
Structural Coverage Criteria for Testing SQL Queries

Mª José Suárez-Cabal
(Department of Computer Science, University of Oviedo, Spain

cabal@uniovi.es)

Javier Tuya
(Department of Computer Science, University of Oviedo, Spain

tuya@uniovi.es)

Abstract: Adequacy criteria provide an objective measurement of test quality. Although these
criteria are a major research issue in software testing, little work has been specifically targeted
towards the testing of database-driven applications. In this paper, two structural coverage
criteria are provided for evaluating the adequacy of a test suite for SQL queries that retrieve
information from the database. The first deals with the way in which the queries select and join
information from different tables and the second with the way in which selected data is further
processed. The criteria take into account both the structure and the data loaded in the database,
as well as the syntax and semantics of the query. The coverage criteria are subsequently used to
develop test inputs of queries drawn from a real-life application. Finally, a number of issues
related to the kind of faults that can be detected and the size of the test suite are discussed.

Keywords: database testing, SQL testing, test adequacy criteria, test coverage
Categories: D.2.5

1 Introduction

Ranging from legacy applications in use in the banking, financial or insurance sectors
to modern e-commerce applications, there is one component which they all have in
common, the database, where sensitive business information is stored and retrieved.
Programming languages have experienced a paradigm shift from monolithic programs
written in old imperative languages to highly scalable enterprise applications, reusable
components and web services written in object-oriented languages. At the same time,
database management systems (DBMS) have evolved, increasing their performance,
scalability and reliability.

To access information, however, business and data layers are still using the
Structured Query Language (SQL) developed in the late 1970s, which has been
standardised by ANSI and ISO and has evolved over the years by including new
features (1986, 89, 92, 99 and recently in 2003), SQL92 [SQL 1992] being the most
commonly used version. The huge number of applications that make use of SQL leads
to a real need for helper techniques for its development, in general, and testing, in
particular. However, although many testing techniques [Woodward 2001] and
adequacy criteria [Zhu et al. 1997] exist, these are not tailored to address certain
specific issues that differentiate this kind of non-imperative language from others.

The most frequently used SQL statements in commercial applications are those
that retrieve information (SELECT queries) [Pönighaus 1995], that use a common set

Journal of Universal Computer Science, vol. 15, no. 3 (2009), 584-619
submitted: 15/2/07, accepted: 26/1/09, appeared: 1/2/09 © J.UCS

of major characteristics, such as the database schema and the core clauses for
projecting, joining, selecting and grouping data. However, developing a single
statement may be a complicated task [Lu et al. 1993] and queries using GROUP BY,
ORDER and HAVING clauses are considered especially difficult by programmers.
The number of research papers relating to the topic of test data selection for databases
and programs or applications with embedded SQL is limited. The paper written by
[Mannila, Räihä 1986] is the first found where test data are generated for queries
(represented in relation algebra) but most research has appeared since the year 2000.
Test cases are complicated to write because the input is information spread over
several tables containing many rows, and the output is likewise a table structure.
Queries are closely dependent on the database schema and small changes can entail
undesirable side effects in many queries. Moreover, SQL uses a mixture of set-based
and logic-based techniques and the logical expressions use a three-valued logic for
supporting missing information (null values), which in turn makes the process of
writing and testing queries even more difficult [Klein 1994]. A list of frequent SQL
errors is given by [Brass, Goldberg 2005].

The goal of this paper is to define coverage criteria for assessing the adequacy of
the test suite to exercise various situations that affect the data retrieved by an SQL
query. The approach studies queries in an isolated way without considering the
imperative code where they will be embedded and the tests can be used as
prerequisites for embedding queries in the imperative code.

This paper improves the approach given in [Suárez-Cabal, Tuya 2004], where
queries only had FROM and WHERE clauses and conditions were exclusively
composed of attributes, constants or NULL. The present paper also considers
parameters, GROUP BY and HAVING clauses, aggregate functions, ALL and
DISTINCT quantifiers along with UNION operator. Moreover, it shows how to
automate the calculation of the coverage and it analyzes different kinds of faults in
queries classified in two categories: non SQL-specific (but typical faults in the
conditions in imperative programs) and SQL-specific. The approach involves building
one or more coverage nodes that are created on the basis of the structure of the query
and the database schema. Nodes are arranged in trees for assessing the adequacy of
join and selection operations, and in sets for assessing the coverage of the processing
performed after selection. Coverage is then evaluated in relation to the load provided
by the test database and to the actual parameters dependent on the imperative code.
After evaluating coverage, with the information of the non-covered situations in the
nodes, the tester has guidelines to follow in the process of completing the test suite by
adding or changing information in the test database, creating a new test database
and/or calling the query with different parameters.

The paper is organized as follows: [Section 2] includes the description of the
relational database model, the SQL specification of the kind of queries used in this
approach and the definitions of test suites. [Section 3] describes in detail how the
evaluation of the coverage of SQL queries is performed. In [Section 4], the coverage
information is used to develop test inputs for a set of queries obtained from a real-life
application and [Section 5] discusses a number of issues related to the fault detection
ability, the size of the test suite and the complexity of the evaluation algorithm.
Finally, in [Section 6], an overview of related work on database testing is given and
conclusions are presented in [Section 7].

585Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

2 Background

2.1 Relational Database Model

The main concept in the relational data model is a relation r(R), where R is the
relation schema. Given a set of attributes A1, …, An and the domains D1, …, Dn where
Di=Dom(Ai), r(R) is a subset of the Cartesian product of the domains, r(R)⊆D1× …
×Dn. Each Di is a finite and homogeneous set of values and the special value called
NULL that indicates the absence of valid information and which may be interpreted
as undefined, not relevant or unknown.

A relation schema R is composed of the list of attributes, domains and constraints
of r(R). For referencing an attribute A of a relation schema R the notation used is R.A.
A database DB is a set of relations {r(R1), …, r(Rm)}. A database schema DBSchema
is composed of a set of relation schemas and the descriptions of the logic relations
between them.

Each element of r(R) is referred to as tuple t and is composed of a list of values
(v1,…, vn) where vi∈Di. For referencing the value of the attribute Ai in the tuple t the
notation used is vi=t[Ai].
When the relational database model is implemented into a particular database
management system (DBMS), relations are referred to as tables, tuples as rows and
attributes as columns.

A primary key PK in R is a subset of its attributes PK⊆{A1, …, An} where each
tuple is uniquely identified by the primary key values. A PK must be a minimal set of
attributes for which this uniqueness property exists. A foreign key FK in Ri is a set of
attributes used to reference a PK in another relation schema Rj.

2.2 Structured Query Language (SQL)

Structured Query Language (SQL) is the language used to define database schemas
and insert, delete, modify and access data stored in databases. The SQL statements
considered in this paper are those that retrieve information (SELECT queries). The
SELECT clause determines which columns constitute the query output, the FROM
clause determines which tables are used and the JOIN determines the criterion for
joining rows from different tables (join-conditions). Then the WHERE clause filters
the rows based on given criteria (where-conditions). The GROUP BY clause indicates
how to combine the selected rows and the HAVING clause performs a final filter
based on other criteria (having-conditions).

The subset considered in this paper is that represented in the following BNF
grammar:

<select query> ::= <select> [UNION [ALL | DISTINCT] <select query>]
<select> ::= SELECT [ALL | DISTINCT] <select list> <from clause>
 [<where clause>]
 [<group clause> [<having clause>]]
<select list> ::= ‘*’
 | <column elemnent> [{ ‘,’ <column element> }...]
<column element> ::= <column>
 | <aggregate function> ‘(’ <column> ‘)’

586 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

<from clause> ::= FROM <table reference>
 [{‘,’<table reference>}...]
<table reference> ::= <table schema> [[AS] <correlation name>]
 | <table reference>
 [INNER | LEFT | RIGHT] JOIN <table reference>
 ON <search conditions>
<where clause> ::= WHERE <search conditions>
<group clause> ::= GROUP BY <grouping columns>
<having clause> ::= HAVING <search conditions>

The <search conditions> term is a logical predicate composed of logical

conditions concatenated with AND and OR operators. A condition is an expression in
the query in the form XℜZ or XℜNNULL, where X and Z are sets of values
represented by the name of their column, aggregate functions, constants, parameters
or NULL, ℜ is an operator of {=, !=, <, <=, >, >=} and ℜN is a predicate of {IS, IS
NOT}. An aggregate function (count, sum, max, min or avg) transforms a set of
scalars or a set of rows into a scalar.

2.3 Test Suite Definitions

Test cases for programs written in imperative language are composed of the input
values (actual parameters) for the set of formal parameters and the desired output, but
SQL queries are always executed using a database and actual parameters (if any).
Therefore the test inputs for SQL queries must provide both of them.

Given an SQL query Q that contains a set of formal parameters F=(f1, …, fp), a
test input TI for S with regard to a database DB is a pair <DB, P> where P=(p1, …, pf)
are the actual parameters used for instancing each formal parameter of Q in a program
execution. A test group TG for Q is a set of test inputs (TI1, …, TIt) sharing the same
test database. If the query has no formal parameters, its TG contains only a test input
composed of a test database. Finally, test suite TS for Q is defined as the union of all
TG for Q.

3 SQL Coverage Criteria

An SQL statement, in the form given in [Subsection 2.2], does not have any loops or
iterations, although it does have a structure that can be used to explore how the
different situations in the test database exercise the processing done by query. For the
operations related to data retrieval from relations (SELECT, FROM, JOIN and
WHERE clauses) and the operation which filters out grouping information (HAVING
clause) the approach consists in defining the coverage for query conditions by
building a coverage tree for join and where conditions and another for having
conditions (if any). Coverage trees are composed of nodes (c-nodes) and each of them
has different values (c-values) that represent the different condition situations to be
exercised and in evaluating the degree to which the c-values are covered when the
query is executed using the test inputs. The coverage measurement for conditions
incorporates a notion of multiple condition coverage (although other criteria could be

587Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

used, it corresponds to more exhaustive testing of each condition that subsumes the
rest of test coverage criteria for conditions [Zhu et al. 1997]).

Additionally, SQL performs a further processing after retrieving the data, in
which conditions are not explicitly stated (GROUP BY, aggregate functions,
DISTINCT and ALL set quantifiers). In these cases, a new type of coverage is
defined and it is evaluated on the basis of a set of conditions derived from the general
rules that specify the run-time effect of the query. A set of nodes (r-nodes) is built for
these cases, each having different values (r-values). In this case, the r-nodes are not
organized in a structure because grouping attributes, attributes in aggregate functions
and sets quantifiers do not have hierarchical relations and each one is independently
evaluated.

Firstly, a particularized notion of evaluation of conditions of SQL queries is
introduced in [Subsection 3.1]. Then the procedure for automatically calculating the
coverage is described in detail considering queries which include clauses that retrieve
data in [Subsection 3.2] and others that perform its further processing in [Subsection
3.3].

