
A New Fair Non-repudiation Protocol for Secure
Negotiation and Contract Signing*

Antonio Ruiz-Martínez
(University of Murcia, Murcia, Spain

arm@um.es)

C. Inmaculada Marín-López
(University of Murcia, Murcia, Spain

inmaml@um.es)

Laura Baño-López
(University of Murcia, Murcia, Spain

laurabl@um.es)

Antonio F. Gómez-Skarmeta
(University of Murcia, Murcia, Spain

skarmeta@um.es)

Abstract: The participation of an e-notary, acting as an on-line Trusted Third Party is required
in some scenarios, such as Business to Business, Intellectual Property Rights contracting, or
even as a legal requirement, in contract signing is frequently necessary. This e-notary gives
validity to the contract or performs some tasks related to the contract, e.g. contract registration.
In the abovementioned contracting scenarios, two important additional features are needed: the
negotiation of the e-contract and confidentiality. However, until now, e-contract signing
protocols have not considered these issues as an essential part of the protocol. In this paper, we
present a new protocol which is designed to make negotiation and contract signing processes
secure and confidential. Moreover, compared to other previous proposals based on an on-line
Trusted Third Party, this protocol reduces the e-notary’s workload. Finally, we describe how
the protocol is being used to achieve agreements on the rights of copyrighted works.

Keywords: fair exchange, contract signing protocol, Intellectual Property Rights contracts,
secure negotiation, confidentiality
Categories: C.2.2, K.4.4, K.6.5

1 Introduction

Nowadays, a part of the research in e-commerce and business transactions focuses on
the electronic signing of contracts. In these contracts, the parties involved gain from
their relationship. These gains could be goods, services or others. The contracts are
particularly important in Customer-to-Business (C2B) and Business-to-Business
(B2B) commerce when establishing long-term relationships or offering services.

* This is an extended version of a paper presented at the PST 2006 conference in
Markham, Ontario, Canada.

Journal of Universal Computer Science, vol. 15, no. 3 (2009), 555-583
submitted: 23/8/07, accepted: 29/1/09, appeared: 1/2/09 © J.UCS

In contract signing protocols, Trusted Third Parties (TTPs) provide security and
confidence to the system. However, if the TTP has to participate in a lot of
transactions, a bottleneck can ensue. For this reason, except in certain circumstances,
it is desirable that the TTP participates as little as possible in the execution of the
protocol. Thus, it is preferable to have an off-line TTP instead of an on-line TTP.
Nevertheless, an on-line TTP is still needed in some scenarios [AAVV, 05],
[Angelov, 05], [Kötz, 97], [Ruiz, 03], [Yang, 05]. In such scenarios, to obtain a valid
contract it is mandatory that the contract is signed by a TTP, which acts as an e-
notary. For example, Spanish or French laws establish that some contracts, such as
those related to royalties or legacies, must be signed by an e-notary [AAVV, 05],
[Kötz, 97]. Thus, the e-notary validates the contract and records it. Similar scenarios
could be the agreement of rights of copyrighted works or a B2B contract update.

Some proposals such as [Yang, 03], [Yang, 05], [Zhou, 96] have been put
forward for these scenarios. However, these proposals present some problems, such as
not guaranteeing abuse freeness, or the over important participation of the TTP in the
protocol. The aim is that the protocol reduces the TTP’s load to the minimum
possible, i.e., that TTP participates in very few messages in the protocol and makes
the minimum number of cryptographic operations. Moreover, it is also important that
the cryptographic operations have the least computational workload. Neither do these
proposals take into account two important requirements in business/DRM
transactions: secure negotiation and confidentiality. Confidentiality is important to
avoid parties not involved in the protocol knowing the agreement between two
parties, their behaviour, etc. On the other hand, in general, before agreeing on a
contract there is a negotiation [Darko, 06], [Delgado, 01],[Limthanma, 00]. The
security during this process is also important and we should protect the information
exchanged, maintaining its integrity, confidentiality and protecting the parties against
attacks from parties not involved in the negotiation [Darko, 06], [Delgado, 01],
[Limthanma, 00].

We propose a new protocol that is based on an on-line TTP. However, in our
protocol, unlike the best of the previous proposals based on a TTP on-line, the TTP
does not participate in all the messages exchanged between the parties. In our
proposal the TTP only participates during the last phase of the protocol, in order to
sign the agreement reached. Its main added value against other proposals is the
incorporation of important features such as confidentiality and the secure negotiation
of the contract. In this protocol, the contract negotiation information has been
included as part of the protocol. At the same time, we have reduced the TTP’s
overload from two important aspects, compared to other works. On the one hand, as
regards the number of cryptographic operations to perform and on the other hand as
regards the number of messages in which the TTP participates. Furthermore, we have
designed the protocol so that it works with any public key cryptosystem that provides
signature and ciphering (RSA, ECDSA,…). Thus, users could utilize the protocol
with the keys and certificates that they own, because it is not necessary either to
generate new keys or to engage in a registration process with a TTP, unlike [Garay,
99], [Park, 03], [Wang, 05].

The paper is organized as follows. In section 2, we introduce contract signing
protocols and related work. Section 3 details our proposal. Then, in Section 4, its
security is analyzed and compared with previous works. In section 5, we introduce a

556 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

protocol variation to facilitate contract management. Finally, in section 6, we present
conclusions and future work.

2 Contract signing protocol requirements and related work

A paper-based contract is a signed document where two or more parties express an
agreement. Contract signing protocols appeared to allow two or more parties to
establish a contract over a network in a fair way. By fair it is meant that each honest
party sending a signed contract is assured that if the other party obtains it, then he will
also obtain the necessary signed contract of that party. In a contract signing protocol,
the signing parties, at the very least, must participate. Additionally, other parties can
participate, e.g. a TTP. The role of the TTP is to guarantee fairness and provide
confidence to the system, because the signing parties might not be trustworthy.

As stated in [Kermer, 02], depending on the grade of implication of the TTP in
the protocol, they can be classified as: in-line, in the case that the TTP participates in
the delivery of each message; on-line, when the TTP only participates once in the run
of the protocol; off-line or optimistic, when it only participates if something goes
wrong; and transparent, in those cases when it is not possible to determine if the TTP
is participating or not. In this kind of protocol there could be other parties (malicious
entities) in the network that want to interfere in the signing of the contract by either
modifying the content of the contract or by impersonating one of the parties or
replaying old messages or by seeking to obtain confidential information about the
contract. Basically, these attacks may pursue several goals, such as preventing a
successful agreement being reached, obtaining confidential information, being
detrimental to another party and obtaining the benefits of a contract by impersonating
another party.

In this section we introduce the requirements that we need for electronic contract
signing protocols in order to negotiate and sign contracts in a secure way and make
use of a TTP on-line for scenarios where the electronic signature of a TTP is essential,
for example, in some business-to-business or DRM scenarios [Angelov, 05], [Jalali,
00], [Ruiz, 03], [Yang, 03], [Yang, 05] or by legal requirement [AAVV, 05], [Kötz,
97], as was stated in the introduction. We therefore analyze related work.

2.1 Requirements

With the aim of signing a contract in a fair way and of addressing the abovementioned
threats, we define the basic features required for a contract signing protocol: non-
repudiation, fairness, efficiency, completeness, viability and timeliness. These
requirements are briefly defined as follows:

• Non-repudiation. This feature aims to ensure that participants in a contract
signing protocol cannot deny having participated therein [Kremer, 02],
[Zhou, 01].

• Fairness. This requirement seeks to guarantee that no party gains an
advantage over another at any moment during the running of the protocol.
The protocol would not be fair, for example, if one of the parties obtained
the signed contract without the other being able to do likewise.

557Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

• Efficiency. The number of cryptographic operations and the time used to
execute them should be the least possible.

• Completeness. The protocol should be robust against adversaries that try to
abort it without the consent of any of the parties.

• Timeliness. This requirement is given if any entity can stop the protocol in a
finite amount of time while guaranteeing fairness [Gürgens, 05].

These features are discussed in more detail in [Gürgens, 05], [Kremer, 02],
[Markowitch, 02]. These criteria are the classical features that we should require for a
protocol that guarantees fair exchange and, therefore, for a contract signing protocol
included in fair exchange. Furthermore, a new important feature for the contract
signing protocols was introduced in [Garay, 99]:

• Abuse freeness: “if it is impossible for a single player at any point in the
protocol to be able to prove to an outside party that it has the power to
terminate (abort) or successfully complete the contract” [Garay, 99].

Other additional requirements introduced and considered by S. Yang et al. in [Yang,
03], [Yang, 05] are:

• Trust dependency on a third party. A TTP that knows the content of the
messages is heavily dependent on the confidence in a third party. On the
other hand, a TTP that does not know the contents presents a lesser degree of
dependency as regards the trust to be deposited in the third party. We could
also require low dependency for a contract signing protocol unless, in some
circumstances, the TTP needs to know the content in order to perform certain
operations (for example, an e-notary who has to record the contract and
assure its validity).

