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Abstract: Inferring gene regulatory networks from data requires the development of
algorithms devoted to structure extraction. When time-course data is available, gene
interactions may be modeled by a Bayesian Network (BN). Given a structure, that
models the conditional independence between genes, we can tune the parameters in a
way that maximize the likelihood of the observed data. The structure that best fit the
observed data reflects the real gene network’s connections. Well known learning algo-
rithms (greedy search and simulated annealing) devoted to BN structure learning have
been used in literature. We enhanced the fundamental step of structure learning by
means of a classical evolutionary algorithm, named GA (Genetic algorithm), to evolve
a set of candidate BN structures and found the model that best fits data, without
prior knowledge of such structure. In the context of genetic algorithms, we proposed
various initialization and evolutionary strategies suitable for the task. We tested our
choices using simulated data drawn from a gene simulator, which has been used in the
literature for benchmarking [Yu et al.(2002)]. We assessed the inferred models against
this reference, calculating the performance indicators used for network reconstruction.
The performances of the different evolutionary algorithms have been compared against
the traditional search algorithms used so far (greedy search and simulated anneal-
ing). Finally we individuated as best candidate an evolutionary approach enhanced
by Crossover-Two Point and Selection Roulette Wheel for the learning of gene regu-
latory networks with BN. We show that this approach outperforms classical structure
learning methods in elucidating the original model of the simulated dataset. Finally
we tested the GA approach on a real dataset where it reach 62% of recovered connec-
tions (sensitivity) and 64% of direct connections (precision), outperforming the other
algorithms.
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1 Introduction

In this paper we describe how computational approaches to gene regulatory
networks (GRN) can be developed in order to describe complex mechanisms un-
derlying cell behavior. Among the different regulatory mechanisms at work in
the cell, transcriptional regulation plays an important role as it links a coding
space of genes to a functional space of proteins. The availability of a wide range
of genome wide experimental techniques, such as DNA microarrays or ChIP on
chip, gives the modelers the opportunity to consider reverse engineering of tran-
scriptional networks from experimental data. The elucidation of these networks
is usually implemented by choosing a mathematical model to describe the inter-
actions between a regulee and its regulators and then using the data to learn both
the graph of interactions and the parameters of the mathematical model. We con-
sider here the case when the graph structure is unknown and the learning task
consists of discovering the nature of interactions. Several different frameworks
have been proposed in order to accomplish this modeling task [de Jong(2002)]
[van Someren et al.(2002)] . Among them, probabilistic graphical models appear
to be a successful approach [Friedman et al.(2000)] [Segal et al.(2003)] . They
offer an adequate representation of conditional (in)dependencies between vari-
ables and allow the management of uncertainty which is relevant in case of
noisy data and stochastic processes. Regarding the learning issue, the choice be-
tween dynamic and static modeling depends mainly on data availability. Learn-
ing dynamic systems requires observations of temporal variations of gene ex-
pressions which are costly to produce while the availability of static data in
complex organisms is growing. Among the probabilistic models, Bayesian Net-
works (BN) [Pearl(1988), Cowell(1999)] [Jensen(2001)] [Cowell(1999)] were se-
lected that cover acyclic interaction networks. This class of models has often
been used in the field of computational biology [Friedman et al.(2000)] in the
past few years. Many approaches have been proposed to learn the structure of
Bayesian networks [Imoto et al.(2002)]. Structure learning algorithms are gener-
ally based on a search within a set of candidate structures. The underlying idea is
to discover the BN that best fits the available data. A scoring metric is required
to assess the quality of each candidate structure with respect to the data. To
undertake the search in the huge space of BN structures [Robinson(1977)], de-
terministic heuristics like greedy search [Chickering(2003)] or the K2 algorithm
[Cooper and Herskovits(1992)] have been proposed. However, since the prob-
lem of structure learning is known to be NP-hard [Chickering(1996)], stochastic
heuristics like MCMC [Friedman and Koller(2003)] [Kocka and Castelo(2001)]
or Evolutionary Programming [Wong et al.(1999)] are usually preferred. They
are supposed to overcome some limitations of deterministic search strategies,
such as local optimality and dependence on the initial solution. In this work,
we used a classical Evolutionary Algorithms (EA), namely GA, to learn network
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structures; as framework for our implementation we selected BANJO
[Hartemink et al.(2005)] since it is one of the most used platforms in this field
and it allowed establishing fair comparisons with well established alternative al-
gorithms. In order to establish the performances of the proposed approach we
used the metrics reported in [Supper et al.(2007)] (Recovered Connections, Di-
rect Connections, Indirect Connections, Spurious Connections). We will present
herein a detailed description of the approach and we will show its performances
in a real world problem.

