Journal of Universal Computer Science, vol. 15, no. 3 (2009), 538-554
submitted: 3/1/09, accepted: 28/1/09, appeared: 1/2/09 © J.UCS

DS RBAC — Dynamic Sessions in Role Based Access
Control

Jorg R. Miihlbacher
(Johannes Kepler University Linz, Austria
muehlbacher@fim.uni-linz.ac.at)

Christian Praher
(Johannes Kepler University Linz, Austria
praher@fim.uni-linz.ac.at)

Abstract: Besides the well established access control models, Discretionary Access
Control (DAC) and Mandatory Access Control (MAC), the policy neutral Role Based
Access Control (RBAC) is gaining increasingly momentum. An important step towards
a wide acceptance of RBAC has been achieved by the standardization of RBAC through
the American National Standards Institute (ANSI) in 2004.

While the concept of sessions specified in the ANST RBAC standard allows for differ-
entiated role selections according to tasks that have to be performed by users, it is
very likely that more roles will be activated in a session than are effectively needed to
perform the intended activity. Dynamic Sessions in RBAC (DS RBAC) is an extension
to the existing RBAC ANSI standard that dynamically deactivates roles in a session
if they are not exercised for a certain period of time. This allows for the selection of
an outer-shell of possibly needed permissions at the initation of a session through a
user, while adhering to the principle of least privilege by automatically reducing the
effective permission space to those roles really exercised in the session.

Analogous to the working set model known from virtual memory, only the minimal
roles containing permissions recently exercised by the user are left in a session in the
DS RBAC model. If the user tries to access a role that has aged out due to inactivity, a
role fault occurs. A role fault can be resolved by the role fault handler that is responsible
for re-activating the expired role. As will be presented in this paper, role re-activation
may be subject to constraints that have to be fulfilled by the user in order to re-access
the aged role.

Key Words: security, Role Based Access Control, ANSI RBAC, session, least privi-
lege
Category: D.4.6, K.6.5, 1..4.0

1 Introduction

The relatively young model of Role Based Access Control (RBAC) has success-
fully proven to simulate more traditional access control models, like e.g. Discre-
tionary Access Control (DAC) and Mandatory Access Control (MAC)

[Osborn et al. 2000] and even improve on them in certain respects. Most im-
portantly, RBAC eases the administration of a security system, by combining
individual users into roles and managing permission assignments on a role ba-

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 539

sis rather than on a per user basis. This offers the benefit of dealing with less
entities and reflecting the organizational structures more natural[Barkley 1997].

Since its inception in the early 1990ies, RBAC has been a major field of both
academic and corporate research and many different flavors of RBAC tailored
for specific fields of application exist. In 2004, the American National Standards
Institute (ANSI) consolidated the most important characteristic of RBAC and
released them under the ANSI INCITS 359-2004 standard[ANSI RBAC 2004].
Amongst the major components of ANSI RBAC are a mandatory session con-
cept, as well as optional hierarchies and separation of duties.

From the set of assigned roles, a user can choose or is automatically provided
with a subset of roles that are activated in a session for conducting one or more
specific tasks. Ideally, a session would contain only the permissions really needed
to fulfill exactly the tasks it was created for, which limits the potential dangers
of deliberate or accidental abuse of the system. In practice though, users will
rarely voluntarily stick to only the smallest possible set of permissions needed
to perform a certain task. In contrast, it is highly likely that users will activate
as much roles as possible to be able to perform as much operations at once
without having to re-authenticate. Such a behavior can be observed e.g. on
simple stand-alone PC’s; where users log in as Administrator or root, despite of
only exercising normal user permissions. This can seriously violate the principle
of least privilege, which requires that “a user be given no more privilege than
necessary to perform a job”[Ferraiolo and Kuhn 1992].

Dynamic Sessions in Role Based Access Control (DS RBAC) tries to provide
a solution to this problem, by allowing a session to dynamically shrink and ex-
pand according to the user’s actual resource usage behavior. A user is allowed to
activate as many roles at the start of the session, as she/he thinks, but these roles
may expire in the course of the session if they are not continuously exercised.
The aging timeout of a role can be set by the system administrator according
to management decisions and general organizational policies. After some time,
a session containing only the minimum roles holding permissions recently exer-
cised by the user, should be left. As the term minimum role suggests, DS RBAC
mandates a well ordering on roles, which allows the system to automatically
choose the smallest one from a set of roles.

