
SDLMAS: A Scenario Modeling Framework for

Multi-Agent Systems

Igor Čavrak
(University of Zagreb, Croatia

igor.cavrak@fer.hr)

Armin Stranjak
(Strategic Research Centre, Rolls-Royce plc, Derby, UK

armin.stranjak@rolls-royce.com)

Mario Žagar
(University of Zagreb, Croatia

mario.zagar@fer.hr)

Abstract: In this paper we analyze existing methods and languages for modeling
agent interactions and propose a SDLMAS Framework for rapid design, development
and runtime support of multi-agent systems. The framework provides a simple but
expressive declarative language for modeling complex interactions among agents. Pro-
posed language is based on scenarios, sequences of conversation actions directed towards
achieving a goal. Scenario descriptions are converted into program code for a chosen
target agent platform and system execution is supported by a runtime framework.

Key Words: Multi-Agent System, Interaction, Scenario, Language

Category: D.2.0, I.2.5, I.2.11, I.6.0

1 Introduction

The development of computer networks in recent years has enabled exponen-
tial expansion of distributed information and data accessible through increasing
number of computer systems. As a consequence, inevitable requirements have
emerged for new software methodologies which allow seamless and transparent
access to the expanding amount of information. The principles of agent-centric
distributed computing show significant potential to deal with such necessities.
This new paradigm advances the typically modular, client-server approach by
introduction of concepts like autonomy, interaction and social behavior, to name
a few [Jennings et al. 99]. In such systems, agents fulfill own goals autonomously
by sensing their environment and by interacting with other agents exchanging
data if and when it is in their interest. This context-dependent behavior relies
heavily on the characteristics of the environment.

Competitive environment encourages agents to act within market-based fra-
mework where they compete with each other for better price, more computing
power, shorter service response, etc. An agent’s intentions are predominantly

Journal of Universal Computer Science, vol. 15, no. 4 (2009), 898-925
submitted: 30/6/08, accepted: 27/2/09, appeared: 28/2/09 © J.UCS

influenced by its own goals and plans to accomplish them. Alternatively, coop-
erative environment promotes such agents that will perform their goals in the
interest of the wider community or the authoritative entity that secures the ful-
fillment of the global goal. Typical examples would be applications for task plan-
ning and resource scheduling, search engines, or any other where the emergent
behavior is influenced by collaborative and mutually non-exclusive individual
goals.

Irrespective of the types of agent environment, communication between them
is achieved through asynchronous and message-oriented interactions. In addition
to physical connection, it requires semantics in order to enable agents to reach a
common understanding. Therefore, communication protocols and corresponding
dialogue ontology need to be defined too within the framework of a conversa-
tion space. This space is defined as a sequence of messages exchanged between
agents following a (set of) defined dialogue protocol(s). Protocols allow agents to
participate in conversations by prescribing shared protocol semantics and defin-
ing conversation space within which agents are enabled to act, still preserving
their decision-making autonomy [Greaves et al. 00]. This space is defined by the
following: (1) an ontology of common terms that agents need to agree upon,
(2) a language for ontology description, and (3) a language for a conversation
description.

In this context, we can identify several conversation models in existing lit-
erature. The model described in [Bratman et al. 88] is based on a belief-desire-
intention (BDI) scheme, but it suffers from the ”semantic verification” problem
[Wooldridge 00]. The MAP [Walton 03] language offers concepts of scenes and
roles in multi-agent systems. Although it introduces an interesting concept of
scenes and roles, its agent-centric nature increases complexity of conversation
verification where inconsistent and unstructured protocols are not easy to de-
tect. The idea of protocol being defined within an agent’s own business logic
is described in [Endriss et al. 03]. The same idea was adopted by the IOM/T
[Doi et al. 05] language where main focus is on message flow between agents,
rather than agent’s activities like MAP. Unfortunately, the language relies on
a particular agent platform which limits its use on other agent platforms and
hence large-scale adoption.

This paper introduces a new language, SDLMAS, for scenario description
in multi-agent systems, independent of the target platform and implementa-
tion language. It adopts an interaction-centric approach with focus on message
flow between agents providing intuitive scenario description. The paper also fo-
cuses on an SDLMAS platform for rapid development of agent-based systems by
enabling automatic code generation from the SDLMAS language into a target
implementation language and an agent platform. The platform allows scenario
development and execution by providing a runtime framework and placeholders

899Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

for agent’s internal business logic, leaving complexity of interactions and message
propagation hidden from the developer, thereby letting him/her concentrate on
agent functionalities.