• Existence dependency. The protocol should generate evidences in such a way
that, in case there is a subsequent dispute, the result can be determined
without recurring to the TTP.

• Recipient role. Normally, the protocols are sender-or-requester-oriented.
They give this role more control and responsibility and might not be a good
solution for the efficient processing of service requests. However, in e-
commerce applications, the service provider has to take an active role in the
execution of the protocol to obtain both system efficiency and integration.

Finally, other additional requirements we consider essential and, therefore, which we
require for contract signing protocols are:

• Confidentiality. The information exchanged between the parties should be
known only to them. Most of the protocols suppose a private communication
channel. However, this supposition is not realistic enough. A user cannot
suppose the underlying network provides this property because the network
may not offer it. Furthermore, establishing this private channel requires the
exchange of additional messages, and therefore, a greater load for both the
users and TTP.

• Secure Negotiation. The protocol should allow the secure negotiation of the
terms and conditions of the contract since, in general, there is a negotiation
phase prior to the contract signing process [Darko, 06], [Delgado, 01],

558 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

[Limthanma, 00]. Moreover, according to [Darko, 06], “the process of
reaching an agreement, i.e. the negotiation of the contract, is therefore
particularly critical to the position and advantage that a partner can draw
from participating in the virtual organization. If the negotiation process is not
properly secured, a partner may miss the opportunity to conclude an
advantageous agreement”. Therefore, secure negotiation should be
guaranteed even if, in the end, an agreement is not reached. Furthermore,
incorporating this feature into the contract signing protocol we will make this
kind of business process (negotiation and contract signing) more efficient
than if we perform these processes in two different protocols. The efficiency
issue is analysed in depth in section 4.9.

In most studies these additional criteria have not been considered. We now provide
the justification for our decision to include each of these features as an essential part
of a contract signing protocol.

As for confidentiality, some proposals (see [Gürgens, 05], [Kremer, 02]) assume
a channel where the information is exchanged in a ciphered way: either using Virtual
Private Networks or SSL/TLS connections between the different parties. Apart from
the fact that the supposition of a secure channel is not realistic enough, it supposes a
higher load (e.g. a SSL/TLS channel needs five messages, at least, to be established
[Asokan, 98], [Dierks, 99]). Therefore, until now, in contract signing protocols
confidentiality is not supposed as an essential part of the protocol. However, this
characteristic is important because we want to prevent parties not involved in the
protocol knowing the agreement between two parties, the conditions, their behaviour,
and so on.

As regards the secure negotiation of the contract terms and conditions, this is not
a feature which any of them incorporates. Negotiation is a fundamental process in any
e-commerce or business model, as stated in [Darko, 06], [Limthanma, 00], [Röhm,
98].

Protecting the information exchanged in this process is also fundamental because
most of the conditions agreed in the final contract are included in the negotiation.
Therefore, the security provided in this phase should be similar to the contract phase
and we should maintain the integrity, confidentiality and avoid man-in-the-middle and
impersonation attacks during this phase.

However, in the existing protocols, [Abadi, 02], [Kim, 99], [Yang, 03], [Yang,
05], [Zhou, 96], secure negotiation could be achieved by means of either the
execution of the contract signing protocol for each offer or by using a previous
specific protocol to carry out the negotiation.

The main disadvantage of an execution of the contract signing protocol, for each
offer is that it supposes the exchange of a lot of messages, which makes it slow and
not efficient. The main disadvantage of the use of a secure negotiation-specific
protocol with a contract signing protocol is that in both processes we have to generate
similar cryptographic material and use similar operations to obtain a secure
communication, which is also inefficient as we explain in section 4.9. In both cases,
as an additional drawback, we can mention that the negotiation is not linked to the
contract, which is desirable [Delgado, 01], [Röhm, 98]. Thus, by offering a protocol
with both features (negotiation and contract signing), we could make the process more

559Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

efficient than when we use a different protocol for each process. In fact, there are
other fields of electronic business/commerce that have followed this approach of
combining negotiation with another process. For example, in the field of electronic
payments, the negotiation of the price and the payment of an electronic product is
combined, as appears in [Cox, 95],[Ruiz, 01].

Therefore, a contract signing protocol that provided all previous requirements,
would make the whole lifecycle of the negotiation and contract signing secure and
efficient.

2.2 Related Work

To date, several contract signing protocols based on an on-line TTP have been
proposed [Abadi, 02], [Kim, 99], [Yang, 03], [Yang, 05], [Zhou, 96]. However, in this
section we only refer to [Yang, 05] since this protocol is an improvement on previous
ones.

The goal of the protocol proposed by S. Yang et al. in [Yang, 05] is to guarantee
non-repudiation in the delivery of the messages, and it could be used for contract
signing. In fact, it was proposed for collaborative e-commerce. But since the protocol
is conceived for message delivery, if we want to use it to sign contracts we have to
execute it twice. In the first execution, Alice sends the signed contract to Bob, and
Bob confirms the delivery but does not sign the contract. Then, in the second
execution, Bob signs the contract signed by Alice and sends it to her so that she can
confirm she has received it.

The protocol offers evidence as to whether one of the parties is not behaving
correctly. It also offers confidentiality, and the TTP will never know the content of
the contract. However, there are two main drawbacks. The most important is that the
protocol does not guarantee the abuse freeness property because Bob obtains a signed
contract before Alice obtains it. Therefore, Bob has an advantage over Alice.

Another important problem is that the TTP has a significant participation in the
execution of the protocol because it participates in five of its six messages of each
iteration. This could lead to the TTP becoming a bottleneck if there were many
concurrent executions of the protocol. Furthermore, if we want to negotiate the terms
and conditions of the contract, it would be necessary to offer an additional
mechanism. This is because if we used this protocol for each message in the
negotiation, then the complete process (negotiation plus contract signing) would
present a high overload in the system, given the number of messages exchanged and
the cryptographic operations made. Finally, one minor problem that could be solved
easily is that the protocol does not satisfy the timeliness property.

560 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

TTP

Sender Recipient1. encrypted msg, double-
encrypted key, dual sig

4. signature
2

5. encrypted key

3. prepare commit

6. signature1,
signature2 2. double

encrypted key,
signature1

Figure 1: Secure exchange in Yang et als’ proposal

3 SURENESS: A new SecURE NEgotiation and contractS
Signing protocol

In this section we present a new contract signing protocol which satisfies the
requirements introduced in the previous section to provide a robust contract signing
protocol. Our protocol is based on an on-line TTP for those situations in which an e-
notary has to authenticate a contract by signing it. Our protocol reduces the
participation of the TTP to the minimum possible expression as regards the number of
cryptographic operations (especially the asymmetric ones, due to their computation
cost) and messages sent and received. It is also important to mention that it could be
used with any existing public key cryptosystem, as long as this offers signature and
ciphering. Thus, it could be used without generating new keys and certificates, unlike
other protocols that require either specific keys (e.g., ElGamal keys [Garay, 99]) or
the generation of new ones with special features, or a previous registration process
with a contract TTP, as required in [Garay, 99], [Park, 03], [Wang, 05]. We have
named the protocol SURENESS (SecURE NEgotiation and contractS Signing). In this
protocol, we consider that none of the parties is going to act against its own interests.
In addition to the primary protocol, we provide, resolve and abort subprotocols to
guarantee that every party is able to complete the execution of protocol in time,
without having to wait for actions by the other, potentially malicious, party.

3.1 Notation

In this section we provide a description of the notation used to specify the sequence of
messages in our protocol specification.

561Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

Symbol Meaning

[Data] This indicates that this piece of data is optional, and may not be in
the message.

H(Data) A message digest of Data, obtained using a hash algorithm such as
SHA2 [NIST, 04].

|Data|K Data, encrypted by a symmetric cipher such as AES [NIST, 01]
using the key K.

|Data|K Data is authenticated using an HMAC algorithm with a
cryptographic key K. This represents a message composed of two
elements: Data and its cryptographic checksum.

|Data|K1,K2 This is equivalent to ||Data|K1|K2
{Data}X

-1 Data is signed using the private key of X.
{Data}X Data, encrypted for X using public key cryptography (RSA, ECDH,

ECMQH,…). For computational efficiency, this is implemented
using either a digital envelope (RSA) or an agreement exchange
(ECC) as specified in [Blake-Wilson,02],[Hously,04].

X =>Y This indicates that X sends a message to Y.