2 Background

2.1 modeling GRN with Bayesian Networks

A Bayesian network is a graph-based model of joint multivariate probability
distributions that captures properties of conditional independence between vari-
ables. Such models are attractive for their ability to describe complex stochastic
processes and because they provide a clear methodology for learning from (noisy)
observations. Formally a Bayesian network is a representation of a joint prob-
ability distribution. This representation consists of two components. The first
component, G, is a directed acyclic graph (DAG) whose vertices correspond to
the random variables X1, ..., X,. The second component, 6 describes a condi-
tional distribution for each variable, given its parents in G. Together, these two
components specify a unique distribution on Xi,..., X,,. The graph G repre-
sents conditional independence assumptions that allow the joint distribution to
be decomposed, economizing on the number of parameters. The graph G encodes
the Markov Assumption.

Markov Assumption

Each variable X; is independent of its nondescendants, given its par-
ents in G.

By applying the chain rule of probabilities and properties of conditional inde-
pendencies, any joint distribution that satisfies the Markov Assumption can be

decomposed into the product form
n

P(X1,...,X,) = [[ P(X:, Pa®(X))) (1)
i=1

where Pa®(X;) is the set of parents of X; in G. A graph G specifies a product
form as in equation 1. To fully specify a joint distribution, we also need to specify
each of the conditional probabilities in the product form. The second part of the
Bayesian network describes these conditional distributions, P(X;|Pa®(X;)) for
each variable X;. We denote the parameters that specify these distributions
by 6. In specifying these conditional distributions, we can choose from several
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representations. In this study, we use discrete random variables to model the
gene expression levels and non-parametric modeling (e.g. Conditional Probability
Tables or CPT) to represent the conditional probabilities. CPT presents at least
two main advantages. They enable representation of any complex regulatory
interactions without requiring fixation of the nature of the interactions before
learning and they also lead to very simple maximum likelihood estimators. The
parametrization of the BN relies on the coefficients of the CPT : {6}, } with k, a
given state of variable X;, and [ a given configuration of its parental set Pa;

PG(X; = k|Pa; = 1) = {6;,} (2)

The problem of finding the BN that best approximates a set of data can be
formulated as follows. To identify both structure G and parameters given a
sample of size s, D = (z1,...,25) of n random variables X = {X3,..., X, },
we first need to define a scoring metric that evaluates how the structure and
the parameters fit the data. In the case of biological networks, it is not possible
to state what the true cost function is. In order to infer the model from data,
we know from the learning theory that the scoring metric should incorporate
a term responsible for data fitting and a term that controls the complexity of
the model. The Bayesian Information Criterion (BIC) fulfils these requirements.
BIC was first defined by Schwarz in 1978 as a general proposal for estimating the
complexity of a statistical model. Considering G, the set of all possible DAGs
containing the aforementioned n variables, the best DAG structure G can be
determined by selecting in G the graph structure G that minimizes the BIC:

G = argming{—2logP(D|G,0) + Kglog(s)} (3)

where 6 is the maximum likelihood estimate of 0, the set of parameters of model
G:

0 = argmaxgP(D|G,0) 4)
and K¢ the number of free parameters of model G. For the class of models that
we chose and given the i.i.d. data, the likelihood can be expressed as follows:

P(DIG,0) = [TTTTT(64) ™ (5)
7 k !

with exponent N/, being the number of co-occurrences of both X; = k and
Pa(X;) =1 in the data. Therefore, the BIC can be rewritten as follows:

BIC(G) = Z Z Z —2NLlog(6Y, + Kilog(s) (6)
i ko

with K, the number of parameters in the CPT of X;. éﬁk is the maximum

N?
i where N} =

likelihood estimate of #!,. The latter can be computed by o




830 Bevilacqua V., Mastronardi G., Menolascina F., Pannarale P., Romanazz G. ...

>, k is the number of times the X;s parental configuration equals [. Since it
relies on frequencies, computing these estimators from data is straightforward.
This allows dedicating most of the computational time to the exploration of
the structure space. Note that the BIC can be read as the sum of local scores:
one local score only depends on the parental set of the node for which it is
computed. To achieve BIC minimization, an appropriate search in the space of
candidate graphs has to be defined. To avoid testing all of the possible graphs,
searches based on appropriate heuristics are usually preferred. The Bayesian
Scoring Metric, on the other hand, defines the score of each network according
to equation 7:

Score(S) = logP(S|D) = logP(S) + logP(D|S) + ¢ (7)

where the firt addendum in equation 7 is the logarithm of the previous probability
distribution of S, the second term is the logarithm of the probability of the
likelihood that observed data have been generated by S and c is a constant term
independent of S. Evidently we can also write:

P(D|S) :/.../p(D,9|S)d9: /.../P(D,0|S)p(0|5)d9 (8)

Where we can observe that the component of the probability of the model scor-
ing can be seen as the average probability of generating the observed data on all
the possible values of the parameter vector. If we consider N;;, the number of oc-
currences of the i*" variable in the k" state given the j** parents’ configuration,

Nij =Y Nijg  aij =Y i (9)
k=1 k=1

We can demonstrate that the Bayesian Scoring Metric can be expressed in a
closed form:

n Oé a + N
= P 7/] ” ] 1
Score(S) = logP(S) + log H H ( I'(a;j + Nij) H I(aij) ) .

i=1j=1

we can define:

and then:

n : i N
Score(S) = logP(S +ZZ{lOQF o O:N Zl aj ) J)} (11)
j=1 & i) k=1 ij

i=1

In this work, we use Evolutionary Algorithms to explore the solution space.
Various implementations of EA are described as well as their qualitative and
quantitative performances assessed on bio-realistic data.
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2.2 Network Structure Search Algorithms

To identify BN structures with high scores, search methods are employed that
search for the highest scoring graph among a set of graphs using different heuris-
tic methods. The reason for heuristic search methods is that identifying the
highest scoring network using scoring metrics is NP complete. As such, heuris-
tic searches are iterative and thus can be run indefinitely and stopped at any
time to reveal the highest scoring graph visited thus far. The longer the search,
the likely of finding a higher-scoring graph. A suitable cutoff for running time is
found empirically, where longer running times do not result in significant changes
to the highest scoring graph found. In our study, we tested three heuristic search
methods:

— greedy search with random restarts
— simulated annealing
— genetic algorithm

For each type of search we used E to denote the set of eligible changes to a graph
and A(e) to denote the change in score of a graph resulting from the modification
eckE.

2.2.1 Greedy Algorithms

Greedy search with random restarts initializes itself by choosing a random graph,
then evaluates the change in score A(e) associated with every possible change
e € F, and finally selects the change for which A(e) is maximized, provided the
maximal A(e) is positive. It proceeds in this fashion until all A(e) are negative
and no score improvement can be made. To escape this local maximum, the
algorithm then restarts from another random graph, and the entire process is
repeated until the total number of iterations is reached.

2.2.2 Simulated Annealing

Simulated annealing also initializes itself by choosing a random graph, but is
given an initial temperature 0 T, a search parameter. An eligible change e € E
is selected at random and the probability expression p = e%:) is evaluated. If
p > 1 (which occurs whenever A(e) is positive), then the change e is made;
otherwise, the change e is only made with probability p . The procedure begins
at a very high temperature so that almost every eligible change in the graph can
be made. As the search progresses, the temperature gradually decreases until a
very low temperature is reached where very little change is made in the graph.
The search then performs similarly to the local searches of the random greedy
method.
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3 Materials and Methods

