
Supporting Composition of Structural Aspects

in an AOP Kernel

Éric Tanter1 and Johan Fabry2

(PLEIAD Laboratory
Computer Science Department (DCC), University of Chile

Santiago, Chile
etanter@dcc.uchile.cl, jfabry@dcc.uchile.cl

http://pleiad.cl/)

Abstract: Structural aspects modify the structure of a program, for instance by
adding fields and methods to existing classes. Like behavioral aspects, which oper-
ate on execution events, structural aspects may interact and raise conflicts. Current
aspect systems however do not thoroughly handle this issue. This paper discusses how
complete support for structural aspect composition can be integrated in an AOP ker-
nel, that is, a generic transformation framework on top of which aspect languages are
defined. An iterative composition process is proposed that involves the programmer
in a cycle of automatic detection of interactions and explicit, declarative resolution of
these interactions. Beyond a general analysis of the issue of composition of structural
aspects and an associated composition process, this work reports on the concrete ex-
tension of the Reflex AOP kernel to fully support the requirements drawn from our
analysis. Based on a structural model supporting per-aspect subjective views, and using
the power of an embedded logic engine, the result is a versatile aspect system support-
ing automatic detection of various kinds of structural aspect interactions, extensible
reporting tools, and declarative mechanisms for the resolution of interactions between
structural aspects.

Key Words: Aspect-Oriented Programming, AOP kernel, structural aspects, aspect
composition, Reflex

Category: D.1.5, D.2.3, D.3.3, D.3.4

1 Introduction

Aspect-Oriented Programming (AOP) provides means for the proper modu-
larization of crosscutting concerns [Elrad et al. 2001]. The fact that many as-
pects can be applied to the same program raises the aspect composition is-
sue [Bussard et al. 2000], which is increasingly attracting the attention of the
research community, as the use of AOP increases and scaling issues arise.

Most AOP approaches focus on behavioral aspects following the pointcut-
advice model of AspectJ [Kiczales et al. 2001], not much considering structural
aspects, as exemplified by inter-type declarations (aka. introductions) in As-
pectJ. A structural aspect is one that, as part of its action, modifies the structure

1 Éric Tanter is partially funded by FONDECYT project 11060493 and 1090083
2 Johan Fabry is partially funded by FONDECYT project 1090083

Journal of Universal Computer Science, vol. 15, no. 3 (2009), 620-647
submitted: 25/8/08, accepted: 30/1/09, appeared: 1/2/09 © J.UCS



of program elements. Usually, structural aspects in current aspect languages are
able to add members or interfaces to classes. Informal evidence however strongly
suggests that a large part of the use of AspectJ in real-life applications consists
of such structural aspects.

The popularity of the use of structural aspects is in stark con-
trast to the support given for their composition. Indeed, most work
on composition of aspects simply ignores issues related to structural as-
pect composition [Klaeren et al. 2000, Brichau et al. 2002, Douence et al. 2002,
Nagy et al. 2004, Douence et al. 2004]. Only recently some proposals emerged
that deal with structural aspect composition [Havinga et al. 2006, Tanter 2006a,
Lopez-Herrejon et al. 2006, Harrison et al. 2006]. Structural interactions can
arise in various ways. First, because of aspects modifying base code in con-
flicting ways, yielding invalid code; for instance by adding a method to a class
that already contains a method with the same signature. Also, because aspects
typically rely on structural properties of a program (possibly augmented with
dynamic properties) in order to determine if they apply, the fact that some as-
pects may alter this structure can result in inconsistencies and surprises due to
(hidden) dependencies.

For instance, if the KALA domain-specific aspect language for advanced
transaction management [Fabry et al. 2008] is used to make all methods of a
class transactional, while another aspect adds a method to the same class, what
should happen with this added method with respect to transactionality? Based
on concrete experiments with multi-language AOP [Tanter and Noyé 2005,
Fabry et al. 2009], we have started to analyze and address the issue of aspect
composition [Tanter 2006a]. This work is an extension of previous work that
focuses on structural aspect composition.

In [Tanter and Noyé 2005] we have argued for the use of a versatile AOP
kernel to allow for faster construction of AOP languages, called Reflex. Reflex
is a kernel for multi-language AOP in Java, that is, an AOP system whose
aim is to facilitate the definition and integration of different aspect languages,
including domain-specific ones, to modularize the different concerns of a soft-
ware system. Using Reflex as an underlying kernel, an aspect language imple-
mentation can rely on its implementation of interaction. In previous published
work [Tanter and Noyé 2005, Tanter 2006a, Tanter et al. 2008], Reflex however
did not provide complete support for the composition of structural aspects. This
paper discusses the work performed to provide full support for composition of
structural aspects in Reflex.

To provide such support, we studied the case of interactions between struc-
tural aspects in detail. The goal was to achieve a general model for these interac-
tions, and allow resolution through explicit specification, as shown to be required
by Douence et al. [Douence et al. 2002]. We shall discuss in this paper that this

621Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



raises several issues which are not found in the case of behavioral aspects.
As a result of this work, Reflex now contains interaction detection and

resolution features for structural aspects. These features provide a uniform
interface to the implementer of an aspect language. The only work that needs
to be done by the aspect language implementer to fully enable this feature,
is to reify the explicit specification of resolution in the aspect language (with
simplifications, if deemed necessary).

The contributions of this work are:

– An analysis of interactions between structural aspects, which results in the
identification of (a) three kinds of interactions depending on the parties in-
volved (base-action, action-action, action-cut), (b) four possible interaction
resolution mechanisms (skipping actions, combining elements, visibility of
changes, and order of application), as well as (c) a clear distinction of three
dimensions of interactions (conflicting, resolved, effective).

– The proposition of a composition process that explicitly considers the levels
of involvement of the programmer and the iterative nature of the detection
and resolution of interactions.

– A full implementation of the proposed process in Reflex, supporting (a) a
uniform representation of all the identified interaction kinds, allowing exten-
sible reporting tools to be developed, (b) the automatic detection of inter-
actions, including action-cut interactions, based on a logic engine integrated
into Reflex, (c) the different declarative resolution mechanisms previously
highlighted.

– The illustration of how advanced language mechanisms, such as subjective
views over the program structure, and collaboration between an object-
oriented model and a logic engine, can be leveraged to address some of the
challenges raised by scaling up aspect-oriented programming.

The structure of the paper is as follows: Section 2 reports, in a general
setting, on structural aspect interactions, their kinds, properties, and possible
resolution mechanisms. Section 3 proposes, also in a general setting, an iterative
process to support composition of structural aspects. Section 4 presents our gen-
eral approach to structural aspect composition in the case of Reflex, providing
background information on how structural aspects are supported by this plat-
form. Then, we present our proposal in more details: Section 5 focuses on the
automatic detection of structural aspect interactions, Section 6 on the reporting
of interactions to the programmer, and Section 7 on the resolution mechanisms,
both from the point of view of the programmer and from the point of view of

622 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



how they are implemented in the Reflex kernel. Section 8 discusses related and
future work, and Section 9 concludes.

2 Interactions of Structural Aspects

In this paper, a structural element denotes any piece of structure in an object-
oriented program, i.e. a class, interface, annotation, field, method, constructor,
or expression. A structural container is a structural element containing other
structural elements; for instance, a class is a structural container of members,
and a member is a structural container of its annotations and body expressions.

A structural interaction is an interaction involving the structural modifica-
tion performed by an aspect. Behavioral interactions, i.e. interactions involving
behavioral modifications by aspects, refer to the problem of shared join points,
e.g. two aspects that affect the same method execution. In other words, behav-
ioral interactions dealt with in the literature are typically cut-cut interactions:
the cuts of two aspects overlap. For brevity in this paper we call structural
modifications of an aspect structural aspects and behavioral modifications of an
aspect behavioral aspects3.