Table 1: Cryptographic notation

3.2 Definition of a contract in SURENESS

For this protocol, a contract has the following structure:

{NID, A, B, Timestamp, Nonce, H(ContractDoc), H(SCA), H(SCB)}TTP

-1, SCA, SCB

The contract is basically a document signed by the e-notary (TTP) and it contains the
following information:

• NID (Negotiation Identifier). This is a unique identifier of the contract. The
NID identifies the transaction performed between Alice and Bob. Although
this identifier may not be globally unique, it is used to distinguish between
the different negotiations or transactions performed by the same parties.
Thus, the NID is used to identify the transaction to which a message belongs.

• A, B. These are the identifiers of the parties (Alice and Bob) between whom
the contract is signed. This type of identifier is the digest of the party’s
public key. It is used to avoid impersonation attacks, as we comment later in
section 5.

• Nonce. A nonce (randomly generated number) received from Alice. It is
introduced to avoid Bob’s having an advantage over Alice at a given
moment. This issue is analyzed in the Section 4, in a subsection called abuse
freeness.

• ContractDoc (Contract Document). A document that reflects the agreed
contract terms between Alice and Bob. This document could be expressed in
natural language or it could follow a specified contract language, as
proposed in [Tan, 00].

562 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

• H(ContracDoc). This is the hash of the document which represents the
contract terms.

• H(SCA), H(SCB). These represent the hashes of the contract signed by Alice
and Bob, respectively. The content of SCA and SCB is commented later. We
can advance that it is basically the electronic signature of the contract with
other information necessary to guarantee the non-repudiation and fairness of
the protocol.

By means of this contract, the TTP testifies that Alice and Bob have reached an
agreement or contract (identified by the NID). This is reflected in a document that
contains some information, such as the hash of the contract document
(H(ContractDoc)), the hashes of the signatures made by Alice and Bob, and the
corresponding signatures. It also contains information about when the contract is
signed by the TTP (Timestamp).

To sum up, our contract is an electronic signature made by the TTP that links the
contract terms signed individually by each party. Thus, the contract contains the
signatures of the TTP and the participating parties, as supposed.

From this contract, we can not deduce if the TTP (or e-notary) knows the contract
content or not. The e-notary will own a copy of the contract if Alice and Bob consider
that the e-notary ought to know it. For example, when the e-notary takes the
responsibility for monitoring if the conditions of the contract are being complied with
or not, or whether the e-notary has to certify, record and save a copy of the contract
[Angelov, 05], [Jalali, 00], [Ruiz, 03], as occurs in real estate contracts.

In the following section, we describe the contract signing protocol when there is a
phase where the contract terms are previously negotiated. Later, in a subsequent
section, we present the description of the protocol when it is not possible, or it is not
desirable to negotiate the conditions of the contract. For example, if there is a pre-
established contract.

3.3 Normal Mode

In the normal mode, the protocol is composed of the messages that appear in Figure 1.
Each type message is described in more detail below.

TTP

Alice Bob
1. NegotiationRequest

2. NegotiationStep
3. Handshake

4. Agreement

5. SignedContract

Figure 2: SURENESS messages in normal mode

563Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

STEP I. Alice=>Bob: NegotiationRequest

{{NID, Time1, SeqN, [Cred], B, EnKey, SignKey, Flag}A
-1, ContractDoc,

H(ContractDoc)}B

Where:

• NID (Negotiation Identifier). The NID identifies the negotiation being
performed between Alice and Bob. Although this identifier might not be
globally unique, it is used to distinguish between the different negotiations or
transactions performed by the same parties. Thus, the NID is used to identify
the transaction to which a message belongs. This identifier or label could be
a randomly generated number. However, in order to provide a high level of
security we have decided to follow the principles proposed in [Gürgens,05].
These design principles recommend that the label has the following
properties: verifiability, uniqueness and secrecy. Therefore, we have
generated this identifier as H(A,B,TTP,H(EnKey),H(SignKey)).

• Time1. This is the time until which Alice will wait for a response from Bob.
In general, we represent with TimeX the time one party will wait for a
response from the other one. This time should include a date and hour. It will
delimit the time of a possible response. In this case, if a response does not
arrive before Time1, Alice will consider that Bob is not interested in
continuing with the negotiation. This may be because Bob is not interested in
her conditions. Thus, the negotiation is considered finished without an
agreement. Therefore, there will be no contract signing process and no more
messages are exchanged.

• SeqN (Sequence Number). During the negotiation phase, it is possible to
exchange several messages. Every message in this sequence must be unique
in order to prevent reply attacks. For this reason, a SeqN field is present in
the negotiation messages and each party must increment the SeqN value after
receiving this type of messages.

• Cred (Credentials). This is an optional field which can be used to provide
the user’s credentials. For example, these could be a SAML Assertion or
Artifact [Maler,03].

• B. Bob’s identifier. This field is the digest of Bob’s public key. It identifies
the intended receiver of this negotiation request, in this case, Bob. In this
way, we can avoid any possible impersonation attack (we analyze this type
of attack in section 4).

• EnKey (Encryption Key). This is a symmetric key generated by Alice that is
used to provide confidentiality to the following messages exchanged
between Alice and Bob. The default symmetric cipher to employ is AES.

• SignKey (Signing Key). This is a symmetric key generated by Alice. It is
used to provide integrity to the subsequent messages exchanged between
Alice and Bob. The default cryptographic checksum function to employ is
HMAC [Krawczky,97] with SHA2 [NIST,04].

• Flag. This is used to indicate whether it is the last offer from Alice. If its
value is true, it indicates that Alice will not accept counter-offers to this

564 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

offer. Then, Bob can either accept the offer or finish the negotiation. The
offer is represented by the different terms indicated in the ContractDoc field.

• ContractDoc (Contract Document). This is a document that reflects a
proposal of contract to be negotiated between Alice and Bob. The language
used to express the conditions, obligations and rights associated to the
contract will be that decided upon by Alice and Bob.

The NegotiationRequest message indicates the beginning of the execution of the
protocol. The message is used by one of the parties when it decides to initiate the
negotiation of the conditions of a contract in order to reach an agreement that will be
reflected in a signed contract. The contract terms appear in the proposed contract
document in the field called ContractDoc.

In this step, the contract documents (ContractDoc) and H(ContractDoc) are not
signed by Alice to avoid the abuse freeness, since if Alice signed these data, then Bob
would be able to present them to another party, so gaining an advantage over Alice.

STEP II. Bob=>Alice: NegotiationStep

|NID, Time2, SeqN, [Cred], ContractDoc, Flag|SignKey,EnKey

Bob sends this negotiation message to make a new offer (counter-offer) if he does not
agree with the contract terms. If Bob does agree to the conditions, he sends a
Handshake message instead. Thus, the Handshake indicates the end of the negotiation
and the initiation of the contract signing process.

The NegotiationStep message is used by Alice and Bob on various occasions until
one of the following conditions is reached:

• One of them accepts the conditions of the other party in the last
NegotiationStep message. In this case, a Handshake message is sent.

• One of them receives a NegotiationStep message containing a last offer (flag
is activated) that it does not agree with. In this case, the communication is
closed.

STEP III. Alice=>Bob: Handshake

|RecKey|EnKey, SCA

Where:
• SCA= {NID,Time3,B,TTP,{Nonce,H(ContractDoc)}TTP, H(RecKey)}A

-1
SCA represents the contract signing by Alice.

• RecKey (Receipt Key). This is a symmetric key which will be used to receive
the contract signed by the TTP. Its value is the result of performing the hash
on the Nonce.

• Nonce. This is an array of randomly generated bytes of variable length.
• Time3. This indicates the deadline until which Alice considers the agreement

is possible with Bob. This time must be taken into account by Bob and TTP.
Even if Bob signed his part of the contract, if it is signed after time Time3,
the TTP will not sign it and there will not be a valid contract.

565Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

This is the step where Alice decides to accept the contract by sending it to Bob. Thus,
this message indicates the end of the negotiation process and the initiation of the
contract signing process. However, in order to avoid Bob gaining an advantage over
Alice, the signed contract is ciphered with the TTP’s public key. The hash of the
symmetric key, RecKey, is also sent signed, so Bob and the TTP could be sure the
symmetric key was not changed by another party, because this key will be used to
send the signed contract in a ciphered form.

STEP IV. Bob=>TTP: Agreement

There are two possibilities in this step:

a) SCA,{SCB}TTP or
b) SCA,{SCB}TTP, |ContractDoc|RecKey

Where:

• SCB = {NID,Time4,TTP,H(ContractDoc)}B
-1

This represents the signing of the contract by Bob.
• Time4. This indicates the time until which Bob will wait for the contract to be

signed. This time should not be greater than Time3. This is because the TTP
also has to take into account that Alice, in Time3, indicated that she wants the
contract to be signed before this time. If Bob put a greater time, it would be
useless because the TTP would have to sign the contract before Time3
indicated by Alice. If Bob agrees with the time specified by Alice he should
put the same time. Time4 has been introduced in case Bob wants to further
limit the deadline for signing the contract by TTP.