What is important is that the model of Dynamic Sessions in RBAC proposed
in this paper tightly integrates and builds upon the standard ANSI RBAC
model[ANST RBAC 2004]. As will be shown, the concept could be realized with
only relatively few changes to the standard on RBAC defined by the ANSI.

540 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

2 Principles of DS RBAC

In some respects, the proposed model of DS RBAC can be seen as an inverse
analogy to the working set model for virtual memory, introduced by Peter Den-
ning [Denning 1968]. The working set model states that a process only runs
efficiently if its working set is held in RAM. The working set of a process is
defined to be the set of its most recently used pages, where most recently refers
to a working set window, a specified time interval. It is statistically very likely
that a running process will access these most recently used pages also in the
near future. If an addressed page currently is not member of the working set and
thus not held in RAM, then a page fault is raised, which activates a page fault
handler. Its main task, among others, is to fetch the missing page to memory.

Dynamic Sessions in RBAC tries to transfer this idea to RBAC. The working
set in DS RBAC is a collection of roles, which the user most recently exercised.
More precisely, the working set in DS RBAC is the set of roles, which consists
of the minimum roles holding permissions the user currently exercised.

If the user tries to access a permission that is not currently contained in one of
the roles in the working set, a role fault occurs. It triggers the role fault handler
that may re-activate the minimum role containing the needed permission. As will
be described later, the role fault handler either may impose various constraints
on the re-activation of the role, or simply activate it without user intervention.

2.1 Extensions of the Role Concept

DS RBAC extends the role concept known from ANSI RBAC, to a tuple, con-
sisting of a unique role identifier and a time to live (¢tl) value: (role_id, ttl)

The identifier role_id is just a name for the role, needed to distinguish it
from other roles systemwide. This is identical to the definition of a role under
the ANSI RBAC standard, which treats a role (a part from its relations to users
and permissions) as just being an abstract name, simply a word over an alphabet.

The time to live specifies a validity time for each role. The following sections
describe the concept of time to live and role aging in more detail.

2.2 Well ordering of roles

There is an underlying well ordering on the set of roles {r;}, defined by the
ordinary ”less than” relation ”<”. This ordering allows to create an hierarchy
of roles in terms of their mightiness. If the user wants to exercise a certain
permission that is contained in two or more roles, the system takes the least
powerful one. This role is not necessarily the one with the fewest permissions,

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 541

but rather the one which would cause the least damage if it was used adverseley
by an attacker, or accidentially by an user.

The order ”<” can be established by the administrator following a particular
privilege policy or computed automatically e.g. by summing up weighted oper-
ations g(op;) and objects w(ob;) according to a certain ranking g for operations
op; and level w for objects ob;. When subsets of roles turn out to receive the
same weight, they may be arranged arbitrarily (e.g. lexicographically), so that
r; < rj or r; < r; always holds. The ranking g of operations op;, as well as the
level w of objects ob; could be defined by the administrator or default to system
specific values.

Assume role r refers to objects oby, obs with the permissions {(read, ob;),
(read, obs), (write, 0by)} and there are weights g(ob1) and g(obs) of objects and
weights w(read), w(write) for the operations {read, write} respectively, then the
rank h of r is given by:

h(r) = w(read) ® g(ob1) + w(read) ® g(obs) + w(write) ® g(oby)
where ® could be the ordinary multiplication operator.

A possible administrative facilitation could be to classify the relatively large
set of objects by {critical, uncritical} = {c,u} so that w(ob) yields either ¢ or
u, with ¢ >> u. The compared to objects relatively low number of operations
could be each assigned an individual value by the ranking function g.

It is important to emphasize that the well ordering of roles concerning their
power should be independent of RBAC hierarchies and apply to all roles in the
system. For a clear discrimination of these two relations, the symbol 7>" is used
for RBAC hierarchies and ”<” is used for the role well ordering.

2.3 Role Aging

The main concept of DS RBAC which makes sessions dynamic is role aging. The
aging timeout of a role r = (role_id, ttl) is specified by the time to live value t¢l:
r.ttl. If not specified by the administrator, the default ¢t is co. This means that
a role r with r.ttl = oo is not subject to aging.

