ∈ Sn;

– X(X ′
1, . . . , X

′
n) ≡ X(Y1, . . . , Yn) iff X ′

i ≡ Yi for all i = 1, . . . , n;

– X1(X ′
1)⊕· · ·⊕Xn(X ′

n) ≡ X1(Y1)⊕· · ·⊕Xn(Yn) iff X ′
i ≡ Yi for all i = 1, . . . , n;

– X{X ′} ≡ X{Y } iff X ′ ≡ Y ;

– X [X ′] ≡ X [Y ] iff X ′ ≡ Y ;

– X〈X ′〉 ≡ X〈Y 〉 iff X ′ ≡ Y ;

– X(X ′
1, . . . , Y1(Y ′

1) ⊕ · · · ⊕ Ym(Y ′
m), . . . , X ′

n) ≡ Y1(X ′
1, . . . , Y

′
1 , . . . , X ′

n) ⊕ . . .

· · · ⊕ Ym(X ′
1, . . . , Y

′
m, . . . , X ′

n);

– X{1,...,n}{X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)} ≡ X{1,...,n}(X1{X ′
1}, . . . , Xn{X ′

n});
– X{1,...,n}〈X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n)〉 ≡ X{1,...,n}(X1〈X ′

1〉, . . . , Xn〈X ′
n〉).

Basically, the first four cases in this equivalence definition state that λ in
record attributes can be added or removed, and that order in record and union
attributes does not matter. The last three cases in Definition 4 cover restruc-
turing rules, two of which were already introduced by Abiteboul and Hull (see
[Abiteboul and Hull, 1988]). Obviously, if we have a set of labelled elements
with up to n different labels, we can split this set into n subsets, each of which
contains just the elements with a particular label, and the union of these sets
is the original set. The same holds for multisets. Of course, we can also split a
list of labelled elements into lists containing only elements with the same label,
thereby preserving the order, but in this case we cannot invert the splitting and
thus cannot claim an equivalence.

In the following we identify N with the set N/≡ of equivalence classes. In
particular, we will write = instead of ≡, and in the following definition we should
say that Y is a subattribute of X iff X̃ ≥ Ỹ holds for some X̃ ≡ X and Ỹ ≡ Y .
In particular, for X ≡ Y we obtain X ≥ Y and Y ≥ X .

Definition 5. For X, Y ∈ N we say that Y is a subattribute of X , iff X ≥ Y

holds, where ≥ is the smallest partial order on N/≡ satisfying the following
properties:
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λ

X(X1{λ}) X{1,2}{λ} X(X2{λ})

X(X1{A}) X(X1{λ}, X2{λ}) X(X2{B})

X(X1{A}, X2{λ}) X(X1{λ}, X2{B})

X(X1{A}, X2{B})

Figure 1: The lattice S(X{X1(A) ⊕ X2(B)}) = S(X(X1{A}, X2{B}))

– X ≥ λ for all X ∈ N;

– X(Y1, . . . , Yn) ≥ X(X ′
σ(1), . . . , X

′
σ(m)) for some injective σ : {1, . . . , m} →

{1, . . . , n} and Yσ(i) ≥ X ′
σ(i) for all i = 1, . . . , m;

– X1(Y1)⊕· · ·⊕Xn(Yn) ≥ Xσ(1)(X ′
σ(1))⊕· · ·⊕Xσ(n)(X ′

σ(n)) for some permu-
tation σ ∈ Sn and Yi ≥ X ′

i for all i = 1, . . . , n;

– X{Y } ≥ X{X ′} iff Y ≥ X ′;

– X [Y ] ≥ X [X ′] iff Y ≥ X ′;

– X〈Y 〉 ≥ X〈X ′〉 iff Y ≥ X ′;

– X{1,...,n}[X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] ≥ X(X1[X ′
1], . . . , Xn[X ′

n]);

– X{1,...,k}[X1(X ′
1) ⊕ · · · ⊕ Xk(X ′

k)] ≥ X{1,...,�}[X1(X ′
1) ⊕ · · · ⊕ X�(X ′

�)] for
k ≥ �;

– X(Xi1{λ}, . . . , Xik
{λ}) ≥ X{i1,...,ik}{λ};

– X(Xi1〈λ〉, . . . , Xik
〈λ〉) ≥ X{i1,...,ik}〈λ〉;

– X(Xi1 [λ], . . . , Xik
[λ]) ≥ X{i1,...,ik}[λ].

Note that the last five cases in Definition 5 cover further restructuring rules
due to the union constructor. Obviously, if we are given a list of elements labelled
with X1, . . . , Xn, we can take the individual sublists – preserving the order –
that contain only those elements labelled by Xi and build the tuple of these
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lists. In this case we can turn the label into a label for the whole sublist. This
explains the first of the last five subattribute relationships.

For the other restructuring rules we have to add a little remark on notation
here. As we identify X{X1(X ′

1)⊕· · ·⊕Xn(X ′
n)} with X(X1{X ′

1}, . . . , Xn{X ′
n}),

we obtain subattributes X(Xi1{X ′
i1}, . . . . . . , Xik

{X ′
ik
}) for each subset I =

{i1, . . . , ik} ⊆ {1, . . . , n}. However, restructuring requires some care with labels.
If we simply reused the label X in the last property in Definition 5, we would
obtain

X{X1(X ′
1) ⊕ X2(X ′

2)} ≡ X(X1{X ′
1}, X2{X ′

2}) ≥
≥ X(X1{X ′

1}) ≥ X(X1{λ}) ≥ X{λ}.

However, the last step here is wrong, as the left hand side is an indicator for
the subset containing the elements with label X1 being empty or not, whereas
the right hand side is the corresponding indicator for the whole set, i.e. elements
with labels X1 or X2. No such mapping can be claimed. In fact, what we really
have to do is to mark the set label in an attribute of the form X{X1(X ′

1)⊕· · ·⊕
Xn(X ′

n)} to indicate the inner union attribute, i.e. we should use X{1,...,n} (or
even X{X1,...,Xn}) instead of X . As long as we are not dealing with subattributes
of the form X{1,...,k}{λ}, the additional index does not add any information and
thus can be omitted to increase readability. The same applies to the multiset-
and the list-constructor.

λ

X(X1[λ]) X{1,2}[λ] X(X2[λ])

X(X1[A]) X(X1[λ], X2[λ]) X(X2[B])

X(X1[A], X2[λ]) X(X1[λ], X2[B])

X(X1[A], X2[B])

X{1,2}[X1(λ) ⊕ X2(λ)]

X{1,2}[X1(A) ⊕ X2(λ)] X{1,2}[X1(λ) ⊕ X2(B)]

X{1,2}[X1(A) ⊕ X2(B)]

Figure 2: The lattice S(X [X1(A) ⊕ X2(B)])

Subattributes of the form XI{λ}, XI [λ] and XI{λ} were called counter at-
tributes in [Sali and Schewe, 2006], because they can be considered as counters
for the number of elements in a list or multiset or as flags that tell, whether sets
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are empty or not. Note that X∅{λ} = λ, X{1,...,n}{λ} = X{λ} and X{i}{λ} =
X(Xi{λ}). Analogous conventions apply to list and multiset attributes.

Further note that due to the restructuring rules in Definitions 4 and 5 we may
have the case that a record attribute is a subattribute of a set attribute and vice
versa. This cannot be the case, if the union-constructor is absent. However, the
presence of the restructuring rules allows us to assume that the union-constructor
only appears inside a set-constructor or as the outermost constructor. This will
be frequently exploited in our proofs.

Obviously, X ≥ Y induces a projection map πX
Y : dom(X) → dom(Y ). For

X ≡ Y we have X ≥ Y and Y ≥ X and the projection maps πX
Y and πY

X are
inverse to each other.

We use the notation S(X) = {Z ∈ N | X ≥ Z} to denote the set of subat-
tributes of a nested attribute X . Figure 1 shows the subattributes of X{X1(A)⊕
X2(B)} = X(X1{A}, X2{B}) together with the relation ≥ on them. Note that
the subattribute X{1,2}{λ} would not occur, if we only considered the record-
structure, whereas other subattributes such as X(Xi{λ}) would not occur, if we
only considered the set-structure. This is a direct consequence of the restructur-
ing rules.

Figure 2 shows the subattributes of X [X1(A) ⊕ X2(B)] together with the
relation ≥ on them. The subattributes X{1,2}[λ] would not occur, if we only con-
sidered the list-structure, whereas other subattributes such as X(Xi[λ]) would
not occur, if we ignored the restructuring rules. Figure 3 shows the subattributes
of X{X1(A)⊕X2(B)⊕X3(C)} together with the relation ≥ on them. The sub-
attribute XI{λ} for |I| ≥ 2 would not occur, if we only considered the record-
structure.

2.3 The Lattice Structure

The set of subattributes S(X) of a nested attribute X plays the same role in
the dependency theory for higher-order data models as the powerset P(R) for a
relation schema R plays in the dependency theory for the relational model. P(R)
is a Boolean algebra with order ⊆, intersection ∩, union ∪ and the difference −.
So, the question arises which algebraic structure S(X) carries.

Definition 6. Let L be a lattice with zero and one, partial order ≤, join �
and meet �. L has relative pseudo-complements iff for all Y, Z ∈ L the infimum
Y ← Z = �{U | U �Y ≥ Z} exists. Then Y ← 1 (1 being the one in L) is called
the relative complement of Y .

If we have distributivity in addition, we call L a Brouwer algebra. In this
case the relative pseudo-complements satisfy U ≥ (Y ← Z) iff (U �Y ≥ Z), but
if we do not have distributivity this property may be violated though relative
pseudo-complements exist.
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1X(X {A},X {B},X {C})2 3

X(X {  },X {B},X {C})321 λ21 3X(X {A},X {B},X {  })λ λX(X {A},X {  },X {C})21 3

X(X {A},X {B})1 2 X(X {A},X {  },X {  })321 λλ X(X {  },X {B},X {  })321 λλ X(X {A},X {C})1 3 X(X {  },X {  },X {C})21 3λλ X(X {B},X {C})2 3

X(X {  },X {  },X {  })1 32λ λ λ X(X {  },X {C})1 3λ X(X {B},X {  })2 3 λ X(X {  },X {C})2 3λX(X {A},X {  })1 3 λX(X {  },X {B})1 2λX(X {A},X {  })1 2 λ

X(X {  },X {  })1 2λ λ X(X {B})2 X(X {  },X {  })1 3λ λ X(X {C})3 X(X {  },X {  })2 3λ λX(X {A})1

X(X {  })1 λ X(X     {  }){1,2} λ X(X {  })2 λ X(X       {  }){1,2,3} λ X(X     {  }){1,3} λ X(X {  })3 λ X(X     {  }){2,3} λ

λ

Figure 3: The subattribute lattice S(X{X1(A) ⊕ X2(B) ⊕ X3(C)})

Theorem 7. The set S(X) of subattributes carries the structure of a lattice with
zero and one and relative pseudo-complements, where the order ≥ is as defined
in Definition 5, and λ and X are the zero and one, respectively. If X does not
contain the union constructor, S(X) defines a Brouwer algebra.

Proof. For X = λ and simple attributes X = A we obtain trivial lattices with
only one or two elements. Applying the record constructor leads to a cartesian
product of lattices, while the set, list and multiset constructors add a new zero
element to a lattice. These extensions preserve the properties of a Brouwer al-
gebra.

In the case of set, list and multiset constructors applied to a union attribute
we add counter attributes. This preserves the properties of a lattice and the
existence of relative pseudo-complement, while distributivity may be lost.

Example 1. Let X = X{X1(A) ⊕ X2(B)} with S(X) as illustrated in Figure 1,
Y1 = X{λ}, Y2 = X(X2{B}), and Z = X(X1{A}). Then we have

Z � (Y1 � Y2) = X(X1{A} � (X{λ} � X(X2{B})) =

X(X1{A}) � X(X1{λ}, X2{B}) = X(X1{λ}) �= λ = λ � λ =

(X(X1{A}) � X{λ}) � (X(X1{A}) � X(X2{B})) = (Z � Y1) � (Z � Y2) .
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This shows that S(X) in general is not a distributive lattice. Furthermore, Y ′ �
Z ≥ Y1 holds for all Y ′ except λ, X(X1{λ}) and X(X1{A}). So Z ← Y1 = λ,
but not all Y ′ ≥ λ satisfy Y ′ � Z ≥ Y1. ��

It is easy to determine explicit inductive definitions of the operations �
(meet), � (join) and ← (relative pseudo-complement). This can be done by
boring technical verification of the properties of meets, joins and relative pseudo-
complements and is therefore omitted here.

3 Coincidence Ideals

In this section we investigate sets of subattributes, on which two complex values
coincide. It is rather easy to see that these turn out to be ideals in the lat-
tice S(X), i.e. they are non-empty and downward-closed. Therefore, we will call
them coincidence ideals. However, there are many other properties that hold for
coincidence ideals.

There are two major reasons for looking at coincidence ideals. The first one is
that properties of subattributes, on which two complex values coincide, may give
rise to axioms for functional dependencies. Indeed, the properties of coincidence
ideals in Definition 10 are very closely related to the sound axioms and rules for
(weak) functional dependencies in [Sali and Schewe, 2008].

The second reason is that in the completeness proof in [Sali and Schewe,
2008] we have to construct two complex values that coincide exactly on a given
set of attributes, so that a set of dependencies is satisfied by these values, while
a non-derivable dependency is not. This step appears also in the corresponding
completeness proof for the RDM, but in that case it is trivial, because it simply
amounts to getting two tuples that coincide on a given set of attributes, but
differ on all others.

Thus, what we want to achieve is a characterisation of a coincidence ideal that
allows us to construct two complex values that coincide exactly on it. This will
be the main result of this section, called the Central Theorem 17 on coincidence
ideals. The proof of this result, however, will be very technical.

3.1 Necessary Properties of Coincidence Ideals

Let us start doing the first step, i.e. introducing coincidence ideal as sets of
subattributes, on which two complex values coincide, and derive necessary con-
ditions for such ideals. For one of the properties dealing with the join Y ∪Z we
will need the notion of reconsilable subattributes, which was already used in the
axiomatisations of restricted cases (see [Hartmann et al., 2005; Hartmann et al.,
2006]). The following Definition 8 extends this notion to capture all constructors,
in particular the union constructor.
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Definition 8. Two subattributes Y, Z ∈ S(X) are called reconsilable iff one of
the following holds:

1. Y ≥ Z or Z ≥ Y ;

2. X = X [X ′], Y = X [Y ′], Z = X [Z ′] and Y ′, Z ′ ∈ S(X ′) are reconsilable;

3. X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and Yi, Zi ∈
S(Xi) are reconsilable for all i = 1, . . . , n;

4. X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n), Y = X1(Y ′
1) ⊕ · · · ⊕ Xn(Y ′

n), Z = X1(Z ′
1) ⊕

· · · ⊕ Xn(Z ′
n) and Y ′

i , Z ′
i ∈ S(X ′

i) are reconsilable for all i = 1, . . . , n;

5. X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)], Y = X(Y1, . . . , Yn) with Yi = Xi[Y ′
i ] or

Yi = λ = Y ′
i , Z = X [X1(Z ′

1)⊕ · · · ⊕Xn(Z ′
n)], and Y ′

i , Z ′
i are reconsilable for

all i = 1, . . . , n.

Note that for the set- and multiset-constructor we can only obtain reconsil-
ability for subattributes in a ≥-relation.

Definition 9. Let X ∈ N be a nested attribute. A set F ⊆ S(X) is called
a coincidence ideal iff there exists two complex values t1, t2 ∈ dom(X) with
F = {Y ∈ S(X) | πX

Y (t1) = πX
Y (t2)}.

The following theorem shows necessary properties of coincidence ideals. Show-
ing that these properties are also sufficient is the theme of the next subsection.

Theorem 10. Let X ∈ N be a nested attribute, and F = {Y ∈ S(X) | πX
Y (t1) =

πX
Y (t2)} be a coincidence ideal. Then F satisfies the following properties:

1. λ ∈ F;

2. if Y ∈ F and Z ∈ S(X) with Y ≥ Z, then Z ∈ F;

3. if Y, Z ∈ F are reconsilable, then Y � Z ∈ F;

4. with I+ = {i ∈ {1, . . . , n} | X(Xi{λ}) ∈ F} and I− = {i ∈ {1, . . . , n} |
X(Xi{λ}) /∈ F}
(a) for I = {i1, . . . , ik}, if XI{λ} ∈ F and XJ{λ} /∈ F for I � J , then

X(Xi1{X ′
i1}, . . . , Xik

{X ′
ik
}) ∈ F;

(b) if XI{λ} ∈ F and X(Xi{λ}) /∈ F for all i ∈ I, then there is a partition

I = I1

·∪ I2 with XI1{λ} /∈ F, XI2{λ} /∈ F and XI′{λ} ∈ F for all I ′ ⊆ I

with I ′ ∩ I1 �= ∅ �= I ′ ∩ I2;

(c) if X{1,...,n}{λ} ∈ F and XI−{λ} /∈ F, then there exists some i ∈ I+ such
that for all J ⊆ I− XJ∪{i}{λ} ∈ F holds;
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(d) if XJ{λ} /∈ F and X{j}{λ} /∈ F for all j ∈ J and for all i ∈ I there
is some Ji ⊆ J with XJi∪{i}{λ} /∈ F, then XI∪J{λ} /∈ F, provided
I ∩ J = ∅;

(e) if XI−{λ} ∈ F and I ′ ⊆ I+ such that for all i ∈ I ′ there is some
J ⊆ I− with XJ∪{i}{λ} /∈ F, then XI′∪J′{λ} /∈ F for all J ′ ⊆ I− with
XJ′{λ} /∈ F;

5. (a) if XI{λ} ∈ F and XJ{λ} ∈ F with I ∩ J = ∅, then XI∪J{λ} ∈ F;

(b) if XI [λ] ∈ F and XJ [λ] ∈ F with I ∩ J = ∅, then XI∪J [λ] ∈ F;

(c) if XI〈λ〉 ∈ F and XJ 〈λ〉 ∈ F with I ∩ J = ∅, then XI∪J〈λ〉 ∈ F;

(d) if XI [λ] ∈ F and XJ [λ] ∈ F with J ⊆ I, then XI−J [λ] ∈ F;

(e) if XI〈λ〉 ∈ F and XJ 〈λ〉 ∈ F with J ⊆ I, then XI−J〈λ〉 ∈ F;

(f) if XI [λ] ∈ F and XJ [λ] ∈ F, then XI∩J [λ] ∈ F iff X(I−J)∪(J−I)[λ] ∈ F;

(g) if XI〈λ〉 ∈ F and XJ 〈λ〉 ∈ F, then XI∩J〈λ〉 ∈ F iff X(I−J)∪(J−I)〈λ〉 ∈ F;

6. (a) for X = X{X̄{X1(X ′
1)⊕· · ·⊕Xn(X ′

n)}}, whenever I ⊆ {1, . . . , n}, there
is a partition I = I− ∪ I+− ∪ I+ ∪ I− such that

i. X{X̄{i}{λ}} ∈ F iff i /∈ I−,

ii. X{X̄I′{λ}} ∈ F, whenever I ′ ∩ I+ �= ∅,
iii. X{X̄I′{λ}} ∈ F iff X{X̄I′∩(I+−∪I−){λ}} ∈ F, whenever I ′ ⊆ I+− ∪

I− ∪ I−;

(b) for X = X〈X̄{X1(X ′
1)⊕· · ·⊕Xn(X ′

n)}〉, whenever I ⊆ {1, . . . , n}, there
is a partition I = I− ∪ I+− ∪ I+ ∪ I− such that

i. X〈X̄{i}{λ}〉 ∈ F iff i /∈ I−,

ii. X〈X̄I′{λ}〉 ∈ F, whenever I ′ ∩ I+ �= ∅,
iii. X〈X̄I′{λ}〉 ∈ F iff X〈X̄I′∩(I+−∪I−){λ}〉 ∈ F, whenever I ′ ⊆ I+− ∪

I− ∪ I−;

7. (a) if X = X(X ′
1, . . . , X

′
n), then Fi = {Yi ∈ S(X ′

i) | X(λ, . . . , Yi, . . . , λ) ∈ F}
is a coincidence ideal;

(b) if X = X [X ′], such that X ′ is not a union attribute, and F �= {λ}, then
G = {Y ∈ S(X ′) | X [Y ] ∈ F} is a coincidence ideal;

(c) If X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n) and F �= {λ}, then the set Fi = {Yi ∈
S(X ′

i) | X1(λ) ⊕ · · · ⊕ Xi(Yi) ⊕ · · · ⊕ Xn(λ) ∈ F} is a coincidence ideal;
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(d) if X = X{X ′}, such that X ′ is not a union attribute, and F �= {λ}, then
G = {Y ∈ S(X ′) | X{Y } ∈ F} is a defect coincidence ideal;

(e) if X = X〈X ′〉, such that X ′ is not a union attribute, and F �= 〈λ〉, then
G = {Y ∈ S(X ′) | X〈Y 〉 ∈ F} is a defect coincidence ideal.