3.1 Genetic Algorithms

A genetic algorithm (GA) [Holland(1992)] is a search method using three oper-
ators to explore a space of solutions or, in our case, a set of graphs. The three
operators are: reproduction, which promotes the best graphs to the next gen-
eration, mutation, which explores new graphs by introducing variation in the
population to avoid local optima, and crossover, which selects a swapping point
in the parents and exchanges information between them to generate two new
graphs, thereby increasing the average quality of a population. Graph structures
are specified as the set of parents for every node, where graph i is donated as
{Pai(Xl),Pai(Xg),...,Pai(Xn)} and graph ] as
{Pa;(X1),Paj(X2),...,Pa;j(Xy)}. To crossover, a randomly chosen variable X},
becomes the swap point leading to two new structures, graph i’ and 5’

{Pai(Xl),. . ,Pai(Xk),Paj(Xk_,_l),. . ,Paj(Xn)}

{Paj(Xl), . .,Paj(Xk),Pai(XkJrl), . ,Paz(Xn)}

For each GA iteration, a mutation and/or a crossover operation is chosen at
random and the newly created graphs are reproduced in the next generation if
they have higher scores than the current graphs in the stored population. As it is
possible for crossovers to create bi-directional edges, we check for and eliminate
such graphs. As selection strategy we selected a simple elitist approach. Since
the probability of losing the best chromosome is not null elitistic approach saves
the best solution(s) in the next population. On the other hand, however, elitism
is known to bring premature convergence resulting in far from optimal solutions.
The reason for this behavior can be found in the fact that despite its ability to
quickly converge, elitism forces individuals to lose peculiar traits that can result
to be winning in the evolutionary competition but that will be lost forever as
they get out of the population. For this reason genes coming from top ranked
individuals will rapidly dominate and spread among the population. In order to
avoid this mechanism a choice has been made to let the GA evolve naturally for
a variable number of generations till the elitism is activated by default: this is
thought to let the algorithm explore the search space for some time and to speed
up convergence after some sub-optimal solutions have been found.

In order to find the best performing genetic algorithm for this application we
realized several versions. They are different in initial population and recombi-
nation operators. Two alternatives are eligible for the selection operator: elitist
and roulette wheel. The selection operator is responsible for the selection of the
solution individuals that will compose the next generation. The elitist selection
pick the individuals that have the best fitness in the actual population. In the
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roulette wheel the parents are selected with a probability proportional to the
fitness value. We can imagine this as a roulette wheel in which each individ-
ual receive a wheel portion proportional to its fitness. The algorithm act as the
following;:

— S = sum of all the individual’s fitness

Loop:

R = random value in the range (0,S)

Slide the population and sum the individual fitness you encounter. If the
actual sum is s > R, stop and return the actual individual

The second to be changed is the crossover operator. This is the principal operator
that permit to the population to evolve. For this operator we chose between
two alternatives: one-point and two-point crossover. In the one-point version
it is extracted randomly a swapping point k£ in the range 1 — n, where n is the
number of nodes in the graph. Hence the chromosome portion [k, n] is exchanged
between two individuals. In the two-point version, two points k; and ko are
chosen randomly with uniform distribution: & in the range [1, n], k2 in the range
[k1,n]. The chromosome portion [k1, k2] is swapped between two individuals.
Finally the initial population, from which the algorithm start its evolution, have
been changed. Two alternatives are possible:

— Random initial population: each individual is a random graph

— Greedy initial population: each individual was obtained by a previous greedy
search.

3.2 Simulated dataset

In order to infer a GRN we need an adequate amount of time series data. The
experiments that produce this information are expensive and to skip this obstacle
we can use gene profile simulators [Yu et al.(2002)]. In this work we developed
a simulator implemented in the Matlab environment, that is Gene Simulatore.
This tool can, given a matrix representing the gene network, generate time series
expression values. At each time step the values updating is controlled by a simple
stochastic process:

Yo = f(Y) = A(Y, — T) +e (12)