This message represents the agreement between the two parties for a contract. It
contains part of the information received in the Handshake message (step III), i.e. the
signing of the contract by Alice. Furthermore, it includes signed information by Bob
that is sent ciphered to the TTP with its public key. This information reflects Bob’s
conformity with the contract. It is sent ciphered to the TTP in order to avoid Alice
intercepting the message, which she could show to another party to gain an advantage
over Bob. There are two versions of this message. In the first, Alice and Bob decide
that the TTP does not need to know the content of the e-contract (case a). But, in the
second, they deem it necessary that the TTP knows the e-contract (case b), e.g. in
those scenarios where it is required that the TTP certifies, records and saves the
contract. In order to avoid outside entities knowing the content of the contract, it is
sent ciphered with the symmetric key (RecKey). When the TTP receives this message,
then the TTP will check that the signatures are valid and that the contract document
signed by each party is the same. In this case, the protocol continues in the following
step, otherwise it finishes.

STEP V. TTP=>Alice, Bob: SignedContract

|{NID,A,B,Timestamp,Nonce,H(ContractDoc), H(SCA),H(SCB)}TTP

-1, SCB|RecKey

566 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

Where Timestamp indicates the date and the time when the TTP signed the
contract, once Alice and Bob had reached an agreement. This time should be less than
the minimum between Time3 and Time4. That is, the TTP would choose the most
restrictive time. As commented in the previous message, there are two possibilities:
either both Time3 and Time4 are equal or Time4 is less than Time3.

The message represents the approval of the signed contract between Alice and
Bob. It is signed by the TTP in order to prove that both entities agreed to the contract
reached. Bob’s signature is included so that Alice can have a copy of the signed
contract by Bob. Thus, in case of dispute, the TTP will not be necessary.

3.4 Abort Subprotocol

In this section we present the abort subprotocol. We have defined it taking into
account that it is possible that in some circumstances, a party that has signed a
contract wants to cancel it prior to its being signed by the TTP ([Zhou, 01], [Gürgens,
05]). Thus, a party that has initiated the contract signing process can abort it fairly. As
commented previously, the signing process is initiated with the Handshake message,
it continues with the Agreement message and it finishes with the SignedContract
message. Therefore, if a party wants to abort this signing process once initiated,
he/she has to execute the abort protocol before the SignedContract message is
generated by the TTP. For this abort protocol, the messages that we have needed to
define are:

STEP I. Alice=>TTP: Abort

{NID, B, TTP, {Nonce, H(ContractDoc)}TTP}A

-1

This message is used by Alice in order to inform the TTP that she wants to abort the
protocol. If the contract has not yet been signed, step II of the abort protocol is
executed. Otherwise, the last message of the execution of the protocol is re-sent
(SignedContract).

STEP II. TTP =>A,B: ConfirmedAbort

{NID,Timestamp,A,B,Abort}TTP

-1

This message is received as confirmation that the protocol was aborted. This is
indicated by the flag Abort.

3.5 Subresolve Subprotocol

It could occur that when one party, after having sent its contract signature to the other
one or to the TTP, after the deadline, does not receive any answer. We will comment
on the sequences of messages to exchange supposing that it was Alice who did not
receive the answer.

STEP I. Alice=>TTP: Resolve

567Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

{{NID,TimeX,B,TTP,Nonce,H(ContractDoc), RecKey}A
-1}TTP

Where TimeX is the time indicated in the Handshake or Agreement message. The time,
when this message is sent, should be later than TimeX. Depending on the messages
sent (or not) to the TTP, in the execution protocol, Alice could receive one of the
following messages:

a) STEP II. TTP =>Alice: SignedContract

This message is the same as we commented in step V of the protocol and it would be
received if the contract was signed and sent to the TTP by Bob.

b) STEP II. TTP =>Alice: ConfirmedAbort

{NID,TimeStamp,A,B,Abort}TTP
-1

This message would be received if Bob cancelled the signing of the contract.

c) STEP II. TTP =>Alice: NoContract

{NID,A,B,Timestamp}TTP
-1

If after the TimeX, the TTP has not received an abort or a signed contract, TTP sends a
signed message to Alice indicating that there was no agreement.

3.6 Aggressive mode

The aggressive mode is useful in those cases where there is a predefined contract
whose content is already known to the parties, but where some minimal details, e.g.
dates, names of the parties and so on, have to be filled in. In this mode, the messages
would be the following:

STEP I. Alice=>Bob: AgreementRequest

{{NID,Time1,[Credentials],B,EnKey, SignKey}A

-1}B,|ContractDoc|SignKey,EnKey,SCA

In this message, Alice sends an agreement request with the signed contract.

STEP II. Bob=>TTP: Agreement

a) SCA,{{NID,Time2,TTP,H(ContractDoc)}B

-1}TTP or

b) SCA,{{NID,Time2,TTP,H(ContractDoc)}B

-1}TTP, |ContractDoc|RecKey

STEP III. TTP=>Alice,Bob: SignedContract

|{NID,A,B,TimeStamp,Nonce,H(ContractDoc),H(SCA),H(SCB)}TTP

-1, SCB|RecKey

568 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

4 Analysis and comparison with related work

In this section we are going to analyze the protocol from different points of view:
security, requirements mentioned in section 2, and comparison with related work.

4.1 Replay Attacks

Replay attacks are avoided thanks to the use of the fields NID and SeqN. NID is the
identifier of the transaction and represents an execution of the protocol, while SeqN is
the number of negotiation messages within the execution. Each time a new message is
received, the SeqN number is increased. Thus, in the same transaction or negotiation,
if a message with an inferior SeqN value to the expected value is received, it will be
rejected. Similarly, if a message with a correct sequence number, but from another
negotiation, is received (a message with a previously used NID), the message will be
rejected. In the same transaction, messages with the expected SeqN value can not be
generated by an outside party unless one party has revealed the keys used (symmetric
and/or asymmetric keys).

4.2 Timeliness

The protocol has the ability to stop, in a finite amount of time, its execution while at
the same time preserving fairness. This property is assured thanks to the TimeX fields
that we have included in the messages of the protocol in order to limit the reception
time of a message. Thus, when an entity receives a message, it checks that the actual
time is later than the time indicated in TimeX, then the entity discards the message.
The contract signing process is also atomic, since the contract is either valid or not
valid at all after the time-window TimeX has expired.

4.3 Impersonation

Abadi and Needham postulated some basic engineering practices for cryptographic
protocols in [Abadi,96]. One of these principles is related to naming: “if the identity
of a principal is essential to the meaning of a message, it is prudent to mention the
principal’s name explicitly in the message”. Impersonation attack tries to convince
some protocol party that the communication is being performed only between entities
Alice and Bob, although there is a third party participating in that communication
(impersonating Alice or Bob). We have included the identifier of the parties in the
messages, so as to avoid this problem. If we did not use these identifiers, like in
messages shown below, the following situation (M is a malicious party) could occur.

STEP I. Alice => M: NegotiationRequest

{{NID,Time1, SeqN, [Cred], EnKey, SignKey, Flag}A

-1, ContractDoc,
H(ContractDoc)}M

STEP II. M => Bob: NegotiationRequest

{{NID,Time1, SeqN, [Cred], EnKey, SignKey, Flag}A

-1, ContractDoc,

569Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

H(ContractDoc)}B

STEP III. Alice <=> M <=> Bob: NegotiationStep

|NID,Time2,SeqN,[Cred],ContractDoc, Flag|SignKey,EnKey

In this scenario, the malicious attacker gains access to all the information exchanged
during the negotiation phase (he can learn the negotiation strategy of both parties, the
contract conditions, etc.), Alice is unaware that she is not talking to Bob as she
thought, and Bob does not know that there is a man-in-the-middle. However, in our
protocol, to avoid this attack, we have included the identifier of the parties. Thus, any
forwarded NegotiationRequest message in which the identity of the recipient does not
match with the identity specified in the message can be interpreted as an attack.
Furthermore, we also avoid Alice’s being able to use Bob’s name (or vice versa) in
her communications with the TTP because the messages to the TTP are signed and
include the identification of the parties. For this attack to be successful Alice would
have to know Bob’s private key (and vice versa).

4.4 Confidentiality

During the protocol execution, we have used both symmetric and asymmetric
ciphering algorithms to ensure the confidentiality of the information exchanged. In all
the messages, as far as possible, we have used symmetric cryptography for the sake of
efficiency, especially in the different steps of the negotiation (step II). It is also used
in the Handshake message that is used to finish the negotiation (step III) and in the
SignedContract message to receive the signed contract (step V). As symmetric cipher
we propose AES because since it was introduced no significant security problems
have been revealed. In the cases where there had been no previous contact between
the entities, it was necessary to use asymmetric cryptography (steps I, III and IV).