A defect coincidence ideal on S(X) is a subset F ⊆ S(X) satisfying properties
1, 2, 4(a)-(d), 6(a),(b), 7(d)-(e) and

8. (a) if X = X(X ′
1, . . . , X

′
n), then Fi = {Yi ∈ S(X ′

i) | X(λ, . . . , Yi, . . . , λ) ∈ F}
is a defect coincidence ideal;

(b) if X = X [X ′], such that X ′ is not a union attribute, and F �= {λ}, then
G = {Y ∈ S(X ′) | X [Y ] ∈ F} is a defect coincidence ideal;

(c) If X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n) and F �= {λ}, then the set Fi = {Yi ∈
S(X ′

i) | X1(λ) ⊕ · · · ⊕ Xi(Yi) ⊕ · · · ⊕ Xn(λ) ∈ F} is a defect coincidence
ideal.

In [Hartmann et al., 2004] and in [Sali, 2004] the term “SHL-ideal” was used
instead; in [Hartmann et al., 2005] in a restricted setting the term “HL-ideal”
was used. In all these cases the definition was given by means of properties as
in the theorem, but not all the conditions from Definition 10 were yet present.

Proof. Let F = {Y ∈ S(X) | πX
Y (t1) = πX

Y (t2)} ⊆ S(X). The ideal properties 1
and 2 are trivial.

For property 3 let t1, t2 ∈ dom(X) with πX
Y (t1) = πX

Y (t2) and πX
Z (t1) =

πX
Z (t2) for reconsilable subattributes Y, Z ∈ F.

– In case Y ≥ Z we immediately get Y � Z = Y ∈ F.

– In case X = X [X ′] we must have Y = X [Y ′] and Z = X [Z ′] with reconsilable
subattributes Y ′, Z ′ ∈ S(X ′). Furthermore, t1 = [t1,1, . . . , t1,n] and t2 =
[t2,1, . . . , t2,m]. This gives n = m, πX′

Y ′ (t1,j) = πX′
Y ′ (t2,j) and πX′

Z′ (t1,j) =
πX′

Z′ (t2,j) for all j = 1, . . . , n, hence Y ′, Z ′ ∈ Fj for all j = 1, . . . , n, where
Fj = {U ∈ S(X ′) | πX′

U (t1,j) = πX′
U (t2,j)} is the set of subattributes, on

which t1,j and t2,j coincide. By induction Fj is a coincidence ideal, so Y ′ �
Z ′ ∈ Fj holds for all j = 1, . . . , n. This gives πX′

Y ′�Z′(t1,j) = πX′
Y ′�Z′(t2,j)

for all j = 1, . . . , n and hence also πX
Y �Z(t1) = πX

Y �Z(t2), which implies
Y � Z ∈ F as desired.

– In case X = X(X1, . . . , Xn) we must have Y = X(Y1, . . . , Yn) and Z =
X(Z1, . . . , Zn) with reconsilable subattributes Yi, Zi ∈ S(Xi) for i = 1, . . . , n.
Furthermore, t1 = (t1,1, . . . , t1,n) and t2 = (t2,1, . . . , t2,n), which implies
πXi

Yi
(t1,i) = πXi

Yi
(t2,i) and πXi

Zi
(t1,i) = πXi

Zi
(t2,i) for all i = 1, . . . , n. This
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gives Yi, Zi ∈ Fi = {U ∈ S(Xi) | πXi

U (t1,i) = πXi

U (t2,i)}. By induction
these sets Fi for i = 1, . . . , n are coincidence ideals, hence Yi � Zi ∈ Fi

holds. This implies πXi

Yi�Zi
(t1,i) = πXi

Yi�Zi
(t2,i) for all i = 1, . . . , n. With

Y � Z = X(Y1 � Z1, . . . , Yn � Zn) follows also πX
Y �Z(t1) = πX

Y �Z(t2), which
implies Y � Z ∈ F as desired.

– In case X = X1(X ′
1)⊕· · ·⊕Xn(X ′

n) we must have Y = X1(Y1)⊕· · ·⊕Xn(Yn)
and Z = X1(Z1)⊕· · ·⊕Xn(Zn) with reconsilable subattributes Yi, Zi ∈ S(X ′

i)
for i = 1, . . . , n. Furthermore t1 = (Xi : t′1) and t2 = (Xi : t′2) for some
i ∈ {1, . . . , n}, which implies π

X′
i

Yi
(t′1) = π

X′
i

Yi
(t′2) and π

X′
i

Zi
(t′1) = π

X′
i

Zi
(t′2). This

gives Yi, Zi ∈ Fi = {U ∈ S(X ′
i) | π

X′
i

U (t′1) = π
X′

i

U (t′2)}. By induction Fi is
a coincidence ideal, hence Yi � Zi ∈ Fi follows, which gives π

X′
i

Yi�Zi
(t′1) =

π
X′

i

Yi�Zi
(t′2) and further πX

Y �Z(t1) = πX
Y �Z(t2). This implies Y � Z ∈ F as

desired.

– In case X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] the case not covered by 2 and 3 is
Y = X(Y1, . . . , Yn) with Yi = Xi[Y ′

i ] or Yi = λ = Y ′
i , and Z = X [X1(Z ′

1) ⊕
· · · ⊕ Xn(Z ′

n)], such that Y ′
i , Z ′

i are reconsilable for all i = 1, . . . , n. We get
Y � Z = X [X1(Y ′

1 � Z ′
1) ⊕ · · · ⊕ Xn(Y ′

n � Z ′
n)]. Now let tj = [tj1, . . . , tjm]

for j = 1, 2 and tjk = (X� : t′′jk) for some label �. The lists must have equal
length, because the coincide on Z, hence also on X [λ]. The coincidence on Z

implies π
X′

�

Z′
�
(t′′1k) = π

X′
�

Z′
�
(t′′2k) for all those elements with label X�. As we also

have πX
Y (tj) = (. . . , [. . . , πX′

�

Y ′
�
(t′′jk), . . . ], . . . ), we also get π

X′
�

Y ′
�
(t′′1k) = π

X′
�

Y ′
�
(t′′2k)

for Y� �= λ. Thus Y ′
� and Z ′

� are elements of the coincidence ideal defined by
t′′1k and t′′2k for all those elements with label X�. By induction Y ′

� � Z ′
� must

be in that coincidence ideal, too. This holds for all �, as in the remaining
cases we defined Y ′

� = λ. This implies π
X′

�

Y ′
�
�Z′

�
(t′′1k) = π

X′
�

Y ′
�
�Z′

�
(t′′2k) for all k,

such that t1k and t2k have the label X�. Hence we get πX
Y �Z(t1) = πX

Y �Z(t2)
and therefore Y � Z ∈ F as desired.

For property 4(a) let X = X{X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)} = X(X1{X ′
1}, . . .

. . . , Xn{X ′
n}), Y = XI{λ}, Z1 = XJ{λ} and Z2 = X(Xi1{X ′

i1}, . . . , Xik
{X ′

ik
}).

For Y ∈ F and Z1 /∈ F we have πX
Y (t1) = πX

Y (t2) and πX
Z1

(t1) �= πX
Z1

(t2). Thus,
one of t1 or t2 — without loss of generality let this be t2 — must not contain
elements of the form (Xj : vj) with j ∈ J . On the other hand, either t1 and
t2 both contain elements of the form (Xi : vi) with i ∈ I or both do not. As
I � J , it follows πX

X(Xi{λ})(t1) = πX
X(Xi{λ})(t2) = ∅ for all i ∈ I, which implies

πX
Z2

(t1) = πX
Z2

(t2), so Z2 ∈ F.
For property 4(b) let XI{λ} ∈ F, but X{i}{λ} /∈ F for all i ∈ I, that

is πX
XI{λ}(t1) = πX

XI{λ}(t2) and πX
X(Xi{λ})(t1) �= πX

X(Xi{λ})(t2) for all i ∈ I.
Let Ij ⊆ I be such that tj contains an element of the form (Xi : vi) for all
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i ∈ Ij (j = 1, 2). Obviously, I = I1

·∪ I2 and πX
XI′{λ}(t1) = πX

XI′{λ}(t2) for all
I ′ ⊆ I with I ′ ∩ I1 �= ∅ �= I ′ ∩ I2, so XI′{λ} ∈ F for these I ′. Furthermore,
πX

XIj
{λ}(t1) �= πX

XIj
{λ}(t2) for j = 1, 2, so XI1{λ}, XI2{λ} /∈ F.

For property 4(c) we have πX
Xj{λ}(t1) = πX

Xj{λ}(t2) and πX
Xk{λ}(t1) �= πX

Xk{λ}(t2)
for all j ∈ I+ and k ∈ I−. Assume that for all i ∈ I+ there is some J ⊆ I−

with XJ∪{i}{λ} /∈ F, i.e. πX
XJ∪{i}{λ}(t1) �= πX

XJ∪{i}{λ}(t2). Hence one of these

projections must be ∅. As we have πX
Xi{λ}(t1) = πX

Xi{λ}(t2), these must both
be ∅, which implies πX

XI+{λ}(tj) = ∅ for j = 1, 2. Now πX
Xk{λ}(t1) �= πX

Xk{λ}(t2)
for all k ∈ I−, so if πX

XI−{λ}(t1) �= πX
XI−{λ}(t2) holds, one of these projections

must be ∅ again, which implies that one tj is ∅, the other not empty. That is
πX

X{1,...,n}{λ}(t1) �= πX
X{1,...,n}{λ}(t2) contradicting X{1,...,n}{λ} ∈ F.

For property 4(d) assume XJ{λ} /∈ F, X{j}{λ} /∈ F for all j ∈ J , and for
all i ∈ I there is some Ji ⊆ J with XJi∪{i}{λ} /∈ F. It follows that one of the
two complex values – without loss of generality let this be t1 – contains values
(Xj : τj) for all j ∈ J , while the other one does not contain such values. From
this we derive πX

XJ′∪{i}{λ}(t1) �= ∅ for all J ′ ⊆ J and all i ∈ I. If we also had

XI∪J{λ} ∈ F, t1, t2 would coincide on XI∪J{λ}, which gives πX
XJ′∪{i}{λ}(t2) �= ∅

for all J ′ ⊆ J and at least one i ∈ I contradicting the assumption that for at
least one such J ′ = Ji we have πX

XJ′∪{i}{λ}(t1) �= πX
XJ′∪{i}{λ}(t2).

For property 4(e) assume XI−{λ} ∈ F and that for each � ∈ I ′ there is
some J� ⊆ I− with XJ�∪{�}{λ} /∈ F. Let XJ′{λ} /∈ F for J ′ ⊆ I−, and assume
XI′∪J′{λ} ∈ F. Define I−j = {i ∈ I− | πX

X{i}{λ}(tj) �= ∅} (j = 1, 2) to define a

partition I− = I−1 ∪I−2 . As t1, t2 differ on XJ′{λ}, this implies J ′ ⊆ I ′1 or J ′ ⊆ I ′2.
Without loss of generality we can assume the first of these possibilities. As t1, t2
coincide on XI′∪J′{λ}, we must have πX

XI′{λ}(t2) �= ∅, so also πX
X{i}{λ}(t2) �= ∅

for some i ∈ I ′. Then also πX
X{i}{λ}(t1) �= ∅ due to I ′ ⊆ I+. Hence we get

πX
XJ∪{i}{λ}(tj) �= ∅ for j = 1, 2 and all J ⊆ I− contradicting the assumption

that at least one such J = Ji exists, such that t1, t2 differ on XJi∪{i}{λ}. Hence
XI′∪J′{λ} /∈ F follows.

For property 5(a) assume XI{λ}, XJ{λ} ∈ F with I∩J = ∅, i.e. πX
XI{λ}(t1) =

πX
XI{λ}(t2) and πX

XJ{λ}(t1) = πX
XJ{λ}(t2). In case πX

XI{λ}(t1) = πX
XJ{λ}(t1) = ∅

there are no values of the form (Xi : vi) with i ∈ I ∪J in t1, hence also not in t2.
In case at least one of these projections leads to a non-empty set we must have
(Xi : vi) ∈ t1 for at least one i ∈ I ∪ J and one value vi ∈ dom(X ′

i). The same
holds for t2, hence in both cases πX

XI∪J{λ}(t1) = πX
XI∪J{λ}(t2), i.e. XI∪J{λ} ∈ F.

For property 5(b) let XI [λ] ∈ F, i.e. πX
XI [λ](t1) = πX

XI [λ](t2), which means
that t1 and t2 contain the same number of elements of the form (Xi : vi) with
i ∈ I. If the same holds for J with I ∩ J = ∅, then t1 and t2 must also con-
tain the same number of elements of the form (Xi : vi) with i ∈ I ∪ J , i.e.
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πX
XI∪J [λ](t1) = πX

XI∪J [λ](t2) and hence XI∪J [λ] ∈ F. Property 5(d) follows from
the same argument.

For property 5(f) let πX
Y (t1) = πX

Y (t2) for Y ∈ {XI [λ], XJ [λ], XI∩J [λ]}, which
means that t1, t2 contain the same number of elements with labels in I, J and
I∩J , respectively. So they also contain the same number of elements with labels
in (I − J) ∪ (J − I) and vice versa.

The proof of properties 5(c),(e) and (g) dealing with multisets is completely
analogous to the proof for properties 5(b),(d) and (f) dealing with lists.

For property 6(a) we can assume t1 �= ∅ �= t2. Otherwise, in case t1 = t2 = ∅
we simple choose I+ = I, while in case exactly one of the ti is empty, we choose
I− = I, which both lead immediately to the desired result. For t1 �= ∅ �= t2
define

I+ = {i ∈ I | πX
X{X̄{i}{λ}}(t1) = {{
}} = πX

X̄{X{i}{λ}}(t2)},
I− = {i ∈ I | πX

X{X̄{i}{λ}}(t1) = {∅} = πX
X̄{X{i}{λ}}(t2)},

I− = {i ∈ I | πX
X{X̄{i}{λ}}(t1) �= πX

X̄{X{i}{λ}}(t2)},

and I+− = I−I−−I+−I−. Then t1, t2 obviously coincide on all X{X̄I′{λ}}
with I ′∩I+ �= ∅, which gives property ii. Property i holds by definition of I−. For
I ′ ⊆ I+− ∪ I− ∪ I− we get πX

X{X̄I′{λ}}(tj) = πX
X{X̄I′∩(I+−∪I−){λ}}(tj) for j = 1, 2,

which gives property iii.
For property 6(b) we can assume t1 �= 〈〉 �= t2. Otherwise, in case t1 = t2 = 〈〉

we simple choose I+ = I, while in case exactly one of the ti is the empty
multiset, we choose I− = I, which both lead immediately to the desired result.
For t1 �= 〈〉 �= t2 define

I+ = {i ∈ I | πX
X〈X̄{i}{λ}〉(t1) = 〈 {
}︸︷︷︸

x times

〉 = πX
X〈X̄{i}{λ}〉(t2)},

I− = {i ∈ I | πX
X〈X̄{i}{λ}〉(t1) = 〈 ∅︸︷︷︸

x times

〉 = πX
X〈X̄{i}{λ}〉(t2)},

I− = {i ∈ I | πX
X〈X̄{i}{λ}〉(t1) �= πX

X〈X̄{i}{λ}〉(t2)},

and I+− = I − I−− I+ − I−. Then t1, t2 obviously coincide on all X〈X̄I′{λ}〉
with I ′ ∩ I+ �= ∅, which gives property ii. Property i follows from the definition
of I−. For I ′ ⊆ I+− ∪ I− ∪ I− we get πX

X〈X̄I′{λ}〉(tj) = πX
X〈X̄I′∩(I+−∪I−){λ}〉(tj)

for j = 1, 2, which gives property iii.
For property 7(a) let tj = (tj1, . . . , tjn) for j = 1, 2. Then X(λ, . . . , λ, Yi, λ, . . .

. . . , λ) ∈ F implies π
X′

i

Yi
(t1i) = π

X′
i

Yi
(t2i) and vice versa, so Fi is the ideal defined

by coincidence of t1i and t2i. Proceeding by induction on the nesting depth we
conclude that Fi is a coincidence ideal.
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Similarly, for property 7(b) let tj = [tj1, . . . , tjk] (j = 1, 2). Both lists must
have the same length, because we assume F �= {λ}. Then X [Y ] ∈ F implies
πX′

Y (t1i) = πX′
Y (t2i) for all i = 1, . . . , k and vice versa. By induction on the

nesting depth we conclude that G is the intersection of coincidence ideals, hence
a coincidence ideal, as we assumed that X ′ is not a union attribute.

For property 7(c) we may assume tj = (Xi : t′j) (j = 1, 2). Then X1(λ) ⊕
· · · ⊕ Xi(Yi) ⊕ · · · ⊕ Xn(λ) ∈ F implies π

X′
i

Yi
(t′1) = π

X′
i

Yi
(t′2) and vice versa, so by

induction on the nesting depth Fi is the coincidence ideal defined by t′1 and t′2.
For property 7(d) t1 and t2 are finite sets with elements in dom(X ′) and we

have G = {Y ∈ S(X ′) | {πX′
Y (τ) | τ ∈ t1} = {πX′

Y (τ) | τ ∈ t2}}. In this case we
can repeat the arguments above to show properties 1, 2, 4(a)-(d) and 6(a),(b)
for G. By induction on the nesting depth we obtain 7(d),(e) and 8(a)-(c).

Analogously, for property 7(e) t1 and t2 are finite multisets with elements in
dom(X ′) and we have G = {Y ∈ S(X ′) | 〈πX′

Y (τ) | τ ∈ t1〉 = 〈πX′
Y (τ) | τ ∈ t2〉}.