Y; is a vector representing the gene expression level at time ¢. The expression
range is contained between 0 and 100, and each gene value is initialized randomly
with a uniform distribution in this range. The matrix A represent the relations
among genes that underlie reactions regulation. The value of each element of A
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represent the regulation magnitude of one gene on the other target gene. The
sign represents the interaction type, that is a positive value indicates an up-
regulation effect while a negative sign means down-regulation effect. T" is the
vector of the regulation thresholds: each value of the vector is associated to a
gene, and allows asserting if the latter exert a regulatory role on the associated
genes. In this work all the values are fixed to 50. If the regulatory gene has an
expression value superior to the threshold, his effects on the target genes are
specified in the matrix A, and are proportional to the entity of the difference.
If the expression is inferior to the threshold, the effects on the target genes
are opposite to that specified in A. The term ‘e’ models the noise effects, and
corresponds to a random value with uniform distribution in the range -10 to 10.
This term includes all the noise effects, in particular the intrinsic biological noise.
If a gene isn’t regulated by any other gene (e.g. all the values in A are zero), it
will have random step values. During the simulation the data are sampled each
specified number of steps. The results are exported in a txt file. For example if
we collect data every 5 steps, we will assume a sampling interval of 5 units, and
the output data will correspond to the vectors (Yo, Y5, Y10, Y15, ..), in this way
we can simulate different sampling intervals like in microarray experiments.

5 down = regulated dal 4 9 up — regulated dal 5
4 A(5,4)= —0,1 5 A(9,5)= 0.1
5 9

Figure 1: Gene regulation model.

The regulation matrix A elements are set in this way: if there is an up-
regulation of gene y towards gene x, A(y,z) = 0.1; if there is a down-regulation
relationship, hence A(y,z) = —0.1. In the case that the genes are independent
A(y,z) = 0. In order to verify the Gene Simulatore behaviour we performed a
500 samples simulation and plotted the output. In the Fig. 1 we can observe
that the results are consistent with the model definition: when gene 4 rises, gene
5 decrease, indeed gene 4 down-regulate gene 5. Gene 6 has a random trend,
since it isn’t regulated by any gene. When gene 5 is over-expressed and gene 6
is under-expressed, gene 9 is over-expressed and this is consistent with 6-down-
regulation and 5-up-regulation of gene 9. Time steps are non-dimensional, but
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| Group

Magenta Genes expressed only in MATa cells: STE2, MFA1, MFA2,
STE6, AGA2 and BAR1

Red Genes expressed only in MAT ,cells: STE3, MFALPHA1,
MFALPHA?2 and SAG1

Blue | Genes whose promoters are bound by STE12: FUS3, STE12,
FAR1, FUSI and AGA1

Green |Genes coding for the heterotrimeric G-protein complex: GPA1,
STE4 and STE18

Yellow Genes coding for the components of the signaling cascade
(except FUS3 whitch is blue): STE7, STE11 nad STE5
Orange Genes coding for auxiliary components of the signaling
cascade: KSS1, STE20 and STE50

Brown Genes coding for the SWI-SNF complex: SNF2 and SWI1
White Others: SST2, KAR3, TEC1, MCM1, SIN3 and TUP1

Description |

Table 1: Figure 2 explanation

if we assume their duration to be 1 minute, they will be equivalent with a typ-
ical biological temporal scale. This model is used for all the simulations. We
fixed an observation time of 10000 time steps, with a sampling interval of 5 time
steps, so we obtained 2000 sampling vectors. This data, counting 2000 rows and
20 columns, corresponding to 20 genes, was used as an input for the software
Banjo. After the simulated data we used real datasets. The real dataset was
supplied by Hartemink, one of the Banjo developer. The database consists of
320 records with each record being characterized by 33 attributes. The records
correspond to 320 samples of unsynchronized Saccharomyces cerevisiae (baker’s
yeast) populations observed under different experimental conditions. Yeast is
considered an ideal eukaryotic organism and, thus, it has been widely stud-
ied [Hartemink et al.(2005), Supper et al.(2007)]. The first 32 attributes of each
record represent the expression levels of 32 genes involved in yeast pheromone
response. This pathway plays an essential role in the sexual reproduction of
yeast. The last attribute of each record, named MATING TYPE, indicates the
mating type of the strain of yeast in the corresponding sample, either M AT a or
MATa, as some of the 32 genes measured express only in strains of a specific
mating type. We note that gene expression levels are discretized into four states.
We refer the reader to [Friedman et al.(2000)] for details on the data collection
and preparation process, as well as for a thorough description of the 32 genes in
the database. We summarize this description in Figure 2 by grouping the genes
according to their function in the domain under study.
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Figure 2: Best model learn.