The initial motivation for the development of the SDLMAS language was sup-
port of multi-agent simulation system for prediction and scheduling of engine
overhaul in aerospace industry [Stranjak et al. 08]. Complex scenario descrip-
tions of interactions between engine fleet managers and overhaul bases required
significant design and development efforts. Such difficult problem would require
a declarative language for conversation framework definition within which simul-
taneous interactions would occur without explicit specification of their ordering
or timing. In addition to this, a requirement to define intertwining protocols was
necessary to enable cross-scenario communication. In other words, this would
allow agents to achieve given tasks or gather required information within one
scenario and to communicate them to the other. These agents would need to
maintain several conversations simultaneously during negotiations for the best
shop visit time and repair slot while utilizing balance between revenue earned
from the engines in service and an acceptable risk of disruption. Current scenario
description languages cannot satisfy given requirements and therefore it was nec-
essary to define a new interaction description language and build a corresponding
platform.

The SDLMAS platform was created in order to equip a designer with the
facility to describe negotiation scenarios and a developer to concentrate only on
agent’s business logic by generating necessary helper classes to support message
passing, execution of scenario actions and invocation of given business proce-
dures. This way, the development cycle was shorten several times with signifi-
cantly increased reliability of the system stability after deployment.

The SDLMAS language and platform are applicable not only in closed multi-
agent systems such as a specialized simulation system described above, but are
suitable for a wide variety of MAS applications involving moderate-to-complex
interactions, such as e-commerce [Papazoglou 01] and supply-chain manage-
ment systems and simulations [Podobnik et al. 08], information retrieval systems
[Sliwko et al. 07], agent based recommender systems [Zhang et al. 08] etc. With
the future incorporation of fine-grained security mechanisms, the SDLMAS plat-
form will gain even larger potential for its application in open multi-user systems.

2 Scenario Description Language

2.1 Language properties

The SDLMAS scenario description language, together with the SDLMAS run-
time framework, represents the core component of the SDLMAS platform. The

900 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

language has been designed with the main purposes of facilitating and acceler-
ating design and development phases of multi-agent systems. In order to fulfill
those goals three main language properties had to be achieved:

– descriptions of interactions among agents in the multi-agent system must
be simple and intuitive, yet scalable enough to allow description of complex
agent interactions,

– the language must be expressive enough to allow definition of a strict but
flexible interaction space within the described multi-agent system,

– the language must, as much as possible, protect its users from run-time
complexities related to interaction management within a large multi-agent
system.

The SDLMAS language is a declarative, interaction-centric description lan-
guage, focused on defining allowed sequences of messages (communicative acts)
exchanged among interaction participants (agents in a multi-agent system). In
SDLMAS an interaction protocol is defined implicitly, as a sequence of agent
actions where order of those actions is important, thus achieving a sequential
approach in protocol definition. The language describes conversations among
agents as a sequence of conversation actions, where actions define a conditional
mapping between incoming and outgoing messages, and an agent’s internal logic.
The language explicitly defines conditions for reception and transmission of mes-
sages as part of a conversation protocol definition. An elementary action of the
language is defined as a procedure that will be executed as a consequence of a
condition being satisfied following a message reception. A scenario is formed of
a logically complete sequence of conversation actions aimed at achieving some
rational effect in the multi-agent system.

The language is restrained to communication aspect of multi-agent systems,
thus enforcing strict separation between conversation actions and internal agent
logic implementing agent reasoning. Although direct influence on agent decision
process is not possible, inadequate expressiveness could indirectly restrict or bias
the way agent reasons or acts, or simply fail the attempt to model interactions of
required complexity. The SDLMAS language provides adequate expressiveness
by:

– allowing parallelism in agent interactions, defining synchronization points,

– defining conditions on incoming and outgoing messages in conversation ac-
tions, including complex logical expressions containing multiple message
types and agents as sources or targets of incoming and outgoing messages,

– allowing controlled variations in message exchanges during scenario execu-
tion, effectively defining a (possibly infinite) set of allowed interaction sce-
narios from one scenario definition,

901Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

– generalizing interaction patterns (scenarios) to roles, not restricting them to
particular agents.

Runtime interaction complexities within non-trivial multi-agent systems are
predominantly caused by:

– a need to support possibly many scenario instances the agent can concur-
rently participate in,

– a need to handle parallel conversations with possibly many agents within
the same scenario instance, and to ensure conversation adherence to scenario
defined rules,

– a need to maintain conversation state with a particular agent within a sce-
nario instance and correctly terminate conversations

– a need to correctly handle exceptions during conversation, both at the exe-
cution and at the protocol level.

Most of the mentioned complexities are hidden from the system designer and
developer by the platform run-time mechanisms, although the language itself
provides several features, including language elements for representation and
simultaneous communication with a variable group of agents sharing the same
role.