In this case we can repeat the arguments above to show properties 1, 2, 4(a)-(d)
and 6(a),(b) for G. By induction on the nesting depth we obtain 7(d),(e) and
8(a)-(c).

In the proof we did indeed show a bit more than claimed in Theorem 10, as
we also dealt with defect coincidence ideals. The additional results are formalised
in the following corollary.

Corollary 11. Let X ∈ N be a nested attribute, but not a union attribute.

1. For finite sets S1 and S2 with elements in dom(X) let G = {Y ∈ S(X) |
{πX

Y (τ) | τ ∈ S1} = {πX
Y (τ) | τ ∈ S2}} ⊆ S(X). Then G is a defect coinci-

dence ideal.

2. For finite multisets M1 and M2 with elements in dom(X) let G = {Y ∈
S(X) | 〈πX

Y (τ) | τ ∈ M1〉 = 〈πX
Y (τ) | τ ∈ M2〉} ⊆ S(X). Then G is a defect

coincidence ideal.

3.2 Sufficiency of the Coincidence Ideal Characterisation

We now proceed with showing the converse of the result in Theorem 10. The
general idea is to proceed by structural induction extending the corresponding
proofs in [Hartmann et al., 2005] and in [Hartmann et al., 2006]. However, a
difficulty arises with the set and multiset constructors, as for them we will have
to deal with defect coincidence ideals, which will request a different treatment.

Theorem 12. Let G ⊆ S(X) be a defect coincidence ideal for the nested at-
tribute X ∈ N such that the union constructor appears in X only directly inside
a set-, list or multiset-constructor. Then the following holds:
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1. There exist two finite sets S1, S2 ⊆ dom(X) such that {πX
Y (τ) | τ ∈ S1} =

{πX
Y (τ) | τ ∈ S2} holds iff Y ∈ G. For G �= {λ} both sets are non-empty.

2. There exist two finite multisets M1, M2 ⊆ dom(X) such that 〈πX
Y (τ) | τ ∈

M1〉 = 〈πX
Y (τ) | τ ∈ M2〉 holds iff Y ∈ G. For G �= {λ} both multisets are

non-empty.

The work in [Hartmann et al., 2006, Lemmata 21 and 24] contains a proof
of this theorem for the case that the union constructor does not appear at all.
This has been generalised in [Sali and Schewe, 2006, Lemma 4.3] to the general
case but excluding counter attributes, i.e. attributes of the form XI{λ}, XI〈λ〉
or XI [λ] with |I| ≥ 2. We will refer to this proof as part of the proof in the
general case, i.e. the proof of Theorem 12.

In the general case we have to take into account that the union constructor
may appear directly inside a set-, list or multiset-constructor. Therefore, an at-
tribute X ′ occurring inside an attribute X will be called an embedded attribute,
and we write emb(X) for the set of all embedded attributes of X . The nesting of
embedded attributes gives rise to the notion of degeneration depth (see Definition
13 below), and the proof in [Hartmann et al., 2006] covers the basic case of de-
generation depth 0. We therefore proceed using induction over the degeneration
depth to prove Theorem 12.

Definition 13. Let X ∈ N be a nested attribute, such that the union construc-
tor appears in X only directly inside a set-, list or multiset-constructor. For an
embedded attribute X ′ = X ′{X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n)} or X ′ = X ′〈X1(X ′

1) ⊕
· · · ⊕Xn(X ′

n)〉 or X ′ = X ′[X1(X ′
1)⊕ · · · ⊕Xn(X ′

n)] in emb(X) the degeneration
depth dd(X ′) of X ′ is 1, if the union constructor does not appear in any X ′

i

(i = 1, . . . , n), and max{dd(X ′
i) | i = 1, . . . , n} + 1 otherwise.

The degeneration depth dd(X) of X is the maximum of all dd(X ′) for at-
tributes X ′ of the given form that appear in X .

For the basic case of Theorem 12 with dd(X) = 0 let Sr(X) ⊆ S(X) denote
the sublattice of S(X), in which all subattributes containing some XI{λ}, XI [λ]
or XI〈λ〉 with |I| ≥ 2 are omitted. As remarked in [Sali and Schewe, 2006] this
gives rise to a Brouwer algebra. We will establish the claimed result by a direct
construction, for which we will use distinguished values.

Definition 14. Let X be a nested attribute such that the union-constructor
only appears in X inside a list-constructor. For each Y ∈ Sr(X) we define the
distinguished value τX

Y ∈ dom(X) as follows:

1. τλ
λ = 
;

2. τA
A = a and τA

λ = a′ for a simple attribute A and a, a′ ∈ dom(A), a �= a′;
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3. τ
X(X1,...,Xn)
X(Y1,...,Yn) = (X1 : τX1

Y1
, . . . , Xn : τXn

Yn
);

4. τ
X{X′}
X{Y } = {τX′

Y }, if X ′ is not a union attribute, and τ
X{X′}
λ = ∅;

5. τ
X〈X′〉
X〈Y 〉 = 〈τX′

Y 〉, if X ′ is not a union attribute, and τ
X〈X′〉
λ = 〈〉;

6. τ
X[X′]
X[Y ] = [τX′

Y ], if X ′ is not a union attribute, and τ
X[X′]
λ = [];

7. τ
X[X1(X′

1)⊕···⊕Xn(X′
n)]

X(Y1,...,Yn) = [(Xi1 : τ
X′

i1
Y ′

i1
), . . . , (Xik

: τ
X′

ik

Y ′
ik

)] with 1 ≤ i1 < · · · <

ik ≤ n such that {i1, . . . , ik} = {i | Yi �= λ} – that is the list contains only
those (Xi : τ

X′
i

Y ′
i

), for which Yi �= λ, i.e. Yi = Xi[Y ′
i ];

8. τ
X[X1(X′

1)⊕···⊕Xn(X′
n)]

X[X1(Y ′
1 )⊕···⊕Xn(Y ′

n)] = [(X2 : τ
X′

2
Y ′
2

), . . . , (Xn : τ
X′

n

Y ′
n

), (X1 : τ
X′

1
Y ′
1

)], where the

list contains only those (Xi : τ
X′

i

Y ′
i

), for which Y ′
i �= λ.

Using these distinguished values we first show some elementary properties
for them, which are used in a second step to prove the base case of Theorem 12.

Lemma15. Let X be a nested attribute such that the union-constructor appears
in X only immediately inside a list-constructor. Then we have:

1. We have πX
Y (τX

Z ) = πX
Y (τX

Y ) iff Z ≥ Y .

2. For Y, Z ∈ Sr(X) and Z� = (Y ← Z) ← (Y �Z) we have πX
Y (τX

Z ) = πX
Y (τX

Z�).

3. For all Y �= λ there is some Z with πX
Y (τX

Z ) �= πX
Y (τX

λ ).

Proof (see Lemma 4.3 in [Sali and Schewe, 2006]). For the only-if-part of the
first statement there is nothing to show for Y = λ, Z ≥ Y , Y = X{λ}, Y = X〈λ〉
or Y = X [λ]. We then use structural induction on X :

For a simple attribute X = A we have Y = A and Z = λ, so πX
Y (τX

Z ) =
a′ �= a = πX

Y (τX
Y ). For X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) and Z =

X(Z1, . . . , Zn) we have by induction Zi ≥ Yi for all i = 1, . . . , n, thus Z ≥ Y .
For X = X{X ′}, Y = X{Y ′} and Z = X{Z ′} we get Z ′ ≥ Y ′ by induction,
hence also Z ≥ Y . The same argument applies to multisets and lists. Finally, for
X = X [X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n)] we have to consider four cases for Y and Z:

– Let Y = X(X1[Y1], . . . , Xn[Yn]) and Z = X(X1[Z1], . . . , Xn[Zn]). Then we
have

πX
Y (τX

Y ) = (X1 : [πX′
1

Y1
(τX′

1
Y1

)], . . . , Xn : [πX′
n

Yn
(τX′

n

Yn
)])

and
πX

Y (τX
Z ) = (X1 : [πX′

1
Y1

(τX′
1

Z1
)], . . . , Xn : [πX′

n

Yn
(τX′

n

Zn
)]) .

By induction we must have Zi ≥ Yi for all i = 1, . . . , n, hence also Z ≥ Y .
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– Let Y = X(X1[Y1], . . . , Xn[Yn]) and Z = X [X1(Z1) ⊕ · · · ⊕ Xn(Zn)]. Then
πX

Y (τX
Y ) and πX

Y (τX
Z ) are the same as in the previous case, so by induction

Zi ≥ Yi for all i = 1, . . . , n. This implies

Z ≥ X [X1(Y1) ⊕ · · · ⊕ Xn(Yn)] ≥ X(X1[Y1], . . . , Xn[Yn]) = Y .

– Let Y = X [X1(Y1) ⊕ · · · ⊕ Xn(Yn)] and Z = X [X1(Z1) ⊕ · · · ⊕ Xn(Zn)].
Then we have

πX
Y (τX

Y ) = [(X2 : π
X′

2
Y2

(τX′
2

Y2
)), . . . , (X1 : π

X′
1

Y1
(τX′

1
Y1

))]

and
πX

Y (τX
Z ) = [(X2 : π

X′
2

Y2
(τX′

2
Z2

)), . . . , (X1 : π
X′

1
Y1

(τX′
1

Z1
))] .

By induction we must have Zi ≥ Yi for all i = 1, . . . , n, hence also Z ≥
X [X1(Y1) ⊕ · · · ⊕ Xn(Yn)] = Y .

– Let Y = X [X1(Y1) ⊕ · · · ⊕ Xn(Yn)] and Z = X(X1[Z1], . . . , Xn[Zn]). Then
we have

πX
Y (τX

Y ) = [(X2 : π
X′

2
Y2

(τX′
2

Y2
)), . . . , (X1 : π

X′
1

Y1
(τX′

1
Y1

))] �=
[(X1 : π

X′
1

Y1
(τX′

1
Z1

)), . . . , (Xn : π
X′

n

Yn
(τX′

n

Zn
))] .

For the if-part of the first statement it is sufficient to show πX
Y (τX

X ) = πX
Y (τX

Y )
for all Y ∈ Sr(X). From this for Z ≥ Y we obtain immediately πX

Y (τX
Z ) =

πZ
Y (πX

Z (τX
Z )) = πZ

Y (πX
Z (τX

X )) = πX
Y (τX

X ) = πX
Y (τX

Y ) as desired.
Apply again structural induction on X ignoring the trivial cases X = λ,

X = A and Y = λ. For X = X(X1, . . . , Xn) and Y = X(Y1, . . . , Yn) we have
πXi

Yi
(τXi

Xi
) = πXi

Yi
(τXi

Yi
) by induction for all i = 1, . . . , n, hence also

πX
Y (τX

X ) = (πX1
Y1

(τX1
X1

), . . . , πXn

Yn
(τXn

Xn
)) = (πX1

Y1
(τX1

Y1
), . . . , πXn

Yn
(τXn

Yn
)) = πX

Y (τX
Y ),

which closes the record case. For X = X{X ′} and Y = X{Y ′} we get
πX

Y (τX
X ) = {πX′

Y ′ (τX′
X′ )} = {πX′

Y ′ (τX′
Y ′ )} = πX

Y (τX
Y ), which closes the set case. The

cases for lists and multisets are analogous.
Finally, let X = X [X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n)] and Y = X(Yi1 , . . . , Yik

) with
Yij �= λ for j = 1, . . . , k. Then we get

πX
Y (τX

X ) = πX
Y ([X2 : τ

X′
2

X′
2
, . . . , Xn : τ

X′
n

X′
n
, X1 : τ

X′
1

X′
1
]) =

([π
X′

i1
Y ′

i1
(τ

X′
i1

X′
i1

)], . . . , [π
X′

ik

Y ′
ik

(τ
X′

ik

X′
ik

)]) = ([π
X′

i1
Y ′

i1
(τ

X′
i1

Y ′
i1

)], . . . , [π
X′

ik

Y ′
ik

(τ
X′

ik

Y ′
ik

)]) =

πX
Y ([X2 : τ

X′
2

Y ′
2

, . . . , Xn : τ
X′

n

Y ′
n

, X1 : τ
X′

1
Y ′
1

]) = πX
Y (τX

Y ).
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Similarly, for Y = X [Xi1(Y ′
i1

) ⊕ · · · ⊕ Xik
(Y ′

ik
)] we obtain

πX
Y (τX

X ) = πX
Y ([X2 : τ

X′
2

X′
2
, . . . , Xn : τ

X′
n

X′
n
, X1 : τ

X′
1

X′
1
]) =

[X2 : π
X′

2
Y ′
2
(τX′

2
X′

2
), . . . , X1 : π

X′
1

Y ′
1

(τX′
1

X′
1
)](omit indices different from i1, . . . , ik) =

[X2 : π
X′

2
Y ′
2
(τX′

2
Y ′
2

), . . . , X1 : π
X′

1
Y ′
1

(τX′
1

Y ′
1

)](omit indices different from i1, . . . , ik) =

πX
Y ([X2 : τ

X′
2

Y ′
2

, . . . , Xn : τ
X′

n

Y ′
n

, X1 : τ
X′

1
Y ′
1

]) = πX
Y (τX

Y ).

For the second statement there is nothing to prove for Y = λ or Y ≥ Z,
which gives Z� = (Y ← Z) ← (Y �Z) = λ ← Z = Z. Now proceed by induction
on X and assume λ �= Y �≥ Z. Note that the cases X = λ and X a simple
attribute are already covered.

For X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) we
have by induction πXi

Yi
(τXi

Zi
) = πXi

Yi
(τXi

Z�
i

) for all i = 1, . . . , n with Z�
i = (Yi ←

Zi) ← (Yi � Zi). This implies

πX
Y (τX

Z ) = (X1 : πX1
Y1

(τX1
Z1

), . . . , Xn : πXn

Yn
(τXn

Zn
))

= (X1 : πX1
Y1

(τX1

Z�
1

), . . . , Xn : πXn

Yn
(τXn

Z�
n

)) = πX
Y (τX

Z�) .

For X = X{X ′} with X ′ not being a union attribute, Y = X{Y ′} and
Z = X{Z ′} with Y ′ �≥ Z ′ we get by induction πX′

Y ′ (τX′
Z′ ) = πX′

Y ′ (τX′
Z′�) with

Z ′� = (Y ′ ← Z ′) ← (Y ′ � Z ′). This implies

πX
Y (τX

Z ) = {πX′
Y ′ (τX′

Z′ )} = {πX′
Y ′ (τX′

Z′�)} .

The same argument applies for X = X〈X ′〉 or X = X [X ′] with X ′ not being
a union attribute.

Finally, let X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] and λ �= Y �≥ Z. Then we have
to consider three different cases for Y and Z:

– Let Y = X [Y1 ⊕ · · · ⊕ Yn] with Yi = Xi(Y ′
i ), and Z = X(Z1, . . . , Zn) with

Zi = Xi[Z ′
i] or Zi = λ = Z ′

i. Then Z� = X(Z�
1, . . . , Z

�
n) with Z�

i = Xi[Z ′
i
�],

Z ′
i
� = (Y ′

i ← Z ′
i) ← (Y ′

i � Z ′
i) for Zi �= λ, and Z�

i = λ for Zi = λ.

We have πX
Y (τX

Z ) = [. . . , (Xi : π
X′

i

Y ′
i
(τX′

i

Z′
i
)), . . . ] with only such i in the list, for

which Yi �= λ �= Zi holds. By induction π
X′

i

Y ′
i
(τX′

i

Z′
i
) = π

X′
i

Y ′
i
(τX′

i

Z′
i
�), which implies

the equality

πX
Y (τX

Z ) = [. . . , (Xi : π
X′

i

Y ′
i
(τX′

i

Z′
i

�)), . . . ] = πX
Y (τX

Z�) .

– Let Y = X [Y1 ⊕ · · · ⊕ Yn] with Yi = Xi(Y ′
i ), and Z = X [Z1 ⊕ · · · ⊕ Zn]

with Zi = Xi(Z ′
i). In this case Z� = X [X1(W1) ⊕ · · · ⊕ Xn(Wn)] with Wi =
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{
Z ′

i
� for Zi �= λ �= Yi

λ else
and Z ′

i
� = (Y ′

i ← Z ′
i) ← (Y ′

i � Z ′
i). Then πX

Y (τX
Z ) =

[(X2 : π
X′

2
Y ′
2
(τX′

2
Z′

2
)), . . . , (X1 : π

X′
1

Y ′
1
(τX′

1
Z′

1
))] with only such i in the list, for which

Yi �= λ �= Zi holds. By induction, this is equal to [(X2 : π
X′

2
Y ′
2
(τX′

2

Z′
2

�)), . . . , (X1 :

π
X′

1
Y ′
1
(τX′

1

Z′
1

�))] = πX
Y (τX

Z�).

– Let Y = X(Y1, . . . , Yn) with Yi = Xi[Y ′
i ] or Yi = λ = Y ′

i , and Z =
X [Z1 ⊕ · · · ⊕ Zn] with Zi = Xi(Z ′

i). Then Z� = X(W1, . . . , Wn) with

Wi =

{
Xi[Z ′

i
�] for Yi �= λ

λ else
, and Z ′

i
� = (Y ′

i ← Z ′
i) ← (Y ′

i � Z ′
i).

This gives πX
Y (τX

Z ) = (. . . , (Xi : Li), . . . ) with

Li =

{
[πX′

i

Y ′
i
(τX′

i

Z′
i
)] for Yi �= λ �= Zi

[] else
.

By induction we have π
X′

i

Y ′
i
(τX′

i

Z′
i
) = π

X′
i

Y ′
i
(τX′

i

Z′
i

�), which implies πX
Y (τX

Z ) =

πX
Y (τX

Z�).

For the third statement we proceed again by induction on X �= λ. For a
simple attribute X = A we must have Y = A. Take Z = A, so we get πX

Y (τX
Z ) =

a �= a′ = πX
Y (τX

λ ).
For X = X(X1, . . . , Xn) and Y = X(Y1, . . . , Yn) there must be some Yi �= λ.

By induction we find some Zi with πXi

Yi
(τXi

Zi
) �= πXi

Yi
(τXi

λ ). For Z = X(Z1, . . . , Zn)
with Zj = Yj for all j �= i it follows πX

Y (τX
Z ) �= πX

Y (τX
λ ).

For X = X{X ′} and Y = X{Y ′} with Y ′ �= λ we take Z = X{Z ′},
where Z ′ satisfies πX′

Y ′ (τX′
Z′ ) �= πX′

Y ′ (τX′
λ ) by induction. Then we get πX

Y (τX
Z ) =

{πX′
Y ′ (τX′

Z′ )} �= {πX′
Y ′ (τX′

λ )} = πX
Y (τX

λ ). The argument for multisets and lists in
the last case is completely analogous.

With this lemma we can complete the proof of Theorem 12.

Proof of Theorem 12. Let us first assume dd(X) = 0, for which the proof was
given in [Sali and Schewe, 2006].