3.1 Evaluation of Conditions

A simple example illustrating some basic issues related to the evaluation of single
conditions is a database schema composed of two relation schemas named M (master)
and D (detail). M has only one attribute named id and D has two attributes: id and ref.
In both of them, the id attributes are PK. For this example, a query specification could
be to extract a list of all pairs of values of M.id and D.id in which the value of the
attribute D.ref coincides with the value of M.id. An SQL query that implements
correctly this specification is:

SELECT M.id, D.id FROM M INNER JOIN D ON M.id=D.ref

However, assume that the query is wrongly implemented using a LEFT JOIN

instead of an INNER JOIN:

SELECT M.id, D.id FROM M LEFT JOIN D ON M.id=D.ref

To exercise the condition that joins the information of both relations, a test input

is designed in which this condition takes the possible outcomes: true and false. For
example, the test input r(M)={(1)}, r(D)={(11,1), (11,2)} makes the condition true
when the tuple in r(M) is joined with the first tuple in r(D), and false when the tuple in
r(M) is joined with the second tuple in r(D). The output of the query is {(1,11)}.
However, if the tuples in r(M) were {(1), (3)}, then the output of the query would be
{(1,11), (3,NULL)}, which is an incorrect output. The first designed test input was
unable to reveal this fault, which suggests the need for a different approach to
evaluating conditions.

3.1.1 Evaluation of Simple Conditions

One aim of using coverage criteria is to guide the expert to select test inputs which
permit the evaluation of different situations in the conditions (named <search

588 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

condition> terms in [Subsection 2.2]) and then the query processing retrieves or
rejects tuples to make up the query output.

In order to evaluate conditions, the approach proposes to analyze join and where
conditions in a homogeneous way in a coverage tree using tuples extracted from the
test database. On the other hand, the conditions in the HAVING clause are evaluated
in an independent coverage tree because tuples used for their evaluation are obtained
as result of the processing of GROUP BY clause instead of being obtained directly
from the test database.

Due to the fact that the operands of a condition of SQL queries are composed of a
set of values, which are normally identified with their attributes, during its evaluation
each value of the first operand is evaluated with each value of the second (named
evaluation from left to right) and vice versa (evaluation from right to left) and the
result is true or false depending on the pair of values evaluated.

Let C be a condition of an SQL query Q in the form XℜZ the following
valuations are established for such conditions:

• Fl: C is left-falsified iff there exists at least one tuple ti belonging to the
relation of X where x=ti[X] such that there does not exist any tuple tj
belonging to the relation of Z where z=tj[Z] satisfying the condition xℜz.

• Fr: C is right-falsified iff there exists at least one tuple tj belonging to the
relation of Z where z=tj[Z] such that there does not exist any tuple ti
belonging to the relation of X where z=ti[X] satisfying the condition xℜz.

• T: C is verified iff there exists at least a pair of tuples, ti belonging to the
relation of X where x=ti[X] and tj belonging to the relation of Z where
z=tj[Z], such that the condition xℜz is satisfied. In this definition, there is no
distinction between left-verified and right-verified, because if there is a pair
of values that verifies the condition when evaluated from left to right, then
the same pair of values verifies the condition when evaluated from right to
left.

When one or both of values (x or z) in the operands is NULL, the result of

evaluation of the condition xℜz is indeterminate (neither true nor false). For that
reason, programmers and testers must be very careful to avoid undesirable effects
resulting from the incorrect behaviour of conditions having null values ([Vassiliou
1979] and [Imielinski, Lipski 1984]). Therefore, in order to obtain a complete set of
test inputs, NULL must be taken into consideration. The following valuations are
established for considering null values in attributes:

• Nl: C is left-null iff there exists at least one tuple ti belonging to the relation
of X where x=ti[X] such that x is NULL.

• Nr: C is right-null iff there exists at least one tuple tj belonging to the relation
of Z where z=tj[Z] such that z is NULL.

• Nb: C is null iff there exists at least a pair of tuples, ti belonging to the
relation of X where x=ti[X] and tj belonging to the relation of Z where
z=tj[Z], such that x and z are NULL simultaneously.

589Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

To check whether a value of an attribute or expression is NULL, SQL provides
the predicates “IS” and “IS NOT”. Given a condition C in the form XℜΝ NULL:

• If ℜΝ=“IS” and there exists at least one tuple belonging to the relation of X
where x=ti[X] and x is NULL, or ℜΝ=“IS NOT” and there exists at least one
tuple belonging to the relation of X where x=ti[X] and x is distinct from
NULL then C is T.

• If ℜΝ=“IS” and there exists at least one tuple belonging to the relation of X
where x=ti[X] and x is distinct from NULL, or ℜΝ=“IS NOT” and there
exists at least one tuple belonging to the relation of X where x=ti[X] and x is
NULL then C is Fl.

• If ℜΝ=“IS” and there are no tuples belonging to the relation of X where
x=ti[X] and x is NULL or ℜΝ=“IS NOT” and all tuples belonging to the
relation of X where x=ti[X] and x is NULL then C is Fr.

Note that for every ℜΝ, if C is Fr then it is never T, and vice versa. With regard to

considering the existence of null values, C is always Nr, and it is Nl and Nb iff there
exists at least one tuple belonging to the relation of X where x=ti[X] and x is NULL.

3.1.2 Condition Coverage

Each of the possible valuations (Fl, Fr, T, Nl, Nr and Nb) is denoted as a c-value.
When a condition verifies each of them during its evaluation, then this c-value is said
to be covered. Thus, a first measure of the coverage of a condition may be established
as the percentage of c-values being covered when exercising that condition using the
test inputs. If there are c-values that have not been covered, the coverage is lower than
100%, which indicates the existence of situations in the condition that are not
exercised by the test inputs. So, low percentages indicate test data are not
representative enough and, therefore, test inputs may be added in order to increase the
coverage and to complete the test suite.

Graphically, a condition C is depicted by a box named condition node (c-
node(C)) with six placeholders, one for each of the c-values. A c-value is labelled as
‘N’ if it is not covered, ‘Y’ if it is covered, ‘I’ (impossible) if it cannot be covered due
to some known restriction imposed by the database schema and ‘U’ (unreachable) if it
cannot be covered because of characteristics or constraints that do not depend on the
database schema, such as the condition, their operands, constants or parameters. Note
that if database schema is modified affecting any attribute of the condition, the
impossible c-values could change with the new constraints.

Initially, each c-value is labelled ‘N’ meaning that the c-value has not been
covered yet. Moreover, the c-values impossible to cover because of the database
schema are automatically labelled as ‘I’:

• Nb, Nl or Nr: when null value is not allowed for the values of their attribute
(the attribute has been declared in the database schema as PK or NOT
NULL).

590 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

• Fl: when the condition operands are the attributes An1 and An2, ℜ∈{=, <=,
>=}, and An1 is an attribute that is an FK referencing the other attribute An2.
In this case, the values of An1 cannot be distinct from the values in An2.

• Fr: because of a symmetric situation when An2 references An1.

Furthermore, there are unreachable c-values that can be automatically detected

and are labelled as ‘U’. These c-values depend on the constant term K of a given
condition in the form XℜK:

• T, Fl and Fr are ‘U’ when K is NULL, since the result of evaluation is
always indeterminate.

• Nr and Nb are ‘U’ when K is distinct from NULL.

During the evaluation of the condition with the designed test inputs, c-values
labelled as ‘N’ are reached and labelled as ‘Y’. A particular case of the evaluation of
conditions is that of some of these operands being a constant term K. Given a
condition in the form XℜK:

• If K is NULL, then Nl is always covered and therefore labelled automatically
as ‘Y’.

• If K is distinct from NULL, then the c-values T and Fr are never covered
simultaneously: if, some of the tuples belonging to the relation of X have
values in X that verify the condition then T is covered and labelled as ‘Y’ and
therefore it is impossible to have all values falsifying it.

A completely symmetric situation in the automatic initializations and evaluations

of conditions with a constant term is attained when the condition is in the form KℜZ.
When a query Q has conditions which contain formal parameters, each test input

supplies actual parameters for instancing each formal one. Once instantiated, these
behave in the same way as in the case of constants.

3.2 Coverage for Select and Join Operations

This subsection deals with most common SQL queries, namely those involving one or
more relations joined using some of the SQL join operators and/or conditions
specified by a WHERE clause. Firstly, the notion of the condition coverage tree will
be introduced. Then, the method for automatically evaluating the coverage of the
whole query will be described in detail.

3.2.1 Condition Coverage Tree

A condition coverage tree CT is a data structure for representing all possible
combinations of the results of evaluation of the conditions of an SQL query using the
test inputs. Each condition Ck, extracted from Q (which includes the conditions in the
JOIN and/or WHERE clauses), is represented in a level of the tree in the same order
as it appears in the query, upper levels for conditions of JOIN clauses and lower
levels for conditions of the WHERE clause.

591Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

Given a SELECT query Q, its corresponding condition coverage tree CT(CS) is
constructed by considering the ordered set of conditions CS=(C1, … Cs) of Q. At a
level k of the coverage tree [see Fig. 1], CT(CSk) is defined in a recursive form as:

• An empty structure, if there are no conditions, or
• A hierarchical structure CT(CSk)=<c-node(Ck), CTT(CSk+1), CTFl(CSk+1),

CTFr(CSk+1)>, where CSk+1=CSk-{Ck}=(Ck+1,… Cs), composed of a c-
node(Ck) for the condition Ck and three condition coverage sub-trees for the
rest of conditions of CSk+1. Each sub-tree depends on the evaluation of c-
values T, Fl, and Fr of c-node(Ck) respectively.

Figure 1: Condition coverage tree

Note that the c-values Nb, Nl and Nr do not generate a sub-tree because they only
represent the existence of null values in the operands and, in these cases, the result of
the evaluation of the condition is indeterminate.

Before the evaluation of CT(CS), each possible c-value is automatically
initialized as has been indicated in [Section 3.1.2].

When a T, Fl or Fr c-value is ‘I’ or ‘U’, the entire sub-tree generated from it is
also labelled as the same value.

Example 1: Creation of a Condition Coverage Tree
In order to illustrate the creation of a condition coverage tree, an explanation of the
process followed by an example query is now given.

This example is extracted from the case study which is detailed in [Section 4].
SQL queries are part of a web-based helpdesk system. The system stores helpdesk
tickets, which are created for user requests. The person who records a ticket is its
receiver and the person responsible for taking some action on it is its owner. If an
action is carried out on a ticket, a history record is created by a user, its creator,
indicating annotations, time tracking, attachments and changes in the ticket state and
owner.