Due to its simplicity, declarative nature of scenario definitions and strict
separation of communication aspects of multi-agent system from agents’ internal
implementations, developed scenarios are completely independent of the agent
platform and implementation language. As such, they allow relatively simple
analysis and consistency validation, as well as transformation into alternative
models. As the final step in the process of modeling and designing interactions
within a multi-agent system, defined interaction scenarios are transformed into
a program code for target agent platform and implementation language.

2.2 Example scenario

The example system depicted on [Fig. 1] represents a set of electrical power
producers and consumers within an autonomous vehicle. All of the producers
and consumers are abstracted with corresponding agents and form a virtual
energy market. The aim of the system is to optimize energy usage patterns
within a vehicle by modeling power source availability and characteristics, and
to adjust power usage policies of power consumers to such characteristics. The
intent of this description is not to focus on the described system’s architecture
or functionality, but to provide a context for presenting all of the key elements
of the SDLMAS language and platform.

902 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

Battery
Main

Source A
Main

Source B
Aux

Source A
Aux

Source B
Power Source agents Power Storage agents

Multi-agent platform

Power Consumer

Planner agent
Scheduler agent

Coordinator agents Scheduler Proxy agents

Drive
Group A
Planner
agents

Drive
Group B
Planner
agents

Comm. &
Navigation

Group Planner
agents

Drive
Group A

Scheduler
agents

Drive
Group B

Scheduler
agents

Comm. &
Navigation

Group
Scheduler

agents

Group A Group B C&NGroup A Group B C&N

Planner agents Scheduler agents

Figure 1: Example multi-agent system of an autonomous vehicle

Each power consumer within the described system is represented by two
agents: a planner agent, in charge of future power consumption planning and
reservation, and a scheduler agent, scheduling consumer actions on the ba-
sis of acquired power reservations. Consumers are grouped and managed by
group coordinators represented by two agent types: a Coordinator agent type
and a SchedulerProxy agent type. Coordinator agents, among other duties,
hold pre-allocated power reservations from active power sources and distribute
it among coordinated consumers, and serve consumer requests for additional
power reservations. SchedulerProxy agents negotiate power requests originated
from Coordinator agents, mediate power reservation changes with Scheduler

agents within their coordination group, and sell power surpluses. Agents of type
PowerSource and PowerStorage abstract various power sources and their char-
acteristics. The ConsumerPowerRequest scenario depicts an interaction where
an agent of type Planner, representing an electric drive 3, requests additional
amount of power for a specified time period in order to perform its task. This
power is requested from the agent’s power consumer group coordinator, who
can employ two strategies. A requested amount of power can immediately be
allocated to drive3 if the sufficient amount of pre-allocated power has been
available to the coordinator, or the power can be requested from other system
components. As the first step towards obtaining additional power the coordi-
nator issues a call for proposals to all of the other coordinators in the system
(represented with SchedulerProxy agents). In turn, scheduler proxies also have
two options at their disposal: offer their pre-allocated power for a suitable com-
pensation or issue a call for proposals to all of the consumers (represented with
Scheduler agents) in the group they coordinate. In both cases, the offer is
returned or a refuse message sent on the basis of availability of pre-allocated
coordinator power or willingness of consumers within a coordinated group to
release (sell) their power reservations. After all the offers and refusals are col-
lected from peer coordinators, a call for proposal is issued by the coordinator

903Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

REQUEST

drive3:Planner
driveGroupB:Coo

rdinator

m

:SchedulerProxy

PROPOSE

1

:Scheduler :PowerSource
battery:PowerSto

rage

CFP
CFP

PROPOSE

CFP

PROPOSE

ACCEPT
ACCEPT

ACCEPT

INFORM_DONE
INFORM_DONE

INFORM_DONE

REQUEST

INFORM_DONE

INFORM_RESULT

1

1

1

r

q=p

p

1

n=m1

1

s=r1

1 0..n

1 0..s
1 0..q

1 0..q
1 0..n

1 0..s

1 1

1 1

1 1

Figure 2: Sequence diagram of the ConsumerPowerRequest interaction scenario

to all of the system’s active power sources. Collected offers are evaluated on
the basis of their temporal characteristics and compensation requested from the
originating source, and the most suitable one is selected. If no satisfactory offer
has been received, or no offers have been received at all (in case of high system
load), the coordinator can, as the last resort, request additional power from the
battery (single power source of such a type in the system). The result of this
complex interaction among the system’s actors is finally relayed to the request-
ing drive3 Planner agent. [Fig. 2] contains a very simplified sequence diagram
of the described interactions.

The key characteristic of the presented interaction that makes sequence di-
agrams less suitable for describing it is the intertwining of three contract net
protocols - results from one protocol have influence on execution of other proto-
cols, yielding a large amount of possible variations within the execution of the
scenario. Also, there are large sections of parallel conversations among agents
and optional executions of certain scenario parts (most of the scenario can be
omitted as the coordinator is able to allocate power from its internal reserves).