Cut-cut interactions of structural aspects are not relevant as such because two
structural aspects can apply orthogonally to the same class (e.g. by adding two
completely unrelated methods). The interest is rather in dealing with interactions
involving the action of at least one structural aspect. Such an action can either
interact with the base code, or with the action or cut of other aspects.

In this section, we study interactions of structural aspects in more detail. We
ignore behavioral interactions, as these will not be covered by our model. We first
clarify what we mean by structural aspects, highlighting the range of our analysis
and proposal. We then propose a classification of structural interactions (Sec-
tion 2.2). We discuss the detection and resolution mechanisms that one would
expect from a comprehensive system fully supporting structural aspect compo-
sition (Section 2.3). Finally, in Section 2.4 we come back to the terminology in
light of the previous section.

2.1 Anatomy of Structural Aspects

Considering structural aspects, we distinguish two levels of aspects. A primitive
aspect is a single pair consisting of a cut and an action. The cut of an aspect is
the (usually intensional) selection of points of interest, either static or dynamic.
The action is the specification of the effect of the aspect on its cut. In this
3 It has to be kept in mind that a single aspect, as the modular implementation of a

crosscutting concern, can be both behavioral and structural. For instance, a single
AspectJ aspect can define inter-type declarations (structural) as well as pointcuts
and advices (behavioral).

623Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



view, a primitive aspect is said to be behavioral if its action affects the behavior
of the application, and structural if its action modifies the program structure.
These cut-action pairs are said to be primitive because most aspects are indeed
composed of several such pairs. For instance an AspectJ aspect can perform a
number of inter-type declarations as well as define a number of pointcuts and
advices. Such a composite aspect can be viewed as grouping several structural
and behavioral primitive aspects. This view is useful because, as said above, the
actual kinds of interactions and ways to handle composition differ greatly enough
between structural and behavioral aspects to deserve separate treatment.

In this work we limit our analysis to structural aspects whose cut relies on
structural introspection (i.e. lexical information): the cut of a structural aspect
is a condition over the properties of the structural elements that make up the
program. Also, the cut of a structural aspect is considered to be as expressive
as needed: in other words, the cut is possibly algorithmic, defined in a Turing-
complete language, and has a full power of introspection, down to expressions, as
proposed in [Gybels and Brichau 2003]. This supports what is also known as ex-
pressive pointcuts in behavioral aspects [Masuhara and Aotani 2006]. For struc-
tural aspects in AspectJ, the cut is defined by a type pattern, which is insufficient
for expressive cuts such as “matching classes that have at least one method that
does at least one message send matching a given pattern”. Expressive cut for
structural aspects is also provided by Josh [Chiba and Nakagawa 2004].

The actions we consider are the addition of structural elements to a structural
container, e.g. adding a new class, a new method to a class, or a new annota-
tion to a field. This corresponds to the sum introduction operator in the algebra
presented in [Lopez-Herrejon et al. 2006], and concretely implemented in a lan-
guage like AspectJ. Note that we consider neither addition of expressions nor
modifications like renaming and removing. The precise analysis of the conse-
quences of these features on composition support is left as future work. Even
considering the above restrictions, the present work covers current proposals of
structural aspects like inter-type declarations of AspectJ and more, due to the
fact that structural cuts and actions are operationally defined in full Java.

2.2 Kinds of Structural Interactions

Recall that our interest is in dealing with interactions involving the action of at
least one structural aspect, which can either interact with the base code, or with
the action or cut of other aspects. The key property of structural aspects here
is that their action domain is bounded: structural actions here are only modi-
fications of the program structure. This is an action domain that is restricted
enough to be analyzed in order to fully address interactions. This analysis yields
the following three kinds of structural interactions:

624 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



Syndrome An aspect adds a structural element which is already present in
the base code.

Examples Add class C but C already exists.
Add method m to class C which already has this method (either
directly or via inheritance).

Treatments Skip the action.
Combine element to add with existing one.
Modify the aspect to avoid the clash.

Figure 1: Base-action interactions.

Base-action interactions. This kind of interaction refers to clashes between
structural elements added by aspects on the one hand, and structural ele-
ments of the original base code on the other hand (Fig. 1). Examples of such
interactions include an aspect adding a class that has the same name as an
existing class, or adding a method to a class that already has one with the
same signature.

Action-action interactions. This kind of interaction refers to clashes between
structural elements added by two aspects (Fig. 2). Such an interaction occurs
for instance if two aspects add methods with the same signature to the same
base class, or add the same annotation to the same structural element.

Action-cut interactions. This kind of interaction refers to potential depen-
dencies between the (intensionally-defined) cut of a structural aspect (i.e. the
set of structural elements it affects) and structural elements newly introduced
by another aspect (Fig. 3). The question being raised is whether the intro-
duced element should possibly be part of the cut of other aspects. Examples
of such interactions include an aspect adding a class to a given package,
while another aspect adds a method to all classes of that package —should
the introduced class get the new method?—; or an aspect adding an annota-
tion to all fields of a class, and an aspect adding a field to that class —should
the introduced field be annotated?—.

These are the three kinds of aspect interactions that can occur at the struc-
tural level, addressed in this work. It has to be made clear that more general
semantic conflicts between aspects, for instance when an aspect introduces a
method whose execution contradicts some invariants enforced by another as-
pect, are out of the scope of this work. This general semantic conflict issue is as
vast as addressing general correctness issues of programs.

625Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



Syndrome Two aspects add an element with the same signature in the same
structural container.

Examples Aspects A1 and A2 add a class C.
Aspects A1 and A2 add a method m to class C (either directly or
via inheritance).

Treatments Skip one or both of the actions.
Combine both elements to add in a single one.
Modify one or both aspects to avoid the clash.

Figure 2: Action-action interactions.

Syndrome An aspect adds an element which belongs to the intensional cut
of another aspect.

Examples Aspect A1 adds a class C to package p, and aspect A2 adds a
method m to all classes of p.
Aspect A1 adds an annotation to all fields of class C, and aspect
A2 adds a field to class C.

Treatments Make added element visible or not to (the cut of) other aspects.
Control order of application of aspects.

Figure 3: Action-cut interactions.

2.3 Detection and Resolution Mechanisms

To allow us to build a general model for the composition of structural aspects,
we need to consider the different possible detection and resolution mechanisms
for each of the interaction kinds discussed above.

The two first kinds of interaction we mentioned (Fig. 1 and Fig. 2) typically
result in compilation errors, as the underlying processor (compiler/interpreter)
rejects the addition of an already-existing structural element. So their detection
is in a way ensured by traditional technology. There are therefore two major
alternatives: (1) ensuring that the interaction does not occur, either by manually
modifying the definition of (one of) the aspect(s), or by declaring that (one of)
the aspect action(s) should be skipped; (2) specifying an actual combination of
the structural elements in conflict. Manual modification of the aspect(s) to avoid
the interaction does not deserve any special mechanism from the aspect system,
so we do not discuss it further. We are therefore left with the two following
desirable resolution mechanisms:

Skipping aspect actions. This mechanism consists in specifying that the de-

626 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



tected interaction should not happen. This can possibly be declared either
by stating that an aspect does not apply to the class causing the problem, or
that every conflict provoked by the aspect should be skipped (i.e. by simply
not adding the method that the aspect was supposed to add). Another point
of view is to declare some mutual exclusion between two aspects, by stating
that if two aspects apply on the same class, one of them has to be skipped. A
variant is to generate an error in such a case, for instance if two aspects are
known to be intrinsically incompatible and hence any interaction between
them is to be considered a programming error.