4.5 Abuse Freeness

Each party sends the TTP his/her signed agreement to the contract, ciphering it with
the TTP’s public key. Therefore, neither is Alice able to show to an outside party that
Bob signed the terms of the contract, nor can Bob prove that Alice signed the same
contract as he did. In step III of the protocol, Bob receives a signed message;
however, the signature can not be linked with the content of the contract since the
hash of the contract is ciphered with the TTP’s public key. In order to show it to an
outside party, Bob could try to make the envelope with the hash of the contract that he
knows, which is the same as Alice knows. However, he does not know the field
Nonce, so the envelope would not match and he would not be able to show it to an
outside party. The same occurs if Alice intercepts the message between Bob and the
TTP.

The Nonce is secure enough if it is generated by using a cryptographically secure
pseudo-random number generator that takes into account the considerations
mentioned in [Eastlake, 97], [Kürtz,07]. Thus, we are sure of the uniqueness and
freshness of the number generated. Therefore, the enveloped information is secure

570 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

because the cost of obtaining that information is equivalent to a brute-force attack
[Kürt, 07], [Schneier, 95].

The TTP is the only entity that can create the contract from the individual
signature of each party, showing that each party really signed it. As far as the
protocols presented in section 2 are concerned, none satisfy this requirement.
However, the new protocol presented here guarantees that none of the parties gets a
copy of the contract until the TTP has signed it.

4.6 Non-repudiation and Dependency of Existence

Once the TTP receives the contract signature from Alice and Bob, it generates a
signature to validate the transaction and to relate the information signed by the
entities. The TTP signs the transaction identifier, a timestamp indicating the moment
of the registry of the contract, the nonce contained in the envelope of the signature of
the contract by Alice, and the hash of the contract signature by Alice and Bob. With
this information, even if the TTP were not available, a third party would be able to
check the validity of the contract. The steps would be the following: firstly, it would
verify the TTP’s signature; secondly, it would verify the Bob’s signature. After that, it
would check that the contract hashes are the same. Then, from the nonce inserted in
the TTP’s signature, and from the hash of the contract, it could calculate the envelope
of the TTP in which Alice’s signature is. Finally, it would check Alice’s signature.

4.7 Recipient Role

The contract negotiation is initiated by one of the parties. However, depending on the
steps followed in the negotiation, the recipient could become the sender if the
recipient accepts the contract proposal. In this case, the recipient could send message
III to the sender, thus becoming a sender. The role of recipient and sender are
therefore symmetric in our protocol. Both have control of the protocol since, without
both signatures the final contract is not possible. Thus, our protocol is not sender-
oriented and the recipient can play an important role in the protocol because he/she is
able to finish the protocol without involving the sender. Furthermore, we avoid extra
messages in the protocol, which in turn, improves efficiency. Therefore, our protocol
satisfies the recipient role requirement.

4.8 Secure Negotiation

The protocol, unlike those mentioned in section 2, incorporates the possibility of
negotiating the contract in a secure way and does not allow either party to gain an
advantage over the other. This security is provided by means of asymmetric signature
and encryption in the NegotiationRequest message. The asymmetric encryption
allows only the recipient to decipher the content. The information signed in this
message is used to authenticate the user, confirm the keys that will be used in the
following messages and avoid both replay (see also section 4.1) and impersonation
(see also section 4.3) attacks. In NegotiationStep messages the authentication is based
on symmetric cryptography by means of HMAC codes and the information is sent in
a confidential way (see also section 4.4) by means of the encryption of the
information using a symmetric cipher as AES.

571Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

Furthermore, the negotiation does not suppose an excessive overload, since it
uses symmetric cryptography. We could separate negotiation and contract signing
processes and carry them out with different protocols. However, as we comment in
the following section this process would be more inefficient.

4.9 Efficiency

As commented in the introduction, our goal is to provide a protocol for those
scenarios where the TTP has to participate in the contract signing, for example, by
legal requirement. Since the TTP has to participate, our aim is that the number of
cryptographic operations (especially the asymmetric ones, due to their computation
cost) as well as the messages to be sent and received by the TTP be the minimum
possible. At the same time we have also to satisfy all the security requirements
established in section 2.1. Thus, our solution is more efficient than previous work if it
satisfies two conditions. First, we use fewer messages and cryptographic operations.
Second, we provide better security properties with these operations and messages.

In order to have a reduced computational cost, given the cryptographic
operations, the protocol uses mainly symmetric cryptography (cipher) and hash
functions, except in those operations related to non-repudiation or when it is
necessary to send information to other parties that have had no previous contact, when
asymmetric cryptography is used instead.

We present two tables (Table 2 and Table 3) where the cryptographic operations
made for each party, and for each protocol, appear. Table 2 shows the comparison of
the number of asymmetric cryptographic operations performed. In table 3 we compare
the number of symmetric encryption/decryption and hash operations made.

Protocol Entity Signature &
Verification

Dual Signature
& Verification

Encryption &
Decryption

A 4 2 4
B 6 2 2

[Yang,05]

TTP 6 2 2
A 4 2
B 4 2

SURENESS
Normal
mode TTP 3 2

SURENESS
Aggressive

mode

A
B

TTP

4
4
3

 2
2
2

Table 2: Asymmetric cryptographic operations of the protocols in a contract signing

For both protocols we have supposed that the set of cryptographic algorithms
used are the same. Thus, we suppose both are using the same set of algorithms for
hash, symmetric encryption and asymmetric (public key) encryption. In this case, we
have supposed that the algorithms used are SHA2, AES and RSA, respectively. We
have also supposed that the keys used in these algorithms have the same length.

In the Table 2 and Table 3, the protocol proposed by Yang et al. [Yang, 05] was
introduced in section 2.2.1 and improves other previous works commented in that

572 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

section. We compare this protocol with both modes of our SURENESS protocol
(normal mode and aggressive mode). In Table 2, although operations related to
signature are based on the encryption/decryption of a hash, we have separated the
operations related to encryption and decryption, because in our proposal, asymmetric
encryption is based on creating a digital envelope, that is, generating a symmetric key,
ciphering the content with that symmetric key, and finally, ciphering the symmetric
key with the asymmetric key. Therefore, the computational cost of the signature
operation is less than the computation cost of the digital envelope. Furthermore, with
this separation we clarify the different operations the protocol performs.

As a result of this comparison we realize that, in the protocol proposed by Yang
et al., the number of public key operations made by the TTP is higher than
SURENESS in any of the modes. If we supposed the same cost for all the operations
of this kind, Yang et al.’s proposal needs ten operations, unlike ours, which only
needs five. As for symmetric and hash operations (see Table 3) we can see that in the
TTP the number of these operations made in both protocols is almost the same.
Therefore, we can conclude that we have reduced the overload of the TTP and our
protocol is more efficient as regards cryptographic operations.

We can also compare the two modes defined in SURENESS. As can be seen, the
cost of public key operations is the same since the primitives used to make the
contract signing process are the same. If we analyse the symmetric and hash
operations we can see that the normal mode performs more operations. This is due to
the fact that there are messages of negotiation which are based on this kind of
cryptography. In this comparison we have only supposed one negotiation step. The
more negotiation steps are used the more symmetric cryptography operations are
needed. Therefore, the difference in the number of operations would be increased as
the number of negotiation steps increases.

The SURENESS protocol, as far as the messages exchanged between all the
parties is concerned, is less than in other protocols mentioned in related work. In our
protocol, six messages are sent and received in the normal mode (if we suppose only
one negotiation step in the comparison) or four messages are sent and received in the
aggressive mode (without negotiation), unlike Yang et al.’s protocol (which needs
two executions to sign the contract) where this number is twelve. Furthermore, if we
compare the number of messages in which the TTP participates, we can see that in
our protocol, the TTP sends two messages and receives only one message in both
modes. But in the protocol proposed by Yung et al., the TTP receives four messages
and sends six messages.

Even, if we compared SURENESS protocol with only one iteration of Yung et
al.’s protocol (which fulfils similar features to those proposed here), our protocol has
the same asymmetric cryptographic operations, and the number of messages is fewer.
In SURENESS the TTP participates in three messages unlike the protocol proposed
by Yang et al., where the TTP participates in five messages.

Moreover, SURENESS protocol satisfies all security requirements defined in
section 2, unlike Yung et al.’s proposal. As commented in related work (see section
2.2) Yung et al.’s protocol does not satisfy abuse freeness, unlike SURENESS (see
section 4.5). Therefore, our proposal improves the previous ones because it offers
more security properties and it has a lower overload both in the number of messages
sent and cryptographic operations.

573Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

Protocol Entity Encryption

&
Decryption

Hash

A 2
B

[Yung,05]

TTP 2 3
A 3 6
B 2 5

SURENESS
Normal
Mode TTP 2 3

SURENESS
Aggressive

Mode

A
B

TTP

2
3
2

5
4
4

Table 3: Symmetric cryptographic operations of the protocols in a contract signing

We also are going to justify the proposal of a protocol that offers both negotiation and
contract signing (the SURENESS normal mode) from the efficiency point of view.
We are going to compare this single protocol with the use of different protocols for
each process. That is to say, a protocol for carrying out the negotiation and the
aggressive mode (which does not incorporate negotiation) proposed here for the
contract signing process. Our purpose is to show that our integral solution is not only
justified from the business point of view but also from that of efficiency.

As we commented in section 2.1, in the negotiation we also have to provide
security to avoid different kind of attacks. There are several possibilities for this
negotiation process.

As a first option, we could use the existing non-repudiation protocols analysed in
the related work [Abadi, 02], [Kim, 99], [Yang, 03], [Yang, 05], [Zhou, 96] to make
the negotiation secure. Thus, we would execute one of these protocols for each offer.
The main disadvantage of an execution of one of these protocols, for each offer, is
that it supposes the exchange of a lot of messages, which makes it slow and not
efficient. For example, with [Yang, 05], each offer would need the exchange of five
messages between the different parties. Furthermore, the participation of the TTP is
required (performing five public key operations), which is not needed in this phase.
Therefore, we can see that this option is rather inefficient.

Secondly, we could make use of SSL/TLS with client authentication (to avoid
impersonation). With this option, we would need five messages for SSL/TLS
handshake plus the messages of the negotiation (two if we suppose a single step of
negotiation). In the SSL/TLS handshake, apart from symmetric operations, three
asymmetric operations are made (two signatures and one asymmetric encryption). We
have considered only these because they are very time-costly. To sign the contract,
this SSL-based negotiation with the aggressive mode supposes more messages and
more cryptographic operations than our normal mode. In fact, eleven messages are
needed, unlike SURENESS protocol, in which the whole protocol is executed in six
messages. In the negotiation phase, in this normal mode, the parties only perform two
asymmetric operations. However, in this option we have presented the cost is three

574 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

asymmetric operations. Thus, in this SSL/TLS option, the participation of the TTP is
the same but the parties have more messages and operations to perform.

The third option is to use a secure negotiation protocol such as [Darko, 06]
combined with the aggressive mode. In the negotiation phase, the protocol [Darko,
06], which requires a coordinator, would need six messages and eight cryptographic
operations (if we only suppose a single negotiation step). Therefore, the cost would
also be higher than in the SURENESS normal model. Furthermore, the negotiation
protocol proposed in [Darko, 06] does not guarantee abuse freeness property.

As a last option, we could have decided to define a negotiation protocol similar to
the messages involved in the negotiation phase of the normal mode (two public key-
based operations). This new negotiation protocol could be used with the aggressive
mode. In this situation, the cost in messages would be the same for all parties (the
number of messages in which the TTP participates is the same as the normal mode).
However, in the whole process, Alice and Bob would perform two more public key-
based cryptographic operations.

The analysis of these different combinations of using two different protocols for
the negotiation and the contract signing process shows that SURENESS protocol, by
combining both features, is more efficient. We can also mention than the aggressive
mode (when no negotiation is needed) is also more efficient than previous works.

As a conclusion to the security analysis of our protocol (in the previous sections)
and the different aspects related to the number of messages exchanged and the
number of cryptographic operations made, we can point out that our protocol, in both
modes, offers better security with less computational cost than previous work.
Therefore, our protocol is more efficient than previous work.

4.10 Trust dependency on a third party

Unless the signers of the contract decide that the TTP should know the contract, the
TTP will only know the contract hash. Thus, in our case, the trust dependency on a
third party is minimal, unless the signers decide to deposit more trust or it is a
requirement of the application or the environment in which they are working
[Angelov, 05], [Jalali, 00], [Ruiz, 03].

4.11 Availability

Apart from these features, and since we are considering cases where the presence of a
TTP on-line is mandatory (most of the cases by legal requirement), we could have
problems in the service if the TTP is either not available or if it has to support many
concurrent contract signings. Thus, the TTP is a possible single-point-of-failure in a
contract signing protocol. Nowadays, this problem could be solved with replication
techniques, load balancing servers or solutions based on grid [Rabinovick, 02],
[Schroeder, 00], [Zegura, 00]. In any case, if the TTP is not available at the moment
of signing the contract, the parties could try to send the messages later. When the
deadline indicated in the TimeX arrives, the protocol is considered aborted. This
mechanism allows us to preserve fairness and timeliness properties.

575Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

4.12 Formal validation

We have carried out a formal validation of the different protocols and sub-protocols
proposed using the Automated Validation of Internet Security Protocols and
Applications (AVISPA) tool [AVISPA, 07], [Armando, 05]. The validation process is
the following. First, we specify our protocol in the High Level Protocol Specification
Language (HLPSL) [Chevalier, 04]. Then, the AVISPA tool translates it into the
Intermediate Format (IF) specification [AVISPA, 07], [Armando, 05]. Finally, this IF
specification is analyzed invoking state-of-the-art back-ends that this tool provides,
which are currently: On-the-Fly Model Checker (OFMC) [Armando, 05],[Basin, 03],
Constraint-Logic-based Attack Searcher (CL-AtSe) [Armando,05],[Turuani, 03]
SAT-based Model Checker (SATMC) [Armando, 03], and Tree Automata-based
Protocol Analyzer (TA4SP) [Boichut, 04]. These back-ends allow us to check a set of
automatic analysis techniques such as protocol falsification or abstraction-based
verification. Concretely, AVISPA allows us to check if the machine of the protocol is
correctly designed (non-deterministic protocols), replay attacks, confidentiality,
impersonation, secrecy and authentication (weak and strong). In AVISPA non-
repudiation properties are specified as a set of authentication goals as mentioned in
[Santiago, 06]. Furthermore, the back-ends of this tool follow the standard Dolev-Yao
model, in which the intruder is assumed to have control over the network. Thus, the
intruder is able to perform several tasks. First, he can receive all messages and store
them. Second, if he has the key used to cipher the messages, he tries to decrypt them
and obtain the different information exchanged. Third, he builds new messages (based
on the knowledge he has) and sends them to any other agent.

In the process of validation with AVISPA, the most important step is the
specification of the SURENESS protocol by means of HLPSL. The process followed
to build that specification is the following. First, we defined the different roles for
each party that can participate in the system: Alice, Bob and TTP. For each role, we
specified the information that each initially knows and the different transactions that
take place since the protocol is modelled as a finite state automata. Thus, each
transaction is fired when a message is sent or received. Specifically, in each state of
each role we defined the information to send or receive as well as the different
information that should be authenticated and/or maintained in secret between the
parties. In HLPSL, the secrecy is specified by means of secret events, which define a
security goal to be satisfied. In each state the authentication goals are specified
through witness and request directives. With witness, we declare what a party asserts
and what it wishes to communicate to another party, e.g., for role TTP, a witness is
the signed contract that he sends to Alice and Bob. On the other hand, with request, a
party declares the belief in some information specified in a witness. Continuing with
the same example, for Alice and Bob, the signed contract is specified as a request.
Second, once we have declared each role, then, these roles are composed together in
sessions. In a session we explain the different information that is shared between the
different roles that participate in that session (e.g., TTP’s public key, the contract to
negotiate and sign, etc). We have defined a session with all parties with honest
behaviour. We have also defined another session where one of the parties has a
dishonest behaviour (the intruder represents the dishonest agent). In this specification
this is achieved through the role named environment. Thus, as a third and last step, in
the environment we specify both the knowledge of the intruder and the different

576 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

sessions. We have also specified the different goals of authentication to be satisfied.
In our case, the final goal is to achieve the authentication of the signed contract and
proof that both parties have received it.

This specification has been tested with the different back-ends mentioned above.
As a result, these back-ends return attacks (if any) in a readable output format. In our
case, no security flaws were revealed after the tests.

4.13 Conclusion

As a conclusion to this analysis, we can affirm that we have proposed a protocol that
satisfies the requirements established in section 2. Furthermore, our protocol is more
efficient than the previous works commented on in section 2. Efficiency is measured
from both points of view. First, with regard to the number of cryptographic operations
and the number of messages that the TTP has to take part in. Second, from that of the
security provided. From the tables and the analysis made in this section (in the
efficiency part), we can conclude that we have reduced the workload of the TTP
compared to the previous proposals and, at the same time, we have improved security
of the proposals. Additionally, we could use replication techniques, load balancing,
server and cluster solutions to achieve greater availability and a better service in the
TTP.

5 Variations to the Protocol

In this section, we provide some variations to the protocol proposed in section 3.
These modifications are aimed at facilitating the subsequent contract management by
the end-users and other parties without having to develop new primitives to verify the
contract.