2.2.1 Example Scenario Definition

This section contains the complete source of the ConsumerPowerRequest sce-
nario defined in the SDLMAS language.

1 agent @planner : Planner;

904 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

2 agent $coordinator, @coordinator : Coordinator;
3 agent @schedulerProxy : SchedulerProxy;
4 agent $localSchedulers : Scheduler;
5 agent source : PowerSource;
6 agent battery : PowerStorage;
7
8 scenario ConsumerPowerRequest {
9
10 action Planner in issuePwrAllocationRequest() {
11 msgSnd : (REQUEST -> $coordinator);
12 }
13
14 action Coordinator in receivePwrAllocationRequest() {
15 msgRcv : (REQUEST <- @planner);
16 msgSnd : (CFP -> <SchedulerProxy>) |
17 (#INFORM_RESULT -> @planner);
18 }
19
20 action SchedulerProxy in receivePwrReleaseProposal() {
21 msgRcv : (CFP <- @coordinator);
22 msgSnd : (CFP -> <$localSchedulers>) |
23 (PROPOSE | #REFUSE -> @coordinator);
24 }
25
26 action Scheduler in receivePwrReleaseProposal() {
27 msgRcv : (CFP <- @schedulerProxy);
28 msgSnd : (PROPOSE | #REFUSE -> @schedulerProxy);
29 }
30
31 action SchedulerProxy in collectPwrReleaseProposals() {
32 msgRcv : (PROPOSE | #REFUSE <- <$localSchedulers>);
33 msgSnd : (PROPOSE | #REFUSE -> @coordinator);
34 }
35
36 action Coordinator in collectPwrReleaseProposals() {
37 msgRcv : (PROPOSE | #REFUSE <- <SchedulerProxy>);
38 msgSnd : (CFP -> <PowerSource>);
39 }
40
41 action PowerSource in processPwrRequestProposal() {
42 msgRcv : (CFP <- @coordinator);
43 msgSnd : (PROPOSE | #REFUSE -> @coordinator);
44 }
45
46 action Coordinator in decideOnPwrAllocationSource() {
47 msgRcv : (PROPOSE | #REFUSE <- <PowerSource>);
48 msgSnd : (ACCEPT | #REJECT -> <SchedulerProxy>) &
49 (ACCEPT | #REJECT -> <PowerSource>);
50 }
51
52 action PowerSource in allocatePower() {
53 msgRcv : (ACCEPT | #REJECT <- @coordinator);
54 msgSnd : (#FAILURE | #INFORM_DONE -> @coordinator);
55 }
56

905Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

57 action SchedulerProxy in releasePower() {
58 msgRcv : (ACCEPT | #REJECT <- @coordinator);
59 msgSnd : (ACCEPT | #REJECT -> <$localSchedulers>);
60 }
61
62 action Scheduler in confirmPwrRelease() {
63 msgRcv : (ACCEPT | #REJECT <- @schedulerProxy);
64 msgSnd : (#FAILURE | #INFORM_DONE -> @schedulerProxy);
65 }
66
67 action SchedulerProxy in collectConsumerCommits() {
68 msgRcv : (#FAILURE | #INFORM_DONE <- <$localSchedulers>);
69 msgSnd : (#FAILURE | #INFORM_DONE -> @coordinator);
70 }
71
72 action Coordinator in collectPwrAllocationCommits() {
73 msgRcv : (#FAILURE | #INFORM_DONE <- <SchedulerProxy>) &
74 (#FAILURE | #INFORM_DONE <- <PowerSource>);
75 msgSnd : (#REFUSE | #INFORM_RESULT -> @planner) |
76 (REQUEST -> battery);
77 }
78
79 action PowerStorage in receivePwrRequest() {
80 msgRcv : (REQUEST <- @coordinator);
81 msgSnd : (#REFUSE | #INFORM_DONE -> @coordinator);
82 }
83
84 action Coordinator in receiveBatteryResponse() {
85 msgRcv : (#REFUSE | #INFORM_DONE <- battery);
86 msgSnd : (#REFUSE | #INFORM_RESULT -> @planner);
87 }
88
89 action Planner in receivePwrAllocationResponse() {
90 msgRcv : (#REFUSE | #INFORM_RESULT <- $coordinator);
91 }
92 }

2.3 Language description

In SDLMAS language, interaction among agents in a multi-agent system is de-
fined in the form of sequential descriptions of conversation actions - scenarios.
A dialog is defined as a set of agent reference type declarations and a set of sce-
narios. A typical SDLMAS dialog definition is a text file consisting of a header
part with agent declarations and a body part containing one or more scenario
definitions.