It is important to differentiate the global ¢tl given to a role in the system
and the concrete activation timestamp ts a role has within a user’s session.
The ttl associated to the role defines the maximum period of inactivity any
role can have, without being subject to expiry. Within the user’s session, the
activation timestamp for every role is stored in the session_roles mapping. A
role’s activation timestamp is the current system time at the time of activation
of the role in a concrete user session, or the time when one of the permissions
held by the role was last exercised in that session. A concrete instance of a
role in a user’s session is considered expired if its activation timestamp plus its
administratively associated time to live (¢tl) is smaller than the current system
time.

542 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

There is one special role rdefault, whose purpose will be explained later,
which never expires and belongs to every user session.

From an implementation perspective, expiry of a role could be checked eagerly
by means of a daemon service, or lazily at access time in the CheckAccess
function. Eagerly checking of expired roles could be done in a fashion similar to
Garbage Collection (GC) in memory managed programming languages.

2.4 Role Fault

A role fault occurs, if a user tries to access a permission implied only by roles
that are already expired in the current session. It is important to emphasize that
a role fault only occurs if at least one role holding the needed permission is part
of the user’s current session. If the user never activated such a role, the behavior
is the same as in the standard RBAC case, which means that access is denied.
In case of a role fault, a role fault handler is triggered, which may require some
additional qualification from the user in order to pass the access check and to
re-activate the role.

2.5 Role Fault Handler

The role fault handler is called by the CheckAccess function whenever a user
tries to exercise a permission held only by expired session roles. It is thus the
principal mechanism for resolving possible permission conflicts that arise because
of expired roles. Not all roles are necessarily subject to re-activation constraints,
but typical constraints might be: Re-authentication of the user (e.g. re-type
password, slide over the fingerprint scan, query for security token given at start
of session, ...), or log-file activation.

If the role fault handler constraint can be answered by the user, the role
fault handler signals back to the C'heck Access-function that the user should be
allowed to perform the desired operation on the object.

If the associated constraint can not be fulfilled by the user, the role fault
handler returns to the C'heck Access-function that access should not be granted.

3 Formal Description of the DS RBAC Core Model

The following is a formal specification of the DS RBAC Core model, which is a
direct extension of the ANST RBAC Core model[ANSI RBAC 2004]. An ample
discussion about the side effects of DS RBAC on the other three ANSI RBAC
components is provided in the next section ”Side Effects on other RBAC Com-
ponents”.

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 543

USERS, OPS, and OBS refer to users, operations and objects respectively.

T C Ny, a set of possible timeticks represented as natural numbers, includ-
ing 0.

Let be « an alphabet, then role_id € o™ is called a role name, e.g. role_id is
a word over «. For convenience we use role_id;,i = 1,2, ... for such names
only, unless we name a specific role explicitly.

NAMES = {role-id;|i = 1,2,...n Arole_id; € a*}
Therefore role_id; # role_id; for i # j, because NAMES is a set.

ROLES = {rili = 1,2,...n} = {(role_id, ttl)|rolesid € NAMES N ttl €
T}, the tuple contains: A system wide unique role name role_id and a time-
to-live (ttl) given in timeticks ¢ specifing the expiry time of the role.

assigned_ident(r : ROLES) — NAMES, a function that returns the iden-
tifier of the given role r.

assigned_ttl(r : ROLES) — T, a function that returns the t¢l defined for a
given role 7.

GRO C ROLES x ROLES, General Role Order (GRO) is a well ordering
defined on all roles r;, 7;, such that r; < r; or r; < r; for i # j always holds.
This ordering allows to unambiguously relate roles to each other in terms
of their mightiness. It could e.g. be computed automatically as described
earlier.

current_system_time € T, the current system time.

UA CUSERSx ROLES, a many-to-many mapping user-to-role assignment
relation.

assigned_users(r : ROLES) — 2USPRS the mapping of role r onto a set of
users.

Formally: assigned_users(r) = {u € USERS|(u,r) € UA}
PRM S = 2(0PSxOBS) “the set of permissions p = (op, ob).

PAC PRMS x ROLES, a many-to-many mapping permission-to-role ass-
ingment relation.

assigned_permissions(r : ROLES) — 2PRMS the mapping of role r into a
set of permissions.
Formally: assigned_permissions(r) = {p € PRMS|(p,r) € PA}

Op(p : PRMS) — 2975 the permission to operation mapping, which gives
the set of operations associated with permission p.

544 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

— Ob(p: PRMS) — 2989 the permission to object mapping, which gives the
set of objects associated with permission p.