Combining structural elements. When the addition of a structural element
conflicts with the current state of the program, a possibility is to combine the
element to add with the existing one (which may have been added by an as-
pect or not). By combining, we mean a mechanism similar to the composition
operator provided in traits [Schärli et al. 2003], where two conflicting meth-
ods can be aliased and used in a third combination method. When taken to
the level of classes, this mechanism resembles the composition mechanisms
offered in systems like Hyper/J [Ossher and Tarr 2001, Harrison et al. 2006].

Action-cut interactions (Fig. 3) are more subtle, because they generally do
not result in compilation errors. Still, they can have important semantic impact.
For instance, in the second example of Fig. 3, it is important that the program-
mer is informed that the field added by A2 to C may or may not be annotated
by A1. The aspect system has absolutely no means to automatically infer the
desired semantics, as it all depends on the particular application and setting.
This implies that it is crucial for the programmer that the aspect system detects
them. We identify two dimensions to the possible resolution mechanism:

Visibility of changes. The first dimension concerns the visibility of structural
changes made by an aspect to the cut of other aspects. Some changes may
necessarily be hidden, others visible, while some changes may potentially be
visible to only some aspects and not others.

Order of application. The second dimension relates to the order in which
structural aspects are applied, that is, the order in which changes to a class
definition are effectively carried out. This may affect the correct compilation
of some changes, for instance if a method added by an aspect has a reference
to another method that is added by another aspect, the referred method
must be added before the other one.

These two dimensions are clearly not orthogonal. If it is ensured that all struc-
tural changes made by aspects are invisible to other aspects, then there cannot
be any action-cut interaction. However, if some structural changes made by an

627Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



aspect A can be seen by all or some other aspect(s), then necessarily aspect A has
to be applied before these other aspects determine their cut. This discussion leads
us to the need for a clarification of the terminology associated to interactions.

2.4 Terminology: Interactions and Conflicts

To clarify the different cases of interactions that can be faced, we introduce three
independent dimensions. The first refers to the fact that an interaction can or
cannot be an actual conflict:

Definition 1 Conflicting interaction. An interaction is conflicting (a.k.a. a
conflict) if and only if it results in undesired semantics from the point of view
of either the program processor or the programmer. Otherwise, it is said to be
non-conflicting.

This dimension is important because it actually highlights that all interactions
are not necessarily “problems” as such. The second dimension relates to the
explicit specification of a resolution by the programmer:

Definition 2 Resolved interaction. An interaction is resolved if and only if
the program code includes an explicit specification of the desired resolution.
Otherwise, it is said to be unresolved.

Finally, as discussed in the previous section, action-cut interactions are subtle
because they do not necessarily occur: contrarily to base-action and action-action
interactions, their effectiveness depends on both visibility of changes and order-
ing of application:

Definition 3 Effective interaction. An interaction is effective if it can occur;
otherwise, it is said to be non-effective. Base-action and action-action interac-
tions are always effective. An action-cut interaction between the action of an
aspect A and the cut of an aspect B is effective if and only if (1) the action of
A is evaluated before the cut of B, and (2) the structural changes made by the
action of A are visible to the cut of B.

Discriminating between these dimensions is important when it comes to consid-
ering the actual composition process in which a programmer has to engage.

3 An Iterative Composition Process

Section 2 has proposed an analysis of the issue of structural aspect interactions,
from the point of view of the nature of the interactions and what can be done
with respect to their detection and resolution. This section now approaches the
problem from a higher-level point of view, and proposes a composition process.

628 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



This process clarifies the role and interactions between the programmer on the
one hand, and the machinery for detection, resolution and actual weaving on
the other hand. Our concrete implementation of this process, in the Reflex AOP
kernel, is presented from Section 4 onward.

3.1 General Approach to Composition

Our approach to composition follows that proposed by Douence et al. in the
context of behavioral aspects [Douence et al. 2002]: it relies on automatic de-
tection of aspect interactions, explicit resolution of the interactions, and then
composition by the aspect system in accordance to the specified resolution. We
assume this process to be essentially iterative: the programmer is involved in a
detection-resolution loop, and proceeds by trial and error to fine-tune the speci-
fied resolution. This is necessary because it is unlikely that the programmer can
correctly specify all resolutions at once, and also because the specification of a
particular resolution can have side effects on the interaction space: some interac-
tions can become effective when they were not, new conflicting interactions can
appear, etc.

We conjecture that the programmer can, in a finite number of iterations,
weight the different tradeoffs and converge to a final solution. Of course, this
can imply the realization that two or more aspects are definitely incompatible
and can therefore not be deployed simultaneously over the application.

3.2 Steps of the Composition Process

First of all, let us assume that the programmer does not take interactions into
account when programming the application and the aspects. The aspect proces-
sor (be it an interpreter or compiler) consumes such definitions and produces the
woven program. During this phase, detection of interactions results in a report
being handed to the programmer. The report includes all kinds of interactions,
be they conflictive or not and effective or not. Based on this report, the program-
mer can reflect upon the situation, fully aware of all the issues at stake (since
even non-effective interactions are reported). As a result, resolution is specified.
As discussed in the previous section, resolution implies that the user explicitly
specifies (a) dependencies between aspects, (b) the visibility of changes made by
an aspect to other aspects, and (c) the relative ordering of application of the ac-
tions of the aspects. We regard such specifications to be are made declaratively,
and thereafter refer to these as composition rules.

In the following run, the aspect processor, now fed with composition rules
in addition to (possibly modified) aspects and (normally untouched) base code,
proceeds with another weaving pass, whereby dependencies, visibility and or-
dering are taken into account as specified by the programmer. This modified

629Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



weaving pass results in another report of interactions for the programmer. The
cycles end when the programmer is satisfied with the composition specification.

Technically, this process raises a number of issues: firstly how interactions
are automatically detected, secondly how interactions are reported to the pro-
grammer, and thirdly what composition rules are and how are they specified.
To answer these questions, we now leave the general setting in which we have
progressed until now, and consider the particular case of the Reflex AOP kernel,
which implements our proposal.

4 Declarative Composition of Structural Aspects in Reflex:
General Approach

In this section we progressively dive into our proposal by first introducing Reflex
and how structural aspects are defined and implemented in this platform. We
then describe the interactions that Reflex is able to detect (Section 4.3) and
how they are represented. Treatment of detection, reporting, and resolution is
deferred to the following sections.

4.1 Reflex in a Nutshell

Reflex is a kernel for multi-language AOP in Java, that is, an AOP system whose
aim is to facilitate the definition and integration of different aspect languages,
including domain-specific ones, to modularize the different concerns of a soft-
ware system. The motivation and requirements for such a versatile kernel were
presented in [Tanter and Noyé 2004], and the first global account of Reflex as
an AOP kernel in [Tanter and Noyé 2005].

An AOP kernel supports the core semantics of aspect languages through
proper structural and behavioral models, easing the task for aspect language
designers. A fundamental role of an AOP kernel is that of a mediator between
different coexisting aspect-oriented approaches; this clearly includes the detec-
tion and resolution of interactions between aspects possibly written in different
languages. The composition facilities of Reflex were reported in [Tanter 2006a],
but focused on the composition of behavioral aspects, with a limited account
of structural aspect composition. This paper focuses on the structural part of
Reflex, the behavioral model is based on [Tanter et al. 2003].

Note that, as Reflex is a Java AOP kernel, its API is available in Java,
and therefore expression of resolution rules will be performed in Java. Aspect
languages defined on top of the kernel will most likely opt to express resolution in
a more straightforward concrete syntax. As this is a task of the aspect language
developer, we will not focus on this topic here.