2.3.1 Roles and Scenarios

SDLMAS considers roles as standardized patterns of behavior required of all
agents participating in conversations conforming to a set of scenarios the system
behavior is defined with. Roles are not defined explicitly, but implicit definition

906 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

is present in the form of a role’s conversation actions of all scenarios a particular
role participates in. A concrete, explicit role definition is embodied in a generated
program code for each of the roles defined in the system. Line 1 of the example
scenario contains a declaration of an agent reference, used later in the scenario
definition, and its Planner type (role). Planner role behavior is defined by
issuePwrAllocationRequest (line 10) and receivePwrAllocationResponse

(line 89) conversation actions.
Following declarations of agent references and their types (roles), a number

of interaction scenarios are defined. A complete set of scenarios for a multi-agent
system describes all valid interactions among its constituent parts and defines
an external behavior of that system. Each scenario is identified by a unique
scenario name and built of a sequence of conversation actions, implicitly defining
an interaction protocol. An individual scenario should focus on addressing only a
part of system’s interactions, aimed at some particular goal the system is striving
to accomplish using that scenario. In the example presented in this chapter,
only one scenario is defined, although it is clear that many more scenarios are
necessary in order to completely describe its functionality and external system
behavior.

Time ordering of conversation actions is only partially defined by their rela-
tive position in scenario definition. For example, actions issuePwrAllocation-
Request (line 10) and receivePwrAllocationRequest (line 14) are guaranteed
to be executed by agents playing respective roles in order in which they are
defined in the scenario. The execution order of actions allocatePower (line 52)
and releasePower (line 57) cannot be guaranteed as they belong to separate
(parallel) conversations, all that can be guaranteed is that those actions will be
executed after decideOnPwrAllocationSource (line 46).

2.3.2 Conversation actions

A conversation action is defined within the scope of a scenario, belongs to a role
and consists of a procedure π (connector to internal agent logic) and two ele-
mentary communication operations: message reception and transmission. Action
execution implies that:

– received messages satisfy defined message reception conditions (communica-
tive preconditions) ρ,

– an internal agent’s procedure π is executed,

– all messages generated by internal agent’s procedure conform to message
transmission conditions (communicative postconditions) σ.

Agent’s internal procedure π will not be invoked until all of the expected
messages arrive and agent is in the adequate conversation state. In case of com-

907Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

munication timeout, a special message (containing terminating performative) is
inserted in place of an expected one and the procedure is invoked. Three types
of conversation actions exist in scenarios:

– Scenario triggering action definition does not define message reception oper-
ation. As the first action in a scenario, there are no messages to be received
(line 10).

– Regular action is defined with all three action elements, and is characterized
by a typical reactive behavior (line 26).

– Conversation terminating action characterized by absence of a message trans-
mission operation, and is usually the last action in scenario (line 89).

2.3.3 Action conditions

Message reception and transmission conditions are defined with respect to mes-
sage performative(s) and message originating agent(s). A message reception con-
dition ρ of an action a defines circumstances under which a received message or
a set of received messages is to be passed to a procedure implementing internal
agent logic. A condition consists of a list of expected message performatives and
their originating agents, and can form complex expressions using logical opera-
tors. Definition of message transmission condition σ is similar to the previously
described reception condition ρ. This condition describes circumstances (i.e. mes-
sage performatives) under which a message or a set of messages, resulting from
an execution of an internal agent logic procedure, will be sent to corresponding
agents.

A simple communicative action condition is formed of an atomic commu-
nicative condition consisting of a required message performative and a target
or source agent reference (examples on lines 11 and 15). A more flexible atomic
condition definition is allowed by stating a list of required performatives sepa-
rated by the | operator (operator or), effectively achieving ‘one of performatives’
semantics (lines 23 and 32).

Complex conditions are formed of a number of atomic conditions combined
using logical operators or and and (| and &) in conjunction with parenthesis as
grouping operator (lines 22 and 23). The complexity of such conditions is not
limited by the language constructs, but only by their logical consistency. The
ability to define compound conditions for reception of messages enables system
designers to describe complex and concurrent conversations among many agents,
while retaining a strict control over passing received messages to internal agent
logic.

Sequential nature of conversations among agents can be described using only
simple conditions, and stems from the very nature of sequential conversation

908 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

description in SDLMAS. In the example scenario, driveGroupB coordinator first
contacts SchedulerProxy agents (line 16), and only after all of the responses are
collected (line 37) proposals from PowerSource agents are requested (line 38).