Then for the first statement define t1 = {τX
Y | Y ∈ Sr(X)} and t2 = {τX

Y |
Y ∈ G} and apply Lemma 15. Statement 3 in that lemma gives the result for
the trivial case G = {λ}. For G �= {λ} statement 2 in Lemma 15 implies the
equality for all Y ∈ G, as for any Z ∈ Sr(X) we obtain Y ≥ Z� and thus Z� ∈ G.
Statement 1 in Lemma 15 is used for the inequality for Y /∈ G, for if we had
equality, there would exist some Z ∈ G with πX

Y (τX
Z ) = πX

Y (τX
Y ), hence Z ≥ Y ,

which gives the contradiction Y ∈ G.
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For the second statement the construction is a bit more tricky (see [Hartmann
et al., 2006]). Take the complement of G, i.e. the filter H = Sr(X)− G. For each
minimal element Y ∈ H there is a maximal Boolean algebra B(Y ) ⊆ Sr(X)
with maximal element Y . More precisely, let Y ′

1 , . . . , Y ′
x be the maximal proper

subattributes of Y . Then the Boolean algebra B(Y ) has the top element Y ,
bottom element Y ′

1 � · · · � Y ′
x, and contains all Y ′

j (j = 1, . . . , x) (see [Hartmann
et al., 2006, Lemma 22]). Take subsets B(Y )1, B(Y )2 consisting of all Z1, Z2 ∈
B(Y ) with an odd or even distance (in the lattice) from Y , respectively, and
define tY,i = 〈τX

Zi
| Zi ∈ B(Y )i〉. This exploits the fact that in a finite Boolean

lattice each element x has a unique distance from the top element 1. For this take
a maximal chain x = x0 < x1 < · · · < xn = 1 and define n to be the distance
between x and 1. Finally, build the multiset union ti =

⊎
Y ∈Hminimal

tY,i. Using

again statement 2 of Lemma 15 gives the equality for all Y ∈ G. Analogously,
statement 1 of Lemma 15 is used for the inequality for Y /∈ G, and statement 3
of Lemma 15 covers the case of G = {λ}.

Let us now assume that Theorem 12 holds for nested attributes X ′ with
dd(X ′) ≤ i. Let dd(X) = i + 1.

For the set case we could write S1 = {τX
Y | Y ∈ S(X), Y �= λ} and S2 =

{τX
Y | Y ∈ G, Y �= λ} in the base case. In general, we will construct similar sets

with the following differences:

1. Instead of X we consider a subattribute X̃ ∈ S(X) with dd(X̃) = 0.

2. Instead of G we consider a defect coincidence ideal G̃ on S(X̃).

3. Instead of having just one distinguished value τ X̃
Y for Y ∈ S(X̃) we consider

several such values jσX̃
Y (j = 1, . . . , o) and jτ X̃

Y (j = 1, . . . , p) such that
the sets become S1 = {jσX̃

Y | Y ∈ S(X̃), j ∈ {1, . . . , o}, Y �= λ} and S2 =
{jτ X̃

Y | Y ∈ S(X̃), j ∈ {1, . . . , p}, Y �= λ}. Of course, for dd(X) = 0 we had
o = p = 1, X̃ = X , G̃ = G, and 1σX

Y = 1τX
Y .

4. The modified distinguished values jσX̃
Y and jτ X̃

Y depend on the defect coinci-
dence ideal G̃, hence on G.

So in particular, for X ′ ∈ emb(X) with dd(X ′) ≤ i we assume that sets S1,
S2 have the form described above.

First let X̄ = X̄{X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)} ∈ emb(X) be such that dd(X̄) =
i+1, i.e. X̄ indicates an outermost occurrence of an embedded set attribute with
a component union attribute. Using properties 7(d)-(e) and 8(a)-(c) of Theorem
10 G induces a defect coincidence ideal Ḡ on S(X̄). Let I+ = {i ∈ {1, . . . , n} |
X̄{i}{λ} ∈ Ḡ} and I− = {i ∈ {1, . . . , n} | X̄{i}{λ} /∈ Ḡ}. We now distinguish
three subcases:

1. X̄{1,...,n}{λ} ∈ Ḡ and X̄I−{λ} /∈ Ḡ;
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2. X̄{1,...,n}{λ} ∈ Ḡ and X̄I−{λ} ∈ Ḡ;

3. X̄{1,...,n}{λ} /∈ Ḡ.

In subcase 1 we obtain a partition I+ = I+ ∪ I− ∪ I+− with X̄I′{λ} ∈ Ḡ for
all I ′ with I ′ ∩ I+ �= ∅ and X̄J−∪J{λ} ∈ Ḡ iff X̄J{λ} ∈ Ḡ for all J ⊆ I− ∪ I+−
and all J− ⊆ I−. Taking I+ and I− maximal with these properties gives rise to
the following properties for the counter-attributes in S(X̄):

– X̄I′{λ} ∈ Ḡ, whenever I ′ ∩ I+ �= ∅.
– X̄I′{λ} ∈ Ḡ, whenever I ′ ⊆ I−.

– X̄I′{λ} /∈ Ḡ, whenever I ′ ⊆ I− due to X̄I−{λ} /∈ Ḡ, the definition of I− and
property 4(a) of Theorem 10.

– X̄I′{λ} ∈ Ḡ iff X̄I′∩(I+−∪I−){λ} ∈ Ḡ for all I ′ ⊆ I− ∪ I+− ∪ I− due to
property 6(a)iii of Theorem 10.

– X̄I′∪J′{λ} /∈ Ḡ, whenever I ′ ⊆ I+− ∪ I− and ∅ �= J ′ ⊆ I− hold. Otherwise, if
for i ∈ I+− we had X̄{i}∪J′{λ} ∈ Ḡ for all J ′ ⊆ I−, then also X̄{i}∪J′{λ} ∈ Ḡ

for all J ′ ⊆ I− ∪ I− due to property 6(a)iii of Theorem 10. Then due to
property 6(a)ii of Theorem 10 we get X̄I′{λ} ∈ Ḡ for all I ′ with i ∈ I ′, which
means we could add i to I+ contradicting the maximality of I+. Therefore,
for each i ∈ I+− there exists some Ji ⊆ I− with X̄{i}∪Ji

{λ} /∈ Ḡ. Then
property 4(d) of Theorem 10 implies X̄I′∪J′{λ} /∈ Ḡ for all I ′ ⊆ I+− and
∅ �= J ′ ⊆ I−, so finally the claimed property follows from property 6(a)iii of
Theorem 10.

These properties of counter-attributes are illustrated in Figure 4. Further-
more, due to property 4(a) of Theorem 10 we get whenever X̄J{λ} ∈ Ḡ for
J ⊆ I+−, then also X̄J′{λ} ∈ Ḡ for all J ′ ⊆ J .

Take J1, . . . , J� ⊆ I+− maximal with X̄Ji{λ} ∈ Ḡ. Then also X̄(Xj1{X ′
j1
}, . . .

. . . , Xjx{X ′
jx
}) ∈ Ḡ for Ji = {j1, . . . , jx}. Then for i = 1, . . . , � define

�+
i = {(Xj : vj) | j ∈ I−} ∪ {(Xj : vj) | j ∈ I+− − Ji}

and �−i = {(Xj : vj) | j ∈ I+−−Ji} using arbitrary fixed values vj ∈ dom(X ′
j)

for j ∈ I+− ∪ I−.
Now consider X̄+ = X̄(Xi1{X ′

i1
}, . . . , Xik

{X ′
ik
}) for I+ = {i1, . . . , ik}. Ig-

noring that this is equivalent to X̄{Xi1(X ′
i1

) ⊕ · · · ⊕ Xik
(X ′

ik
)}, i.e. ignoring

counter-attributes, we have dd(X̄+) ≤ i. Furthermore, Ḡ+ = {Y ∈ Ḡ | X̄+ ≥
Y, Y not a counter-attribute} is a defect coincidence ideal on S(X̄+).

By induction we find S+
1 = {jσ

˜̄X
Y | Y ∈ S( ˜̄X) − {λ}, j ∈ {1, . . . , o}} ⊆

dom(X̄+) and S+
2 = {jτ

˜̄X
Y | Y ∈ ˜̄G − {λ}, j ∈ {1, . . . , p}} with {πX̄+

Y (τ) | τ ∈
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Figure 4: Counter Attributes for X̄ = X̄{X1(X ′
1)⊕· · ·⊕Xn(X ′

n)} with dd(X̄) =
i + 1 in case 1

S+
1 } = {πX̄+

Y (τ) | τ ∈ S+
2 } iff Y ∈ Ḡ+. In particular, as jτ

Xij
{X′

ij
}

Xij
{λ} = {jτ

X′
ij

λ } �= ∅,
jτ

Xij
{X′

ij
}

λ = ∅ and I+ �= ∅, we also get {πX̄+

X̄I′{λ}(τ) | τ ∈ S+
1 } = {{
}} =

{πX̄+

X̄I′{λ}(τ) | τ ∈ S+
2 } for all I ′ ⊆ I+. Now define

(j−1)·�+iσ̄
˜̄X

Y = jσ
˜̄X

Y ∪ �+
i (for j = 1, . . . , o; i = 1, . . . , �)

(j−1)·(�+1)+i+1τ̄
˜̄X

Y = jτ
˜̄X

Y ∪ �−i (for j = 1, . . . , p; i = 1, . . . , �)

and

(j−1)·(�+1)+1τ̄
˜̄X

Y = jτ
˜̄X

Y (for j = 1, . . . , p).

Let X̃ ∈ S(X) result from X by replacing X̄ by ˜̄X . Let G̃ ⊆ G be the defect
coincidence ideal on S(̃(X)) that induces ˜̄G on S( ˜̄X). Without loss of general-
ity we may assume that there is no other embedded attribute X ′ ∈ emb(X)
with degeneration depth i + 1, and all embedded attributes X ′′ ∈ emb(X) with
dd(X ′′) �= 0 are embedded attributes of X̄ – otherwise we have to simultane-
ously replace X ′ by X̃ ′, and use similarly constructed distinguished values jσ̄X̃′

Y

and jτ̄ X̃′
Y as defined above or by one of the remaining cases. Define jσX̃

Y and jτ X̃
Y

for Y ∈ Sr(X̃) using properties 3-6 of Definition 14 and the values gσ̄
˜̄X

Y , gτ̄
˜̄X

Y

constructed above, then take S1 = {jσ
˜̄X

Y | Y ∈ S(X̃), Y �= λ, j ∈ {1, . . . , o · �}}
and S2 = {jτ

˜̄X
Y | Y ∈ G̃, Y �= λ, j ∈ {1, . . . , p · (� + 1)}}.

For Z ∈ S(X) the projected values πX
Z (jσ

˜̄X
Y ) and πX

Z (j′τ
˜̄X

Y ) involve πX̄
Z̄

(jσ̄
˜̄X

Ȳ
)

or πX̄
Z̄

(j′τ̄
˜̄X

Ȳ
), respectively, with Z ∈ G iff Z̄ ∈ Ḡ.
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1. Let Z̄ = X̄(Y1, . . . , Yn). Then Z̄ ∈ Ḡ iff Yi = λ for all i ∈ I−, {j ∈ I+− |
Yj �= λ} ⊆ Jx for some x ∈ {1, . . . , �} and X̄(Yi1 , . . . , Yik

) ∈ Ḡ+. Then for
Yj = Xj{Y ′

j } we get

πX̄
Z̄ ((j−1)�+iσ̄

˜̄X
Ȳ ) =

πX̄+

X̄(Yi1 ,...,Yik
)(

jσ
˜̄X

Ȳ ) ∪ {(Xj : π
X′

j

Y ′
j
(vj)) | j ∈ (I− ∪ I+−) − Ji, Yj �= λ}

and

πX̄
Z̄ ((j−1)(�+1)+i+1τ̄

˜̄X
Ȳ ) =

πX̄+

X̄(Yi1 ,...,Yik
)(

jτ
˜̄X

Ȳ ) ∪ {(Xj : π
X′

j

Y ′
j
(vj)) | j ∈ I+− − Ji, Yj �= λ}.

For Z̄ ∈ Ḡ these values are equal. Furthermore,

πX̄
Z̄ ((j−1)(�+1)+1τ̄

˜̄X
Ȳ ) = πX̄+

X̄(Yi1 ,...,Yik
)(

jτ
˜̄X

Ȳ ) = πX̄
Z̄ ((j

′−1)�+iσ̄
˜̄X

Ȳ )

iff {j ∈ I+− | Yj �= λ} ⊆ Ji and πX̄+

X̄(Yi1 ,...,Yik
)
(j′σ

˜̄X
Ȳ

) = πX̄+

X̄(Yi1 ,...,Yik
)
(jτ

˜̄X
Ȳ

).

2. Let Z̄ = X̄I{λ}. If I ∩ I+ �= ∅, then we have already seen that {πX̄
Z̄

(jσ
˜̄X

Ȳ
)} =

{{
}} = {πX̄
Z̄

(j′τ
˜̄X

Ȳ
)}, and in this case Z̄ ∈ Ḡ holds.

If I ∩ I+ = ∅, but I ∩ I− �= ∅ holds, then X̄I{λ} /∈ Ḡ. In this case
πX̄

Z̄
((j−1)(�+1)+1τ̄

˜̄X
Ȳ

) = ∅, but πX̄
Z̄

(j′σ̄
˜̄X

Ȳ
) �= ∅ for all j′.

Now let I ⊆ I+− ∪ I−. Then X̄I{λ} ∈ Ḡ iff I ∩ I+− ⊆ Ji for some i ∈
{1, . . . , �}. For this i we get

πX̄
Z̄ ((j−1)�+iσ̄

˜̄X
Ȳ ) = ∅ = πX̄

Z̄ ((j−1)(�+1)+i+1τ̄
˜̄X

Ȳ ) = πX̄
Z̄ ((j−1)(�+1)+1τ̄

˜̄X
Ȳ ),

while for any i′ �= i we have

πX̄
Z̄ ((j−1)�+i′σ̄

˜̄X
Ȳ ) = {
} = πX̄

Z̄ ((j−1)(�+1)+i′+1τ̄
˜̄X

Ȳ ).

If no such i exists, we have πX̄
Z̄

((j−1)�+i′σ̄
˜̄X

Ȳ
) = {
} for all i′, while still

πX̄
Z̄

((j−1)(�+1)+1τ̄
˜̄X

Ȳ
) = ∅ holds.

In subcase 3 we must have X̄I−{λ} /∈ Ḡ due to property 4(a) of Theorem 10
and in particular I− �= ∅. Furthermore, X̄I{λ} /∈ Ḡ, whenever I ∩ I− �= ∅ follows
from the same property. If we now partition I+ into I+, I+− and I− according
to property 6(a) of Theorem 10, then we get immediately I+ = ∅ due to 6(a)ii.
Furthermore, we must have X̄I′{λ} ∈ Ḡ, whenever I ′ ⊆ I− and X̄I′{λ} ∈ Ḡ iff
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/∈ Ḡ
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Figure 5: Counter Attributes for X̄ = X̄{X1(X ′
1)⊕· · ·⊕Xn(X ′

n)} with dd(X̄) =
i + 1 in case 3

X̄I′∩I+−{λ} ∈ Ḡ for all I ′ ⊆ I− ∪ I+−. These properties are illustrated in Figure
5.

As in subcase 1 take J1, . . . , J� ⊆ I+− maximal with X̄Ji{λ} ∈ Ḡ. Then for
i = 1, . . . , � define iσ̄λ

λ = {(Xj : vj) | j ∈ I−} ∪ {(Xj : vj) | j ∈ I+− − Ji} and
i+1τ̄λ

λ = {(Xj : vj) | j ∈ I+−−Ji} with arbitrary vj ∈ dom(X ′
j) for j ∈ I+−∪I−,

and 1τ̄λ
λ = ∅. As before extend these values using properties 3–6 of Definition

14 to define the distinguished values iσ̄
˜̄X

Y and iτ̄
˜̄X

Y . Then define S1 = {iσ̄
˜̄X

Y | Y ∈
S( ˜̄X), i = 1, . . . , �, Y �= λ} and S2 = {iτ̄

˜̄X
Y | Y ∈ G̃, i = 1, . . . , � + 1, Y �= λ}.

In order to show {πX
Z (τ) | τ ∈ S1} = {πX

Z (τ) | τ ∈ S2} iff Z ∈ G we can
use the same argument as in subcase 1, so it suffices to show {πX̄

Z̄
(iσ̄λ

λ) | i =
1, . . . , �} = {πX̄

Z̄
(iτ̄λ

λ ) | i = 1, . . . , � + 1} iff Z̄ ∈ Ḡ.

– If Z̄ = X̄(Y1, . . . , Yn), then Z̄ ∈ Ḡ iff Yi = λ for all i ∈ I− and {j ∈ I+− |
Yj �= λ} ⊆ Ji for some i ∈ {1, . . . , �}. As we have πX̄

Z̄
(iσ̄λ

λ) = ∅ = πX̄
Z̄

(i+1τ̄λ
λ ),

only if {j ∈ I+− | Yj �= λ} ⊆ Ji and Yj = λ for all j ∈ I−, the claim follows
immediately.

– If Z̄ = X̄I{λ}, then Z̄ ∈ Ḡ iff I = J ∪ I ′ with I ′ ⊆ I− and J ⊆ Ji for some
i ∈ {1, . . . , �}, in which case πX̄

Z̄
(iσ̄λ

λ) = ∅ = πX̄
Z̄

(i+1τ̄λ
λ ) holds again.

This completes subcase 3.
In the remaining subcase 2 we also take a partition I+ = I+ ∪ I− ∪ I+− with

X̄I′{λ} ∈ Ḡ for all I ′ with I ′ ∩ I+ �= ∅, and X̄J−∪J{λ} ∈ Ḡ iff X̄J{λ} ∈ Ḡ for all
J ⊆ I− ∪ I+− and all J− ⊆ I−. Take I+ and I− maximal with these properties.

Furthermore, due to property 4(b) of Theorem 10 we obtain a partition of I−

into I−1 and I−2 with X̄I−
j
{λ} /∈ Ḡ (j = 1, 2), but X̄I′{λ} ∈ Ḡ, whenever I ′ ⊆ I−
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with I ′ ∩ I−1 �= ∅ �= I ′ ∩ I−2 . This gives rise to the following additional properties
for the counterattributes in S(X̄) (these are illustrated in Figure 6):

– X̄I′{λ} ∈ Ḡ, whenever I ′ ⊆ I− holds – this is due to property 6(a)iii of
Theorem 10.

– X̄I′{λ} /∈ Ḡ, whenever I ′ �= ∅ and I ′ ⊆ I−1 or I ′ ⊆ I−2 holds.

– For each i ∈ I+− there exists some Ji ⊆ I− with X̄{i}∪Ji
{λ} /∈ Ḡ due to the

maximality of I+. Then also X̄Ji{λ} /∈ Ḡ due to property 4(a) of Theorem
10, and thus Ji ⊆ I−1 or Ji ⊆ I−2 .

Therefore, define I1
+− = {i ∈ I+− | ∃Ji ⊆ I−1 .X̄{i}∪Ji

{λ} /∈ Ḡ} and analo-
gously I2

+− = {i ∈ I+− | ∃Ji ⊆ I−2 .X̄{i}∪Ji
{λ} /∈ Ḡ}. Then X̄J∪I′{λ} /∈ Ḡ,

whenever I ′ ⊆ Ij
+− and ∅ �= J ⊆ I−j (j = 1, 2) due to property 4(d) of

Theorem 10.