We choose Reflex as an experimentation platform because it al-
ready supports structural aspects based on very powerful reflective

630 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



RClass

RPool

RMethod

RField

RConstructor

*

*

*

*

RExpr

RFieldAccess

RHandler

RInstanceOf

RCast

RMethodCall

body
*

Figure 4: The structural model of Reflex.

model [Tanter and Noyé 2005] that makes it a good fit for the task. In addition,
as mentioned above, this work completes the existing support for behavioral
aspect composition already available [Tanter 2006a].

4.2 Structural Aspects in Reflex

The abstraction provided by Reflex for defining aspects is that of explicit links
binding a cut to an action. A link is therefore the direct correspondent of the
primitive aspects we discussed in Section 2.1. Reflex provides both structural and
behavioral links, depending on whether the objective is to affect the structure or
behavior of an application. An aspect as such is therefore defined as a number
of links.

4.2.1 Structural links

A structural link in Reflex (s-link for short) binds a structural cut to a struc-
tural action. The structural cut is defined with a class selector, algorithmically
defining, via introspection, the classes that are affected by the link. The action
of the link is defined in a structural metaobject, which is a standard Java object
that defines structural modifications to classes.

Both class selectors and structural metaobjects operate over a complete reifi-
cation of the program structure. The structural model is depicted in Fig. 4: an
RPool object gives access to RClass objects, which in turn give access to their
members as either RField, RMethod or RConstructor objects (all RMembers).
The non-abstract members in turn give access to their bodies as RExpr objects
(with a specific subtype for each kind of expression). The objects are causally-
connected representations of the underlying bytecode, offering a source-level ab-
straction over bytecode. All these are subtypes of RStructuralElement.

631Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



A class selector is any object that implements a predicate interface used to
match RClass objects. A class selector can fully introspect the class (down to
all its method expressions if necessary) in order to determine whether a class
should be matched or not. A structural metaobject can change the definition of
a class, by adding structural elements to it. Finally, an s-link is simply defined
by associating a class selector with a metaobject.

A structural aspect in Reflex is therefore characterized by the fact that both
its cut and actions are operationally defined, as opposed to the declarative and
limited expressiveness of inter-type declarations in AspectJ. The cut of a struc-
tural aspect in AspectJ is restricted to type patterns, and the action is the plain
declaration of the members to add, which cannot be parameterized.

4.2.2 Structural correspondence

The structural model of Reflex ensures structural correspondence by systemati-
cally hiding all structural changes made by links to other links.

Structural correspondence, introduced in [Bracha and Ungar 2004], consists
in ensuring that the program structure observed via a reflection API corresponds
to what one actually expects, rather than including synthetic elements added by
a processor, compiler, or weaver. For instance, the Java reflection API does not
ensure structural correspondence because at runtime one can observe synthetic
fields added by the compiler to implement features not directly supported by
the virtual machine, such as inner classes.

As discussed in [Tanter 2006a], structural correspondence makes it possible
to avoid unwanted conflation of extended and non-extended functionalities, as
discussed in the meta-helix architecture [Chiba et al. 1996]. Therefore, by de-
fault, in Reflex action-cut interactions are always non-effective, because the cut
of a link does not see the effects of others. We come back to the visibility issue
in Section 7.1, when introducing declarative visibility for per-aspect subjective
views on the program structure.

4.3 Interaction Reification

Reflex detects interactions and reports them to the programmer. This section
describes the model of structural interactions we have adopted. All interactions
detected and reported by Reflex fit in this model (Fig. 5). The purpose of reifying
interactions as such is to offer a uniform interface for interaction report tools, as
discussed later in Section 6.

A structural interaction is represented as an Interaction object, instance
of one of the three concrete subclasses representing the three kinds of inter-
actions discussed in Section 2.2: BaseActionInt for base-action interactions,

632 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



Interaction

SLink

BaseActionInt

ActionActionInt

ActionCutInt

RStructuralElement

InteractionState

BiLinkInt

SLink

PropertyDesignator

1

1

1

1

1

Figure 5: Model of structural interactions.

ActionActionInt for action-action interactions, and ActionCutInt for action-
cut interactions.

An interaction references the structural element (class, method, field, etc.)
that is subject to the interaction, as well as a property designator that refers to
which property of the element is involved in the interaction. For instance, in an
interaction between an aspect looking at the methods of a class for determining
its cut and another adding a method to that class, the structural element is the
class, and the property designator denotes the “set of methods” property of the
class. An interaction also references the s-link that causes it; in the case of inter-
actions involving two links (action-action and action-cut), the second link is also
available (see the BiLinkInt abstract class). Finally, an interaction has a state,
indicating whether the interaction is effective or not. This makes it possible for
the programmer to discriminate between action-cut interactions that effectively
occur from those that could possibly occur, if the relative visibility and ordering
of the involved links were set appropriately (Section 2.4). The interaction state
also discriminates between conflicting and non-conflicting interactions, describ-
ing the fact that an interaction may come from a compiler exception.

5 Automatic Detection of Interactions

The difficulty of detecting structural interactions depends on their kind (Sec-
tion 2.2). As already mentioned, base-action and action-action interactions are
detected by the bytecode transformer that acts as the weaver because these in-
teractions lead to compilation errors. Therefore detection of these interactions
is not discussed any longer. On the other hand, action-cut interactions are much
more subtle to detect, precisely because they are not incorrect from a compilation
viewpoint. However they may semantically have a great impact4.
4 Action-cut interactions do not lead to syntactically erroneous code, such as a class

having two versions of exactly the same method. In this sense, they are not detected

633Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



5.1 Detecting Action-Cut Interactions

Detecting an action-cut interaction requires knowledge, on the one hand, what
structural elements a given aspect effectively introspects as part of determining
its cut, and on the other hand, what changes are performed by other aspects. If
one aspect introspects a property that is changed by another aspect, there is a
potential interaction.

It is important to note that the issue of the automatic detection of action-
cut interactions can be simplified if the aspect system only offers limited and/or
declarative means for the cut or the action of a structural aspect (e.g. AspectJ
and Compose* [Havinga et al. 2006] both have restricted languages for struc-
tural cuts and actions). In this work, our objective is to maintain the applicabil-
ity of Reflex as a versatile AOP kernel, therefore we do not accept any alternative
that restricts the expressiveness of the kernel. Both cuts and actions are defined
operationally in full Java over the structural reflective model, as presented in
Section 4.1.

Without restricting expressiveness, an alternative that simplifies the detec-
tion issue is to require that the aspect programmer declares explicitly what an
aspect introspects and what it changes. This alternative has the double benefit
of simplifying detection, and of ensuring that the kernel detects only interactions
that are deductible from the declarations of the programmer; however it imposes
a strong burden on the programmer.

In this work we therefore opt for an alternative approach: while maintaining
the expressiveness of Reflex, we aim at automatic detection of interactions that
does not require any specific declarations from the programmer. Our approach
is to use the structural entities themselves as the source of information of what
is being observed and changed: during weaving, upon observation and changes,
structural entities emit logic facts to a logic engine newly integrated into Reflex.
Interaction logic rules then allow the logic engine to detect interactions. Fact
generation and interaction rules are described hereafter. The logic engine is also
used in the handling of interaction resolutions specified by the programmer, as
discussed in Section 7.

5.2 Fact Generation

Two sets of facts are generated by the structural entities themselves in order to
keep track of the activity of structural links during weaving: introspection facts
(what structural elements are looked at), and intercession facts (what structural
changes are performed).

straightforwardly by a traditional compiler. Our approach to detecting these inter-
actions is done at weaving time. It would be possible to detect these interactions
ahead of time, using static analysis. The difficulty of this task depends on the nature
of the structural action language (in our case, a Turing-complete language).