It is clear that for the execution of the protocol, the user needs a SURENESS-
compliant implementation. Although it can be based on standards like CMS
(Cryptographic Message Syntax) [Hously, 04], or XML (Extensible Markup
Language) Encryption and Signature [W3Cb, 02] that are supported for most of the
cryptographic libraries, a further requirement is the building of supplementary
primitives to create and verify the contract from these standards. The structure of the
contract that we introduced in section 3 has three parts: the contract signed by the
TTP, the contract signed by Alice, and the contract signed by Bob. Each part of the
contract represents the (CMS/XML) signature of a byte array which contains DER-
encoded contract information (not the contract document itself). Thus, to verify the
contract we need to verify the CMS or XML signatures. Then, we have to parse these
DER structures and, finally, to verify that the contract document matches with the
information contained in the three separated structures. Therefore, for the last two
steps we need to develop some additional SURENESS-compliant primitives to verify
the contract.

However, it would be desirable if once the parties have signed the contract they
were able to manage the contract without additional SURENESS-compliant
primitives - only with CMS/XML Signature ones. It would also be interesting that the
end-user could (if he/she wants) send the contract to another party or to another e-
notary. Thus, this new party could use the generic cryptographic tool that he/she uses

577Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

normally. Currently, many end-user-oriented applications only offer commands to
create and verify signatures in the abovementioned standards but they are not able to
process these additional structures. They are only able to know that the DER encoded
expression is correctly verified. On the other hand, if the document contract was
directly included in a CMS/XML signature (detached or enveloping), without any
special DER structure, the user would only have to use his/her application as usual.
For example, the majority of Linux distributions include the openssl command (from
OpenSSL cryptographic library). In this tool the processing of the CMS signature is
provided. However, the original format of the contract proposed here would involve
the development of new code. Furthermore, the majority of the libraries support CMS
formats but some of them cannot work with ASN.1 structures in a suitable way. In a
similar way, we find the same problems when we consider an XML signature.

We propose some variations to the protocol so that the final signed contract is
directly included in the CMS/XML signature. As mentioned, the main advantage we
obtain with this modification is that the user could process the contract in an easier
way. On the other hand, the main disadvantage is that the messages are more complex
from the point of view of computational cost since the structures are more complex.
The contract now has the following format:

Contract: {ContractDoc}A

-1,B-1,TTP
-1 + TST

-1

Basically, the contract is now a CMS/XML signature which contains the information
of three signers in the SignerInfos field (if we are using CMS) or in the SignedInfo
and Object elements (if we are using XML). Additionally, ,associated to each
SignerInfos field, the TTP includes a Timestamp according to the RFC 3161 format.
Therefore, this structure could be processed by any application that supports the
verification of CMS/XML signatures.

This signature that represents the signed contract could be expressed in CMS or
XML depending on the choice indicated in the first message of the protocol that is
described below. Similarly, the contract document could be within the signature or
not, depending on the choice indicated in a new field named AdditionalInfo. The
contract also contains a timestamp (Timestamp Token as appears in RFC 3161) issued
by a Timestamp Authority or by the e-notary acting as a timestamp authority. This
new contract format implies some changes in the messages described in section 3.
Below, we detail the new fields included in each message involved in this variation:

STEP I. A => B: NegotiationRequest.

{{NID,Time1,SeqN,[Credentials],B,EnKey,SignKey,Flag}A

-1,
ContractDoc,H(ContractDoc), AdditionalInfo}B

The AdditionalInfo field contains information about the type of signature (CMS or
XML) and its options (enveloping, detached…).

In this variation, NegotiationStep message (step 2) requires no changes at all.

STEP III. A=>B: Handshake.

578 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

|RecKey|EnKey,{NID,Time3,B,TTP,{Nonce, SignatureValue}TTP, H(RecKey)}A
-1

In this message, unlike that in Section 3, the H(ContractDoc) value has been replaced
by the SignatureValue value (underlined) where SignatureValue field contains the
value of the signature according to the specified format in the AdditionalInfo field.
Thus, in this message SignatureValue = {ContractDoc}A

-1.

STEP IV. B=>TTP: Agreement.

a) SCA, {NID,Time4,TTP,SignatureValue}B
-1 or

b) SCA, {NID,Time4,TTP,SignatureValue}B
-1, |ContractDoc|RecKey

This pair of messages has only one difference with the original ones. In these
messages, the H(ContractDoc) value has been replaced by the SignatureValue value
(also underlined) containing Bob’s signature according to the format indicated in the
AdditionalInfo field. Thus, in this message SignatureValue = {ContractDoc}B

-1.

STEP V. TTP=>A,B: SignedContract.

|{ContractDoc}A

-1,B-1,TTP
-1+TST

-1|RecKey

This new message, instead of having three different parts, each with a separated
signature, only contains, as data, the contract document. Therefore, any user could
easily verify the signed contract, the signers and the timestamp. Furthermore, the
number of evidences to store for long-term signature validation processes is less than
in the original protocol. On the other hand, as a main drawback, the number of
electronic signature operations to make and to verify is higher.

6 Conclusions and Future Work

The use of contract signing protocols based on a TTP is required in some B2B and
DRM systems, or by legal requirement, in order to give validity to e-contracts.
Current proposals for this kind of protocol present two main drawbacks. They do not
take into account the incorporation of some fundamental aspects for B2B and DRM:
confidentiality and the secure negotiation of the contract conditions and, in some
protocols, the TTP has an important participation in the protocol which might cause
bottlenecks when there are many concurrent executions of these protocols. Another
problem found in some solutions is that they require the generation of new keys and
certificates.

Confidentiality is important to achieve the privacy of the information exchanged
between the different parties that sign a contract. Thus, only the interested parties
know the information about the contract conditions. On the other hand, the
negotiation phase is intrinsic to the contract signing, and this phase must be carried
out safely, guaranteeing aspects such as confidentiality, integrity and avoiding replay-
attacks. Furthermore, the integration of the negotiation with the contract signing

579Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

protocol would guarantee higher efficiency than when using two different protocols
for each process.

As a response to these problems we have presented a new protocol named
SURENESS. Our protocol improves upon previous ones with the new requirements
and with good efficiency for the cryptographic operations and the number of
messages. Furthermore, the protocol could be used without generating specific keys
or new ones with special features, or a previous registration with a TTP.

There are a number of future research directions. One issue is the extension of the
contract negotiation to a multi-party contract environment while maintaining the idea
of the involvement of the e-notary to give validity to the transaction. One possible
scenario would be the buying of real estate between several clients and several
vendors, and where the e-notary validates the transaction by signing it as specified by
the laws.

Acknowledgements

We would like to thank the anonymous reviewers for their comments and suggestions.
They have significantly contributed to improve the quality of this paper. We also want
to thank Rafael Marín and Óscar Cánovas for their valuable comments on some issues
of this paper.

This work has been partially funded by "Programa de Ayuda a los Grupos de
Excelencia de la Fundación Séneca 04552/GERM/06".

References

[AAVV, 05] AA.VV., Código Civil, Boletín Oficial del Estado (26ª Ed). 2005.

[Abadi, 96] M. Abadi, R. Needham, Prudent engineering practice for cryptographic protocols,
IEEE Transactions on Software Engineering, 22(1):6-15, January 1996.

[Abadi, 02] M. Abadi, N. Glew, B. Horne, B. Pinkas, Certified email with a light on-line
trusted third party: design and implementation, The Eleventh International World Wide Web
Conference, Honoloulu, Hawaii, USA, 2002.

[Aknine, 04] S. Aknine, S. Pinson, M. F. Shakun, An Extended Multi-Agent Negotiation
Protocol, Journal of Autonomous Agents and Multi-Agent Systems, 8, 5– 45, Springer
Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V. 2004.

[Angelov, 05] S. Angelov, S. Till, P. Grefen, Dynamic and Secure B2B E-contract Update
Management, Proceedings of the 6th ACM Conference on Electronic Commerce (EC'05),
Vancouver, Canada. 2005.

[Asokan, 98] N. Asokan, V. Shoup, M. Waidner, Asynchronous protocols for optimistic fair
exchange, Proceedings of the IEEE Symposium on Research in Security and Privacy, 1998.

[Armando, 03] A. Armando, L. Compagna, P. Ganty, SAT-based Model-Checking of Security
Protocols using Planning Graph Analysis, In Proc. of the 12th International Symposium of
Formal Methods Europe (FME), LNCS 2805, Springer-Verlag 2003.

[Armando, 05] A. Armando, A. et al., The Avispa Tool for automated validation of internet
security protocols and applications, Proc. Of Computer Aided Verification, Lecture Notes in
Computer Science (LNCS) 3576. Springer Verlag, 2005.