3.3 Performance indicators

Suitable performance metrics have been used in order to compare the different
gene networks inferred by the algorithm [Supper et al.(2007)]. These metrics
have been calculated comparing the validation net and the best net obtained by

the algorithm. The metrics are the following:

— Recovered connections: correctly identified arcs out of the total number of

arcs to be identified.

— Direct connections: correctly identified arcs out of the total number of gen-

erated arcs.
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Table 2: Validation of the GRN reconstruction with different methods.

Algorithms Recovered |Direct |Indirect|Spurious

Best, 1-point, random 69.23 |37.50| 4.17 8.33
Best, 2-point, random 69.23 |37.50| 4.17 12.50
Best, 1-point, greedy 84.62 |45.83| 4.17 16.67
Best, 2-point, greedy 84.62 |45.83| 4.17 16.67
Roulette, 1-point, random| 84.62 |45.83| 4.17 8.33
Roulette, 2-point, random| 92.31 |50.00| 4.17 8.33
Roulette, 1-point, greedy | 84.62 |45.83| 4.17 16.67
Roulette, 2-point, greedy | 76.92 |41.67| 4.17 8.33
Greedy search 76.92 [41.67| 4.17 8.33
Simulated annealing 84.62 |45.83| 4.17 16.67

— Indirect connections: a — c arcs corresponding to a validation network topol-
ogy of the type a — b — ¢ over the total number of generated arcs, e.g. direct
arcs corresponding to an indirect interaction with distance two to all arcs
inferred ratio.

— Sporious connections: like the previous but with distance greater than two.

We implemented a program in MATLAB for extrapolating the previous metrics
given a validation net and an our net.

4 Results

The data set obtained within the Gene Simulatore has been used to compare
the different approaches we implemented and the others yet used in literature.
Results are reported in the table 2.

Comparing the indices presented in table 2 we see that the best configuration
in this tests resulted to be the one using Roulette wheel operator together with
the 2point crossover and random initial population. In order to gain a deeper un-
derstanding on how this data would overlap real data sets results, we carried out
the same study on the yeast dataset kindly provided by Alexander Hartemink.
In table 3 we show that our approach don’t reach 100% performances, as long
as there’s noise in the data, but anyway outperforms classical structure learning
methods in elucidating the original model.

5 Conclusions and Further Research

We presented herein an alternative approach to bayesian network inference based
on a modified genetic algorithm. We showed that the best results can be obtained
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Table 3: Validation of the GRN reconstruction with different methods.

Bevilacqua V., Mastronardi G., Menolascina F., Pannarale P., Romanazz G. ...

Greedy Simulated | Genetic
Search Annealing | Algorithm
Recovered Connections 44.12 55.88 61.76
Direct Connections 41.67 57.58 63.64
Indirect Connections 8.33 12.12 0
Spuorious Connections 2.78 3.03 0

using GAs and in particular modifying their standard architecture to develop
strategies that ease both convergence and optimal solution finding. GA in our
study outperforms the classical methods adopted so far in all the performance
metrics. Evolutionary learning is a promising framework for the inference of gene
regulation networks. An interesting extension may be expected through the study
of a more elaborated version of crowding methods, making use of a similarity
metric between network structures, such as kernels on graphs. Another perspec-
tive of this work is to apply this approach to learn the structure and parameters
of dynamical bayesian network. Indeed, as soon as a discrete representation of
the dynamic model and a fitness function are available, EA can be applied as
we proposed for the static BN. Gene Regulatory Network inference is an active
area of research in current computational and systems biology and we proved
that the contribution that evolutionary algorithms can give to this research still
needs to be explored. In particular novel strategies need to be defined in order
to optimize the employment of these techniques in the development of current
biochemical model refinements. One of these cues of research can be found in the
development, of a machine learning approach to the estimation of the optimal
crossover probability.
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