634 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



Upon introspection, i.e. evaluation of the class selector of a link, structural
elements (classes, methods, fields, etc.) generate logic facts indicating that they
are being observed by a given link. For instance, suppose a structural link L1

selects classes that have a field with the @Persistent annotation. For the eval-
uation of its class selector over class C, L1 first accesses the set of fields of the
class and then, on each field it accesses the set of annotations of the field and
finally, it reads the name of each annotation. This results in the generation of
the following facts:

– The RClass object representing class C generates the fact that L1 reads its
set of fields:
readFields(’L1’,’C’).

– Each RField object f representing a field of C generates the fact that L1

reads its pool of annotations:
readFieldAnnotations(’L1’,’C’,’f’).

– Each RAnnotation object a representing an annotation of a field f of C

generates the fact that L1 reads its name:
readFieldAnnotationName(’L1’,’C’,’f’,’a’).

Similarly, upon intercession, i.e. evaluation of the metaobject bound to a
link, structural elements generate logic facts indicating the changes being made
to them. For instance, if a link L2 is applied to class C, and as part of its action
adds the annotation @Persistent to its field f, then class C generates:
addAnnotationToField(’L2’,’C’,’C’,’Persistent’,’f’).

The above fact includes two classes: the application class (i.e. the class to which
the s-link is being applied) and the target class (i.e. the class to which the s-link
adds the annotation on a field). These two classes need not be the same because,
as a side effect of applying to a given class, an s-link can very well perform
structural changes on another class (e.g. one of its inner classes).

The Reflex logic engine supports similar facts for all possible read and add
operations performed on structural elements. We have developed a complete set
of structural element classes that generates facts as discussed above.

5.3 Interaction Rules

With the above facts at hand, an interaction is easily detected using the logic
engine. An interaction rule states that whenever an introspection fact and an
intercession fact are related, there is an interaction.

For instance, the interaction rule below states that there is an interaction
regarding the annotations of a field F in class TargetCls between two links A

and B, whenever link A reads the set of annotations of field F in class TargetCls,

635Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



and when link B, applied to AppCls, adds an annotation Annot to the same field
F in TargetCls:

interactFieldAnnotations(A, B,AppCls, TargetCls, Annot, F) :-
readFieldAnnotations(A, TargetCls, F),
addAnnotationToField(B, AppCls, TargetCls, Annot, F).

The logic engine includes many interaction rules as above, namely one for
each possible kind of action-cut interaction5. Section 7.2 gives an operational
view on the weaving process, explaining when detection is performed.

6 Reporting Interactions

When an interaction is detected via the logic engine as explained above, a cor-
responding Java interaction object is created, embedding all necessary pieces of
information characterizing the interaction (shown in Fig. 5). Therefore, the re-
sult of a detection phase is a collection of interaction objects. These interaction
objects can be presented in a variety of ways to the application programmer.

In the current implementation, Reflex only uses a text-based interaction re-
port solution. It simply outputs a string representation of all interaction objects
(with the option to filter out all resolved conflicts). For instance, the interac-
tion object corresponding to the field annotations interaction presented in the
previous section is printed as:

Interaction L1-L2 [action-cut/non-conflicting/non-effective]
-> L1 is reading the set of annotations of field f of class C.
-> L2 (applied to class C) adds an annotation to field f of class C.

The interaction is described with the involved links, its type (action-cut), that
it is non-conflicting (no compilation error), and that it is non-effective (meaning
L2 is applied after L1 reads the set of annotations of f). The rest of the output
describes the object of the interaction.

As another example, suppose two links L3 and L4 both add a method of
signature int m() to a class C. This action-action interaction is reported as
follows:

Interaction L3-L4 [action-action/conflicting/effective]
-> L3 (applied to class C) adds a method int m() to class C.
-> L4 (applied to class C) adds a method int m() to class C.

The interaction is conflicting, meaning that the addition of m by the second
link applied could actually not be performed because of a compilation error. It
is effective, since all action-action interactions are by definition effective (Sec-
tion 2.4).

5 For reference, the list of interaction rules currently used is available at:
http://pleiad.dcc.uchile.cl/research/software/reflex/interaction rules

636 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



Skipping Actions

Dependencies

skipActionOn(l,cs);
skipConflicts(l);
skipConflictsOn(l,cs);

declareMutex(l1,l2);
declareError(l1,l2);
addFilter(f);

Resolution
Mechanisms

ignoreInteractions(l);
ignoreInteractions(l1,l2);

Combining Elements
combineMethod(l,comb);
combineMethod(l1,l2,comb);

Controlling Visibility

Controlling Ordering

augmentViewOf(l1,l2);
addToDefaultView(l);

precede(l1,l2);
precedeAll(l);

Ignoring

Figure 6: Resolution mechanisms in Reflex.

7 Resolution Mechanisms

Once the application programmer is informed about the various interactions in-
volved in a particular application-aspects setting, resolutions can be declared. In
this section we first present the different resolution mechanisms from the view-
point of the implementer of the aspect language, and then explain in Section 7.2
ends with an explanation of the overall weaving process of Reflex, which supports
our proposal.

7.1 Language Implementer Viewpoint

The different resolution mechanisms available to the programmer are summa-
rized on Fig. 6. They are all provided as static methods of the Rules class. We
briefly discuss them here. Recall that these resolution mechanisms can be reified
into the aspect language being implemented using a concrete syntax that the
language implementer deems appropriate.

7.1.1 Ignoring Interactions

It is possible for the programmer to state that interactions involving any given
link, or interactions between two given links, do not matter and that Reflex
should simply ignore them. In the case of non-conflicting interactions, this is no
problem, but in the case of conflicting interactions, the consequence is that upon
a compilation error, the underlying exception is thrown back to the programmer.

637Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



7.1.2 Skipping Actions

The second category of resolution mechanisms results in some aspect action being
skipped. There are several ways to achieve this. First, skipActionOn(l,cs)

declares that the action of l should not be applied to classes matched by the cs

class selector. This can be seen as a mechanism similar to the global pointcut
restrictor introduced in EAJ [Avgustinov et al. 2006]: a means to further restrict
the application of an aspect “from the outside”. Then, skipConflicts services
allow the programmer to declare that if a conflicting interaction (base-action or
action-action) occurs, then the action of the responsible link should be skipped
(either always or only for interactions related to certain classes).

A sub-category of mechanisms for skipping actions is to declare dependencies,
as already introduced in [Tanter 2006a]. One type of dependency is to declare
that a link applies whenever another one (a.k.a. implicit cut). But more inter-
esting to us here is the mutual exclusion mechanism: stating that a link should
not apply if another one does (declareMutex). An alternative is to declare that
the interaction of two links actually represents an error and therefore weaving
should not proceed. This is obtained using declareError.

For expressing more intricate dependencies between links that are not ex-
pressible using the mutex-error mechanism above, Reflex supports lower-level
interaction filters, specified using addFilter. Interaction filters are Java ob-
jects that can filter out some links out of a given interaction depending on
the links present in the interaction, similar to the combination strategies of
JAsCo [Suvee et al. 2003]. Actually, the mutex and error mechanisms are imple-
mented using simple interaction filters.

7.1.3 Combining Elements

When two links add elements with the same signature to the same structural
element (e.g. two methods int m() to a class C), it is possible to specify a com-
binator. For instance, a method combinator is an object that, given a method
upon which there is a conflict, returns the source code of a method that should
be inserted as a combination of the original method on the one hand, and of
the new method on the other hand. This mechanism is taken from the com-
position operator in traits [Schärli et al. 2003]. This feature is at the moment
only provided for methods, but one can think of other combinators in the line
of Hyper/J [Ossher and Tarr 2001].