Expressing parallelism in conversations among agents of different types re-
quires usage of complex conversation conditions. For example, driveGroupB

Coordinator accepts or rejects SchedulerProxy and PowerSource proposals
in parallel (lines 48 and 49), effectively defining a ‘conversation span’ point
(decideOnPwrAllocationSource) and a corresponding ‘conversation join’ point
in action collectPwrAllocationCommits (lines 73 and 74). Further, conversa-
tions can gain parallelism even more, as new conversation threads span following
the scenario definition (lines 22 and 32 as implicit conversation span and join
points, where SchedulerProxy agent contacts all Scheduler agents in its group).

Portions of scenario can be made optional by using or operators in defining
conversation conditions. For example, the complex outbound condition on lines
16 and 17 permits scenario to end without involving agents other than drive3

and driveGroupB in conversation at all. If message #INFORM_RESULT is sent as a
result of execution of procedure receivePwrAllocationRequest, it is collected
by drive3 agent on line 90 and the scenario ends gracefully.

2.3.4 Agent references

Agent references are used in definitions of action conditions, and represent sin-
gle agent or groups of agents to whom messages are to be sent or from whom
messages are to be received. All the agent references used in scenarios must
be declared in the agent declaration section of SDLMAS file. A reference is
characterized by its type (agent role), cardinality (single or group) and binding
method. Five agent reference types are used within SDLMAS scenario definition:
verbatim, variable, anonymous, group and group variable references.

Verbatim reference is fixed at scenario definition and denotes exactly one
(named) agent. Line 76 of the example contains a message transmission condition
that uses a verbatim reference; the message is sent specifically to an agent named
“battery”. Verbatim reference is usually used when referring to a one-of-a-role
agent in the system (as “battery” agent is the only agent of type PowerStorage

in the system).
Variable references, prefixed with $, are initially not bound to a particular

agent and must be set ‘internally’ by the agent logic during a new conversation
context (i.e. scenario instance) initialization. In issuePwrAllocationRequest

action (line 11), an agent of type Planner initiates a ConsumerPowerRequest

scenario by sending a REQUEST message to its coordinator agent. The coordinator
agent must be determined by each planer agent separately, as not all Planner
agents belong to the same coordinator.

909Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

Anonymous references, prefixed with @, are also initially not bound. In con-
trast to variable references, agent binding occurs externally and is performed
by the framework itself during creation of a new conversation context. Line 15
contains an example of an anonymous reference usage, where binding occurs the
moment a REQUEST message is received from one of the Planner agents and a
new conversation context (scenario instance in the coordinator agent) is created.

Group references, enclosed within < > , denote all agents of a particular type
(role) present in the system at the moment a conversation context is created.
Group reference membership can change (decrease) as conversation with a par-
ticular group member can be terminated at any time during a scenario execution.
At line 16 of the scenario example, a coordinator agent dispatches a CFP message
to all of the agents playing the SchedulerProxy role, and at line 37 collects all
the responses from those agents. Agents that have sent a #REFUSE message are
removed from the group and the conversation with them is terminated automat-
ically.

Group variable references, enclosed within <$ >, differ from group references
only in the method of group population; while group references are populated
externally (by the SDLMAS runtime), group variable references are populated
by internal agent logic, the same as variable references. Group variable reference
usage example can be found at line 22, where a scheduler proxy agent sends a CFP

message to all the scheduler agents it coordinates and line 32 where responses
are collected.

Variable and anonymous reference bindings exist as long as the enclosing
conversation context exists. Multiple conversation contexts active on the same
agent have distinct bindings of variable, anonymous, group and group variable
references.

2.3.5 Performative types

One of the major challenges in managing conversations within a multi-agent
system, apart from handling multiple and parallel conversation states, is to cor-
rectly detect when the conversation between two agents needs to be terminated.
In some cases it can be implicitly realized from a scenario description, such as
lack of σ in action definition, but in most cases it must be explicitly stated. Ter-
minating performatives explicitly indicate an end of a conversation context and
are prefixed with #. Terminating performatives both at sending and receiving
conversation actions need to be appropriately marked. Non-terminating perfor-
matives are called conversational performatives and they preserve the active
conversation context.

The simple example of a terminating performative can be found at line 17
(message reception at line 90), where coordinator informs planner agent that
its request is accepted and no further conversation is necessary. More complex

910 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

example involves a group of scheduler agents (line 32) individually returning ei-
ther conversational PROPOSE (retain group membership) or terminating #REFUSE

(evicted from the group) performative.

2.3.6 Modeling interactions with SDLMAS

In order to describe interactions within a multi-agent system using SDLMAS,
we propose the following steps to be performed:

1. Agent role identification. Following the analysis of system interactions (usu-
ally available in the form of sequence diagrams or free text), a union of agent
types (i.e. roles) at the system level has to be identified and respective agents
and their types defined in SDLMAS.