Furthermore, for J ′ �⊆ Ij
+− (j = 1, 2) we obtain X̄J′∪K{λ} ∈ Ḡ for all

K ⊆ I−, K �= ∅. This can be seen as follows: Suppose the statement were
false, say X̄J′∪K{λ} /∈ Ḡ. Then we also have X̄K{λ} /∈ Ḡ; otherwise property
4(a) of Theorem 10 would give an immediate contradiction to K ⊆ I−. So
K ⊆ I−j for j = 1 or j = 2. For the same reason we get X̄{k}∪K{λ} /∈ Ḡ for
all k ∈ J ′, hence the contradiction J ′ ⊆ Ij

+−.
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Figure 6: Counter Attributes for X̄ = X̄{X1(X ′
1)⊕· · ·⊕Xn(X ′

n)} with dd(X̄) =
i + 1 in case 2
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Now we consider two cases 2.1, in which X̄I+−{λ} /∈ Ḡ holds, and 2.2, in
which X̄I+−{λ} ∈ Ḡ holds.

In case 2.1, whenever X̄J{λ} ∈ Ḡ holds, then also X̄J′{λ} ∈ Ḡ must hold for
all J ′ ⊆ J and even X̄(Xj1{X ′

j1
}, . . . , Xjp{X ′

jp
}) ∈ Ḡ for J ′ = {j1, . . . , jp}. Now

take maximal J1, . . . , J� ⊆ I+− with X̄Ji{λ} ∈ Ḡ. In particular, X̄Ji∩Ij
+−

{λ} ∈ Ḡ.
Then for i = 1, . . . , � define

�+
3i−1 = {(Xj : vj) | j ∈ I+− − (Ji ∩ I1

+−)} ∪ {(Xj : vj) | j ∈ I−}
�+
3i−2 = {(Xj : vj) | j ∈ I+− − Ji} ∪ {(Xj : vj) | j ∈ I−}
�+
3i = {(Xj : vj) | j ∈ I+− − (Ji ∩ I2

+−)} ∪ {(Xj : vj) | j ∈ I−}

with arbitrary vj ∈ dom(X ′
j) for j ∈ I− ∪ I+−. Similarly, define

�−1 = {(Xj : vj) | j ∈ I−}
�−2 = {(Xj : vj) | j ∈ I+− − I1

+−} ∪ {(Xj : vj) | j ∈ I−2 }
�−3 = {(Xj : vj) | j ∈ I+− − I2

+−} ∪ {(Xj : vj) | j ∈ I−1 }
�−3i+1 = {(Xj : vj) | j ∈ I+− − Ji} ∪ {(Xj : vj) | j ∈ I−}
�−3i+2 = {(Xj : vj) | j ∈ I+− − (Ji ∩ I1

+−)} ∪ {(Xj : vj) | j ∈ I−2 }
�−3i+3 = {(Xj : vj) | j ∈ I+− − (Ji ∩ I2

+−)} ∪ {(Xj : vj) | j ∈ I−1 }

Now define X̄+ and Ḡ+ as in subcase 1, so by induction we find S+
1 = {jσ

˜̄X
Y |

Y ∈ S( ˜̄X), j = 1, . . . , o} and S+
2 = {jτ

˜̄X
Y | Y ∈ ˜̄G, j = 1, . . . , p} with {πX̄+

Y (τ) |
τ ∈ S+

1 } = {πX̄+

Y (τ) | τ ∈ S+
2 } iff Y ∈ Ḡ+. We extend S+

1 and S+
2 , respectively,

to S1 and S2 analogously to subcase 1, i.e. we obtain S1 = {jσX̃
Y | Y ∈ S(X̃), Y �=

λ, j = 1, . . . , 3 ·o · �} and S2 = {jτ X̃
Y | Y ∈ G̃, Y �= λ, j = 1, . . . , 3 ·p · (�+1)} using

3(j−1)�+iσ̄
˜̄X

Y = jσ
˜̄X

Y ∪ �+
i (j = 1, . . . , o , i = 1, . . . , 3�) and

3(j−1)(�+1)+iτ̄
˜̄X

Y = jτ
˜̄X

Y ∪ �−i (j = 1, . . . , p , i = 1, . . . , 3� + 3).

For Z ∈ S(X) the projected values πX
Z (jσX̃

Y ) and πX
Z (jτ X̃

Y ) involve πX̄
Z̄

(jσ̄
˜̄X

Ȳ
)

and πX̄
Z̄

(jτ̄
˜̄X

Ȳ
), respectively, and if Z ∈ G, then also Z̄ ∈ Ḡ.

First let Z̄ = X̄(Y1, . . . , Yn). Then Z̄ ∈ Ḡ holds iff Yi = λ for all i ∈ I−,
{j ∈ I+− | Yj �= λ} ⊆ Jx for some x ∈ {1, . . . , �} and X̄(Yi1 , . . . , Yik

) ∈ Ḡ+ hold
(for I+ = {i1, . . . , ik}). Then we get

πX̄
Z̄ (3(j−1)�+iσ̄

˜̄X
Ȳ ) = πX̄+

X̄(Yi1 ,...,Yik
)(

jσ
˜̄X

Ȳ )}∪{(Xj : π
X′

j

Y ′
j
(vj)) | j ∈ I−∪I

(i)
+−, Yj �= λ}

for Yj = Xj{Y ′
j } and I

(i)
+− =

⎧⎪⎪⎨
⎪⎪⎩

I+− − J i+2
3

for i ≡ 1(3)

I+− − (J i+1
3

∩ I1
+−) for i ≡ 2(3)

I+− − (J i
3
∩ I2

+−) for i ≡ 0(3)

.
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Analogously, for i > 3 we obtain

πX̄
Z̄ (3(j−1)(�+1)+iτ̄

˜̄X
Ȳ ) =

πX̄+

X̄(Yi1 ,...,Yik
)(

jτ
˜̄X

Ȳ )} ∪ {(Xj : π
X′

j

Y ′
j
(vj)) | j ∈ I−(i) ∪ I

(i)
+−, Yj �= λ}

with I−(i) =

⎧⎪⎪⎨
⎪⎪⎩

I− if i ≡ 1(3)

I−1 if i ≡ 0(3)

I−2 if i ≡ 2(3)

For i ≤ 3 we have to replace the definition of I−(i) by I−(i) =

⎧⎪⎪⎨
⎪⎪⎩
∅ if i = 1

I+− − I1
+− if i = 2

I+− − I2
+− if i = 3

These values are equal for Z̄ ∈ Ḡ. In case Z̄ /∈ Ḡ we have either X̄(Yi1 , . . . , Yik
)

/∈ Ḡ+, which gives inequality for the first components of the unions due to the
construction of S+

1 and S+
2 , or Yi �= λ for some i ∈ I−, which implies that

(Xi : π
X′

i

Y ′
i
(vi)) always appears in the projection of S1, but not so for S2, or {j ∈

I+− | Yj �= λ} �⊆ Jx for all x = 1, . . . , �, which implies that some (Xj : π
X′

j

Y ′
j
(vj))

always appears in the projection of S1, but not so for S2 due to the definition of
�−1 . So we get inequality in all cases.

Now consider Z̄ = X̄I{λ}. For I ∩ I+ �= ∅, which implies X̄I{λ} ∈ Ḡ, we have
already seen the equality. Therefore, assume I ∩ I+ = ∅. If I ∩ I− �= ∅, then
X̄I{λ} /∈ Ḡ iff I ∩ I+− ⊆ Ij

+− and I ∩ I− ⊆ I−j for j = 1 or j = 2. In this case
we get πX̄

X̄I{λ}(τ) = {
} for all τ ∈ S1, but using either �−2 or �−3 for j = 1 or

j = 2, respectively, we obtain πX̄
X̄I{λ}(τ) = ∅ for some τ ∈ S2 iff X̄I{λ} /∈ Ḡ.

Therefore, we can further assume I∩I− = ∅. Now X̄I{λ} ∈ Ḡ iff X̄I∩I+−{λ} ∈
Ḡ, so we may even assume I ⊆ I+−. Then X̄I{λ} ∈ Ḡ holds iff I ⊆ Jx for some
x ∈ {1, . . . , �}. For Jx = {x1, . . . , xy} we have X̄(Xx1{X ′

x1
}, . . . , Xxy{X ′

xy
}) ∈ Ḡ,

so we have already shown the equality for I ⊆ Jx. For I �⊆ Jx for all x = 1, . . . , �

we obtain πX̄
X̄I{λ}(

1τ̄
˜̄X

Ȳ
) = ∅, but πX̄

X̄I{λ}(τ) �= ∅ for all τ ∈ S1, which shows the
desired inequality.

Next consider case 2.2, i.e. X̄I+−{λ} ∈ Ḡ. In this case let �−0 = {(Xi : τ
X′

i

X′
i
) |

i ∈ I−}, �−1 = {(Xi : τ
X′

i

X′
i
) | i ∈ I−2 }, and �−2 = {(Xi : τ

X′
i

X′
i
) | i ∈ I−1 }.

For I+− = {j1, . . . , jq} let X+− = X̄(Xj1{X ′
j1
}, . . . , Xjq{X ′

jq
}) and G+− =

{Y ∈ Ḡ | X+− ≥ Y }. For Y = X̄(Y1, . . . , Yq) ≤ X+− let ind(Y ) = {j | Yj �= λ}.
Let Y (1), . . . , Y (κ) be the maximal elements in G+− such that X̄K{λ} ∈ G holds
for all K ⊆ I+− − ind(Y (j)) (j = 1, . . . , κ). Define �+

j+1 = τ
X+−
Y (j) ∪ �−0 for

j = 1, . . . , κ, and �+
1 = τ

X+−
X+− ∪ �−0 .
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Let K1, . . . , Kμ ⊆ I+− be maximal with X̄Kj{λ} /∈ Ḡ. For j = 1, . . . , μ define

�0
j = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − Kj} ∪ �−0 ,

�1
j = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − (Kj ∩ I1
+−)} ∪ �−1 and

�2
j = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − (Kj ∩ I2
+−)} ∪ �−2 .

For j ∈ {1, . . . , μ} let J1, . . . , Jμj ⊆ Kj be maximal with X̄Ji{λ} ∈ Ḡ. For
i = 1, . . . , μj define

�0
j,i = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − Ji} ∪ �−0 ,

�1
j,i = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − (Ji ∩ I1
+−)} ∪ �−1 ,

�2
j,i = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − (Ji ∩ I2
+−)} ∪ �−2 ,

�10
j,i = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − Ji} ∪ �−0 ,

�11
j,i = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − (Ji ∩ I1
+−)} ∪ �−0 and

�12
j,i = {(Xα : τ

X′
α

X′
α

) | α ∈ I+− − (Ji ∩ I2
+−)} ∪ �−0 .

As before, we now extend these complex values to values in dom(X̄). For
this define X̄+, Ḡ+, S+

1 and S+
2 as in the first subcase. Then, using X̃ and G̃ as

before, define

(j−1)(κ+1)+iσ̄
˜̄X

Y = jσ
˜̄X

Y ∪ �+
i (j = 1, . . . , o , i = 1, . . . , κ + 1)

and (j−1)κ+i−1τ̄
˜̄X

Y = jτ
˜̄X

Y ∪ �+
i (j = 1, . . . , p , i = 2, . . . , κ + 1)

omitting in both cases those values, for which Y �Y (i) /∈ Ḡ (or Y �Y (i−1) /∈ Ḡ,
respectively). Next define

p(κ+3(j−1)μ)+3(i−1)+x+1τ̄
˜̄X

Y = jτ
˜̄X

Y ∪ �x
i

for j = 1, . . . , p, i = 1, . . . , μ and x = 0, . . . , 2,

p(κ+3μ)+3(j−1)μμk+3(k−1)μk+3(i−1)+x+1τ̄
˜̄X

Y = jτ
˜̄X

Y ∪ �x
k,i

for j = 1, . . . , p, k = 1, . . . , μ, i = 1, . . . , μk and x = 0, . . . , 2,

and analogously

o(κ+1)+3(j−1)μμk+3(k−1)μk+3(i−1)+x+1σ̄
˜̄X

Y = jσ
˜̄X

Y ∪ �1x
k,i
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for j = 1, . . . , o, k = 1, . . . , μ, i = 1, . . . , μk and x = 0, . . . , 2.

First consider Z̄ = X̄(Y1, . . . , Yn). If Z̄ ∈ Ḡ, then Yi = λ for all i ∈ I−.
So we can ignore the part in the definition of jσX̃

Y and jτ X̃
Y that arises from �−x

(x = 0, . . . , 2). This reduces the attention to τ
X+−
X+− appearing with a complex

value in S1 and �x
j (x = 0, . . . , 2, j = 1, . . . , μ) appearing only in values in S2.

By induction for each j and Y there is a j′ and a Y ′ with πX̄
Z̄

(jσ
˜̄X

Y ) = πX̄
Z̄

(j′τ
˜̄X

Y ′)
and vice versa.

First let Z̄ ∈ Ḡ be maximal. Then Z̄ � X+− is maximal in G+−, and from
Lemma 15(1.) we obtain πX̄

Z̄�X+−
(�+

1 ) = πX̄
Z̄�X+−

(�+
j+1) in case Z̄ �X+− = Y (j).

Otherwise, there is some Z ′ ≥ Z̄ � X+− such that τ
X+−
Z′ = {(Xα : τ

X′
α

X′
α

) |
α ∈ I+− − Kz} holds for some z ∈ {1, . . . , μ}, which implies πX̄

Z̄�X+−
(�+

1 ) =

πX̄
Z̄�X+−

(�0
z) due to Lemma 15(1.) Due to our construction this implies that for

each j = 1, . . . , o and each Y there exist j′ ∈ {1, . . . , p}, Y ′ and i ∈ {2, . . . , κ +
1} with πX̄

Z̄
((j−1)(κ+1)+1σ̄

˜̄X
Y ) = πX̄

Z̄
((j

′−1)κ+i−1τ̄
˜̄X

Y ′) or πX̄
Z̄

((j−1)(κ+1)+1σ̄
˜̄X

Y ) =

πX̄
Z̄

(pκ+3(j′−1)μ+3(i′−1)+1τ̄
˜̄X

Y ′) for some i′ ∈ {1, . . . , μ}.
Further, ind(Z̄ �X+−)∩Kj ⊆ Ji for some i ∈ {1, . . . , μj}, so πX̄

Z̄�X+−
(�x

j ) =

πX̄
Z̄�X+−

(�1x
j,i), which gives the desired equality for all maximal Z̄ ∈ Ḡ, hence for

all Z̄ ∈ Ḡ.
If Z̄ /∈ Ḡ holds, then assuming equality of the projected sets would im-

ply that πX̄
Z̄�X+−

(τX+−
X+− ) equals either πX̄

Z̄�X+−
(τX+−

Y (j) ) for j ∈ {1, . . . , κ} or

πX̄
Z̄�X+−

(τX+−
Y ) with Y = X̄(Xα1{X ′

α1
}, . . . , Xαx{X ′

αx
}) such that I+−−{α1, . . .

. . . , αx} is one of Kj , Kj ∩ I1
+− or Kj ∩ I2

+− for j ∈ {1, . . . , μ} or Ji, Ji ∩ I1
+−

or Ji ∩ I2
+− for i ∈ {1, . . . , μj}. On the other hand we have πX̄

Z̄�X+−
(τX+−

X+− ) =

πX̄
Z̄�X+−

(τX+−
Z̄�X+−

), so by Lemma 15(1.) we obtain Y (j) ≥ Z̄ � X+− or Y ≥
Z̄ � X+−.

In the first of these two cases we have Y (j) ∈ G+−, which implies the contra-
diction Z̄ ∈ Ḡ. In the second case we must have μ ≥ 1, so let IZ̄ = ind(Z̄�X+−).
If IZ̄ = I+−, then the projection of τ

X+−
Y (j) contains ∅ for all indices in Kj , but this

cannot happen for any τ ∈ S1. Hence we obtain the desired inequality in this
case. If IZ̄ �= I+−, then X̄IZ̄

{λ} /∈ Ḡ, otherwise property 4(a) in Theorem 10 gives
X̄I{λ} /∈ Ḡ for all I ⊆ I+− with IZ̄ � I. In particular, we could take I to be one
Kj (j ∈ {1, . . . , μ}), so IZ̄ = Ji for some i ∈ {1, . . . , μj}, but then Z̄�X+− ∈ G+−
due to property 4(a) of Theorem 10, which contradicts our assumption Z̄ /∈ Ḡ.
Hence IZ̄ ⊆ Kj for some j ∈ {1, . . . , μ} and IZ̄ �⊆ I+− − ind(Y (j)). Then the
projection onto Z̄ �X+− yields one tuple with only ∅ for some τ ∈ S2, while for
each τ ∈ S1 we always get at least one non-empty component. Hence the desired
inequality for Z̄ /∈ Ḡ.
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Now consider Z̄ = X̄I{λ}. If I ∩ I+ �= ∅ and thus Z̄ ∈ Ḡ, then we already
know that πX̄

Z̄
(jσ

˜̄X
Y ) = {
} = πX̄

Z̄
(j′σ

˜̄X
Y ′), which gives the desired equality in this

case. So we can assume I∩I+ = ∅. Due to the construction of S1 and S2 and the
fact that Z̄ ∈ Ḡ holds iff X̄I−I−{λ} ∈ Ḡ holds, we may even assume I ⊆ I+−∪I−.

Assume I ∩ I− �= ∅. Then Z̄ ∈ Ḡ iff I ∩ I+− ⊆ Ij
+− and I ∩ I− ⊆ I−j hold for

j = 1 or j = 2. In this case we get πX̄
X̄I{λ}(τ) = {
} for all τ ∈ S1, but using

either �1
j or �2

j for j = 1 or j = 2, respectively, we obtain πX̄
X̄I{λ}(τ) = ∅ for some

τ ∈ S2 iff X̄I{λ} /∈ Ḡ.
So finally we may assume I ⊆ I+−. Then X̄I{λ} /∈ Ḡ iff I ⊆ Kj for some

j ∈ {1, . . . , μ} and I �⊆ Ji for i = 1, . . . , μj . In this case we obtain πX̄
X̄I{λ}(τ) = ∅

for at least one τ ∈ S2, but not so for S1, while in case X̄I{λ} ∈ Ḡ we either
always obtain {
} or both {
} and ∅. This completes the proof for subcase 2.