7.1.4 Controlling Ordering

Structural links are applied sequentially, in an arbitrary order. If required, the
programmer can enforce some ordering constraints, either by stating that a link

638 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



should be applied before another (precede), or by stating that a link should be
applied before all other links (precedeAll). If two links are said to apply before
all others, then their relative order is arbitrary, unless a precede declaration
addressing their relative order is given.

Because by default, as said in Section 4.1, a link does not see the changes
made by others, s-link application is typically commutative. However, this is al-
ways true from a metalevel point of view (the reifications of program elements),
but not always from a base level point of view (the actual code being compiled):
it can happen that the code of an inserted method a contains a reference to a
method b: although invisible at the metalevel, the method b is required for the
proper insertion of a. So it can be necessary to enforce ordering for compila-
tion to succeed, or for method combinators to be applied in the desired order.
More generally, ordering makes sense when combined with visibility, as discussed
hereafter.

7.1.5 Controlling Visibility

When introspecting a class for determining if its cut matches or not, a link only
sees what has been declared to be its view of the program. By default, a link only
sees the original program definition. But it is possible to declare that a link has
an augmented view of the program, i.e. including changes made by other links:

(1) Rules.augmentViewOf(l1, l2);
(2) Rules.addToDefaultView(l);

Line (1) above declares that l1 sees all changes made by l2. Several links
can be given to augmentViewOf. Line (2) adopts a different focus, by promoting
all changes made by l as part of the default view.

To support the subjectivity introduced above, Reflex automatically records
the identity of the link affecting a given structural element as a metadata of the
element.

Finally, because a link can only see changes made to a class by an-
other link before actually looking at that class, visibility requires ordering:
all visibility declaration always trigger the corresponding ordering declarations
(e.g. augmentViewOf(l1,l2) triggers precede(l1,l2)). Note that it is also pos-
sible to express conditional visibility, i.e. visibility that happens only if ordering
is separately stated.

7.1.6 Discussion

The presented mechanisms for resolution are always expressed at the level of links
or classes. It is indeed possible to go at a finer level of granularity, for instance
down to particular members. We have chosen to retain the current granularity
for a matter of simplicity, but are willing to refine the API if required.

639Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



The above presentation suggests that resolution is expressed in Java, not
in Prolog. As said in 4.1, this is because Reflex is a Java AOP kernel. This
however still allows the aspect language implementer to define the expression
of resolution directly in some other syntax. For example this can be specified
in Prolog, or aspect languages with explicit support for aspect composition,
like AspectJ declare precedence, or languages dedicated to express aspect
composition.

7.2 Overall Weaving Process

We now have all the elements required to give an explanation of the overall
weaving process of Reflex. A class being loaded first passes through the struc-
tural links application phase, before going to the behavioral links setup phase.
The reason for the ordering of these two phases is to allow behavioral links
to affect join point shadows in structural elements added by structural links
(see [Tanter 2006a] for details). Once both phases are complete, the weaver con-
sults the logic engine for all detected interactions and forwards the collection of
interaction objects to the interaction report system in use (Section 6).

The structural link application process of Reflex is different from the one
originally presented in [Tanter and Noyé 2005]. It has been modified in order to
make action-cut interactions possibly effective. Indeed, in the previous version,
upon the loading of a class, all s-links were matched against the class to determine
the set of applying links, before any was applied. This simply forbids an s-link
to see the changes of others, as it cannot evaluate its cut against the modified
version of the class6.

The current process for the s-link application phase is therefore more complex
as it implies organizing s-link application in several stages: taking into account
the precedence and visibility relations between links, the logic engine is requested
for a number of s-link batches. A batch contains a number of s-links fulfilling
the property that they are independent. The application of independent links is
commutative: all s-links within a single batch can be matched and applied to
the current class in any arbitrary order. On the other hand, if a link l1 must
see the changes made by a link l2, then l1 is put in a batch processed after
the batch containing l2. The independence properties are inferred by the logic
engine based on the dependency and ordering specifications.

Within a batch, the process is as follows: all s-links are matched against the
current class (i.e. their class selector is evaluated to see if they apply), and within
the resulting links, mutual exclusion and other interaction filters are applied.
Finally, the remaining links are applied.
6 Note that the structural correspondence issue was dealt with in the context of in-

teractions between the changes made by s-links and the following installation of
behavioral links [Tanter 2006a].

640 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



8 Related and Future Work

8.1 Related Work

Our general approach on aspect composition is inspired by the work of Douence
et al. [Douence et al. 2002]: we adopt the proposed framework of automatic de-
tection and explicit resolution of aspect interactions. However, the present work
does not share more with their work, as it is concerned with structural as-
pects, and [Douence et al. 2002] only focuses on behavioral aspects. Actually,
in the area of aspect composition, not much has been done on structural as-
pects. Most work on aspect composition focuses on behavioral aspects. In As-
pectJ [Kiczales et al. 2001], base-action and action-action conflicts are reported
as compilation errors, while action-cut conflicts are not reported. Furthermore,
very little expressive power is given to the programmer to resolve conflicts7.

Klaeren et al. have focused on the issue of validating combinations of as-
pects [Klaeren et al. 2000]. They use assertions to ensure the correctness of the
dependencies between aspects with respect to the specification, focusing on
mutually-exclusive aspects. However they do not address means to resolve inter-
actions between aspects. Reflex also covers mutual exclusion, either declaratively
or operationally with interaction filters.

JAsCo [Suvee et al. 2003] provides two mechanisms for aspect composition:
precedence strategies and combination strategies. Although JAsCo is restricted
to behavioral aspects, the above mechanisms are interesting and actually have
their equivalence in Reflex, both in the behavioral and structural parts. In
JAsCo, an aspect is deployed by specifying a connector that determines which
hooks should be enabled (the cut of an aspect) and which advice should be
triggered when the cut is matched. Within a connector that instantiates several
hooks, it is possible to specify explicitly the order in which associated advices are
executed, leading to fine-grained control on precedence strategies. This is simi-
lar to what can be expressed declaratively in Reflex. However, this mechanism
of JAsCo works fine only for interacting aspects that are deployed by one con-
nector. On the other hand, Reflex allows precedence declarations to affect any
aspect. For other interaction problems that are not solved by means of prece-
dence strategies, JAsCo provides combination strategies: a strategy is like a filter
on the list of hooks that are applicable at a certain point in the execution. With
combination strategies, one can programmatically exclude certain hooks from
the current interaction. This is similar to what can be achieved in Reflex with
interaction filters. Finally, JAsCo does not automatically report on interactions.

In [Masuhara and Aotani 2006], Masuhara and Aotani discuss issues asso-
ciated with the interactions between aspect effects and expressive pointcuts,
7 Basically, AspectJ only supports aspect-wide precedence declarations, a solution

that has proven insufficient in several scenarios (see e.g.. [Brichau et al. 2002,
Douence et al. 2002, Tanter 2006a]).

641Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



i.e. high-level and/or user-defined pointcuts that specify join points of interest
based on more high-level information than mere join point intrinsic properties.
This relates to our work because Reflex also supports expressive pointcuts. In the
specific context of structural links, expressive structural cuts can be expressed
as has been illustrated in Section 4.1. Masuhara and Aotani propose two prop-
erties of expressive pointcuts required for aspect interactions, the first of which
is directly related to our work: it is stated that effects of aspects should be visible
from the analyses of expressive pointcuts. In the terminology we used in this
paper, this means that structural changes should be visible to the cut of other
aspects. This is in the line with the work of Havinga et al. [Havinga et al. 2006],
which we discuss further below. The SCoPE compiler therefore supports this
property by ensuring that the cut of an aspect sees the changes made by oth-
ers. We conversely adopt an approach in which by default changes are hidden,
in order to avoid unwanted conflation of extended and non-extended function-
alities, as discussed in the meta-helix architecture [Chiba et al. 1996]. However,
we do not hide the fact that there is a potential interaction: Reflex detects and
reports the interaction, and makes clear to the programmer that the interaction
is not effective (see first example of Section 6). Only if the programmer desires
some changes to be visible to the cut of some other aspects are those changes
made visible. This is declaratively stated by the programmer, not automatically
decided by the weaver. Declarative aspect composition has also been proposed
in [Brichau et al. 2002, Nagy et al. 2004] but they are too restricted to behav-
ioral aspects to be transposable to the case of structural aspects.