2. Generalization of interactions. During the scenario definition process a num-
ber of generalizations can be introduced, mainly by substituting concrete
agent names with anonymous, variable and group names. Generalized sce-
narios can be made more flexible and applicable in a wider number of cases
(different pairs/groups of interacting agents), as well as scalable with respect
to number of participating agents.

3. Definition of conversation actions. For each group of received or transmitted
messages a definition of a conversation action is needed. Expressiveness of
such actions is significantly higher than those of sequence diagrams, requiring
definition of message transmission and reception constraints. Each action
also must be provided a name of internal agent logic procedure invoked
upon successful reception of all incoming messages.

4. Terminating performatives. All terminating performatives must be identified
and appropriately marked.

2.4 Relation between SDLMAS and ACL

The SDLMAS, as a declarative language for scenario description, relies on the
FIPA ACL [ACL] language in such way that the message aspect of the SDL-
MAS language is mapped into the ACL messages during code generation. The
SDLMAS borrows some concepts from the ACL in order to make this mapping
as seamless as possible. More specifically, it explicitly uses concept of perfor-
matives in scenario description, which will consequently be used to create ACL
messages with appropriate message performatives. Few other aspects are also
used within the SDLMAS platform. Conversation id is used for identification of
particular conversation, especially in case of several simultaneous conversations.
Sender and receiver parameters are used also to define corresponding agents ac-
cording to scenario description while ontology parameter is used as a container
for a communication of agent internal states ontology.

911Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

Naming
Service agent

Management
agent

Agent
registryRole A

Application agents

Communication infrastructure (ORB)

Role ...Role B

Figure 3: SDLMAS platform components

3 SDLMAS Platform

SDLMAS platform provides tools and a framework for implementation and run-
time support of multi-agent systems whose interactions are modeled using SDL-
MAS scenario description language.

3.1 Platform Components

A multi-agent system based on the SDLMAS platform consists of the three com-
ponent groups: a generic SDLMAS component (Management agent), application-
specific SDLMAS components (Application agents) and underlying agent plat-
form components (ORB and Naming Service agent).

The SDLMAS platform components rely on resources and functionality pro-
vided by target agent platform, such as thread management and multithreaded
execution of agents, FIPA compliant messaging etc. Naming service must also be
provided by the target platform, and is used as a central registry of application
agents currently active in the system. Upon their successful initialization, all
agents are required to register with the Naming Service agent, and to deregister
prior to their deactivation. Accurate information stored in the registry is crucial
for correct behavior of late agent reference binding mechanism:

– Before an anonymous reference is bound to a real agent, an agent’s type
(role) is verified using the information from the registry.

– When a group reference is populated, all agents of the required type (role)
are collected from the registry.

Management agent provides a support for bootstrapping and initialization of
a multi-agent system based on provided global and agent-specific configurations.
This agent is a mandatory system element.

Functionality of a multi-agent system is based on individual functionalities
of system-constituting entities and on effects of interaction among those entities.

912 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

SDLMAS
scenario

definitions

Scenario compiler Interaction
model

Code generator

Platform
templatesPlatform

templatesPlatform
templates

Model validator

Platform
templatesPlatform

templatesSource code

Figure 4: Code generation from scenario definition

Each SDLMAS application agent is assigned a specific role in the system and
strictly conforms to prescribed interaction patterns for that role. Consequently,
portions of the implementation code related to an interaction are generated
from scenario descriptions, and must not be modified by agent developers. Other
portions of agent code, related to internal agent logic, are free for developers to
design and implement.

The following procedure is followed on system start-up: (1) Naming Service
and Management agents are started, (2) a number of application agents are
started by the Management agent (optional), (3) application agents register at
the Agent registry (Naming Service agent), (4) a number of scenarios are initiated
by the Management agent based on system configuration files, with specified
application agents as their initiators.

3.2 Code Generation from Scenario definitions

The process of converting a SDLMAS scenario definition to a source code for a
target agent platform is depicted on [Fig. 4].

A text file containing agent type declarations and scenario definitions is con-
verted to an internal model, suitable for both scenario validation and code gen-
eration. Source code for the target agent platform is generated by employing
the platform-specific set of code templates. This approach allows both easy re-
targeting of generated agent code and requires only a modest effort in devel-
oping support for a new agent platform or programming language. Generated
source entities are divided into two main categories: model-level entities, shared
among many system components, and scenario-level entities, containing role-
and scenario-specific implementation of agent communication behavior.