Now let X̄ = X̄〈X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)〉 ∈ emb(X) with dd(X̄) = i + 1.
Using a similar construction as for the case above, where X̄ was a set at-
tribute, we may assume without loss of generality that X = X{X̄} holds –
this avoids dealing with too many indices. Let Ḡ = {Y ∈ S(X̄) | X{Y } ∈ G}
be the defect coincidence ideal on S(X̄) induced by the defect coincidence ideal
G on S(X). As X̄ ≡ X̄(X1〈X ′

1〉, . . . , Xn〈X ′
n〉) holds, we may ignore the fact

that we have a multiset attribute – thus also ignore the corresponding counter-
attributes – and first consider defect coincidence ideals H̄ = {Y ∈ Ḡ | Y =
X̄(Y1, . . . , Yn) for some Yi, i ∈ {1, . . . , n}} and H = {X{Y } ∈ S(X) | Y ∈ H̄}.
In doing so we get dd(X) = i, hence by induction there exist S+

1 , S+
2 ⊆ dom(X)

with the desired property for H. In particular, for X̄(Xi1〈λ〉, . . . , Xik
〈λ〉) ∈ H̄

we have {πX̄
X̄i1,...,ik

〈λ〉(τ) | τ ∈ S+
1 } = {πX̄

X̄i1,...,ik
〈λ〉(τ) | τ ∈ S+

2 }.
We may modify all occurring mutlisets by choosing a suitable power of 2 for

each i ∈ {1, . . . , n} such that whenever I �= J holds, the projections πX̄
X̄I〈λ〉(τ)

and πX̄
X̄J 〈λ〉(τ) yields completely different multiplicities, and {πX̄

X̄I〈λ〉(τ) | τ ∈
S+

1 } �= {πX̄
X̄I〈λ〉(τ) | τ ∈ S+

2 } holds for I = {i1, . . . , ik} and X̄(Xi1〈λ〉, . . .
. . . , Xik

〈λ〉) /∈ H̄.
Now look at those I = {i1, . . . , ik} , for which X̄I〈λ〉 ∈ Ḡ holds, but X̄(Xi1〈λ〉,

. . . , Xik
〈λ〉) /∈ Ḡ. Let MI = {|πX̄

X̄I〈λ〉(τ)| | τ ∈ S+
1 ∪S+

2 } be the set of correspond-
ing multiplicities. Choose an unused vi1 ∈ dom(X ′

i1) and define tmI = 〈(Xi1 : vi1)︸ ︷︷ ︸
m times

〉

for m ∈ MI . Adding all tmI to S+
1 and S+

2 gives {πX̄
X̄I〈λ〉(τ) | τ ∈ S+

1 } =

{πX̄
X̄I〈λ〉(τ) | τ ∈ S+

2 } without disturbing any of the other previously established
equalities and inequalities. Hence, doing this for each I for each I in question
we obtain the desired sets S1 and S2.

The case of X̄ = X̄[X1(X ′
1)⊕· · ·⊕Xn(X ′

n)] ∈ emb(X) with dd(X̄) = i+1 is
handled analogously to the multiset case, i.e. first ignore the counter-attributes,
then manipulate the number of occurrences of elements in the sublists, finally
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append lists with repeated entries of just one element. This completes the set
case.

For the multiset case we proceed almost analogously exploiting the construc-
tion of M1 and M2 by using minimal elements in the filter H = Sr(X) − G and
Boolean algebras B(Y ) ⊆ Sr(X) with top element Y ∈ H. Again, we consider
one-by-one embedded set, multiset and list attributes with degeneration depth
i + 1 starting with the set case.

So let X̄ = X̄{X1(X ′
1)⊕· · ·⊕Xn(X ′

n)} ∈ emb(X) be such that dd(X̄) = i+1.
Using the same arguments as in the set case we can assume without loss of
generality that X = X〈X̄〉 holds. Thus take Ḡ = {Y ∈ G | X〈Y 〉 ∈ G}, which is
a defect coincidence ideal on S(X̄). We distinguish the following three subcases:

1. X̄{1,...,n}{λ} ∈ Ḡ and X̄I−{λ} /∈ Ḡ;

2. X̄{1,...,n}{λ} ∈ Ḡ and X̄I−{λ} ∈ Ḡ;

3. X̄{1,...,n}{λ} /∈ Ḡ.

In subcase 1 we obtain a partition I+ = I+ ∪ I− ∪ I+− with the following
properties:

– X̄I′{λ} ∈ Ḡ for all I ′ with I ′ ∩ I+ �= ∅,
– X̄J−∪J{λ} ∈ Ḡ holds iff X̄J{λ} ∈ Ḡ for all J ⊆ I− ∪ I+− and J− ⊆ I−.

Taking I+ and I− maximal with these properties, we obtain (as in the set
case, subcase 1) the following additional properties of counter-attributes in S(X̄):

– X̄I′{λ} ∈ Ḡ for all I ′ ⊆ I−,

– X̄I′{λ} /∈ Ḡ for all I ′ ⊆ I−,

– X̄I′∪J′{λ} /∈ Ḡ, whenever I ′ ⊆ I+− ∪ I− and ∅ �= J ′ ⊆ I− holds,

– X̄J′{λ} ∈ Ḡ, whenever J ′ ⊆ J ⊆ I+− and X̄J{λ} ∈ Ḡ hold.

These properties were already illustrated by Figure 4. Now take J1, . . . , Jν ⊆
I+− maximal with X̄Ji{λ} ∈ Ḡ. For Ji = {j1, . . . , j�} we also get X̄(Xj1{X ′

j1}, . . .
. . . , Xj�

{X ′
j�
}) ∈ Ḡ. These J1, . . . , Jν generate an ideal I in the Boolean powerset

algebra P(I+−). Let J = P(I+−) − I be the complementary filter, K1, . . . , Kμ

the minimal elements in J and Ii = Ki ↓ the corresponding principal ideals.
For K ⊆ I+− define �+

K = {(Xj : vj) | j ∈ K} ∪ {(Xj : vj) | j ∈ I−}
and �−K = {(Xj : vj) | j ∈ K} using arbitrary fixed elements vj ∈ dom(X ′

j).
For i = 1, . . . , μ define M1i = {�+

K | K ∈ Ii with odd distance to ∅} and
M2i = {�−K | K ∈ Ii with even distance to ∅}. Further for j = 1, 2 let M−

j

be the multiset union of all Mji for i = 1, . . . , μ.
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For I+ = {i1, . . . , ik} consider again X̄+ = X̄(Xi1{X ′
i1
}, . . . , Xik

{X ′
ik
}). Ig-

noring the equivalenve arising from restructuring we get dd(X̄+) ≤ i, so by
induction with respect to the defect coincidence ideal Ḡ+ = {Y ∈ Ḡ | X̄+ ≥ Y }
we obtain multisets M+

1 , M+
2 with 〈πX̄+

Y (τ) | τ ∈ M+
1 〉 = 〈πX̄+

Y (τ) | τ ∈ M+
2 〉 iff

Y ∈ Ḡ+ holds. Finally, for j = 1, 2 define Mj = 〈τ+ ∪ τ− | τ+ ∈ M+
j , τ− ∈ M−

j 〉.
Now look at Z = X〈Z̄〉 ∈ S(X). First assume Z̄ = X̄(Z1, . . . , Zn). Then

Z̄ ∈ Ḡ holds iff Zi = λ for all i ∈ I−, {j ∈ I+− | Zj �= λ} ⊆ Ji for some
i ∈ {1, . . . , ν}, and X̄(Zi1 , . . . , Zik

) ∈ Ḡ+ hold. Furthermore, πX̄
Z̄

(τ+ ∪ τ−) =

πX̄
X̄(Zi1 ,...,Zik

)
(τ+) ∪ π

X̄+−
X̄(Zj1 ,...,Zj�

)
(τ−) using I+− = {j1, . . . , j�} and X̄+− =

X̄(Xj1{X ′
j1}, . . . , Xj�

{X ′
j�
}). So all we need to show is 〈πX̄+−

X̄(Zj1 ,...,Zj�
)
(τ) | τ ∈

M−
1 〉 = 〈πX̄+−

X̄(Zj1 ,...,Zj�
)
(τ) | τ ∈ M−

2 〉 iff {j ∈ I+− | Zj �= λ} ⊆ Ji for some

i ∈ {1, . . . , ν}. This follows immediately from our construction of M−
j , which

is the same construction as for the base case dd(U) = 0 applied to U =
X̄(Xj1{λ}, . . . , Xj�

{λ}).
Next let Z̄ = X̄I{λ}. If I ∩ I+ �= ∅ holds, we already have seen 〈πX̄

Z̄
(τ+) |

τ+ ∈ M+
1 〉 = 〈 {
}︸︷︷︸

|M+
1 | times

〉 = 〈πX̄
Z̄

(τ+) | τ+ ∈ M+
2 〉, hence also 〈πX̄

Z̄
(τ) | τ ∈

M1〉 = 〈 {
}︸︷︷︸
|M1| times

〉 = 〈πX̄
Z̄

(τ) | τ ∈ M2〉. Therefore, we can assume I ∩ I+ = ∅.

Due to our construction and the fact that X̄I{λ} ∈ Ḡ iff X̄I−I−{λ} ∈ Ḡ holds,
we may even assume I ⊆ I+− ∪ I−. In case I ∩ I− �= ∅, thus in particular
X̄I{λ} /∈ Ḡ, we have πX̄

Z̄
(τ) �= ∅ for all τ ∈ M−

1 , while πX̄
Z̄

(τ) = ∅ for at least one
τ ∈ M−

2 , so we have the desired inequality in this case. Finally, assume I ⊆ I+−.
Then X̄I{λ} ∈ Ḡ holds iff I ⊆ Ji for some i ∈ {1, . . . , ν}, or Kj �⊆ I for all
j = 1, . . . , μ. In case Kj ⊆ I we obtain 〈πX̄

Z̄
(τ) | τ ∈ M1j〉 = 〈 {
}︸︷︷︸

|M1j | times

〉, while

〈πX̄
Z̄

(τ) | τ ∈ M2j〉 = 〈∅, {
}︸︷︷︸
|M2j | times

〉 holds, which implies the desired inequality,

and completes subcase 1.
In subcase 3 we must have X̄I−{λ} /∈ Ḡ due to property 4(a) of Theorem

10 and in particular I− �= ∅. If we now partition I+ into I+, I+− and I− as in
the previous subcase using property 6(a) of Theorem 10, then property 6(a)(ii.)
of Theorem 10 and the fact that X̄I{λ} /∈ Ḡ holds for I ∩ I− �= ∅ implies that
I+ = ∅. Then we can apply the same construction as in the subcase 1 with the
only difference that we now have to take Mj = M−

j . The proof of the desired
equalities and inequalities remains the same.

So let us concentrate on the remaining subcase 2, in which we partition
I+ = I+ ∪ I− ∪ I+− with maximal I+ and I−, so that we can establish the
following properties in the same way as in subcase 2 of the set case (illustrated
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in Figure 6):

– X̄I′{λ} ∈ Ḡ holds for all I ′ with I ∩ I+ �= ∅,
– X̄J−∪J{λ} ∈ Ḡ holds iff X̄J{λ} ∈ Ḡ for all J ⊆ I− ∪ I+− and all J− ⊆ I−,

– I− = I−1
·∪ I−2 and for all I ′ ⊆ I− we have X̄I′{λ} /∈ Ḡ iff ∅ �= I ′ ⊆ I−j holds

for j = 1 or j = 2,

– I+− = I1
+− ∩ I2

+−, and X̄I′{λ} /∈ Ḡ holds for I ′ ⊆ I+− ∪ I− with I ′ ∩ I− �= ∅
iff I ′ = J+− ∪ J− with J+− ⊆ Ij

+− and J− ⊆ I−j for j = 1 or j = 2.

Now we have to distinguish two more cases: X̄I+−{λ} /∈ Ḡ or X̄I+−{λ} ∈ Ḡ.
In the first of these cases for K ⊆ I+− define

�K = {(Xj : vj) | j ∈ K} ∪ {(Xj : vj) | j ∈ I−},
�1

K = {(Xj : vj) | j ∈ I+− − K} ∪ {(Xj : vj) | j ∈ I−2 }, and

�2
K = {(Xj : vj) | j ∈ I+− − K} ∪ {(Xj : vj) | j ∈ I−1 }.

Take J1, . . . , Jν ⊆ I+− maximal with X̄Ji{λ} ∈ Ḡ, let I be the gener-
ated ideal in P(I+−), and let J = P(I+−) − I be the corresponding filter.
Let K1, . . . , Kμ be minimal in J and define the corresponding principal ide-
als Ii = Ki ↓. Define M1i = {�K | K ∈ Ii with odd distance to ∅} and
M2i = {�K | K ∈ Ii with even distance to ∅}, and then define M−

1 as the
multiset union of all M1i for i = 1, . . . , μ and 〈�I+−−I1

+−
, �I+−−I2

+−
〉, and M−

2 as
the multiset union of all M2i for i = 1, . . . , μ and 〈�1

I1
+−

, �2
I2
+−

〉.
As in subcase 1 we obtain M+

1 and M+
2 inductively for I+ = {i1, . . . , ik},

X̄+ = X̄(Xi1{X ′
i1
}, . . . . . . , Xik

{X ′
ik
}) and Ḡ+ = {Y ∈ Ḡ | X̄+ ≥ Y }, so we

define Mj = 〈τ+ ∪ τ− | τ+ ∈ M+
j , τ− ∈ M−

j 〉.
Now look at Z = X〈Z̄〉 ∈ S(X). First assume Z̄ = X̄(Z1, . . . , Zn) ∈ Ḡ,

so we have πX̄
Z̄

(τ+ ∪ τ−) = πX̄+

X̄(Zi1 ,...,Zik
)
(τ+) ∪ π

X̄+−
X̄(Zj1 ,...,Zj�

)
(τ−) using I+− =

{j1, . . . , j�} and X̄+− = X̄(Xj1{X ′
j1
}, . . . . . . , Xj�

{X ′
j�
}).

Using the same arguments as in the case of degeneration depth 0 we obtain
〈πX̄+−

X̄(Zj1 ,...,Zj�
)
(τ) | τ ∈ M−

1 〉 = 〈πX̄+−
X̄(Zj1 ,...,Zj�

)
(τ) | τ ∈ M−

2 〉 iff {j ∈ I+− | Jj �=
λ} ⊆ Ji holds, which follows from Z̄ ∈ Ḡ. For Z̄ = X̄(Z1, . . . , Zn) /∈ Ḡ we must
have {j ∈ I+− | Jj �= λ} �⊆ Ji for all i = 1, . . . , ν or Zj �= λ for some j ∈ I− or
X̄(Zi1 , . . . , Zik

) /∈ Ḡ+. In all three cases the desired inequality is obvious.
Next look at Z̄ = X̄I{λ}. If I ∩ I+ �= ∅ holds (hence Z̄ ∈ Ḡ), the desired

equality follows from the construction of M+
1 and M+

2 . So let us assume I ⊆
I+− ∪ I− – as in the previous subcase we may again ignore I−. For I ∩ I− �= ∅
we get Z̄ /∈ Ḡ iff I ∩ I+− ⊆ Ij

+− and I ∩ I− ⊆ I−j for j = 1 or j = 2. In
this case only πX̄

Z̄
(�j

Ij
+−

) = ∅ holds, which yields the desired inequality. Finally,
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for I ⊆ I+− we may concentrate on the multisets Mji. For Ki ⊆ I we obtain
that 〈πX̄

Z̄
(τ) | τ ∈ M1i〉 only contains non-empty sets, while 〈πX̄

Z̄
(τ) | τ ∈ M2i〉

contains one empty set.
Now address the other case: X̄I+−{λ} ∈ Ḡ. Here we use

X̄+
+− = X̄(Xi1{X ′

i1}, . . . , Xik
{X ′

ik
}, Xj1{X ′

j1}, . . . , Xj�
{X ′

j�
})

and Ḡ+
+− = {Y ∈ Ḡ | X̄+ ≥ Y } ignoring counter-attributes. So, inductively

we obtain multisets M+
1 and M+

2 with 〈πX̄
Z̄

(τ) | τ ∈ M+
1 〉 = 〈πX̄

Z̄
(τ) | τ ∈ M+

2 〉 iff
Z̄ ∈ Ḡ+

+−. Thus, M+
1 and M+

2 are sufficient for the desired equalities and inequal-
ities with respect to all subattributes that can be written as record attributes.
However, for I ⊆ I+− with Z̄ = X̄I{λ} ∈ Ḡ, but X̄(Xj1{X ′

j1}, . . . , Xj�
{X ′

j�
})

for I = {j1, . . . , j�} we still have 〈πX̄
Z̄

(τ) | τ ∈ M+
1 〉 �= 〈πX̄

Z̄
(τ) | τ ∈ M+

2 〉,
but we need equality here. Note that the sets I with this property form a filter
J in P(I+−) due to property 4(a) of Theorem 10. If I is minimal in J, then
define MI1 = {�K | K ⊆ I with even distance to I} and MI2 = {�K | K ⊆
I with odd distance to I}, where �K = {(Xj : τ

X′
j

X′
j
) | j ∈ I − K}, then add

MI1 and MI2 to M+
1 and M+

2 (or the other way round), respectively, as many
times as necessary to equalise the occurrences of ∅ in 〈πX̄

Z̄
(τ) | τ ∈ M+

j 〉 for
j = 1, 2. This is possible, because MI1 adds exactly one such occurrence. In
doing so, none of the previously established equalities and inequalities will be
destroyed, and we can continue the procedure with the filter J − {I}. Finally,
replace τ ∈ M+

1 (or M+
2 , respectively) by τ ∪ {(Xj : vj) | j ∈ I−}, and define

M1 = M+
1 �〈�I+−−I1

+−
, �I+−−I2

+−
〉 and M2 = M+

2 �〈�1
I1
+−

, �2
I2
+−

〉 as in the previ-

ous subcase. This gives the necessary equalities and inequalities for Z̄ = X̄I{λ}
with I ∩ I− �= ∅ thereby completing subcase 2.

Now let X̄ = X̄〈X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)〉 ≡ X̄(X1〈X ′
1〉, . . . , Xn〈X ′

n〉) with
dd(X̄) = i + 1. Without loss of generality we may assume again X = X〈X̄〉,
so we take Ḡ = {Y ∈ S(X̄) | X〈Y 〉 ∈ G}. As in the base case with dd(X̄) = 0
we consider the filter H = S(X̄) − Ḡ. Basically, we apply the same construction
as for the base case, i.e. for j = 1, 2 we construct Mj as the multiset union of
Mji for i = 1, . . . , ν, where M1i and M2i are determined by a principal ideal
Ii = Zi ↓ with Zi ∈ H; however, we adopt the following modifications:

1. For Z1, . . . , Zν we take all elements in H, not just the minimal ones. This
does not do harm to the construction.

2. If Zi = X̄(Xj1〈λ〉, . . . , Xjμ〈λ〉) holds with X̄j1,...,jμ〈λ〉 ∈ Ḡ, then we modify
the construction such that 〈πX̄

X̄I 〈λ〉(τ) | τ ∈ M1i〉 = 〈πX̄
X̄I 〈λ〉(τ) | τ ∈ M2i〉

holds for all I.

3. If Zi = X̄(Xj1〈λ〉, . . . , Xjμ〈λ〉) holds with X̄j1,...,jμ〈λ〉 /∈ Ḡ, then we modify
the construction such that 〈πX̄

X̄I 〈λ〉(τ) | τ ∈ M1i〉 = 〈πX̄
X̄I 〈λ〉(τ) | τ ∈ M2i〉

holds for all I except {j1, . . . , jμ}.
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As the claimed properties 2 and 3 follow from Lemma 16 below, this com-
pletes the proof for this case.