— SESSIONS = the set of all sessions in the system.

— session_user(s : SESSIONS) — USERS, the mapping of session s onto
the corresponding user.

— user_sessions(u : USERS) — SESSIONS, the mapping of user u onto
the corresponding sessions.

— There is one and only one special role rdefault € ROLES with rdefault =

(rdefault_id,). Yu € USERS — (u,rdefault) € UA. The role rde fault is
implicitly assigned to each user and because of assigned_ttl(rdefault) = oo
it will never expire.
In addition we demand the following: the set of permissions assigned to
rde fault should be as small as possible, depending on the system where the
roles are defined. Typically rde fault would contain permissions to login and
logout and to activate expired roles.

— session_roles(s : SESSIONS) — 2ROLESXT "the mapping of session s to
a set of roles. For every role r in the session s, the timestamp of activation
is stored. We note that with respect to the RBAC ANSI-Standard there is
an extension: Instead of session_roles(s : SESSIONS) — 2ROLES we use
session_roles(s : SESSIONS) — 2ROLESXT iy order to provide informa-
tion when a role (instance) has been activated or used most recently.
Implicitly, every session contains the minimum default role rdefault that
never expires.

Formally:
session_roles(s;) C {(r,ts)|r € ROLES Nts € T A (session_user(s;),r) €
UA}

— avail_session_perms(s : SESSIONS) — 2PEMS " the “outer shell’ of per-
missions available to a user in a session. We note that due to aging, not all
of these permissions must always be available to the user throughout the
session. Formally:
avail_session_perms(s) = U assigned_permissions(r)

(r,ts)€session_roles(s)

— ef fective_session_perms(s : SESSIONS) — 2PRMS the effective per-
missions available to a user in a session. This relation includes only those
permissions that are implied by roles that have not expired. Formally:
ef fective_session_perms(s) =

(r,ts)Esession_roles(s)A(ts+assigned_ttl(r))>current_system_time

assigned_permissions(r)

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 545

3.1 CheckAccess

CheckAccess is the main method that decides whether access to a resource is
given to a user or not. Within the DS RBAC model it is also responsible for
identifying role faults and triggering the role fault handler for properly resolving
the role fault. The role fault handler in turn signals back to the CheckAccess
function, whether an attempt to re-activate a role for a user was successful or
not. The basic procedure of CheckAccess is as follows (see flowchart in figure

1):

— Access is denied, if the needed permission p = (op,0b) is not contained in
any of the roles in the user’s current active session. Like in the ANST RBAC
standard, the active sessions of an user are defined by the sesssion_roles
function.

— If the needed permission is provided by one of the roles in the users’s current
active session, the following two possibilities exist:

e If there is at least one active role holding the needed permission, access
is granted. An active role is a role that has not expired in a session.
Amongst all roles in the current user session, the minimum role that con-
tains the needed permission is identified. The minimum role is different
from rdefault. The timestamp of the minimum role becomes updated
with the current system time. It does not matter if the role that initi-
tally allowed the access because of still being active is different from the
role that eventually gets its timestamp updated. Also, it does not matter
if the minimum role is expired. Because of the minimum characteristic
of the chosen role, it is always the role with the least privileges from
all roles in the current user’s session that gets updated and implicitly
re-activated if necessary.

e If there is no active role holding the needed permission, a role fault
occurs. The role fault triggers the role fault handler that is responsible
for re-activating the expired role. The role fault handler can implement
various methods of how an aged role can be re-activated. Depending on
the outcome of the role fault handler, access is either granted or denied.

x Access is granted, if the role fault handler can be answered positively.
In this case, it returns true to the CheckAccess-function, which in
turn gives access to the resource. Like in the case with the active
role, the minimum role amongst all roles of the current user session
(sesssion_roles) is identified. The timestamp of this role gets up-
dated and all permissions associated to it are again available to the
user. As mentioned, a role fault handler could also implicitly provide

546 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

a positive return value (E.g. in case of a log-file activation, the user
would not even notice the aging of the role and re-activation through
the role fault handler).

x Access is denied, if the role fault handler can not be answered. In
this case the role fault handler returns false to CheckAccess.