In the area of structural aspects, the work of Havinga et al. directly relates
to ours. In Compose* [Havinga et al. 2006], the approach consists in trying to
automatically order structural actions properly, and reject any specification that
leads to circularity. The automatic approach to resolution of interactions is in-
teresting, but we rather share the point of view that resolution should be done
explicitly, as in many cases, the precise resolution depends on specificities of the
considered application [Douence et al. 2002]. As an example, action-cut interac-
tions, although impossible to automatically order, can be taken advantage of
rather than resulting in circularity errors. In Reflex, if two aspects have circular
dependencies, then the programmer has the full range of choice: choose one or-
dering or the other, and analyze the result, or consider this circularity an issue
and address it by modifying the aspects. In all cases, the programmer is aware
of the circular dependency, because e.g. an action-cut interaction is reported in
both orderings, but can actually declare which ordering is correct.

Lopez-Herrejon, Batory and Lengauer have proposed an algebraic model
of aspects seen as program transformation that makes it possible to reason
more clearly about aspect composition [Lopez-Herrejon et al. 2006]. They con-
sider both structural advices (introductions, a.k.a. inter-type declarations) and

642 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



behavioral advices (simply called advices). They propose two models for aspects.
The first one models aspects as pairs < a, i >, where a is the advice part and
i the introduction part. In the second model, aspects are modeled as a function
A(x) = a(i + x), where x is the program to which an aspect A is applied (+ is
the introduction sum, that is, the addition of structural elements). They show
that both models differ in terms of the composition they enable. The pair model
expresses unbounded quantification (i.e. the scope of advice covers the entire
program), while the functional model expresses bounded quantification (i.e. the
scope of advice extends over a stage in the development of the program). They
show that the functional model is more expressive as it can express all composi-
tions of the pair model, and more. Our approach to composition definitely falls
into the functional model, as illustrated by the staged weaving process of Reflex,
which makes it possible for both structural and behavioral advices to have a
bounded scope: the scope of advice (in our case both structural and behavioral)
is bounded by the actual view of that aspect over the aspectual changes made
by other aspects.

Mehner et al. have proposed a technique for interaction analysis of aspects at
the model level [Mehner et al. 2006]. Interactions and dependencies are detected
using graph transformation techniques at the level of activities that refine use
cases. Although our work is at the program processor level and not at the model
level, we share the idea of reporting interactions to system developers in a con-
venient manner. [Mehner et al. 2006] mentions conflict and dependency matrix
as graphical tools to help in the understanding of a system. These visualization
techniques are among the many possible interaction reporters we are considering
for future work, as discussed in Section 6 and below.

In related areas dealing with structural composition, the method combination
approach we have adopted is that proposed for traits in [Schärli et al. 2003]. The
generalization of this idea to structural elements other than methods brings us
to the general composition operators proposed in [Harrison et al. 2006], whose
integration into Reflex as new resolution mechanisms for base-action and action-
action conflicts seems both possible and interesting. For these resolution mech-
anisms, it however seems that offering a dedicated syntax is a must, in order
to avoid cumbersome string-based specifications. Extensible concrete syntax for
Reflex is on-going work [Tanter 2006b].

Finally, the subjective approach adopted by Reflex, in which aspects have
their own view on the program structure, which can be declaratively augmented,
is, to our knowledge, a distinguishing feature of our work. It enables fine-grained
control in the resolution of subtle interactions. Also, the detection and uni-
form representation of the three kinds of structural interactions (base-action,
action-action, and action-cut), in the context of fully expressive cut and action
languages, is also, as far as we know, a particularity of this proposal.

643Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



8.2 Future Work

We are now exploring a number of extensions to this work. First of all, the han-
dling of behavioral link composition [Tanter 2006a] is currently implemented in
Java. The cumbersome implementation of some deductions, e.g. for ordering and
mutual exclusion, was actually among our main motivations to start integrating
a logic engine when working on structural aspect composition. This part should
be modified in order to benefit from the logic engine now integrated in Reflex.
This should result in a more concise and robust implementation of the existing
mechanisms for behavioral link composition.

Once this integration performed, we need to further experiment with the
composition process we have presented here, including behavioral aspects, and
coming up with an integrated process for both structural and behavioral aspect
composition. In order to support this process, it seems crucial to consider ap-
propriate tool support. This means considering an advanced aspect interaction
management environment, for assisting the programmer in browsing through
detected interactions and declaring their resolution, in an intrinsically iterative
manner. Also, recall that because we do not compromise with the expressiveness
of the cut and action languages, we generate all introspection and intercession
facts that may point at an interaction. As a consequence there may be too many
reported interactions. An appropriate aspect management environment should
help in limiting the cognitive overhead induced by this defensive fact generation.

Finally, since the beginning of this paper, it has been made clear that we only
consider aspects whose structural changes consist in adding structural elements
to a base program. It makes sense to extend this work to other transformations
such as direct renaming of structural elements or modification of their other
properties.

9 Conclusion

In this work we discussed how to provide full support for the composition of
structural aspects in an AOP kernel. We have presented a general analysis of in-
teractions between structural aspects, identifying different kinds of interactions,
as well as the corresponding detection and resolution mechanisms. We have then
proposed a composition process that involves the programmer in a cycle of au-
tomatic detection of interactions and explicit, declarative resolution of these
interactions. Finally, we have described a full implementation of the proposed
process in Reflex, supporting (a) a uniform representation of all the identified
interaction kinds, allowing extensible reporting tools to be developed, (b) the au-
tomatic detection of interactions, including action-cut interactions, based on a
logic engine integrated into Reflex, (c) the different declarative resolution mech-
anisms previously highlighted.

644 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



On a more global standpoint, this work also illustrates the interest of sub-
jectivity and logic programming in addressing some of the challenges raised by
the wider use of aspect-oriented programming. We believe that next generation
environments for AOP should consider such advanced mechanisms in order to
assist programmers facing the complexity of AOP in the large.

Acknowledgments

We thank Jacques Noyé for his numerous and insightful comments on a draft
of this paper, and to Benoit Kessler, Ángel Ñuñez and Rodolfo Toledo for their
contribution to the implementation of the features presented here.

References

[Akşit 2003] Akşit, M., editor (2003). Proceedings of the 2nd ACM International Con-
ference on Aspect-Oriented Software Development (AOSD 2003), Boston, MA, USA.
ACM Press.

[Avgustinov et al. 2006] Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S.,
Lhoták, J., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J.
(2006). abc: an extensible AspectJ compiler. In Transactions on Aspect-Oriented
Software Development, volume 3880 of Lecture Notes in Computer Science, pages
293–334. Springer-Verlag.

[Batory et al. 2002] Batory, D., Consel, C., and Taha, W., editors (2002). Proceedings
of the 1st ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE 2002), volume 2487 of Lecture Notes in Computer
Science, Pittsburgh, PA, USA. Springer-Verlag.

[Bracha and Ungar 2004] Bracha, G. and Ungar, D. (2004). Mirrors: Design principles
for meta-level facilities of object-oriented programming languages. In Proceedings
of the 19th ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2004), pages 331–344, Vancouver, British
Columbia, Canada. ACM Press. ACM SIGPLAN Notices, 39(11).