Finally, let X̄ = X̄[X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] with dd(X̄) = i + 1, and
without loss of generality assume X = X〈X̄〉. Then take Ḡ = {Y ∈ S(X̄) |
X〈Y 〉 ∈ G}. First constructing multisets using the extended ideal Ḡext = Ḡ ∪
{X̄(Xj1 [λ], . . . , Xjk

[λ])} we may ignore all counter-attributes and obtain induc-
tively multisets M∼

1 and M∼
2 with 〈πX̄

Z̄
(τ) | τ ∈ M∼

1 〉 = 〈πX̄
Z̄

(τ) | τ ∈ M∼
2 〉 iff

Z̄ ∈ Ḡext holds.
Secondly, we ignore the order and treat X̄, as if it were a multiset attribute

instead of a list attribute. Then the previous case gives us multisets M
〈〉
1 and M

〈〉
2

with the desired properties except for subattributes of the form X̄ [Xj1(Yj1) ⊕
· · · ⊕ Xjk

(Yjk
)]. We concatenate the elements in M

〈〉
j according to the order of

the indices. Then 〈πX̄
Z̄

(τ) | τ ∈ M
〈〉
1 〉 = 〈πX̄

Z̄
(τ) | τ ∈ M

〈〉
2 〉 holds iff either Z̄ ∈ Ḡ

and Z̄ �= X̄[Xj1(Yj1) ⊕ · · · ⊕ Xjk
(Yjk

)] or Z̄ = X̄ [Xj1(Yj1) ⊕ · · · ⊕ Xjk
(Yjk

)]
and X̄(Xj1 [Yj1 ], . . . , Xjk

[Yjk
]) ∈ Ḡ. Hence, taking Mj = M

〈〉
j � M∼

j (j = 1, 2)
completes the proof for this case and hence the theorem.

We still have to show the following lemma.

Lemma16.

1. For each k ≥ 2 there exist finite multisets M1, M2 of k-tuples in Nk such
that the following properties hold:

– 〈πI(τ) | τ ∈ M1〉 = 〈πI(τ) | τ ∈ M2〉 iff I �= {1, . . . , k};
– 〈(1, . . . , 1) • τ | τ ∈ M1〉 = 〈(1, . . . , 1) • τ | τ ∈ M2〉.

2. For each k, � ∈ N with � < k there are finite multisets M1, M2 of k-tuples in
Nk such that the following properties hold:

– 〈πI(τ) | τ ∈ M1〉 = 〈πI(τ) | τ ∈ M2〉 iff {1, . . . , �} �⊆ I;

– 〈(1, . . . , 1) • πI(τ) | τ ∈ M1〉 = 〈(1, . . . , 1) • πI(τ) | τ ∈ M2〉 iff I �=
{1, . . . , �}.

Here • denotes the standard scalar product.

Proof. For the first statement we use the symmetric group Sk+1 and the alter-
nating normal subgroup Ak+1 to define

M1 = 〈(σ(1), . . . , σ(k)) | σ ∈ Ak+1〉 and

M2 = 〈(σ(1), . . . , σ(k)) | σ ∈ Sk+1 − Ak+1〉.

For I �= {1, . . . , k} there is some j /∈ I. If (σ(1), . . . , σ(k)) ∈ M1, then using
τ = σ ◦ (j, k + 1) /∈ Ak+1 gives σ(i) = τ(i) for all i /∈ {j, k + 1}, hence the first
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property. The second property follows immediately from (x1, . . . , xk) ∈ M1 iff
(x2, x1, x3, . . . , xk) ∈ M2.

For the second statement we may without loss of generality construct mul-
tisets of k-tuples in Zk with the desired properties. Adding a sufficiently large
positive constant c to all values then gives the desired tuples in Nk.

We use induction on k − �. So for the base case let k = � + 1. Let A� and B�

be the sets of 0, 1-tuples of length � with odd or even, respectively, occurrences
of 1. We embed A� and B� into k-dimensional space yielding

A1
�+1 = {(x1, . . . , x�, 0) | (x1, . . . , x�) ∈ A�} and

B1
�+1 = {(x1, . . . , x�, 0) | (x1, . . . , x�) ∈ B�}.

Then define

A2
�+1 = B1

�+1 + (−1, . . . ,−1, �) and B2
�+1 = A1

�+1 + (−1, . . . ,−1, �),

respectively, and A�+1 = A1
�+1 ∪ A2

�+1, B�+1 = B1
�+1 ∪ B2

�+1.

1. As (−1, . . . ,−1) ∈ π{1,...,�}(A�+1)−π{1,...,�}(B�+1), we obviously have 〈πI(τ) |
τ ∈ A�+1〉 �= 〈πI(τ) | τ ∈ B�+1〉 for {1, . . . , �} ⊆ I.

2. For I with {1, . . . , �} �⊆ I we may take I = {2, . . . , k} without loss of gen-
erality. For (0, x2, . . . , x�, 0) ∈ A1

�+1 we get (1, x2, . . . , x�, 0) ∈ B1
�+1, and

for (1, x2, . . . , x�, 0) ∈ A1
�+1 we get (0, x2, . . . , x�, 0) ∈ B1

�+1. Similarly, for
(0, x2, . . . , x�, �) ∈ A2

�+1 we must have (1, x2 +1, . . . , x� +1, 0) ∈ B1
�+1, hence

(0, x2 + 1, . . . , x� + 1, 0) ∈ A1
�+1 and (−1, x2, . . . , x�, �) ∈ B2

�+1. Analogously,
(−1, x2, . . . , x�, �) ∈ A2

�+1 implies (0, x2, . . . , x�, �) ∈ B2
�+1 and vice versa.

This shows 〈πI(τ) | τ ∈ A�+1〉 = 〈πI(τ) | τ ∈ B�+1〉 for I with {1, . . . , �} �⊆ I.

3. Due to 2 we already know 〈(1, . . . , 1)•πI(τ) | τ ∈ A�+1〉 = 〈(1, . . . , 1)•πI(τ) |
τ ∈ B�+1〉 for I �= {1, . . . , �} and I �= {1, . . . , k}. Each (1, . . . , 1) • τ with
τ ∈ A1

�+1 gives an odd number with i occurring
(
�
i

)
times. The same holds

for B2
�+1, as (1, . . . , 1)•(−1, . . . ,−1, �) = 0. The analogue with even numbers

holds for A2
�+1 and B1

�+1, so we obtain equality also for I = {1, . . . , k}. For
the remaining I = {1, . . . , �} we obtain −� = (1, . . . , 1)•π{1,...,�}(τ) for some
τ ∈ A�+1, but not so for B�+1.

Now assume the claimed properties hold for � < k − 1, so we can assume
multisets M ′

1, M ′
2 with the desired properties. We first define

Ma
1 = 〈(x1, . . . , xk−1, 0) | (x1, . . . , xk−1) ∈ M ′

1〉 �
〈(x1 − 1, . . . , xk−1 − 1, k − 1) | (x1, . . . , xk−1) ∈ M ′

2〉
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and

Ma
2 = 〈(x1, . . . , xk−1, 0) | (x1, . . . , xk−1) ∈ M ′

2〉 �
〈(x1 − 1, . . . , xk−1 − 1, k − 1) | (x1, . . . , xk−1) ∈ M ′

1〉

similar to the base case.

1. The first property holds by induction for all I with k /∈ I. However, as
〈πI(τ) | τ ∈ Ma

1 〉 = 〈πI(τ) | τ ∈ Ma
2 〉 iff 〈πI−{k}(τ) | τ ∈ M ′

1〉 = 〈πI−{k}(τ) |
τ ∈ M ′

2〉, which by induction is equivalent to {1, . . . , �} �⊆ I − {k}, it even
holds for all I.

2. The second property holds by induction for all I with k /∈ I. According
to the construction of Ma

1 and Ma
2 the equality immediately extends to all

I ∪ {k}, unless I = {1, . . . , �} and � < k − 1.

3. For I = {1, . . . , �} and � < k − 1 define

M b
1 = 〈(x1, . . . , xk−1, k − 1 − �) | (x1, . . . , xk−1) ∈ M ′

1〉 �
〈(x1 − 1, . . . , xk−1 − 1, �) | (x1, . . . , xk−1) ∈ M ′

2〉

and

M b
2 = 〈(x1, . . . , xk−1, k − 1 − �) | (x1, . . . , xk−1) ∈ M ′

2〉 �
〈(x1 − 1, . . . , xk−1 − 1, �) | (x1, . . . , xk−1) ∈ M ′

1〉,

for which we can apply the same arguments to show properties in 1 and 2.
Consequently, M1 = Ma

1 � M b
1 and M2 = Ma

2 � M b
2 will satisfy the desired

properties, if we can prove the second property for I = {1, . . . , �, k}. For this
I we obtain

〈(1, . . . , 1) • πI(τ) | τ ∈ M1〉 =

〈(1, . . . , 1) • π{1,...,�}(τ) | τ ∈ M ′
1〉 �

〈(1, . . . , 1) • π{1,...,�}(τ) + (k − 1 − �) | τ ∈ M ′
2〉 �

〈(1, . . . , 1) • π{1,...,�}(τ) + (k − 1 − �) | τ ∈ M ′
1〉 �

〈(1, . . . , 1) • π{1,...,�}(τ) | τ ∈ M ′
2〉 =

〈(1, . . . , 1) • πI(τ) | τ ∈ M2〉.

This completes the proof of the lemma.

The result in Theorem 12 covers the case, for which structural induction in
the proof of Theorem 17 breaks down. We can now show the main result of this
section.
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Theorem 17 (Central Theorem). Let F ⊆ S(X) be an ideal for the nested
attribute X ∈ N such that the union constructor appears in X only directly
inside a set-, list or multiset-constructor, and the properties in Theorem 10 are
satisfied. Then F is a coincidence ideal.

Proof. We may assume F �= S(X) without loss of generality. Then use structural
induction on X , the case X = λ being trivial.

For a simple attribute X = A we can only have F = {λ}, so we take t1 = a

and t2 = a′ with arbitrary a, a′ ∈ dom(A) satisfying a �= a′.
For record attributes let X = X(X1, . . . , Xn) with X{λ}, X〈λ〉, X [λ] /∈ S(X),

i.e. not all Xi are set, multiset or list attributes, in which case X would be
equivalent to (or a subattribute of) a set, multiset or list attribute with a union
attribute as the component attribute – we deal with these cases separately. For
i = 1, . . . , n let Fi = {Yi ∈ S(Xi) | X(λ, . . . , λ, Yi, λ, . . . , λ) ∈ F}, which by
property 7(a) of Theorem 10 is a coincidence ideal on S(Xi). So by induction
there exist complex values tij (i = 1, . . . , n, j = 1, 2) with πXi

Yi
(ti1) = πXi

Yi
(ti2)

iff Yi ∈ Fi. Defining tj = (t1j , . . . , tnj) for j = 1, 2 gives πX
X(Y1,...,Yn)(tj) =

(πX1
Y1

(t1j), . . . , πXn

Yn
(tnj)), hence πX

X(Y1,...,Yn)(t1) = πX
X(Y1,...,Yn)(t2) iff Yi ∈ Fi

for all i = 1, . . . , n iff X(Y1, . . . , Yn) ∈ F, as for i �= i′ the subattributes
X(λ, . . . , λ, Yi, λ, . . . , λ) and X(λ, . . . , λ, Yi′ , λ, . . . , λ) are reconsilable.

For list attributes let X = X [X ′] with X ′ not being a union attribute – this
case will be dealt with separately. For F = {λ} take t1 = [v] with any value
v ∈ dom(X ′) and t2 = []. Then obviously πX

X[λ](t1) = [
] �= [] = πX
X[λ](t2)

holds. In case F �= {λ} take the embedded coincidence ideal (by property 7(b)
of Theorem 10) G = {Y ∈ S(X ′) | X [Y ] ∈ F}. By induction there are t′1, t

′
2 ∈

dom(X ′) with πX′
Y (t′1) = πX′

Y (t′2) iff Y ∈ G. Now define tj = [t′j ] (j = 1, 2), which
gives πX

X[Y ](tj) = [πX′
Y (t′j)] for all Y ∈ S(X ′). Hence we get πX

X[Y ](t1) = πX
X[Y ](t2)

iff Y ∈ G iff X [Y ] ∈ F.
Analogously, for a set attribute X = X{X ′} with X ′ not being a union

attribute we can choose t1 = {v} with any value v ∈ dom(X ′) and t2 = ∅ in
case F = {λ}. In case F �= {λ} take the embedded defect coincidence ideal (by
property 7(d) of Theorem 10) G = {Y ∈ S(X ′) | X{Y } ∈ F} on S(X ′). Using
statement 1 of Theorem 12 there exist t1, t2 ∈ dom(X) with {πX′

Y (τ) | τ ∈ t1} =
{πX′

Y (τ) | τ ∈ t2} iff Y ∈ G, i.e. πX
X{Y }(t1) = πX

X{Y }(t2) iff X{Y } ∈ F.
Analogously, for a multiset attribute X = X〈X ′〉 with X ′ not being a union

attribute we can choose t1 = 〈v〉 with any value v ∈ dom(X ′) and t2 = 〈〉 in
case F = {λ}. In case F �= {λ} take the embedded defect coincidence ideal (by
property 7(e) of Theorem 10) G = {Y ∈ S(X ′) | X〈Y 〉 ∈ F} on S(X ′). Using
statement 2 of Theorem 12 there exist t1, t2 ∈ dom(X) with 〈πX′

Y (τ) | τ ∈ t1〉 =
〈πX′

Y (τ) | τ ∈ t2〉 iff Y ∈ G, i.e. πX
X〈Y 〉(t1) = πX

X〈Y 〉(t2) iff X〈Y 〉 ∈ F.
Now let X = X{X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n)} ≡ X(X1{X ′

1}, . . . , Xn{X ′
n}). For

F = {λ} take t1 = {(X1 : v1), . . . , (Xn : vn)} with arbitrary values vi ∈ dom(X ′
i)
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for i = 1, . . . , n and t2 = ∅. This gives πX
XI{λ}(t1) �= ∅ for I �= ∅ and πX

XI{λ}(t2) =
∅ for all I, from which the claim follows immediately. So it is sufficient to consider
F �= {λ}, for which we define I+ = {i ∈ {1, . . . , n} | X{i}{λ} ∈ F} and I− =
{i ∈ {1, . . . , n} | X{i}{λ} /∈ F}. Then we consider the following three cases:

1. X{1,...,n}{λ} ∈ F and XI−{λ} /∈ F;

2. X{1,...,n}{λ} ∈ F and XI−{λ} ∈ F;

3. X{1,...,n}{λ} /∈ F.
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Figure 7: Counter Attributes for X = X{X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)} in Case 1

In case 1 we immediately obtain the following properties for counter at-
tributes XI{λ}:

– If I ⊆ I+, then XI{λ} ∈ F. This follows immediately from property 5(a) in
Theorem 10 and the definition of I+.

– If I ⊆ I−, then XI{λ} /∈ F. Otherwise property 4(a) of Theorem 10 would
imply X(Xi1{X ′

i1}, . . . , Xik
{X ′

ik
}) ∈ F for I = {i1, . . . , ik} and further

X(Xij{λ}) = Xij{λ} ∈ F for j = 1, . . . , k by property 2 of coincidence
ideals. However, this contradicts the definition of I−.

Furthermore, we can partition I+ into I+
1 and I+

2 defining I+
1 = {i ∈ I+ |

∃Ji ⊆ I−.XJi∪{i}{λ} /∈ F} and I+
2 = I+ − I+

1 . Due to property 4(c) of Theorem
10 we have I+

2 �= ∅. This leads to the following two properties:
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– For each non-empty J ⊆ I− and I ⊆ I+
1 we must have XI∪J{λ} /∈ F. From

property 4(d) of coincidence ideals in Theorem 10 it follows immediately that
XI∪I−{λ} /∈ F holds. If we had XI∪J{λ} ∈ F for some J ⊆ I−, then property
4(a) of Theorem 10 would lead again to the contradiction X{j}{λ} ∈ F for
j ∈ J .

– For each J ⊆ I− and each I ⊆ I+
1 with I ∩ I+

2 �= ∅ we obtain XI∪J{λ} ∈ F.
First, X{i}∪J{λ} ∈ F for i ∈ I ∩ I+

2 follows from the definition of I+
2 , then

XI−{i}{λ} ∈ F and property 5(a) imply the claimed property.

Figure 7 illustrates the various combinations of indices in I+ and I− and the
impact on F.

For I+
2 = {i1, . . . , ik} define the subattribute X+ by X+ = X(Xi1{X ′

i1}, . . .
. . . , Xik

{X ′
ik
}) ≡ X{Xi1(X ′

i1
) ⊕ · · · ⊕ Xik

(X ′
ik

)} and F+ = {Y ∈ F | X+ ≥ Y }.
Then F+ is a coincidence ideal on S(X+). As for all I ⊆ I+

2 we have XI{λ} ∈
F, properties 4, 5 and 6 of Theorem 10 follow immediately, while the other
properties 1, 2, 3 and 7 follow from the corresponding properties of F. As in the
record case above define Fj = {Yj ∈ S(Xij{X ′

ij
}) | X(λ, . . . , λ, Yj , λ, . . . , λ) ∈

F+} for j = 1, . . . , k. Due to property 7(a) of coincidence ideals in Theorem 10
Fj is a coincidence ideal on S(Xij{X ′

ij
}). By induction there exist complex values

tij� ∈ dom(Xij{X ′
ij
}) for j = 1, . . . , k and � = 1, 2 such that π

Xij
{X′

ij
}

Yj
(tij1) =

π
Xij

{X′
ij
}

Yj
(tij2) holds iff Yj ∈ Fj .

Define t+� = (ti1�, . . . , tik�) ∈ dom(X+) for � = 1, 2, which can be identified
with t+� = {(Xij : τij ) | τij ∈ tij�, j ∈ {1, . . . , k}} ∈ dom(X). Then we obtain
πX+

Y (t+1 ) = πX+

Y (t+2 ) iff Y ∈ F+, because subattributes X(λ, . . . , λ, Yj , λ, . . . , λ)
and X(λ, . . . , λ, Yj′ , λ, . . . , λ) for j �= j′ are reconsilable, F+ contains all counter
attributes XI{λ} with I ⊆ I+

2 and X(Xi1{λ}, . . . , Xik
{λ}) ∈ F.

Finally, select arbitrary values vi ∈ dom(X ′
i) for i ∈ I− and define t−1 =

{(Xi : vi) | i ∈ I−}, t1 = t+1 ∪ t−1 and t2 = t+2 . Then we obtain the following:

1. For Y = X(Y1, . . . , Yn) ∈ F we must have Yi = λ for all i ∈ I− and Y + =
X(Yi1 , . . . , Yik

) ∈ F+. This gives πX
Y (t1) = πX+

Y + (t+1 ) = πX+

Y + (t+2 ) = πX
Y (t2) as

desired.

2. For Y = X(Y1, . . . , Yn) /∈ F we must have either Yi �= λ for some i ∈ I− or
Y + = X(Yi1 , . . . , Yik

) /∈ F+ in case this does not hold. In the first case we
have Y ≥ X{i}{λ} with i ∈ I− and from πX

X{i}{λ}(t1) �= ∅ = πX
X{i}{λ}(t2) we

obtain πX
Y (t1) �= πX

Y (t2) as desired.

3. For Y = XI{λ} ∈ F we must have I ⊆ I+
1 or I ∩ I+

2 �= ∅. In the first case we
have πX

Y (t1) = ∅ = πX
Y (t2), while in the second case due to the non-emptiness

of t+1 and t+2 according to Theorem 12 we have πX
Y (t1) = {
} = πX

Y (t2).
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4. For Y = XI{λ} /∈ F we must have I ∩ I+
2 = ∅ and I ∩ I− �= ∅. Due

to the second property we have πX
Y (t1) �= ∅, while the first property gives

πX
Y (t2) = ∅.