Active role Access denied

Update min role TS

Access granted

Get minimal role

Update min role TS

Access denied

(I

Figure 1: Flow chart of check access

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 547

boolean CheckAccess (session, operation, object) {

p = (operation,object)

p € PRMS
/*

A list of all active roles in the current session.
*/
active_session_roles;
/*

A list of all expired roles in the current session.
*/

expired_session_roles;

/*
Identify the minimum access role.
This role is, according to the well ordering, the smallest role
in the set of session roles that contains the needed permission.
*/

access_role = GetMinAccessRole(session_roles(session), perm);

/* There is an active role with the needed permission. */
if (d(r, ts) € active_session_roles : (p, r) € in PA) {
access_role.ts = current_system_time;
return true;

}
/*

Role fault case.
There is no active role containing the needed permission, but only
an expired one.
*/
if (d(r, ts) € expired_session_roles : (p, r) € in PA) {
if (RoleFaultHandler (access_role)) {
access_role.ts = current_system_time;
return true;
}
/* Acces denied - Role fault handler could not be answered */
return false;

}

/* Access denied - Permission not at all in user session. */
return false;

}

Listing 1: CheckAccess in pseudo-code

4 Side Effects on other RBAC Components

As will be presented in detail in this section, DS RBAC does not affect the spec-
ifications of the other three ANSI RBAC components. The main modification

548 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

of DS RBAC compared to ANSI RBAC is the extension of the role to a tuple,
containing a unique name for the role, and a time-to-live value. Due to this
extended role concept in DS RBAC, it is possible to add new flexibility to the
RBAC session, while still leaving the major relations and structures of ANSI
RBAC untouched.

4.1 Hierarchical RBAC with Dynamic Sessions

There has been much discussion about inheritance in ANSTI RBAC. In
[Ninghui et al. 2007] it was criticized that the standard was not clear about the
role-inheritance semantics. The arguments say, that a role hierarchy of ry = ro
would allow three possible interpretations:

— User Inheritance (UI): All the users of 1 are also authorized for 7. Users
”walk down” the inheritance hierarchy.

— Permission Inheritance (PI): All the permissions assigned to ro are also
authorized for ry. Permissions ”walk up” the inheritance hierarchy.

— Activation Inheritance (Al): When ry is activated in a session, 7o is also
automatically activated in that session. It is not possible however, to access
the permissions implied by 7o without activating 7.

In [Ferraiolo et al. 2007] the authors of the standard responded to the raised
critique, stating that the ANST RBAC standard treats user and permission inher-
itance as integrated concepts. This means that role inheritance in ANSI RBAC
always involves both user and permission inheritance. According to the standard
authors, activation inhertiance as introduced by the researchers from Purdue
does not exist in ANSI RBAC, as it is possible to activate ro independently
from 71 in an inheritance relation of r; = rs.

The integration of user and permission inheritance in ANSI RBAC means that
the inheritance relation is not affected by DS RBAC.

Consider e.g. the simple role hierarchy RH given in figure 2. The solid lines
denote the assignment relations and the dotted lines the authorization rela-
tions. User wu; is assigned to role ri, which has in turn permission ps assigned
to it. Role 9 has assigned permission ps. Hence the relations are as follows:
UA = {(u1,m1)}, PA={(r1,p1),(ra,p2)}, RH = {r1 > r2}. Through the user
inheritance relation authorized-users(r : ROLES) — QUSERS 4, is authorized
for role 7o (The trivial authorization relations r = r are not mentioned, as they
are implied by the assignment functions). Due to the permission inheritance re-
lation authorized_permissions(r : ROLES) — 2PEMS ‘role r; is authorized for
permissions po from role 5.

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 549

! 1 i

1 ' | i

: | ST 4 ;

. | i 1 3
Nx ; : ; _
;

‘

‘

:

;

10

\ \ | ! \ \
A N [! i
[P i ! i
v | inherits | ! | !
\ \ i ! '
\ /
\

% AN Session . . Session

| T, 4 \.
2 m Figure 3: Expiry of role Figure 4: Expiry of role
r1 in activation of both r2 in activation of both
Figure 2: Simple role hi- roles of simple role hierar- roles of simple role hierar-
erarchy chy chy

Since the user is authorized for two roles (r1 and r3), there are 4 possible role
activations in a session: activation of no role, activation of r; alone, activation
of r9 alone and activation of both r; and rs.

The first case of no role activation is trivial.