The following SQL statement extracts the list of creators, the type of invoiceable
tickets and the spent time:

SELECT H.creatorID,T.typeID, H.spentTime
FROM ticket T INNER JOIN history H ON T.ticketID=H.ticketID
WHERE T.invoiceable=1

592 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

The condition coverage tree created [see Fig. 2] has two levels, one for each
condition. Initially, c-values are automatically labelled as:

• Impossible, ‘I’ (depending on the database schema): as T.ticketID is PK, it
must be not NULL; H.ticketID is FK of ticket so the Fr c-value of condition
T.ticketID=H.tickedID can not be covered or entire CTFr sub-tree. Moreover
H.ticketID and T.invoiceable must be not NULL.

• Unreachable, ‘U’ (depending on the conditions of the query): the constant
‘1’ can not be NULL, so all Nr c-values of its level of the coverage tree are
never covered.

• Non-covered, ‘N’ (the rest of c-values, only eight of the twenty-four in total).

Figure 2: Initial condition coverage tree for a simple query

3.2.2 Evaluation of the Condition Coverage Tree

The condition coverage tree CT(CS) for the set of conditions CS of a query is
automatically evaluated for each test input TI. For each, the evaluation algorithm
takes the inputs CT(CS), where the formal parameters (if any) have been previously
instantiated, and the test database.

The evaluation of the condition coverage tree for each TI begins at the root c-
node and proceeds recursively by calculating the coverage of each child sub-tree.

The algorithm for evaluating conditions in the form XℜZ, where X and Z are
attributes of the relations r(RX) and r(RZ) respectively, is shown in Appendix I.

At each level k of the coverage tree, Ck is evaluated from left to right where, for
each tuple ti of relation r(RX), the value x=ti[X] is compared with the value z=tj[Z] of
each tuple tj of relation r(RZ). If the condition is satisfied, the c-value T is labelled as
‘Y’ and then the sub-tree CTT(CSk+1) is evaluated using as input the test database
except the tuples of the relations r(RX) and r(RZ), which are replaced with ti and tj
respectively. If the condition was never satisfied for a value x and any z and then Fl is
labelled as ‘Y’ and CTFl(CSk+1) is evaluated using as input the test database replacing
the tuples of r(RX) with ti.

After, Ck is evaluated from right to left in a similar way. However, only c-value
Fr and CTFr(CSk+1) are evaluated because c-value T and its child sub-trees have
already been evaluated.

Some considerations about the algorithm are summarized below:

593Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

• Before evaluating each condition xℜz, the existence of null values is checked
and then c-values Nl, Nr and Nb are labelled as ‘Y’ depending on x and z.

• The c-node evaluation finishes when there are no more values in the
operands or every c-value is covered (‘Y’), impossible (‘I’) or unreachable
(‘U’).

• A c-value and its sub-tree can only be evaluated when the c-value is labelled
different from ‘I’ and ‘U’.

• When the condition has constants or parameters, there is only one value for
evaluating and it is used in the evaluation of sub-trees.

• Note that if the condition is XℜNNULL, each value x is compared with
NULL and the sub-trees CTT(CSk+1) and CTFl(CSk+1) are evaluated using as
input the test database replacing the tuples of r(RX) with ti, and CTFr(CSk+1) is
evaluated with the same test database.

After evaluation of CT(CS), when c-values remain without covering (labelled as

‘N’), the tester may examine them and determine if it is necessary to complete test
inputs or label them manually as unreachable ‘U’.

Example 2: Evaluation of a Condition Coverage Tree
This example shows the process of the evaluation of a condition coverage tree given
an initial set of test inputs.

Considering the previous query and its condition coverage tree (see [Example 1]),
test inputs are tickets and their histories. Assume that the initial test inputs are those
presented in [Tab. 1], composed of an invoiceable ticket with details (one history row)
and another non-invoiceable without details. The columns on the right present the
output of the query.

ticket History Output

tic
ke

tI
D

in

vo
ic

ea
bl

e
ty

pe
ID

 hi
st

or
yI

D

tic
ke

tI
D

cr
ea

to
rI

D

tim
eS

pe
nt

 cr
ea

to
rI

D

ty
pe

ID

tim
eS

pe
nt

1 1 81 11 1 91 8.0 91 81 8.0
2 0 89

Table 1: Initial test inputs for a simple query

After evaluating the join condition T.ticketID=H.ticketID (labelled as C1), test
inputs cover the c-values (T and Fl):

• c-value T is covered with a ticket (ticketID=1) and its history (historyID=1).

These rows are used to evaluate c-values in the sub-tree CTT for the
condition T.invoiceable=1 (labelled as C2), covering c-value T.

• c-value Fl is covered with the ticket without details (ticketID=2) which is
used to evaluate C2 in the sub-tree CTFl, covering c-values Fl and Fr because
it is non-invoiceable.

594 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

The resulting condition coverage tree after the evaluation is shown in [Fig. 3]. As
can be seen, there are still c-values non-covered.

Figure 3: Evaluated condition coverage tree for a simple query

The coverage evaluation informs the tester that it would be necessary to complete
test inputs in order that all c-values were distinct from ‘N’. For example:

• To cover the c-values Fl and Fr for C2 in the sub-tree CTT, it would be
necessary to have non-invoiceable tickets with details. Then, a new ticket
(3,0,89), where invoiceable=0, is added along with its detail, row
(12,3,99,9.9) in the history table.

• Similarly, to cover the c-value T for C2 in the sub-tree CTFl, an invoiceable
ticket without details should be included. Then a new row (4,1,89) is added
in the ticket table.

Using the final test inputs selected [see Tab. 2], the condition coverage tree is

evaluated again and all c-values are covered.

ticket History Output

tic
ke

tI
D

in

vo
ic

ea
bl

e
ty

pe
ID

 hi
st

or
yI

D

tic
ke

tI
D

cr
ea

to
rI

D

tim
eS

pe
nt

 cr
ea

to
rI

D

ty
pe

ID

tim
eS

pe
nt

1 1 81 11 1 91 8.0 91 81 8.0
2 0 89 12 3 99 9.9
3 0 89
4 1 89

Table 2: Test inputs for a simple query

3.3 Coverage of Other SQL Operations

The other kind of core operation carried out by the SQL query after retrieving the data
consists in organizing it in groups (GROUP BY clause), to calculate aggregate
functions over the data and to discard duplicate tuples (set quantifiers DISTINCT and
ALL). In these cases, conditions are determined by taking into account the situations
that specify the run-time effect of the query. Each of the conditions produces an r-
value. The r-values are organized in r-nodes. In this case, r-values are labelled as
possible but not covered yet (‘N’), covered (‘Y’) or unreachable (‘U’). There are no

595Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

impossible r-values because the SQL code of the query could filter the constraints
defined in the database schema.

3.3.1 Grouping Columns

Let Q be a query with a GROUP BY clause composed of a list of grouping columns
A1..Ac (each of them is either the name of a single attribute or an expression over the
values of attributes). In this case the select-list is in the form A1..Ac, Fc+1..Fn, where
each Fi is an aggregate function expression over the values of attributes. Firstly, the
query retrieves a set of tuples {t1..tn} and then produces a result set composed of the
tuples {u1..um} where each uk is a group of one or more ti. According to SQL
specification [SQL 1992], groups are partitioned “into the minimum number of
groups such that for each grouping column of each group, no two values of that
grouping column are distinct”. As the semantics of the GROUP BY clause interprets
null values in the grouping column as belonging to different groups, two conditions
are considered, one in which grouping columns are not NULL and another in which
they are. For each grouping column Ai two r-values are established:

• G (not null grouping): There exists two groups uk, ul in the result set, each of
them is composed of more than one tuple, such that the values of uk[Ai] and
ul[Ai] are different and distinct from NULL and all the others uk[Aj] and
ul[Aj], where i!=j, are the same and distinct from NULL.

• GN (null grouping): There exists two groups uk, ul in the result set, each of
them is composed of more than one tuple, such that the value of uk[Ai] is
NULL, ul[Ai] is not and all the others uk[Aj] and ul[Aj], where i!=j, are the
same and distinct from NULL.

The evaluation of the coverage is straightforward by using the actual output

produced by the query and considering only the tuples having cardinality higher than
one. Each grouping column Ai produces an r-node, each of which has two
placeholders for the r-values G and GN respectively.

3.3.2 Aggregate Functions

The aggregate functions (SUM, MIN, MAX, COUNT, AVG) perform simple
calculations over all values that are included in each group. Additionally, SUM,
COUNT and AVG can specify the optional set quantifier DISTINCT, which, if
present, excludes the repeated values from the calculation. Two conditions that affect
the calculation of the aggregate function are considered: (1) if some values are
repeated, then only one value is taken into account if the DISTINCT set quantifier is
present and (2) if a value is NULL, then it is not taken into account.

Let Ag be an attribute contained in an aggregate function expression, and
vi=ti[Ag] each of the values of the tuples ti that are grouped at the tuple uk in the result
set. The following r-values are defined for each:

• AF (multiple aggregation): There is at least one group k in which the
aggregate functions are evaluated over at least three non-null values v1, v2, v3
distinct from zero such that v1=v2 and v2!=v3. As two of the evaluated values

596 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

are equal, faults consisting of an incorrect use of the DISTINCT set
quantifier (omission or misuse) can be detected.

• AFn (aggregation with null): There is at least one group k in which the
aggregate functions are evaluated over at least two values v1, v2 such that v1
is NULL and v2 is not.

Before the evaluation, an intermediate query is constructed by removing the

GROUP BY, and by replacing each reference to aggregate functions by their
arguments. Then the result set produced by this query is explored to evaluate each r-
value.

The coverage of the aggregate functions consists of a set of r-nodes, one for each
attribute Ag, each of these having two placeholders, one for each of the r-values AF
and AFn.

3.3.3 Other Set Quantifiers

The clauses SELECT and UNION (combination of queries) may be evaluated using
the ALL and DISTINCT set quantifiers. DISTINCT produces an output in which
duplicate tuples are removed and ALL keeps duplicate tuples if any. If no quantifier is
specified, then the SELECT clause uses ALL by default and UNION operator uses
DISTINCT.

Ensuring that duplicate tuples appear only when specified is a very important
issue to avoid duplicate processing that could produce unexpected results. The
condition used to evaluate the coverage is the presence or absence of duplicate tuples
before quantifying. The following r-values are defined:

• S: For each SELECT clause, when quantified using ALL, the result set
contains at least two tuples that are equal. This r-value is automatically
labelled as unreachable if: (1) the select-list contains all the attributes that are
primary keys of the relations being joined and (2) the query has a GROUP
BY clause, this r-value is not evaluated.

• U: For each UNION clause, when quantified using ALL, the result set of
each of the combined queries has at least two tuples that are equal.

In this case, an r-node consisting of a single r-value S or U is created for each of

the SELECT and UNION clauses respectively.

Example 3: Creation and Evaluation of r-nodes
In order to illustrate the creation and evaluation of r-nodes, another query extracted
from the case study [Section 4], has been selected as it includes the most common
SQL clauses: JOIN and WHERE with two conditions, a GROUP BY based on two
attributes and two aggregate functions.