Taking these four cases together we have πX
Y (t1) = πX

Y (t2) iff Y ∈ F, which
solves our claim in case 1.

In case 2 we immediately obtain the following properties for counter at-
tributes XI{λ}:

– If I ⊆ I+, then XI{λ} ∈ F. This follows immediately from property 5(a) in
Theorem 10 and the definition of I+.

– There is a partition of I− into I−1 and I−2 such that XI{λ} /∈ F for all non-
empty I ⊆ I−1 or I ⊆ I−2 , whereas XI{λ} ∈ F for i ⊆ I− with I ∩ I−1 �=
∅ �= I−2 . This follows directly from properties 4(b) and (a) in Theorem 10
together with the definition of I−.
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Figure 8: Counter Attributes for X = X{X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)} in Case 2

As in the previous case we partition I+ into I+
1 and I+

2 defining I+
1 = {i ∈

I+ | ∃Ji ⊆ I−.XJi∪{i}{λ} /∈ F} and I+
2 = I+ − I+

1 . This leads to the following
properties:

– For each non-empty J ⊆ I− with XJ{λ} /∈ F and I ⊆ I+
1 we must have

XI∪J{λ} /∈ F. This follows immediately from property 4(e) in Theorem 10.

– For each J ⊆ I− and each I ⊆ I+
1 with I ∩ I+

2 �= ∅ we obtain XI∪J{λ} ∈ F.
This follows from the definition of I+

2 and property 5(a) in Theorem 10.
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Figure 8 illustrates the various combinations of indices in I+ and I− and the
impact on F.

As in the previous case define the subattribute X+ by X+ = X(Xi1{X ′
i1}, . . .

. . . , Xik
{X ′

ik
}) ≡ X{Xi1(X ′

i1
)⊕ · · ·⊕Xik

(X ′
ik

)} and the coincidence ideal F+ =
{Y ∈ F | X+ ≥ Y } on S(X+), which allows us to use induction to obtain
complex values t+1 , t+2 with πX+

Y (t+1 ) = πX+

Y (t+2 ) iff Y ∈ F+. Then select arbitrary
values vi ∈ dom(X ′

i) for i ∈ I− and define t−1 = {(Xi : vi) | i ∈ I−1 } and
t−2 = {(Xi : vi) | i ∈ I−2 }. Finally, take tj = t+j ∪ t−j for j = 1, 2. Then we obtain
the following:

1. For Y = X(Y1, . . . , Yn) ∈ F we must have Yi = λ for all i ∈ I− and Y + =
X(Yi1 , . . . , Yik

) ∈ F+. This gives πX
Y (t1) = πX+

Y + (t+1 ) = πX+

Y + (t+2 ) = πX
Y (t2) as

desired.

2. For Y = X(Y1, . . . , Yn) /∈ F we must have either Yi �= λ for some i ∈ I−

or Y + = X(Yi1 , . . . , Yik
) /∈ F+ – in case I+

2 = ∅ the second case does
not occur. In the first case we have Y ≥ X{i}{λ} with i ∈ I− and from
πX

X{i}{λ}(t1) �= ∅ = πX
X{i}{λ}(t2) we obtain πX

Y (t1) �= πX
Y (t2) as desired.

3. For Y = XI{λ} ∈ F we must have either I ∩ I+
2 �= ∅ or I ⊆ I+

1 or I ∩ I−1 �=
∅ �= I∩I−2 if none of these two hold. In the first case we have πX

Y (t1) = {
} =
πX

Y (t2) due to the non-emptiness of t+1 and t+2 according to Theorem 12. In
the second case we immediately get πX

Y (t1) = ∅ = πX
Y (t2) from the definition

of t1 and t2. In the third case we have again πX
Y (t1) = {
} = πX

Y (t2) due to
the definition of t−1 and t−2 .

4. For Y = XI{λ} /∈ F we must have I∩I+
2 = ∅, I �⊆ I+

1 and either I∩I− ⊆ I−1
or I ∩ I− ⊆ I−2 . This implies πX

Y (tj) = ∅ for exactly one j = 1 or j = 2.

Taking these four cases together we have πX
Y (t1) = πX

Y (t2) iff Y ∈ F, which
solves our claim in case 2.

In case 3 we must have XI−{λ} /∈ F, otherwise property 4(a) of Theorem 10
would lead to a contradiction. Furthermore, for i ∈ I+ there must exist some
Ji ⊆ I− with XJi∪{i}{λ} /∈ F for the same reason. Hence we obtain XI{λ} ∈ F

iff I ⊆ I+, which is illustrated in Figure 9. Obviously, I ⊆ I+ implies XI{λ} ∈ F

because of property 5(a), while XI{λ} /∈ F for I ⊆ I− follows from XI−{λ} /∈ F

and property 4(a). The remaining case I = I ′ ∪ J ′ with ∅ �= I ′ ⊆ I+ and
∅ �= J ′ ⊆ I− leads to XI{λ} /∈ F due to property 4(d) of Theorem 10.

Now choose arbitrary values vi ∈ dom(X ′
i) for i ∈ I− and define t1 = {(Xi :

vi) | i ∈ I−} and t2 = ∅. Then we get the following:

1. We have Y = X(Y1, . . . , Yn) ∈ F iff Yi = λ for all i ∈ I−, which gives
πX

Y (t1) = ∅ = πX
Y (t2) for Y ∈ F, and πX

Y (t1) �= ∅ = πX
Y (t2) for Y /∈ F.
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Figure 9: Counter Attributes for X = X{X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)} in Case 3

2. We have XI{λ} ∈ F iff I ⊆ I+, which gives πX
Y (t1) = ∅ = πX

Y (t2) for Y ∈ F,
and πX

Y (t1) �= ∅ = πX
Y (t2) for Y /∈ F.

Both cases together give πX
Y (t1) = πX

Y (t2) iff Y ∈ F, which solves our claim
in case 3.

Now let X = X〈X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)〉 ≡ X(X1〈X ′
1〉, . . . , Xn〈X ′

n〉). For
F = {λ} take t1 = 〈(X1 : v1), . . . , (Xn : vn)〉 with arbitrary values vi ∈ dom(X ′

i)
for i = 1, . . . , n and t2 = 〈〉. This gives πX

XI 〈λ〉(t1) �= 〈〉 = πX
XI〈λ〉(t2) for all I �= ∅

and hence πX
Y (t1) = πX

Y (t2) iff Y = λ. So it is sufficient to assume F �= {λ}.
For this define I+ = {i ∈ {1, . . . , n} | X{i}〈λ〉 ∈ F} and I− = {i ∈ {1, . . . , n} |
X{i}〈λ〉 /∈ F}. Due to property 5(c) of Theorem 10 we have XI〈λ〉 ∈ F for all
I ⊆ I+. Furthermore, for I ⊆ I+ and J ⊆ I− we have XI∪J〈λ〉 ∈ F iff XJ〈λ〉 ∈ F

due to properties 5(c) and (e) of Theorem 10.
For I+ = {i1, . . . , ik} define the subattribute X+ as X+ = X(Xi1〈X ′

i1〉, . . .
. . . , Xik

〈X ′
ik
〉) ≡ X〈Xi1(X ′

i1
) ⊕ · · · ⊕ Xik

(X ′
ik

)〉 and F+ = {Y ∈ F | X+ ≥
Y }. As F+ contains all counter attributes XI〈λ〉 with I ⊆ I+, it must be a
coincidence ideal on S(X+). In particular, due to property 7(a) of Theorem 10
all Fj = {Yj ∈ S(Xij 〈X ′

ij
〉) | X(λ, . . . , λ, Yj , λ, . . . , λ) ∈ F+} for j = 1, . . . , k are

coincidence ideals on S(Xij 〈X ′
ij
〉), respectively.

By induction there exist complex values tij� ∈ dom(Xij 〈X ′
ij
〉) for j = 1, . . . , k

and � = 1, 2 such that π
Xij

〈X′
ij
〉

Yj
(tij1) = π

Xij
〈X′

ij
〉

Yj
(tij2) iff Yj ∈ Fj . Define

t+� = (ti1�, . . . , tik�) for � = 1, 2, which can be identified with 〈(Xij : τij ) | τij ∈
tij�, j = 1, . . . , k〉 ∈ dom(X). For these values we obtain πX+

Y (t+1 ) = πX+

Y (t+2 ) iff
Y ∈ F+ analogously to the set case above.

Now let I− = {j1, . . . , j�} and construct positive integers xp, yp (p = 1, . . . , �)
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such that for J = {jm1 , . . . , jm|J|} ⊆ I− the equation

|J|∑
p=1

xmp =
|J|∑
p=1

ymp

holds iff XJ 〈λ〉 ∈ F holds. For the selection of these xp, yp we can take the
following procedure:

for p = 1, . . . , � :
choose xp, yp such that all equations and inequations containing

only xi, yi with 1 ≤ i ≤ p are satisfied;
replace xp, yp in the remaining equations and inequations by the

chosen values
endfor

Properties 5(c) and (g) of Theorem 10 ensure that this procedure always
produces a solution for the given equations and inequations. Then define

t−1 = 〈(Xj1 : vj1)︸ ︷︷ ︸
xj1 -times

, . . . , (Xj�
: vj�

)︸ ︷︷ ︸
xj�

-times

〉 and t−2 = 〈(Xj1 : vj1)︸ ︷︷ ︸
yj1 -times

, . . . , (Xj�
: vj�

)︸ ︷︷ ︸
yj�

-times

〉

with arbitrary values vi ∈ dom(X ′
i) for i ∈ I−.

Finally, define t1 = t+1 � t−1 and t2 = t+2 � t−2 using multiset union � that
adds multiplicities. For these values the following holds:

1. For Y ≤ X+ we have πX
Y (t�) = πX+

Y (t+� ) for � = 1, 2, which implies πX
Y (t1) =

πX
Y (t2) iff Y ∈ F+.

2. For Y �≤ X+ we either have Y ≥ X{j}〈λ〉 for some j ∈ I− or Y = XI〈λ〉 with
I �⊆ I+. In the first case we have Y /∈ F and πX

X{j}〈λ〉(t1) = πX
X{j}〈λ〉(t

−
1 ) �=

πX
X{j}〈λ〉(t

−
2 ) = πX

X{j}〈λ〉(t2), hence also πX
Y (t1) �= πX

Y (t2).

We have πX
Y (t1) = πX

Y (t2) iff πX
XI∩I− 〈λ〉(t

−
1 ) = πX

XI∩I− 〈λ〉(t
−
2 ) in the second

case, as πX
XI∩I+ 〈λ〉(t1) = πX

XI∩I+ 〈λ〉(t
+
1 ) = πX

XI∩I+ 〈λ〉(t
+
2 ) = πX

XI∩I+ 〈λ〉(t2)

holds due to the construction of t+1 and t+2 . Due to property 5(e) of Theorem
10 we have Y ∈ F iff XI∩I−〈λ〉 ∈ F. Then due to the construction of t−1 and
t−2 we have XI∩I−〈λ〉 ∈ F iff πX

XI∩I− 〈λ〉(t
−
1 ) = πX

XI∩I− 〈λ〉(t
−
2 ).

Both cases together imply πX
Y (t1) = πX

Y (t2) iff Y ∈ F, which completes the
case of a multiset attribute with a component union attribute.

Now let X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] ≥ X(X1[X ′
1], . . . , Xn[X ′

n]). For
F = {λ} take t1 = [(X1 : v1), . . . , (Xn : vn)] with arbitrary values vi ∈ dom(X ′

i)
for i = 1, . . . , n and t2 = []. This gives πX

XI [λ](t1) �= [] = πX
XI [λ](t2) for all I �= ∅
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and hence πX
Y (t1) = πX

Y (t2) iff Y = λ. So it is sufficient to assume F �= {λ}.
For this define I+ = {i ∈ {1, . . . , n} | X{i}[λ] ∈ F} and I− = {i ∈ {1, . . . , n} |
X{i}[λ] /∈ F}. Due to property 5(b) of Theorem 10 we have XI [λ] ∈ F for all
I ⊆ I+. Furthermore, for I ⊆ I+ and J ⊆ I− we have XI∪J [λ] ∈ F iff XJ [λ] ∈ F

due to properties 5(b) and (d) of Theorem 10.
For I+ = {i1, . . . , ik} define the subattributes X+ = X [Xi1(X ′

i1
) ⊕ · · · ⊕

Xik
(X ′

ik
)] and X̃ = X(Xi1 [X ′

i1
], . . . , Xik

[X ′
ik

]) with X+ ≥ X̃ and the coincidence
ideals F+ = {Y ∈ F | X+ ≥ Y } and F̃ = {Y ∈ F | X̃ ≥ Y } on S(X+)
and S(X̃), respectively. Due to property 7(a) of Theorem 10 all Fj = {Yj ∈
S(Xij [X ′

ij
]) | X(λ, . . . , λ, Yj , λ, . . . , λ) ∈ F̃} for j = 1, . . . , k are coincidence

ideals on S(Xij [X ′
ij

]), respectively.
By induction there exist complex values tij� ∈ dom(Xij [X ′

ij
]) for j = 1, . . . , k

and � = 1, 2 such that π
Xij

[X′
ij

]

Yj
(tij1) = π

Xij
[X′

ij
]

Yj
(tij2) iff Yj ∈ Fj . Now concate-

nate these lists tij� in the order of the indices ij to define lists t+1 , t+2 ∈ dom(X+),
respectively. For these values we obtain πX̃

Y (t+1 ) = πX̃
Y (t+2 ) iff Y ∈ F̃ analogously

to the set case above.
For k ≤ 1 we have X+ ≡ X̃ and F+ = F̃, so we get πX+

Y (t+1 ) = πX+

Y (t+2 ) iff
Y ∈ F+. For k ≥ 2 we will modify t+1 and t+2 to achieve this equivalence. We
exploit that the property just shown for t+1 and t+2 does not change, if for any j we
replace tij1 and tij2 by the concatenated lists tij1

�tij1 and tij2
�tij1, respectively.

Now let K = {k1, . . . , km} ⊆ I+ be maximal such that X [Xk1(X ′
k1

) ⊕ · · · ⊕
Xkm(X ′

km
)] ∈ F. Then for k ∈ I+ −K we must have X(Xk[X ′

k]) /∈ F, otherwise
also X [Xk1(X ′

k1
)⊕· · ·⊕Xkm(X ′

km
)⊕Xk(X ′

k)] ∈ F due to property 3 of Theorem
10 and the fact that the two subattributes are reconsilable. Therefore, K is
uniquely determined.

Now, if X(Xi1 [Y ′
i1

], . . . , Xiμ [Y ′
iμ

]) ∈ F, but X [Xi1(Y ′
i1

)⊕ · · · ⊕Xiμ(Y ′
iμ

)] /∈ F,
then the uniqueness of K implies X(Xi1 [X

′
i1 ], . . . , Xiμ [X ′

iμ
]) /∈ F. Hence there

must be some ι ∈ {i1, . . . , iμ} with tι1 �= tι2. We therefore replace tι1 and tι2 by
the concatenated lists tι1

�tι1 and tι2
�tι1, respectively, changing t+1 and t+2 ac-

cordingly. This gives πX+

X[Xi1 (Y ′
i1

)⊕···⊕Xiμ (Y ′
iμ

)](t
+
1 ) �= πX+

X[Xi1 (Y ′
i1

)⊕···⊕Xiμ (Y ′
iμ

)](t
+
2 )

without destroying previously established equalities and inequalities. This im-
plies πX+

Y (t+1 ) = πX+

Y (t+2 ) iff Y ∈ F+ as claimed.
Now let I− = {j1, . . . , j�} and construct positive integers xp, yp (p = 1, . . . , �)

such that for J = {jm1 , . . . , jm|J|} ⊆ I− the equation

|J|∑
p=1

xmp =
|J|∑
p=1

ymp

holds iff XJ 〈λ〉 ∈ F holds. For the selection of these xp, yp we can take the
same procedure as in the multiset case above. Properties 5(b) and (f) of Theorem
10 ensure that this procedure always produces a solution for the given equations
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and inequations. Then define

t−1 = [(Xj1 : vj1)︸ ︷︷ ︸
xj1 -times

, . . . , (Xj�
: vj�

)︸ ︷︷ ︸
xj�

-times

] and t−2 = [(Xj1 : vj1)︸ ︷︷ ︸
yj1 -times

, . . . , (Xj�
: vj�

)︸ ︷︷ ︸
yj�

-times

]

with arbitrary values vi ∈ dom(X ′
i) for i ∈ I−. In both lists let the elements

appear in the order given by the indices.
Finally, define t1 = t+1

�t−1 and t2 = t+2
�t−2 using list concatenation �. For

these list values the following holds:

1. For Y ≤ X+ we have πX
Y (t�) = πX+

Y (t+� ) for � = 1, 2, which implies πX
Y (t1) =

πX
Y (t2) iff Y ∈ F+.

2. For Y �≤ X+ we either have Y ≥ X{j}[λ] for some j ∈ I− or Y = XI [λ] with
I �⊆ I+. In the first case we have Y /∈ F and πX

X{j}[λ](t1) = πX
X{j}[λ](t

−
1 ) �=

πX
X{j}[λ](t

−
2 ) = πX

X{j}[λ](t2), hence also πX
Y (t1) �= πX

Y (t2).

In the second case we have πX
Y (t1) = πX

Y (t2) iff πX
XI∩I− [λ](t

−
1 ) = πX

XI∩I− [λ](t
−
2 ),

because πX
XI∩I+ [λ](t1) = πX

XI∩I+ [λ](t
+
1 ) = πX

XI∩I+ [λ](t
+
2 ) = πX

XI∩I+ [λ](t2) due

to the construction of t+1 and t+2 . Due to property 5(d) of Theorem 10 we
have Y ∈ F iff XI∩I− [λ] ∈ F. Then due to the construction of t−1 and t−2 we
have XI∩I− [λ] ∈ F iff πX

XI∩I− [λ](t
−
1 ) = πX

XI∩I− [λ](t
−
2 ).

Both cases together imply πX
Y (t1) = πX

Y (t2) iff Y ∈ F, which completes this
final case of a list attribute with a component union attribute.

4 Conclusions

In this article we laid the foundations to complete our work on the axiomatisa-
tion of functional dependencies and weak functional dependencies on trees with
restructuring. These trees arise from constructors for complex values compris-
ing arbitrarily nesting of finite sets, multisets, lists, disjoint unions and records
and a “null” attribute. Restructuring, i.e. non-trivial equivalence between these
attributes are mainly due to the presence of the union constructor.

Our previous work in [Sali and Schewe, 2006] captured the case, where so
called counter-attributes were excluded. The generalisation in [Sali and Schewe,
2008] requires a very deep and very technical investigation of certain ideals in the
algebra of subattributes, which is what we presented in this article. We proved
the central theorem on coincidence ideals, which gives an exact characterisation
of sets of subattributes, on which two complex values coincide. This result is
essential for the completeness proof in [Sali and Schewe, 2008].

Thus, in a sense the work presented in this article is mainly a stepping stone
for continuing the work on dependency theory, but it may have other application,
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e.g. for research on the existence of Armstrong instances (see e.g. [Sali and
Schewe, 2006]).
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