If the user u; only activates one role (either r1 or rq), the effect of the aging
concept of DS RBAC is the same as in the DS RBAC Core model. In case of
activation of only r1, the user would have access to the permissions p; and py in
the same way as if they had been directly assigned to r;. In the case of activation
of only the inferior role ro, only the permission po, directly assigned to ry would
be available. Aging would affect the entire role and would only occur if none of
the authorized permissions of the activated role was exercised.

Also no effect on the ineritance relation has the activation of both roles r;
and 7o by the user. In essence, it is the same situation as if the two roles r; and
r9 were not related to each other and just both activated in one session by a user.
As figures 3 and 4 show, it is still possible — even in case of a role inheritance
relation — that one or more of the roles in the inheritance structure expire.

If e.g. the user u; activates both roles r; and ro, but only exercises permis-
sion po that is assigned to the inferior role ro, the superior role r; will expire.
It is the superior role that will expire, because it is more privileged than ro. As
outlined in the previous section, the CheckAccess function will always identify
the least powerful role, according to the well ordering of roles, and update the
timestamp of this role. This does not violate the inheritance relation and resam-
bles a desired behavior, as the superior role could e.g. be an administrator role,
whereas the inferior role could be an average users role. If the user only accesses
user permissions, although she/he has activated also the administrator role, it
corresponds to the principle of least privilege, if the non-exercised administrator
role expires.

If, on the other hand, the user only exercises the permission p; implied by
the superior role r1, the inferior role ro will eventually expire, if it has a finite

550 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

timestamp associated to it (see figure 4). Due to the authorized_permissions
relation, the permission py orignally assigned to ro will still be available to ry
without a role fault, as r1 is authorized for all the permissions of its inferior roles.

The aging of a central role in an inheritance hierarchy, does also not adversely
affect the inheritance relation. Consider e.g. the inheritance relation depicted
in figure 5. As in the previous example, the solid lines denote the assignments
(UA, PA) and the dotted lines indicate the authorizations (authorized_users,
authorized_permissions). Figure 6 shows a situation in which the role ro that is
central to the role hierarchy is no more available in the session. Such a situation
could e.g. occur if the user u; activates all three possible roles ry, 7o and r3 and
ro expires. As figure 6 shows, the situation is the same as described in the pre-
vious paragraph. The superior role is authorized for all privileges of the inferior
roles, no matter whether they are expired or still active. Another important fact
is that user u; can still directly access or activate role r3, even if ro has been
disabled or has expired.

3
=3
[
3.
=
7]

Figure 6: Expiry of central role ry in

125 —r]
activation of all three roles of simple 3-

Figure 5: Simple 3-stages role hierarchy staged role hierarchy

4.2 Static Separation of Duty (SSD)

As its name implies, Dynamic Sessions in RBAC only affects roles activated in a
session. Static Separation of Duty, on the other hand, has to be performed by the
system security administrator at design time. Under SSD a user will not even be
assigned to conflicting roles, which consequently means that the dynamic aging
of roles within a session does not affect this concept.

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 551

4.3 Dynamic Separation of Duty (DSD)

In contrast to Static Separation of Duty (SSD), Dynamic Separation of Duty
(DSD) occurs on the session level at activation time. The RBAC ANSI standard
[ANSI RBAC 2004] defines DSD as collection of pairs (rs,n) = dsd in the set
DSD C (2FOLES x N), where each rs is a role set and n a natural number >
2, with the property that no user may activate n or more roles from the given
set rs for each dsd € DSD.

As both DSD and DS RBAC affect sessions, one would intuitively expect
that DS RBAC affects DSD. But since DS RBAC only takes advantage of the
properties from the extended role definition, it does not influence the formal spec-
ifications of DSD. When a role expires, it is not removed from the active session.
As described in section 3, expiry of a role is only tested in the Check Access func-
tion, whenever permissions are executed by the user. This consequently means
that even if a role that is an element of a role set rs in a dsd, expires, it is not
possible for the user to add another active role from the conflicting role set to
any of its running sessions, if already the maximum number of n — 1 roles from
this dsd tuple ((rs,n)) have been activated.