This query calculates the sum and average of the spent time in the actions carried
out on tickets for each creator and type of the invoiceable ones:

SELECT H.creatorID,T.typeID,sum(H.timeSpent),avg(H.timeSpent)
FROM ticket T INNER JOIN history H ON T.ticketID=H.ticketID
WHERE T.invoiceable=1

597Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

GROUP BY H.creatorID, T.typeID

There is a set of four r-nodes for evaluating groupings, aggregate functions and

quantifiers: two r-nodes for grouping columns, the attributes creatorID and typeID,
one for the attribute timeSpent in the aggregate functions (in this case, there are two
functions sharing the same attribute) and the last one for the SELECT clause
(automatically labelled as ‘U’ because of GROUP BY clause).

Assume the initial test inputs presented in [Tab. 3] for evaluating the r-nodes of
GROUP BY clause and aggregate functions. Note that, although the query used in the
Examples 1 and 2 has the same FROM and WHERE clauses, their test inputs can not
be used because groups can not form with the single row selected as output [see Tab.
2].

ticket history JOIN/WHERE
Output

tic
ke

tI
D

in
vo

ic
ea

bl
e

ty
pe

ID

 hi
st

or
yI

D

tic
ke

tI
D

cr
ea

to
rI

D

tim
eS

pe
nt

 cr
ea

to
rI

D

ty
pe

ID

tim
eS

pe
nt

1 1 81 11 1 91 8.0 91 81 8.0
2 0 89 12 3 99 9.9 91 81 8.0
3 0 89 13 1 91 8.0 91 82 3.0
4 1 89 14 5 91 3.0 91 82 NULL
5 1 82 15 6 91 NULL
6 1 82

Table 3: Initial test inputs for a simple query with a GROUP BY clause and aggregate
functions

After the evaluation of grouping and the aggregate function attribute, the initial
test inputs cover:

• The r-value G of typeID because the output of JOIN and WHERE clauses
produce two groups of more than one row in which typeID is different.

• The aggregation with null r-value (AFn) with a grouping formed by a null
value and a non-null value (3.0).

[Fig. 4] includes the r-nodes after the evaluation where the covered situations are
labelled as ‘Y’.

Grouping column
H.creatorID

Grouping column
T.typeID

G GN AF SAFn

Y N

N N Attribute
H.timeSpent N Y SELECT U

Figure 4: r-nodes after initial evaluation for a simple query with a GROUP BY clause
and aggregate functions

598 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

The evaluation of the r-nodes indicates that there are situations not covered with
the initial test inputs or unreachable. The tester should examine the r-values and
determine each case. The r-values GN are unreachable for both creatorID and typeID
(because they never are NULL). Then they are labelled manually as ‘U’. The rest of r-
values may be covered if test inputs are completed with the aim of reaching them. For
example:

• For r-value G of the grouping column creatorID, the output should include a
group of rows where creatorID≠91 and typeID=81 or typeID=82. Then, a
new detail (16,5,92,NULL), for the ticket indexed by 5, and a new ticket
(7,1,82) with its detail (17,7,92,NULL) are added and a new grouping is
produced.

• For the multiple aggregation r-value (AF), there should be at least three
values (two of them being equal). As each grouping is composed of no more
than two rows, another history (18,8,91,4.0) is added along with its
referenced ticket (8,1,81). In this detail, the value 4.0 is assigned to the
timeSpent that is different from the rest of time spent of this group.

With the final database [see Tab. 4], the r-nodes are evaluated and all r-values are
covered.

ticket history GROUP BY Output

tic
ke

tI
D

In
vo

ic
ea

bl
e

ty
pe

ID

 hi
st

or
yI

D

tic
ke

tI
D

cr
ea

to
rI

D

tim
eS

pe
nt

 cr
ea

to
rI

D

ty
pe

ID

su
m

av
g

1 1 81 11 1 91 8.0 91 81 20.0 6.66
2 0 89 12 3 99 9.9 91 82 3.0 3.0
3 0 89 13 1 91 8.0 92 82 NULL NULL
4 1 89 14 5 91 3.0
5 1 82 15 6 91 NULL
6 1 82 16 5 92 NULL
7 1 82 17 7 92 NULL
8 1 81 18 8 91 4.0

Table 4: Test inputs for a simple query with GROUP BY clause and aggregate
functions

3.3.4 Selecting after Grouping

The output produced by a query with a GROUP BY clause can be further filtered by a
HAVING clause (which behaves similarly to the WHERE clause). The HAVING
clause specifies an expression over a set of conditions CH=(H1, … Hh) so as to restrict
the output to those tuples that verify these conditions.

In order to evaluate the coverage, a new condition coverage tree over the having
conditions CT(CH) is constructed and evaluated as has been described in [Subsection
3.2]. For conditions in the HAVING clause, the condition coverage tree is an
independent structure. The particularities of its evaluation are two: (1) the test inputs
are the tuples retrieved after grouping and, therefore, they are considered as a single

599Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

relation and (2) the c-values can not labelled as impossible since constraints defined
in database schema are not valid due to the joins and GROUP BY clause of the query.

Example 4: Creation and Evaluation of a Condition Coverage Tree for a HAVING
clause
In this example, the coverage of conditions of a HAVING clause is determined. For
this, a condition coverage tree is created and evaluated as shown below.

The following query selects the average of the spent time in the actions carried
out on tickets for each creator and type of the invoiceable ones when the sum of the
time is less than an 8-hour working day:

SELECT H.creatorID,T.typeID,sum(H.timeSpent),avg(H.timeSpent)
FROM ticket T INNER JOIN history H ON T.ticketID=H.ticketID
WHERE T.invoiceable=1
GROUP BY H.creatorID, T.typeID
HAVING sum(H.timeSpent<8.0)

For the HAVING clause, the condition coverage tree is composed of a single c-

node for the condition sum(H.timeSpent)<8.0 [see Fig. 5]. The c-values initially
labelled as unreachable are Nr and Nb because the constant ‘8.0’ cannot be NULL.

As all clauses of the query, except HAVING, are the same as used in Example 3,
then condition coverage tree for HAVING clause is evaluated using the test inputs at
[Tab. 4]. The algorithm will use the set of rows retrieved by groupings (the last
columns presented in this table).

After the evaluation, the c-values covered are [see Fig. 5]:
• Nl, because there is a row where sum(H.timeSpent) is NULL.
• T and Fl because there are rows where sum(H.timeSpent) is lower and higher

than ‘8.0’ respectively.

Figure 5: Condition coverage tree for HAVING clause

The tester may complete the test inputs for reaching the non-covered c-value Fr:
it is necessary that, in all rows of the output retrieved by GROUP BY clause, the
sum(H.timeSpent) value is higher than ‘8’ what it is impossible using the same test
database. In this case, a new test database should be created and the rows inserted for
ticket and history tables should satisfy this condition, for example the rows presented
in [Tab. 5].

600 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

ticket history GROUP BY
Output

tic
ke

tI
D

in
vo

ic
ea

bl
e

ty
pe

ID

 hi
st

or
yI

D

tic
ke

tI
D

cr
ea

to
rI

D

tim
eS

pe
nt

 cr
ea

to
rI

D

ty
pe

ID

su
m

A
vg

1 1 81 11 1 91 1.0 91 81 6.5 2.17
8 1 81 13 1 91 1.5
 18 8 91 4.0

Table 5: New test database to complete the test suites for a query with HAVING
clause

3.4 Putting It All Together

The main goal of the evaluation of the coverage of a query is to obtain a metric to be
used as an adequacy criterion of the test suite designed to exercise a query. Depending
on the structure of the query under test, one or more condition coverage trees and sets
of r-nodes must be evaluated:

• If the query has a SELECT with JOIN and/or WHERE, then a condition
coverage tree CT(CS) has to be evaluated.

• If the query includes HAVING, another condition coverage tree CT(CH) has
to be evaluated.

• If there is more than one query being combined by UNION, a separate
condition coverage tree has to be evaluated for each query.

• Furthermore, a set of r-nodes has to be evaluated to consider the groupings
and aggregate functions for each query and set quantifiers for SELECT and
UNION clauses.

If a test suite is composed of several test groups, the evaluation of all c-nodes and

r-nodes is repeated for each test input and then combined as follows: If a value has
been covered by at least one test input, then it is labelled as ‘Y’ and if it has not been
covered by any case as ‘N’. Impossible values (‘I’) and unreachable values (‘U’) are
the same for each test input, since the former depend solely on the database schema
and the latter depend on the conditions of the query.

After evaluating all condition coverage trees over all test inputs, some of the
values are covered and some others remain uncovered. The theoretical condition
coverage is calculated as the percentage of covered c-values. As this measure does
not consider impossible c-values, it is necessary to define another that takes them into
account, the schema condition coverage (c-coverage):

c-coverage =
sum(covered c-values)

sum(total c-values)−sum(impossible c-values)×100

601Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

The r-coverage is calculated in the same way by taking into account the sum of r-
values. Moreover, in this case there are not impossible r-values in the set of r-nodes as
has been explained in [Subsection 3.3]:

r-coverage =
sum(covered r-values)

sum(total r-values) ×100

Due to the fact that the number of c-values grows exponentially by conditions and

the number of r-values grows lineally, both coverage measures are maintained
separate, as there are likely to be many more c-values than r-values and hence
integrating them in a single value would distort the interpretation of the results.

The procedure for calculating coverage has been described above and is
automated. Taking a query and a populated database, the query and the filter views
are executed and every c-value and r-value is produced as output with an indication as
to whether it has been covered. By exploring the restrictions in the database schema
and the query, the impossible and some unreachable values are also calculated. It is
up to the tester to determine whether there are non-covered values that are
unreachable.

When unreachable values exist, the 100% of c-coverage and r-coverage are not
reached but they have the superior limits:

maximum c-coverage =(1−
sum(unreachable c-values)

sum(total c-values)−sum(impossible c-values))×100

maximum r-coverage=(1−
sum(unreachable r-values)

sum(total r-values))×100.

Besides defining an adequacy criterion for the test suite designed, another goal is

to use coverage as a test input selection criterion. The procedure for test input design
consists in loading an initial set of data and query parameters (test inputs). For all test
inputs, the coverage is evaluated automatically and c-values and r-values are labelled
as ‘Y’ whenever they have been covered by at least one test input. The user
subsequently inspects the c-values and r-values that have not yet been covered. Based
on the values previously covered, the tester may add new test inputs by trying to
cover more values (usually by selecting different query parameters or by adding
tuples to the database). On some occasions, inserting new information in the test
database can result in covered values no longer being covered. When this situation
occurs, although it is preferable to have only one database, the new tuples must be
added in a different test database with a few tuples specific for this situation (this case
has been illustrated in Example 4).

Note that the evaluation of coverage is performed automatically, although the
process of completing the test inputs in order to increase the coverage depends on the
user, so different test suites may be developed by the tester. At the end of the process,
the same coverage must be obtained.