580 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

[Avispa, 07] Avispa Project: “Automated Validation of Internet Security Protocols and
Applications (AVISPA)”. http://www.avispa-project.org/

[Basin, 03] D. Basin, S. Mödersheim, L. Viganò, An On-The-Fly Model-Checker for Security
Protocol Analysis, In E. Snekkenes and D. Gollmann, editors, Proc. Of ESORICS’03, LNCS
2808, Springer-Verlag 2003, pp. 253-270.

[Boichut, 04] Y. Boichut, et al., Improvements on the Genet and Klay Technique to
Automatically Verify Security Protocols, Proc. of AVIS’04, ENTCS.

[Blake-Wilson, 02] S. Blake-Wilson, P. Lamber, Use of Elliptic Curve Cryptography (ECC)
Algorithms in Cryptographic Message Syntax (CMS), Request for Comments 3278, 2002.

[Cox, 95] B. Cox, J. D. Tygar, M. Sirbu. NetBill security and transaction protocol. In
Proceedings of the 1st conference on USENIX Workshop on Electronic Commerce - Volume 1,
77-88. 1995.

[Darko, 2006] S. Darko-Ampem, M. Katsoufi, P. Giambiagi, Secure Negotiation in Virtual
Organizations. In Proceedings of the 10th IEEE on International Enterprise Distributed Object
Computing Conference Workshops. IEEE Computer Society. 2006.

[Delgado, 01] J. Delgado, I. Gallego, X. Perramon. Broker-Based Secure Negotiation of
Intellectual Property Rights. In Proceedings of the 4th International Conference on Information
Security, pp. 486-496. Springer-Verlag. 2001.

[Dierks, 99] T. Dierks, C. Allen, The TLS Protocol Version 1.0. RFC 2246. January 1999.

[Eastlake, 94] D. Eastlake, S. Crocker, J. Schiller, "Randomness Recommendations for
Security", RFC 1750, December 1994.

[Garay, 99] J. Garay, M. Jakobsson, P. MacKenzie, Abuse-free optimistic contract signing, In
proceedings of CRYPTO'99, Lecture Notes in Computer Science 1666, pp. 449-466. 1999.

[Gilbert, 03] H. Gilbert, H. Hanschuh, Security analysis of SHA-256 and sisters, Selected Areas
in Cryptography 2003 (SAC 2003), Otawa, Canada (2003).

[Gürgens, 05] S. Gürgens, C. Rudolph, H. Vogt, On the security of fair non-repudiation
protocols, International Journal of Information Security, volume 4, issue 4, 253-262. 2005.

[Jalali, 00] M. Jalali, G. Hachez, C. Vasserot, FILIGRANE: a security framework for trading of
mobile code in Internet, Autonomous Agents 2000 Workshop: Agents in Industry, Barcelona,
Spain, 2000.

[Kim, 99] K. Kim, S. Park, J. Baek, Improving fairness and privacy of Zhou-Gollmann’s fair
non-repudiation protocol, Proceedings of 1999 ICPP Workshops on Security (IWSEC), IEEE
Computer Society, Sep. 21-22, pp.140-145. 1999.

[Kremer, 02] S. Kremer, O. Markowitch, J. Zhou, An intensive survey of fair non-repudiation
protocols, Computer Communications, 25(17): 1606-1621. Elsevier, Nov. 2002.

[Kötz, 97] H. Kötz, European Contract Law: Formation, Validity, and Content of Contracts;
Contract and Third Parties, (Tony Weir trans., Hein Kötz & Axel Flessner eds., 1997.

[Kürtz, 07] K. O. Kürtz, R. Küsters, T. Wilke. Selecting theories and nonce generation for
recursive protocols. In Proceedings of the 2007 ACM workshop on Formal methods in security
engineering, pp. 61-70. Fairfax, Virginia, USA. 2007.

[Limthanmaphon, 00] B. Limthanmaphon, Y. Zhang, Z. Zhang. An Agent-Based Negotiation
Model Supporting Transactions in Electronic Commerce. Proceedings of the 11th International
Workshop on Database and Expert Systems Applications, IEEE Computer Society, 2000.

581Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

[Maler, 03] E. Maler, P. Mishra, R. Philpott, Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V1.1, September 2003. OASIS Standard.

[Markowitch, 02] O. Markowitch, D. Gollmann, D., S. Kremer, On fairness in exchange
protocols, In Pil Joong Lee and Chae Hoon Lim, editors, 5th International Conference on
Information Security and Cryptology (ICISC 2002), volume 2587 of Lecture Notes in
Computer Science, pages 451-464, Seoul, Korea, November 2002.

[NIST, 01] National Institute of Standards and Technology, Specification for the Advanced
Encryption Standard (AES), FIPS 197. November 26, 2001.

[NIST, 04] National Institute of Standards and Technology (NIST), Federal Information
Processing Standards (FIPS), Publication 180-2, Secure Hash Standard (SHS). 2004.

[Park, 03] J. J. Park, E. Chong, H. Siegel, I. Ray, Constructing fair exchange protocols for e-
commerce via distributed computation of RSA signatures, In Proc. of 22th Annual ACM Symp.
on Principles of Distributed Computing (PODC’03), pp. 172-181. ACM Press, 2003.

[Rabinovick, 02] M. Rabinovick, W. Spatscheck, Web caching and replication, Addison
Wesley, 2002.

[Röhm, 98] A. W. Röhm, G. Pernul, G. Herrmann, Modeling Secure and Fair Electronic
Commerce. In 14th Annual Computer Security Applications Conference (ACSAC '98), 1998.

[Rosenzweig, 05] D. Rosenzweig, D. Runje, W. Schulte. Model–Based Testing of
Cryptographic Protocols. In Trustworthy Global Computing. 2005.

[Ruiz, 01] A. Ruiz, G. Martínez, O. Cánovas, A. F. Gómez-Skarmeta, SPEED Protocol:
SmartCard-based Payment with Encrypted Electronic Delivery, Proc. Information Security
Conference, Málaga, Spain, 2001, 446-461

[Ruiz, 03] A. Ruiz, L. Baño, C.I. Marín, O. Cánovas, A. F. Gómez, A Secure Infrastructure for
Negotiation and Purchase of Intellectual Property Rights (SECURingIPR). Proceedings
International Conference on Communication, Network, and Information Security, New York
USA, 2003.

[Santiago, 06] J. Santiago and L. Vigneron, Automatically Analysing Non-repudiation with
Authentication, Proceedings of 3rd Taiwanese-French Conference on Information Technology
(TFIT), 541--554, Nancy, France, 2006.

[Schneier, 95] Schneier, B. (1995). Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C (pág. 758). John Wiley & Sons, Inc.

[Schroeder, 00] T. Schroeder, S. Goddard, B. Ramamurthy, Scalable Web Server Clustering
Technologies, IEEE Network, May/June 2000, pp. 38-45.

[Tan, 00] Y. Tan, W. Thoen. DocLog: An Electronic Contract Representation Language. In
Proceedings of the 11th International Workshop on Database and Expert Systems Applications.
IEEE Computer Society. 2000.

[Turuani, 03] M. Turuani, Sécurité des Protocoles Cryptographiques: Décidabilité et
Complexité, Phd, Université Henri Poincaré, Nancy, December 2003.

[Wang, 05] G. Wang, An abuse-free fair contract signing protocol based on the RSA signature.
Proceedings of the 14th international conference on World Wide Web, 412 – 421, Japan. 2005.

[W3Cb, 02] Word Wide Web Consortium (W3C). XML-Signature Syntax and Processing.
W3C Recommendation. 12 February 2002.

582 Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

[Yang, 03] S. Yang, S.Y.W. Su, H. Lam, A Non-Repudiation Message Transfer Protocol for E-
commerce. IEEE International Conference on E-Commerce Technology (CEC'03), 2003.

[Yang, 05] S. Yang, S.Y.W. Su, H. Lam, A non-repudiation message transfer protocol for
collaborative e-commerce, International Journal of Business Process Integration and
Management 2005 - Vol. 1, Nº.1. pp. 34 – 42.

[Zegura, 00] E. Zegura, M. Ammar, Z. Fei, S. Bhattacharjee, Application Layer Anycasting: A
Server Selection Architecture and Use in a Replicated Web Service, IEEE/ACM Transactions
on Networking, Vol. 8, No. 4, August 2000, pp. 455-467.

[Zhou, 96] J. Zhou, D. Gollmann, A Fair Non-repudiation Protocol, proceedings of 1996 IEEE
Symposium on Security and Privacy, pp. 55-61, Oakland, CA, May 1996.

[Zhou, 01] J. Zhou, Non-Repudiation in Electronic Commerce. Artech House Publishers, 2001.

583Ruiz-Martinez A., Marin-Lopez C.I., Bano-Lopez L., Gomez-Skarmeta A.F. ...