[Brichau et al. 2002] Brichau, J., Mens, K., and De Volder, K. (2002). Build-
ing composable aspect-specific languages with logic metaprogramming. In
[Batory et al. 2002], pages 110–127.

[Bussard et al. 2000] Bussard, L., Carver, L., Ernst, E., Jung, M., Robillard, M., and
Speck, A. (2000). Safe aspect composition. In Malenfant, J., Moisan, S., and Moreira,
A., editors, Object-Oriented Technology: ECOOP 2000 Workshop Reader, volume
1964 of Lecture Notes in Computer Science, pages 205–210. Springer-Verlag.

[Chiba et al. 1996] Chiba, S., Kiczales, G., and Lamping, J. (1996). Avoiding con-
fusion in metacircularity: The meta-helix. In Proceedings of the 2nd International
Symposium on Object Technologies for Advanced Software (ISOTAS’96), volume 1049
of Lecture Notes in Computer Science, pages 157–172. Springer-Verlag.

[Chiba and Nakagawa 2004] Chiba, S. and Nakagawa, K. (2004). Josh: An open
AspectJ-like language. In [Lieberherr 2004], pages 102–111.

[Douence et al. 2002] Douence, R., Fradet, P., and Südholt, M. (2002). A framework
for the detection and resolution of aspect interactions. In [Batory et al. 2002], pages
173–188.

[Douence et al. 2004] Douence, R., Fradet, P., and Südholt, M. (2004). Composition,
reuse and interaction analysis of stateful aspects. In [Lieberherr 2004], pages 141–
150.

645Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



[Elrad et al. 2001] Elrad, T., Filman, R. E., and Bader, A. (2001). Aspect-oriented
programming. Communications of the ACM, 44(10).

[Fabry et al. 2008] Fabry, J., Tanter, É., and D’Hondt, T. (2008). KALA: Kernel
aspect language for advanced transactions. Science of Computer Programming,
71(3):165–180.

[Fabry et al. 2009] Fabry, J., Tanter, É., and D’Hondt, T. (2009). Infrastructure for
domain-specific aspect languages: the ReLAx case study. IET Software. To appear.

[Glück and Lowry 2005] Glück, R. and Lowry, M., editors (2005). Proceedings of the
4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Compo-
nent Engineering (GPCE 2005), volume 3676 of Lecture Notes in Computer Science,
Tallinn, Estonia. Springer-Verlag.

[Gybels and Brichau 2003] Gybels, K. and Brichau, J. (2003). Arranging language
features for more robust pattern-based crosscuts. In [Akşit 2003], pages 60–69.

[Harrison et al. 2006] Harrison, W., Ossher, H., and Tarr, P. (2006). General compo-
sition of software artifacts. In [Löwe and Südholt 2006].

[Havinga et al. 2006] Havinga, W., Nagy, I., Bergmans, L., and Aksit, M. (2006). De-
tecting and resolving ambiguities caused by inter-dependent introductions. In Pro-
ceedings of the 5th ACM International Conference on Aspect-Oriented Software De-
velopment (AOSD 2006), pages 214–225, Bonn, Germany. ACM Press.

[Kiczales et al. 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. (2001). An overview of AspectJ. In Knudsen, J. L., editor, Pro-
ceedings of the 15th European Conference on Object-Oriented Programming (ECOOP
2001), number 2072 in Lecture Notes in Computer Science, pages 327–353, Budapest,
Hungary. Springer-Verlag.

[Klaeren et al. 2000] Klaeren, H., Pulvermüller, E., Rashid, A., and Speck, A. (2000).
Aspect composition applying the design by contract principle. In Proceedings of the
2nd International Symposium on Generative and Component-Based Software Engi-
neering (GCSE 2000), volume 2177 of Lecture Notes in Computer Science, pages
57–69. Springer-Verlag.

[Lieberherr 2004] Lieberherr, K., editor (2004). Proceedings of the 3rd ACM Inter-
national Conference on Aspect-Oriented Software Development (AOSD 2004), Lan-
caster, UK. ACM Press.

[Lopez-Herrejon et al. 2006] Lopez-Herrejon, R., Batory, D., and Lengauer, C. (2006).
A disciplined approach to aspect composition. In Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM 2006), pages
68–77. ACM Press.

[Löwe and Südholt 2006] Löwe, W. and Südholt, M., editors (2006). Proceedings of
the 5th International Symposium on Software Composition (SC 2006), volume 4089
of Lecture Notes in Computer Science, Vienna, Austria. Springer-Verlag.

[Masuhara and Aotani 2006] Masuhara, H. and Aotani, T. (2006). Issues on observer-
ing aspect effects from expressive pointcuts. In Proceedings of ECOOP Workshop on
Aspects, Dependencies and Interactions, Nantes, France.

[Mehner et al. 2006] Mehner, K., Monga, M., and Taentzer, G. (2006). Interaction
analysis in aspect-oriented models. In Proceedings of AOSD Workshop on Founda-
tions of Aspect-Oriented Languages (FOAL 2006), Bonn, Germany.

[Nagy et al. 2004] Nagy, I., Bergmans, L., and Aksit, M. (2004). Declarative aspect
composition. In 2nd Software-Engineering Properties of Languages and Aspect Tech-
nologies Workshop.

[Ossher and Tarr 2001] Ossher, H. L. and Tarr, P. L. (2001). Multi-dimensional sep-
aration of concerns and the hyperspace approach. In Akşit, M., editor, Software
Architectures and Component Technology, volume 648 of The Kluwer International
Series in Engineering and Computer Science. Kluwer.

[Schärli et al. 2003] Schärli, N., Ducasse, S., Nierstrasz, O., and Black, A. (2003).
Traits: Composable units of behavior. In Cardelli, L., editor, Proceedings of the

646 Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...



17th European Conference on Object-Oriented Programming (ECOOP 2003), num-
ber 2743 in Lecture Notes in Computer Science, pages 248–274, Darmstadt, Germany.
Springer-Verlag.

[Suvee et al. 2003] Suvee, D., Vanderperren, W., and Jonckers, V. (2003). JAsCo: an
aspect-oriented approach tailored for component based software development. In
[Akşit 2003], pages 21–29.

[Tanter 2006a] Tanter, É. (2006a). Aspects of composition in the Reflex AOP kernel.
In [Löwe and Südholt 2006], pages 98–113.

[Tanter 2006b] Tanter, É. (2006b). An extensible kernel language for AOP. In Proceed-
ings of AOSD Workshop on Open and Dynamic Aspect Languages, Bonn, Germany.

[Tanter and Noyé 2004] Tanter, É. and Noyé, J. (2004). Motivation and requirements
for a versatile AOP kernel. In 1st European Interactive Workshop on Aspects in
Software (EIWAS 2004), Berlin, Germany.

[Tanter and Noyé 2005] Tanter, É. and Noyé, J. (2005). A versatile kernel for multi-
language AOP. In [Glück and Lowry 2005], pages 173–188.

[Tanter et al. 2003] Tanter, É., Noyé, J., Caromel, D., and Cointe, P. (2003). Partial
behavioral reflection: Spatial and temporal selection of reification. In Crocker, R.
and Steele, Jr., G. L., editors, Proceedings of the 18th ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2003), pages 27–46, Anaheim, CA, USA. ACM Press. ACM SIGPLAN Notices,
38(11).

[Tanter et al. 2008] Tanter, É., Toledo, R., Pothier, G., and Noyé, J. (2008). Flexible
metaprogramming and AOP in Java. Science of Computer Programming, 72(1-2):22–
30. Special Issue on Experimental Software and Toolkits.

647Tanter E., Fabry J.: Supporting Composition of Structural Aspects ...