602 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

Example 5: Coverage Calculation
Continuing with the queries used in examples of previous sections, the coverage
measures are calculated obtaining for:

• Examples 2 and 4: maximum c-coverage=(1−
2+2

(24-14)+(6-0))×100 = 75.0%.

and c-coverage =
8+4

(24-14)+(6-0)×100 = 75.0%.

• Example 3: maximum r-coverage= (1−
1+1+0+1
2+2+2+1)×100 = 57.1% and

r-coverage=
1+1+2+0
2+2+2+1×100 = 57.1%

As can be observed, both c-coverage and r-coverage equals the maximum

coverage, respectively. So, selected test suites are complete according to the criteria
established.

4 A Case Study

In order to illustrate the use of SQL coverage as a test selection criterion, it was used
to develop the test inputs for the queries that are part of the business logic controlling
the security access to user requests managed by a web-based helpdesk system that is
currently in use at the University of Oviedo. This system manages general requests
for end-user technical assistance, along with software change requests for corporate
applications and time tracking. To date, it has been used by more than 200 users and
has managed around 25,000 requests. Security control is an extremely important
issue, since the system is used by many people with different profiles and levels of
responsibility, the stored information is often highly confidential and the application
is open to the web.

4.1 Brief Description of The System Under Test

The main information stored in the system is the helpdesk ticket, which is created for
each user request. Each ticket has a receiver (the person who records it) and an owner
(the person responsible for carrying out some action on it). Whenever an action is
performed on a ticket, a history record is created including annotations, time tracking
information, attachments and changes in the ticket state and owner.

The implementation of the security controls is centralized in a function that
receives the ticket identifier, the type of object to grant or deny access to (ticket,
history or others), the type of transaction (read, update or insertion), as well as the
identifier of the user who performs the transaction. Before starting each transaction,
the security function executes the SQL queries that include the database searches
needed for deciding whether to grant or deny access. These queries are embedded in
the procedural code and their specification along with their SQL implementation is
displayed in [Tab. 6] and [Tab. 7] respectively. Nine queries and a view are used to
control access to tickets and history records. Two more queries related to time
tracking and invoicing are also included for exercising the grouping operations.

603Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

Query Specification
Q11 A user having access type “OR” has read access to those tickets in which he/she is

either the receiver or the current owner.
Q12 A user having access type “OO” has read access to those tickets in which he/she is

either the receiver or the current owner or he/she has been the owner of the ticket
sometime in the past.

Q13 A user having access type “OU” has read access to those tickets in which some of
the following conditions are met: (1) he/she belongs to the same organizational
unit as that of the receiver of the ticket, (2) he/she belongs to the same
organizational unit as that of the current owner of the ticket, (3) he/she belongs to
the same organizational unit as that of at least some user who has been the owner
of the ticket sometime in the past.

Q21 A user has update access to those tickets in which either he/she is the receiver or
he/she has privilege over the owner as indicated by the specification of the view V
(userPermissions).

Q22 A user has update access to those tickets that belong to a type for which privileges
have been explicitly stated for such a user in the typePermissions table.

Q31 A user has update access to those history records that have been created by
him/her.

Q32 A user having access type “OR” can read the history and insert new history records
if he/she is either the receiver or the current owner of the ticket to which the
history record belongs.

Q41 A user having an access type different to “OR” can read the history and insert new
history records if either he/she is the receiver of the ticket to which the history
record belongs or he/she has privilege over the current owner of that ticket as
indicated by the specification of the view V (userPermissions).

Q42 A user having an access type different to “OR” can read the history and insert new
history records to those tickets that belong to some type for which privileges have
been explicitly stated for that user in the typePermissions table.

V This view determines which users have special privileges over others: A user, U1,
has special privileges over another, U2, if both the following conditions are met:
(1) either both users belong to the same organizational unit or user U1 belongs to
the privileged organizational unit whose id is 310, (2) User U1 is flagged as
responsible for his/her unit or both users are the same or user U1 represents the
organizational unit to which U1 belongs.

G1 List the users, type of the ticket, the total and average time spent on all history
records in invoiceable tickets for each user and type.

G2 List the number of different tickets that have been processed and total time spent
for each month and organizational unit. Invoiceable and non-invoiceable tickets
must be separated in different records.

Table 6: Specifications of queries under test

604 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

Query SQL implementation
Q11 SELECT ticketID FROM ticket

WHERE (ticketID=@1) AND ((receiverID=@2) OR (ownerID=@2))
Q12 SELECT T.ticketID FROM ticket T LEFT JOIN history H ON

T.ticketID=H.ticketID
WHERE (T.ticketID=@1) AND ((T.receiverID=@2) OR
 (T.ownerID=@2) OR (H.previousOwner=@2))

Q13 SELECT T.ticketID FROM ticket T
 LEFT JOIN user U0 ON T.receiverID=U0.userID
WHERE (T.ticketID = @2) AND (U0.areaID=@1)
UNION SELECT T.ticketID FROM ticket T
 LEFT JOIN user U1 ON T.ownerID = U1.userID
WHERE (T.ticketID = @2) AND (U1.areaID = @1)
UNION SELECT T.ticketID FROM ticket T
 LEFT JOIN history H ON T.ticketID = H.ticketID
 LEFT JOIN user U2 ON H.previousOwner = U2.userID
WHERE (T.ticketID = @2) AND (U2.areaID = @1)

Q21 SELECT receiverID , ownerID FROM ticket T
 LEFT JOIN userPermissions P ON T.ownerID = P.IDover
WHERE (T.ticketID=@1) AND ((T.receiverID=@2) OR ((P.ID=@2)))

Q22 SELECT T.ticketID , T.typeID , TP.userID FROM ticket T
 LEFT JOIN typePermissions TP ON T.typeID = TP.typeID
WHERE (T.ticketID=@1) AND (TP.userID=@2)

Q31 SELECT historyID FROM history
WHERE (historyID = @1) AND (creatorID = @2)

Q32 SELECT H.historyID FROM history H
 LEFT JOIN ticket T ON H.ticketID = T.ticketID
WHERE (H.historyID=@1) AND ((T.receiverID=@2) OR (T.ownerID=@2))

Q41 SELECT T.receiverID, T.ownerID FROM ticket T
 LEFT JOIN history H ON T.ticketID = H.ticketID
 LEFT JOIN userPermissions P ON T.ownerID = P.IDover
WHERE (H.historyID=@1)AND((T.receiverID=@2) OR ((P.ID=@2)))

Q42 SELECT H.historyID , T.typeID , TP.userID FROM ticket T
 LEFT JOIN history H ON T.ticketID = H.ticketID
 LEFT JOIN typePermissions TP ON T.typeID = TP.typeID
WHERE (H.historyID = @1) AND (TP.userID = @2)

V CREATE VIEW userPermissions AS
SELECT L.ID AS ID , L1.ID AS IDover FROM user L1, user L
WHERE ((L.areaID = L1.areaID) OR (L.areaID = 310)) AND
 ((L.responsible <> 0) OR (L.ID = L1.ID) OR (L.areaID = L1.ID))

G1 SELECT H.creatorID,T.typeID,SUM(H.timeSpent),AVG(H.timeSpent)
FROM ticket T INNER JOIN history H ON T.ticketID = H.ticketID
WHERE T.invoiceable = 1
GROUP BY H.creatorID , T.typeID

G2 SELECT convert(varchar (6),H.date,112) , U.areaID , T.invoiceable ,
 COUNT(DISTINCT T.ticketID), SUM(H.timeSpent) FROM history H
 LEFT JOIN user U ON H.creatorID = U.userID
 LEFT JOIN ticket T ON H.ticketID = T.ticketID
GROUP BY U.areaID , convert(varchar (6),H.date,112) , T.invoiceable

Table 7: SQL implementation of queries under test

605Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

4.2 Using the Coverage to Select Test Inputs

[Tab. 8] summarizes all the results obtained after using coverage as a criterion for
selecting the test inputs for all queries until attaining the maximum coverage of c-
coverage and r-coverage.

 Q
11

Q
12

Q
13

Q
21

Q
22

Q
31

Q
32

Q
41

Q
42

V

G
1

G
2

Parameters 2 2 2 2 2 2 2 2 2 0 0 0
Joined
tables

1 2 2+2
+3

2 2 1 2 2 3 2 2 3
Metrics for
the queries
under test

Conditions 3 5 3+3
+4

4+5 3 2 4 5+5 4 5 2 2

Total 78 726 78+78
+ 240

240
+726

78 24 240 726+
726

240 726 24 24

I 26 296 32+32
+ 144

55+ 92 27 8 134 354+
92

136 92 14 20

U 9 126 0+0+
0

97+
510

0 0 18 194+
510

0 510 2 0

c-values

Y 43 304 46+46
+ 96

88+
124

51 16 88 178+
124

104 124 8 4

Total 1 1 1+1+
1+2

1+1 1 1 1 1+1 1 1 7 11

U 1 0 1+1+
0+1

0+1 1 1 1 0+1 1 1 3 4

r-values

Y 0 1 0+0+
1+1

1+0 0 0 0 1+0 0 0 4 7

Test inputs 11 27 8 9 10 7 15 12 9 2 1 1 (a) using
the same
DB

Rows * 16 16 16 16 16 16 16 16 16 8 16 16

Test inputs 11 25 7 7 10 7 14 9 11 2 1 1 (b) using
separate
DBs

Rows * 2 7 3 1 2 1 4 2 4 8 8 5

%coverage c-coverage 82.7 70.7 100 25.9 100 100 83.0 30.0 100 19.6 80.0 100
 r-coverage - 100 40 50 - - - 50 - - 57.1 63.6

Table 8: Characteristics of queries and test inputs for attaining the maximum
coverage. (*)The number of rows refers to the ticket table with the exception of the
view (query V), where it refers to the users table. In the latter case, the number of test
inputs is two, one for each test database instance

The first group of rows (Metrics for the queries under test) provides information
about the number of parameters, joined tables and conditions in each query. Query
Q13 is a UNION of three SELECT statements, and the information is provided
separately for each condition coverage tree. Moreover, queries Q21 and Q41 join a
table and a view (V), therefore the information provided includes the query and the
view values, respectively.

The second and third groups of rows (c-values and r-values) quantify the number
of c-values and r-values respectively (total, impossible, unreachable and covered).

In the fourth and fifth groups of rows (using the same DB, using separate DBs),
information is provided about the test inputs that have been selected until the
maximum coverage is attained. Two different approaches have been followed:

606 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

1. The same database for all queries: After generating the test inputs for a
query, the following cases are generated using the same database as was used
for the previous query by adding rows when needed. The size of the database
(rows) is the same for all queries, with the only exception of the view, which
needs two different databases (different in only one value of a row) and
refers to the users table.