Consider e.g. a user u; who is assigned to the roles r1, 7o and r3 (UA =
{(u1,71), (u1,72), (u1,73)}) and a DSD set defined by the administrator of D.SD
= {({r1,7r2,73},2)}. This means that the user u; can always only activate one
role of its 3 role assignments in an active session. If the user u; has e.g. activated
71 in a session and this role expires due to inactivity, the user can still not activate
another role from the assigned roles in this very session. The standard demands
from the AddActiveRole supporting system function in case of DSD that it has
to be checked whether the old active session role set (session_roles) added with
the new role the user wants to activate, still satisfies the DSD constraint. As
the expired role 7 still is in the role set of the active session (session_roles), by
specification of the standard, it is not possible to activate another role.

Consequently the role fault handler would not have to check for a DSD
conflict, when re-activating a role, since by the definitions of the ANSI RBAC
standard, no DSD conflicts can occur while the role is expired.

5 Related Work

DS RBAC represents a form of automated management of privileges, by auto-
matically adjusting the permission space in a session to those really needed by
a user to perform the ongoing tasks.

The idea of automating privilege management in RBAC is not entirely new and
has been discussed e.g. in [Sandhu and Bhamidipati 2008, Herzberg et al. 2000,

552 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

Li et al. 2002, Al-Kahtani and Sandhu 2002, Barka and Sandhu 2000]. The ma-
jor difference of DS RBAC compared to these models is that DS RBAC exhibits
automated privilege selection at the session level and not as an administrative
feature. In contrast to the mentioned papers, DS RBAC does not aim at facilitat-
ing RBAC administration, by (partly) automating user-role or role-permission
assignment. The automatism in DS RBAC rather tries to find the minimum
number of permissions (in form of roles) for every initiated session according to
the real usage behavior without administrative interference.

Another major difference is that these papers assume that users are willingly
adhering to the principle of least privilege, by only choosing the roles necessary
to perform certain tasks in a session. We doubt that in practice users will do
so. Hence, DS RBAC seeks to limit the available permissions (roles) by inferring
the rights needed in the near future from the effective usage behavior of the past.

Automatic privilege management also has been discussed in literature with re-
spect to the user’s current location, like e.g. in [Young-Gab and Jongin 2007,
Hansen and Oleshchuk 2003, Bertino et al. 2005, Damiani et al. 2007]. While th-
ese models are especially valuable for dynamic permission management in mo-
bile environments, they differ significantly from DS RBAC. Privilege manage-
ment in these models revolves around the user’s current position, in contrast to
DS RBAC, which takes into account the history of exercised permissions (roles)
of an user.

Temporal constraints similar to the time to live used by DS RBAC have also been
discussed in RBAC literature e.g. in [Bertino and Bonatti 2001, Joshi et al. 2005,
Kyu et al. 2007]. An important difference between these models and DS RBAC is
that they propose temporal constraints for fixed, prespecified intervals, whereas
in DS RBAC temporal constraints are not tied to a calendar, but rather repre-
sent a ”sliding window” within which access to objects is allowed.

6 Conclusion

One major drawback of the ANSI RBAC standard is that the activation of roles
in a session is left to the users discretion. Users tend to activate more roles and
hence hold more privileges than they would need to perform the tasks, for which
they have opened the session. This violates the important principle of least priv-
ilege.

The proposed model of Dynamic Sessions in RBAC (DS RBAC) seeks to provide
a solution to this problem. Its main principle is to dynamically expire roles that
are not actively used in a session. Similar to the working set theory in virtual

Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ... 553

memory, DS RBAC will only keep active the minimum roles containing permis-
sions the user most currently exercised. A role fault occurs whenever the user
tries to exercise permissions contained only in expired roles. The role fault han-
dler is then responsible for re-activating the expired role. Optionally, the role
fault handler may impose constraints, like e.g. user re-authentication, log-file
activation, etc. before re-activating the inactive role. This adds additional secu-
rity to the model if e.g. an unauthorized user tries to take over an abandoned
session. Most importantly, DS RBAC provides a session that tightly sticks to
the principle of least privilege, by only keeping those permissions (in the form
of roles) active that are effectively exercised by an user.

DS RBAC builds on the specifications provided by the ANSI RBAC standard.
As shown in this paper, only limited changes to the standard would be necessary
to incorporate the features of DS RBAC.

References

[Al-Kahtani and Sandhu 2002] Al-Kahtani, M., Sandhu, R.: A model for attribute-
based user-role assignment. Proceedings 18th Annual Computer Security Applica-
tions Conference, 353 — 362, 2002.

[ANSI RBAC 2004] American National Standards Institute, Inc.: American National
Stnadard for Inormation Technology - Role Based Access Control (ANSI INCITS
359-2004), 2004.

[Barka and Sandhu 2000] Barka, E., Sandhu, R.: Framework for role-based delegation
models. Proceedings of the 16th Annual Computer Security Applications Confer-
ence, 2000.

[Barkley 1997] Barkley, J.: Comparing simple role based access control models and
access control lists. RBAC ’97: Proceedings of the second ACM workshop on Role-
based access control, 127-132, New York, NY, USA, 1997. ACM.

[Bertino and Bonatti 2001] Bertino, E., Bonatti, P., Ferrari, E.: TRBAC: A temporal
role-based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191-233, 2001.

[Bertino et al. 2005] Bertino, E., Catania, B., Damiani, M., Perlasca, P.. GEO-RBAC:
a spatially aware RBAC. SACMAT ’05: Proceedings of the tenth ACM symposium
on Access control models and technologies, 29-37, New York, NY, USA, 2005. ACM.

[Damiani et al. 2007] Damiani, M., Bertino, E., Perlasca, P.: Data security in location-
aware applications: an approach based on RBAC. Int. J. Inf. Comput. Secur.,
1(1/2):5-38, 2007.

[Denning 1968] Denning, P.: The Working Set Model for Program Behavior. Commu-
nications of the ACM / Volume 11 / Number 5, 323 — 333, May 1968.

[Ferraiolo et al. 2007] Ferraiolo, D., Kuhn, R., Sandhu, R.: RBAC Stanard Rationale
- Comments on ”A Critique of the ANSI Standard on Role-Based Access Control”.
IEEE Security & Privacy, 51 — 53, November/December 2007.

[Ferraiolo and Kuhn 1992] Ferraiolo, D., Kuhn, R.: Role-Based Access Control. Pro-
ceedings of 15th National Computer Security Conference, 1992, 1992.

[Hansen and Oleshchuk 2003] Hansen, F., Oleshchuk, V.: SRBAC: a spatial role-based
access control model for mobile systems. Proceedings of the 7th Nordic Workshop
on Secure IT Systems (NORDSECO03). Gjvik, Norway.

[Herzberg et al. 2000] Herzberg, A., Mass, Y., Mihaeli, J., Naor, D. Y. Ravid: Access
control meets public key infrastructure, or: Assigning roles to strangers. Proceedings
of the 2000 IEEE Symposium on Security and Privacy, 2 — 14, 2000.

554 Muehlbacher J.R., Praher C.: DSRBAC - Dynamic Sessions ...

[Joshi et al. 2005] Joshi, J., Bertino, E., Usman, L., Ghafoor, A.: A Generalized Tem-
poral Role-Based Access Control Model. IEEE Trans. Knowl. Data Eng., 17(1):4—
23, 2005.

[Kyu et al. 2007] Kyu, L., Hyuk, J., Hyun, S., Ung, M.: Context RBAC/MAC Access
Control for Ubiquitous Environment . Lecture Notes in Computer Science: Volume
4443/2008, Advances in Databases: Concepts, Systems and Applications, 1075 —
1085, Springer, Berlin / Heidelberg 2007.

[Li et al. 2002] Li, N., Mitchell, J., Winsborough, W.: Design of a role-based trust-
management framework. Proceedings IEEE Symposium on Security and Privacy,
114 — 130, 2002.

[Ninghui et al. 2007] Ninghui, L., Byun, J., Bertino, E.: A Critique of the ANSI Stan-
dard on Role-Based Access Control. TEEE Security & Privacy, 41 — 49, Novem-
ber/December 2007.

[Osborn et al. 2000] Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based ac-
cess control to enforce mandatory and discretionary access control policies. ACM
Trans. Inf. Syst. Secur., 3(2):85-106, 2000.

[Sandhu and Bhamidipati 2008] Sandhu, R., Bhamidipati, V.: The ASCAA Principles
for Next-Generation Role-Based Access Control. ARES 2008 - International Con-
ference on Availabilityy, Reliability and Security, xxvii — xxxii, 2008.

[Young-Gab and Jongin 2007] Young-Gab, K., Jongin, L.: Dynamic Activation of Role
on RBAC for Ubiquitous Applications. ICCIT ’07: Proceedings of the 2007 Interna-
tional Conference on Convergence Information Technology, 1148-1153, Washington,
DC, USA, 2007. IEEE Computer Society.