2. A separate database for each query: Test inputs for each query are developed
from scratch, by adding only the rows that are needed for testing that query.

The former approach gives a single, larger database (16 rows in the tickets table)

and the latter many small databases. However, the number of tests is similar in both
cases.

The last group of rows (%coverage) provides the percentage of coverage (c-
coverage and r-coverage) reached for each query. The values obtained for these
measures are the maximum coverages regardless of the approach used to select test
suites.

5 Fault Detection Capability

In this section a number of issues related to the kind of faults (both SQL-specific and
non SQL-specific) that may be detected by using the coverage criterion described in
this paper are discussed and certain considerations with respect to the test size are
provided.

In software testing, one way of characterizing and comparing test selection and
adequacy criteria is their effectiveness in detecting faults that may appear in a given
program under test. In the absence of records concerning real faults that have
occurred during the development and operational life of an application, artificially
injected faults can be used. In order to do so in a systematic way, a mutation testing
approach [DeMillo et al. 1978] [Hamlet 1977] can be used. The mutation analysis
consists in generating a large number of alternative programs called mutants, each one
having a simple fault that consists of a single syntactic change in the original
program. Each mutant is executed with the test suite and when it produces an
incorrect output (the output is different to that of the original program), the mutant is
said to be killed. Some mutants always produce the same output as the original
program, so no test input can kill them. These mutants are said to be equivalent
mutants. After executing the test suite over a number of mutants, the mutation score is
defined as the percentage of dead mutants divided by the number of non-equivalent
mutants.

5.1 Mutation Analysis

For each of the queries in the case study [Section 4], a set of mutated queries has been
developed using (1) some of the mutation operators that are described by [King,
Offutt 1991] applied to the query conditions and (2) others defined in [Tuya et al.
2007] in order to check other kinds of faults specifically related to the SQL language.

For these queries, the used mutation operators are:

607Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

• OR (Operator Replacement mutation operators) adapt the Expression
modification operators known as the “sufficient mutation operators” [Offutt
et al. 1996]:

• LCR (Logical Connector Replacement): Each occurrence of {AND,
OR} is replaced by the other, by falseop (always returns false), by
trueop (always returns true), by leftop (returns the left operand), and
by rightop (returns the right operand).

• ROR (Relational Operator Replacement): Each occurrence of {=,
!=, <, <=, >, >=} is replaced by each of the other operators, by
falseop and by trueop.

• UOI (Unary Operator Insertion). Each reference to a parameter or
column e is replaced by -e, e+1 and e-1.

• IR (Identifier Replacement mutation operators) adapt the Replacement-of-
operand operators. Every column (IRC), constant (IRT) and parameter (IRP)
reference is replaced by its counterpart column, constant or parameter of the
query with type compatible.

• SC (SQL clause mutation operators) are defined to mutate the main SQL
clauses:

• SEL (SELECT clause): Each occurrence of {SELECT, SELECT
DISTINCT} is replaced by the other.

• JOI (Join clause). Each occurrence of {INNER JOIN, LEFT JOIN,
RIGHT JOIN, FULL OUTER JOIN, CROSS JOIN} is replaced by
each of the others.

• GRU (Grouping): Each of the grouping columns is removed.
• AGR (Aggregate functions): Each occurrence of an aggregate

function (including functions quantified with DISTINCT) is
replaced by each of the others.

• UNI (Query concatenations): Each occurrence of {UNION,
UNION ALL} is replaced by the other.

• NL (NULL mutation operators) generate mutations related to the handling of
null values:

• NLS (NULL in select list): each item c in select list (if can be
NULL) is replaced by a function f(c,r) that substitutes the null value
of c by r.

• NLI (Include nulls): for each attribute a of a condition C in the form
aℜb or bℜa, the condition is replaced by the expression C OR a IS
NULL.

The mutation operators are applied to the case study queries. The corresponding

mutated queries are generated in an automated way using SQLMutation tool [Tuya et
al. 2006] obtaining the results summarized in [Tab. 9]. This table displays the number
of mutants generated automatically (998 non-equivalent mutants in total) running
these mutation operators, the number of dead mutants with the test suite and the
mutation scores for each query and each of the above operators.

Mutation coverage for the LCR operators, replacement operators (IR) and
specific operators to SQL (SC and NL) attain a score of 100%, UOI score is 99%
(only one live mutant corresponding to the replacement of a=k by a+1=k) and ROR

608 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

score is 93% (16 non-killed ROR mutants consisting of the replacement of = by ≥ or
≤). The total score is 98,3%, only 17 of 981 mutants are alive. These mutants are
related to cover boundary values because this criterion has not been considered in the
approach of this work.

 Q11 Q12 Q13 Q21 Q22 Q31 Q32 Q41 Q42 V G1 G2 Num

Mut.
Dead.
Mut.

%
score

LCR 10 14 15 10 5 5 10 10 5 19 103 103 100
ROR 21 28 42 21 14 14 21 21 14 31 3 230 214 93.0

OR

UOI 9 12 18 9 6 6 9 9 6 21 105 104 99.0
IRC 10 27 42 29 22 4 20 41 32 27 20 30 304 304 100
IRP 9 16 12 12 6 4 9 12 6 86 86 100

IR

IRT 9 3 14 26 26 100
SEL 1 1 1 1 1 1 1 7 7 100
JOI 4 16 4 4 4 8 8 4 4 8 64 64 100
GRU 4 8 12 12 100
AGR 14 14 28 28 100

SC

UNI 5 5 5
NLS 2 2 4 4 100 NL
NLI 4 12 8 24 24 100

Num. of
mutants

 59 106 162 86 57 33 74 102 72 120 50 77 998

Dead
mutants

 56 106 157 82 55 32 73 101 72 120 50 77 981

%score 94,9 100 96,9 95,3 96,5 97,0 98,6 99,0 100 100 100 100 98,3%

Table 9: Mutation scores for queries under test

5.2 Limitations of the Analysis

Two main potential threats to the validity of the approach may limit the ability to
generalize the mutation analysis results.

The first concern is related to the queries used in the case study. All queries of the
example are taken from a real application currently in use, and they use a relatively
wide variety of SQL clauses. However, they constitute a limited set of the kind and
complexity of queries that can be found in real applications.

The second is whether the set of SQL mutants used to evaluate the fault detection
ability are representative of real-life faults. Some of the mutation operators are the
“sufficient mutation operators” that have been widely used in the literature with this
aim [Offutt, Untch 2000], although used to seed faults in procedural programs. Other
mutant operators introduce changes in SQL clauses that are likely to represent single
faults introduced by a programmer. If it is assumed that SQL mutants behave like
mutants for imperative code, empirical studies comparing test suites on hand-seeded,
automatically generated (mutation) and real-world faults suggest that the generated
mutants provide a good indication of the fault detection capability of a test suite
[Andrews et al. 2005]. Also, the mutation approach has been used in [Tsai et al.
1990], to perform a partial evaluation of the fault detection capability of database test
cases, in [Deng et al. 2005] and [Elbaum et al. 2005] for seeding manual faults in
queries in order to assess the effectiveness of test generation techniques, and in [Chan
et al. 2005] for SQL queries based on the semantics of the conceptual model.

609Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

The effectiveness of the criteria developed in the present paper was evaluated
using a controlled experiment in [Tuya et al. 2008] where the tester is guided using
the criteria to select the database test cases. Authors compare them with other
techniques and the results show that the use of the present criteria allows the tester to
develop more effective test cases and the effectiveness is higher when considering the
kind of faults that are more specifically related to SQL than others.

5.3 Other Detected Faults

Apart from detecting the injected faults using mutation operators as shown above, test
inputs developed to attain the maximum c-coverage and r-coverage can detect a
number of common faults in conditions and query clauses, which are illustrated with
examples below.

5.3.1 Conditions

Here the simplest query (Q11) is considered, whose goal is to grant permission to a
ticketID (given by the parameter @1) whenever either ownerID or receiverID is the
user who accedes to it (given by the parameter @2):

SELECT ticketID FROM ticket
WHERE ticketID=@1 AND (receiverID=@2 OR ownerID=@2)

An alternate implementation of the WHERE conditions could be:

(ticketID=@1 AND receiverID=@2) OR (ticketID=@1 AND ownerID=@2)

And if the second reference to ticketID is removed, it could result in the following

faulty query:

SELECT ticketID FROM ticket
WHERE (ticketID=@1 AND receiverID=@2) OR (ownerID=@2)

This fault could also be obtained by a change in the bracket grouping or by a

removal of the brackets (because AND has precedence over OR).
Eleven test inputs were selected for this query until the maximum coverage was

reached, along with a simple database with two rows in the tickets table. Eight of
these cases include the possible combinations of the truth table for the conditions
including ticketID, ownerID and receiverID, and three more include null values in the
parameters, the 9th test input being the one that detects the aforementioned faulty
query. However, only four are needed to kill the above mutants, none of them is able
to detect the faulty query.

5.3.2 Null Values

A common mistake that is made when writing queries is the misuse or
misunderstanding of the effect of the three-valued logic used by SQL.

For example, consider the query Q11 again with an addition to its specification
consisting in also granting access to users who are not the receivers of a ticket,

610 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

provided that the owner has not yet been assigned. In this case, the database schema
would permit null values in the ownerID attribute. While selecting test inputs until
reaching the maximum coverage, a row in the test database would be inserted having
a null value in that field. The query would be demonstrated as faulty, since a row
having a null value in ownerID would only be selected when both ticketID and
receiverID match the parameters, the correct one being as follows:

SELECT ticketID FROM ticket
WHERE ticketID=@1 AND
 (receiverID IS NULL OR receiverID=@2 OR ownerID=@2)

5.3.3 JOIN Clauses and Conditions

The wrong use of join clauses and predicates for selecting rows is another common
source of faults.

The query number Q22 grants permission to a ticket (@1) for a user (@2) when
the type of the ticket and the user match some of the rows (userID,typeID) that are
stored in the typePermission table.

SELECT T.ticketID, T.typeID, P.userID
FROM ticket T LEFT JOIN typePermission P ON T.typeID=P.typeID
WHERE T.ticketID=@1 AND P.userID=@2

The selected test inputs include database rows having tickets with and without

related rows in the typePermission table. A faulty query permitting the selection of a
ticket that has no related row in that table would be detected. An example of the
WHERE condition for this situation would be the following:

T.ticketID=@1 AND (P.userID=@2 OR P.userID IS NULL)

Note that in this case, in which the joined attributes are used in the WHERE

under the logical operator AND, the inner, left and right joins are equivalent. This is
not applicable when the operator is OR. An example of this is query number Q12,
which grants access to a ticket (@1) when the user (@2) matches either the ownerID
or the receiverID or the previousOwner (this attribute is used to check whether he/she
has been the owner sometime in the past):

SELECT T.ticketID
FROM ticket T
 LEFT JOIN history H ON T.ticketID = H.ticketID
WHERE T.ticketID=@1 AND
 (T.receiverID=@2 OR T.ownerID=@2 OR H.previousOwner=@2)

As in the previous query, the selected test inputs will include tickets without

history that will make it possible to detect that a query using inner or right joins
would be faulty.

611Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

5.3.4 Aggregate Functions

Another possible fault to be considered is that related to aggregate functions that
would be detected by the test inputs selected for query G1 [see Tab. 4].

The average aggregate function avg(a), where a is the timeSpent attribute, can be
replaced by sum(a)/count(a). As neither sum(a) nor count(a) will take into account the
null values, the evaluation of the aggregate function for the second grouping
(91,82,3.0,3.0) originated by grouping two rows (one of them having a null value) is
3.0 under both implementations. However, if count(a) is replaced by count(*), then
the count would be 2, as count(*) includes every row. Hence, the average would be
1.5 and therefore the fault would be detected.

5.4 Considerations about the Size of the Test Suite

At first glance, one of the main drawbacks of the approach used for the evaluation of
condition coverage is the size of the test suite. Multiple condition coverage is
expensive, because in order to cover n conditions, a set of 2n inputs are needed. In this
case, in which each condition is evaluated in relation to more than two outcomes (the
c-values), the theoretical size is much larger. If there are n conditions, then the
number of c-nodes is calculated as 1+31+32+…3n-1 and the total number of c-values is
six times this value: total c-values=(3n-1)×3.

In practice, however, the number of cases is likely to be significantly lower than
this theoretical limit, since each test input may cover many c-values. Moreover, test
inputs are not required to cover the impossible and unreachable c-values.

Consider the data presented in [Tab. 8]. The queries presenting the most
conditions are Q12, Q41 and V (five conditions each). Query Q12 is the one with the
largest number of test inputs (25 cases in the last group of rows, far from the total
number of n-values), whereas query Q41, with a similar structure (two joined tables),
needs 9 test inputs and query V only 2. The number of test inputs is significantly
different depending on the kind of query: queries Q12 and Q41 have very small
databases and references to the parameters in the conditions and V has a larger
database and no parameters. The reason is that the execution of Q12 and Q41 selects a
reduced number of rows from the database and therefore the number of possible
situations being exercised for each test case is low, whereas query V selects many
rows from the database and therefore the number of possible situations being
exercised is high.

The size of the test suite is not only limited as a result of a test input exercising
many c-values, but also because many c-values are known to be impossible (‘I’),
making the entire sub-tree impossible. Moreover, if a c-value is detected as
unreachable (‘U’) and then the entire sub-tree likewise becomes unreachable. This
issue may be checked in [Tab. 8] by calculating the percentage of impossible and
unreachable c-values with respect to the total, 36% and 46% respectively. The query
presenting the most unreachable c-values is V, accounting for 70% of the unreachable
values, as the query is a recursive join that imposes some restrictions that make many
nodes unreachable.

Nevertheless, it might still be possible to reduce the breadth expansion of the
trees. A first approach would consist in using two separate trees, one for the JOIN
condition and another for the WHERE. A second approach would consist in limiting

612 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

the creation of sub-trees solely to the branches generated by the T c-value and cutting
off the sub-trees for the Fl and Fr c-values. The former approach would maintain a
multiple coverage criterion if considered independently for JOIN and WHERE, whilst
the latter would not. However, this could mask certain kinds of faults, as is illustrated
below with an example:

Considering again query G1, though with the join incorrectly stated as LEFT
JOIN instead of INNER JOIN:

SELECT H.creatorID,T.typeID,SUM(H.timeSpent),AVG(H.timeSpent)
FROM ticket T LEFT JOIN history H ON T.ticketID = H.ticketID
WHERE T.invoiceable=1
GROUP BY H.creatorID, T.typeID

To cover the JOIN condition, the test inputs selected consist of the rows of ticket

indexed by 1 and 4 and the history indexed by 11 (see the test inputs in [Tab. 4]). If
the evaluation of the WHERE condition is made separately, then the above cases will
cover the T c-value and it is only necessary to add a row to cover Fl, for instance the
ticket indexed by 2. The output produced is {(91,81,8.0,8.0)}, which is correct. If the
query is subsequently executed after adding the ticket indexed by 2 to the database,
then the output is {(NULL,89,0,0), (91,81,8.0,8.0)}, which is not correct, as it refers
to a non-existent user. In this case the approach of considering the JOIN and WHERE
conditions separately has masked this fault.

5.5 Considerations about the Complexity of the Algorithm of Evaluation

The algorithm of evaluation of the condition coverage trees evaluates all possible
combinations of c-values using every test input. Its complexity depends on two
variables: the number of conditions (n) and the number of tuples (t) of each relation
joined in the query to be evaluated. It has the worst-case complexity O(tn) when it is
necessary to cover all Fr or Fl c-values since the root c-node.

However, considering the queries Q12, Q41 and V (each with five conditions)
and using the same database for all queries [see Tab. 8] the time consumed by the
algorithm in the evaluation was less than 1 second. In another experiment, for the
evaluation of the query Q41, a different test database was used. In this new example,
where the user table had 49 rows and userPermission view returned 1652 rows, the
time consumed was 13 seconds. This time is low compared with the time necessary to
manually evaluate queries and calculate their coverage, or to determine if test inputs
are complete for a query.

In the common scenarios, the algorithm will be used for helping to develop the
test suite for a set of queries and test databases will have a limited number of tuples.
In these cases, the time consumed for evaluating of the coverage is low.

6 Related Work

Even though a great deal of research in software testing has been carried out in recent
years, few studies have been specifically related to the testing of database
applications, whether for test input selection criteria or test input adequacy criteria.

613Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

An initial way of classifying the related work is in relation to the information used to
meet the criteria: only the database, only the queries, and both of them.

The selection of test inputs by means of considering the database schema and
constraints, though not the application code is the approach taken by [Davies et al.
2000]. In order to automatically load the initial database, a set of valid and invalid
data is generated from a database schema considering primary keys, null values and
established ranges, but not referential integrity. Besides basing on database schema,
[Wu et al. 2003] select the test inputs using a set of non-deterministic rules like
associations, correlations and patterns, and statistics of the current live data in the
production database. In both cases, neither the SQL statements that are executed nor
adequacy criteria are considered. In this paper, coverage criterion is considered and it
is calculated taking into account parts of the database schema where the relations of
the query are defined as well as null values, primary keys and foreign keys.

[Chan, Cheung 1999] take into consideration only SQL queries. The queries are
translated to C and then testing can be carried out by using conventional white-box
testing techniques. [Gardikiotis, Malevris 2006] present two approaches where control
flow graphs are applied to generate test cases. In the first, “gray-box” testing method
is used considering SQL statements as black-box and analyzing the imperative code
as white-box. In the second approach, SQL statements are translated to the imperative
code and then the control flow graph is generated. Instead of translating the query to
be tested into C or into another programming language, the approach of this paper
represents the conditions of the query by the coverage tree and incorporates a notion
of a white-box technique (multiple condition coverage) for evaluating the tree.

The structure of the data and the query under test is considered in most studies on
database testing. [Mannila, Räihä 1986] present a theoretical approach using
relational algebra and a notion of adequacy related to the concept of an Armstrong
database. Queries, with select, project and join operations, expressed in relational
algebra are represented as query graphs to be evaluated and a test database is
generated for each given query after evaluating functional dependencies obtained
from the database schema and the query. In the present paper, apart from clauses
included in [Mannila, Räihä 1986], parameters, grouping operations, aggregate
functions and set quantifiers are considered, and selected test inputs for a query are
evaluated according to a defined adequacy criterion.

Algebra relational is also used by [Tsai et al. 1990] to specify queries. A set of
predicates are obtained and translated into sets of systems of linear inequalities from
which the authors derive the test inputs. The effectiveness of the test inputs, like in the
present paper, is compared with mutated queries.

The use of general purpose constraint solvers for test data generation is the
approach taken by [Zhang et al. 2001]. The query is translated into a set of constraints
which are solved to generate the test database.

A fairly elaborate and elegant approach for generating test inputs by means of
considering the database schema together with SQL queries is performed by [Chays et
al. 2004] in the AGENDA tool. The goal is to facilitate the testing of applications,
composed of a single query, by automating the generation of the test database and test
inputs for input parameters. Both are selected taking into account the database
schema, information obtained from SQL statements and some heuristics and
information provided by the tester, such as category-partitions, boundary values,

614 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

duplicate values and null values. Their adequacy criterion relies implicitly on these
heuristics, although it is not defined explicitly. Test input selection is automated by
performing this task in a semi-automatic way where tester intervention is required and
illustrated using examples with one or two joins. Its performance was discussed in
several small case studies but the effectiveness in detecting faults of the selected test
database is not detailed. Our approach, in contrast to AGENDA tool, does not
generate test database but defines coverage criteria that automatically evaluate test
inputs for SQL queries.

Other authors also include AGENDA for update statements and extend the tool to
deal with database transactions with multiples queries [Deng et al. 2005]. The main
feature introduced in their approach is to check whether transactions are consistent
with their requirements. Moreover, as in this paper, results of example applications
with seeded faults are studied.

Adequacy criteria were defined to assess the quality of the tests manually
designed by [Kapfhammer, Soffa 2003]. Their criteria make use of control flow and
data flow techniques associated with database entities and queries. Adequate tests are
those that exercise all database associations (relations, tuples, attributes and values of
attributes) for all entities. An improved approach is given by [Willmor, Embury
2005]. Test adequacy criteria considers transactions (both committed and non-
committed) and the define-use pairs for different database states resulting from the
execution of previous statements. These works are others of the most similar to this
paper because they establish explicitly defined adequacy criteria, although SQL
semantics are not taken into consideration. [Halfond, Orso 2006] also define a test
adequacy criterion based on the coverage of all the SQL statements dynamically-
generated that an application can issue to a database.

The approaches presented in [Deng et al. 2005], [Chays et al. 2004],
[Kapfhammer, Soffa 2003] and [Willmor, Embury 2005] are complementary to our
approach and, in all cases, a common feature is that validation is performed using
non-trivial systems or real-life applications, which inspires confidence in the
capabilities of each method.

7 Conclusions

In this paper, two coverage criteria for SQL queries that retrieve information from a
database have been defined. The criteria take into account both the database and the
query structure to determine a set of situations (c-values and r-values) that must be
exercised by the query when executed against the test suite. A quite complete set of
the SQL syntax and semantics is supported, including joins, unions, groupings,
aggregate functions, set quantifiers and non-existing information (NULL), as well as
WHERE and HAVING clauses, and parameterised queries.

The SQL coverage criteria can then be used as a test selection criterion and guide
the tester in completing the test inputs by seeking out non-covered situations. The
effectiveness of the test inputs designed using the criterion were illustrated using a
real-life example and were found to be adequate for detecting a number of kinds of
frequent SQL faults (such as problems with null values, joins and aggregate
functions).

615Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

The aim of SQL coverage has been to consider the coverage for the distinctive
features and processing of the SQL language compared to procedural languages.
Consequently, a number of issues, such as boundary value analysis of conditions,
have not been considered, although this may be included as heuristic rules when
developing test inputs. It can, moreover, be easily integrated in the testing process,
since coverage is automatically calculated by using the query under test and live data
from the database, along with the database schema. This allows the test input design
and the adequacy evaluation to be performed in an interactive way and serves as a
basis for automatic test data generation tools.

Acknowledgements

This research work was funded by the Department of Science and Innovation (Spain)
and ERDF Funds, projects Test4SOA (TIN2007-67843-C06-01) and RePRIS
(TIN2007-30391-E), and the Government of Castilla La-Mancha, project PRALIN
(PCI-08-121-1374).

References

[Andrews et al. 2005] Andrews, J., Briand, L., Labiche, Y.: “Is mutation an appropriate tool for
testing experiments?”; Proc. 27th Int. Conf. on Software Engineering, ACM Press, New York
(2005), 402–411.

[Brass, Goldberg 2005] Brass, S., Goldberg, C.: “Semantic Errors in SQL Queries: A Quite
Complete List (Extended version)”; Journal of Systems and Software 79, 5 (2005), 630-644.

[Chan, Cheung 1999] Chan, M.Y., Cheung, S.C.: “Testing Database Applications with SQL
Semantics”; Proc. 2nd Int. Symp. on Cooperative Database Systems for Advanced
Applications, March 1999, Springer, Singapore (1999), 363–374.

[Chan et al. 2005] Chan, W.K., Cheung, S.C., Tse, T.H.: “Fault-Based Testing of Database
Application Programs with Conceptual Data Model”; Proc. the 5th Int. Conf. on Quality
Software, September 2005, IEEE Computer Society (2005), 187-196.

[Chays et al. 2004] Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I., Weyuker, E.J.:
“An AGENDA for Testing Relational Database Applications”; Software Testing, Verification
and Reliability 14, 1 (2004), 17-44.

[Davies et al. 2000] Davies, R.A., Beynon, R.J.A., Jones, B.F.: “Automating the Testing of
Databases”; Proc. the First Int. Workshop on Automated Program Analysis, Testing and
Verification, June 2000, IEEE Computer Society (2000).

[DeMillo et al. 1978] DeMillo, R.A., Lipton, R.J., Sayward, F.G.: “Hints on Test Data
Selection: Help for the Practicing Programmer”; IEEE Computer 11, 4 (1978), 34-43.

[Deng et al. 2005] Deng, Y., Frankl, P., Chays, D.: “Testing Database Transactions with
AGENDA”; Proc. the 27th Int. Conf. on Software Engineering, May 2005, ACM Press, New
York (2005), 78-87.

[Elbaum et al. 2005] Elbaum, S., Rothermel, G., Karre, S., Fisher, I.I.M.: “Leveraging User-
Session Data to Support Web Application Testing”; IEEE Transactions on Software
Engineering, 31, 3 (2005), 187-202.

616 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

[Gardikiotis, Malevris 2006] Gardikiotis, S.K., Malevris, N.: “Program Analysis and Testing of
Database Applications”; Proc. the 5th Int. Conf. on Computer and Information Science and 1st
IEEE/ACIS Int. Workshop on Component-Based Software Engineering, Software Architecture
and Reuse, July 2006, IEEE Computer Society (2006).

[Halfond, Orso 2006] Halfond, W.G.J., Orso, A.: “Command-Form Coverage for Testing
Database Applications”; Proc. the 2nd IEEE/ACM Int. Conf. on Automated Software
Engineering, 2006, 69-80.

[Hamlet 1977] Hamlet, R.G.: “Testing Programs with the Aid of a Compiler”; IEEE
Transactions on Software Engineering, 3, 4 (1977), 270-290.

[Imielinski, Lipski 1984] Imielinski, T., Lipski Jr, W.: “Incomplete Information in Relational
Databases”; Journal of the Association for Computing Machinery, 31, 4 (1984), 761-79.

[Kapfhammer, Soffa 2003] Kapfhammer, G.M., Soffa, M.L.: “A Family of Test Adequacy
Criteria for Database-Driven Applications”; Proc. the 9th European Software Engineering
Conf. and the 11th ACM SIGSOFT Int. Symp. on Foundations of Software Engineering,
September 2003, ACM Press, New York (2003), 98–107.

[King, Offutt 1991] King, K.N., Offutt, A.J.: “A Fortran Language System for Mutation-Based
Software Testing”; Software Practice and Experience, 21, 7 (1991), 686-718.

[Klein 1994] Klein, H.J.: “How to Modify SQL Queries in Order to Guarantee Sure Answers”;
ACM SIGMOD Record, 23, 3 (1994), 14-20.

[Lu et al. 1993] Lu, H., Chan, H.C., Wei, K.K.: “A Survey on Usage of SQL”; ACM SIGMOD
Record, 22. 4 (1993), 60-65.

[Mannila, Räihä 1986] Mannila, H., Räihä, K.J.: “Test Data for Relational Queries”; Proc. the
5th ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, March 1986, ACM
Press, New York (1985), 217-223.

[Offutt, Untch 2000] Offutt, A.J., Untch, R.H.: “Mutation 2000: Uniting the Orthogonal”;
Mutation 2000: Mutation Testing in the Twentieth and the Twenty First Centuries, San Jose,
October 2000, 45-55.

[Offutt et al. 1996] Offutt, A.J., Lee, A., Rottermel, G., Untch, R.H., Zapf, C.: “An
Experimental Determination of Sufficient Mutant Operators”; ACM Transactions on Software
Engineering and Methodology, 5, 2 (1996), 99-118.

[Pönighaus 1995] Pönighaus, R.: “‘Favourite’ SQL-Statements – An Empirical Analysis of
SQL-Usage in Commercial Applications”; Proc. the 6th Int. Conf. on Information Systems and
Management of Data (Lecture Notes in Computer Science, vol. 1006), November 1995,
Springer, Berlín (1995), 75-91.

[SQL 1992] International Organization for Standardization. Information technology -- Database
languages – SQL, ISO/IEC 9075:1992, third edition.

[Suárez-Cabal, Tuya 2004] Suárez-Cabal, M.J., Tuya, J.: “Using an SQL Coverage
Measurement for Testing Database Applications”; Proc. the ACM SIGSOFT Symp. on the
Foundations of Software Engineering, October 2004, ACM Press, New York (2004), 253-262.

[Tsai et al. 1990] Tsai, W.T., Volovik, D., Keefe, T.F.: “Automated Test Input Generation for
Programs Specified by Relational Algebra Queries”; IEEE Transactions on Software
Engineering, 16, 3 (1990), 316-324.

617Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

[Tuya et al. 2008] Tuya, J., Dolado, J., Suárez-Cabal, M.J., De la Riva, C.: “A Controlled
Experiment on White-box Database Testing”; ACM SIGSOFT Software Engineering Notes,
33, 1 (2008).

[Tuya et al. 2007] Tuya, J., Suárez-Cabal, M.J., De la Riva, C.: “Mutating Database Queries”;
Information and Software Technology, 49, 4 (2007), 398-417.

[Tuya et al. 2006] Tuya, J., Suárez-Cabal, M.J., De la Riva, C.: “SQLMutation: a Tool to
Generate Mutants of SQL Database Queries”; 2nd Workshop on Mutation Analysis (Mutation
2006), 2006.

[Vassiliou 1979] Vassiliou, Y.: “Null values in database management. A denotational
semantics approach”; Proc. the 1979 ACM SIGMOD Int. Conf. on Management of Data, May
1979, ACM Press, New York (1979), 162-169.

[Willmor, Embury 2005] Willmor, D., Embury, S.M.: “Exploring Test Adequacy for Database
Systems”; Proc. the 3rd UK Software Testing Research Workshop, September 2005.

[Woodward 2001] Woodward, M.: “Insights into Software Testing”; Software Focus 2, 3
(2001), 93-103.

[Wu et al. 2003] Wu, X., Wang, Y., Zheng, Y.: “Privacy Preserving Database Application
Testing”. Proc. the ACM Workshop on Privacy in Electronic Society, October 2003, ACM
Press, New York (2003), 118-128.

[Zhang et al. 2001] Zhang, J., Xu, C., Cheung, S.C.: “Automatic Generation of Database
Instances for White-Box Testing”; Proc. the 25th Annual Int. Computer Software and
Applications Conf., October 2001, IEEE Computer Society Press, Los Alamitos (2001), 161–
165.

[Zhu et al. 1997] Zhu, H., Hall, P.A.V., May, J.H.R.: “Software Unit Test Coverage and
Adequacy”; ACM Computing Surveys 29, 4 (1997), 366-427.

Appendix I: Algorithm for evaluating conditions

Algorithm Eval_CCT(CT, TestDB) {

 Let CT be the condition coverage tree for CSk
 Let TestDB be tuples of test database for the evaluation of CT(CSk)

 Let Ck be the condition in c-node(Ck) to evaluate in the form XℜZ

 For each tuple, ti∈r(Rx) where x=ti[X]
 For each tuple, tj∈r(Rz) where z=tj[Z]
 If x is NULL
 Label Nl as ‘Y’
 If z is NULL
 Label Nr as ‘Y’
 If x is NULL and z is NULL
 Label Nb as ‘Y’
 If c-value T is labelled as ‘N’ or ‘Y’
 If xℜz is satisfied
 Label T as ‘Y’

618 Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

 Call Eval_CCT(CTT(CSk+1),TestDB-{r(Rx),r(Rz)}∪{ti∈r(Rx),tj∈r(Rz)}
 If all c-values of CTT(CSk+1) are different from ‘N’
 exit Foreach
 End Foreach
 If c-value Fl is labelled as ‘N’ or ‘Y’
 If (Ck was not satisfied during every iteration with x)
 Label Fl as ‘Y’
 Call Eval_CCT(CTFl(CSk+1),TestDB-{r(Rx)}∪{ti∈r(Rx)}
 If all c-values of CTFl(CSk+1) are labelled different from ‘N’
 exit Foreach
 End Foreach
 For each tuple, tj∈r(Rz) where z=tj[Z]
 For each tuple, ti∈r(Rx) where x=ti[X]
 If xℜz is satisfied
 exit Foreach
 End Foreach
 If c-value Fr is labelled as ‘N’ or ‘Y’
 If (Ck was not satisfied during every iteration with z)
 Label Fl as ‘Y’
 Call Eval_CCT(CTFr(CSk+1),TestDB-{r(Rz)}∪{tj∈r(Rz)}
 If all c-values of CTFr(CSk+1) are labelled different from ‘N’
 exit Foreach
 End Foreach
}

619Suarez-Cabal M.J., Tuya J.: Structural Coverage Criteria ...