Two code generation tools have been developed for converting SDLMAS sce-
nario definitions to platform code; a command line based tool and an Eclipse

913Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

Figure 5: Eclipse SDLMAS plug-in

Target agent platform

S
D
L
M
A
S

P
la
tf
o
rm
 L
a
y
e
r

A
p
p
li
c
a
ti
o
n

L
o
g
ic
 L
a
y
e
r

P
la
tf
o
rm

A
b
s
tr
a
c
ti
o
n

L
a
y
e
r

code
generator

library

library

Internal agent logic

Scenario-dependent
components

SDLMAS generic components

Platform abstraction
components

Figure 6: Layered agent internal structure

plug-in [Fig. 5]. The plug-in allows for easier syntax checking, model transfor-
mation and validation, as well as navigation between scenario definition and
generated implementation code. Internal interaction model is stored in an EMF-
based model [EMF] and JET templates are used for generating the Java code.
At the moment only the JADE platform [JADE] is supported.

Three main layers can be identified within a SDLMAS agent implementation
([see Fig. 6]): platform abstraction, SDLMAS platform and application layers.

Platform Abstraction Layer is the layer closest to the target agent platform,

914 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

abstracting the specificities of platform programming interfaces and semantics
and providing the SDLMAS Platform layer with a unified interface towards the
target platform resources. This layer takes the form of a library and is highly
agent-platform and language dependant, thus must be developed for each new
platform the SDLMAS is ported to.

SDLMAS Platform Layer consists of two sub layers. Generic components sub
layer implements scenario- and role- independent functionality, and is provided
in a form of a library, whereas Scenario-dependant sub layer originates from
a process of code generation from SDLMAS scenario definitions. This sub layer
contains necessary functionality for handling conversation contexts, tracking con-
versation progress, enforcing message reception and transmission conditions and
invoking internal agent logic procedures.

Application Logic Layer encapsulates agent’s application logic, and presents
the only part of the agent’s implementation where additional code must be added
by developers. Application logic is implemented as a set of activities (invocations
of method skeletons) asynchronously executed within a context of a scenario
instance

3.3 Platform run-time behavior

Generating implementation code from SDLMAS scenario descriptions and pro-
viding a runtime support for multi-agent system execution basically requires a
paradigm shift; from declarative interaction-centric approach of scenario defini-
tion to agent-centric approach of managing conversation states, active actions,
message buffers etc. The following text presents only general concepts of platform
runtime and depicts relations between language and runtime elements.

3.3.1 Scenario Execution

Scenario execution for an agent playing a scenario role takes a form of sequential
execution of conversation actions belonging to that role. Order of those actions
is determined by their relative position in the scenario definition.

Scenario can be triggered using two methods: external or internal. External
method is used by the Management agent, and relies on sending a SCENARIO_-
START message to an agent who is to trigger the requested scenario. This ap-
proach does violate one of the key agent properties - autonomy, but is included
due to its practical value, especially in bootstrapping the system or to achieve
repetitive scenario execution. Internal scenario start method is used within agent
logic implementation, i.e. an agent autonomously decides to trigger a certain sce-
nario, possibly as a result of other scenario execution. To start a specific scenario,
the agent must be of type (role) that contains a scenario triggering action. Sce-
nario cannot be triggered using external method if its scenario triggering action
uses agent references other than group or verbatim.

915Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

A conversation context denotes an independent scenario instance execution
within an agent (context owner). It encapsulates all the elements forming the
scenario instance state, i.e. the states of all the agent’s conversations, current
message reception and transmission conditions and the currently active conver-
sation action. New conversation context can be created as a consequence of two
different events. The first event is the activation of the scenario triggering action,
regardless of the activation method used (external or internal). This conversation
context is called a primary conversation context and is a parent context to all
the conversation contexts created during the scenario instance execution. In this
case the initiator and the owner of the context is the agent that triggered the
scenario. A conversation context is also created when an agent receives a mes-
sage that activates the first conversation action in a scenario for a role the agent
plays. The initiator of this context is the agent that initiated the conversation
(triggered the context creation).

In most cases, a conversation context is terminated (i.e. scenario instance
execution within an agent ends) when the conversation between the context
initiator and the context owner is terminated. Another cause of context termi-
nation can be the lack of message reception or transmission conditions in an
active conversation action, preventing an agent to proceed with interaction.

3.3.2 Conversations

During the course of one scenario instance execution, an agent can be involved
in many parallel conversations with other agents. At least one conversation is
present, with an agent that initiated the conversation context (scenario instance).
Each conversation, the agent is involved in, is characterized by a unique conver-
sation identifier and its state maintained in a state variable.

Conversation state change can only occur within the context of a conversa-
tion action, as a consequence of a conversation message being received and/or
transmitted. If received, transmitted or both messages are conversational (i.e.
contain conversational performatives), the conversation state is changed after
the conversation action finishes. However, if received or transmitted message is
a terminating message (i.e. contains a terminating performative), conversation
state is immediately changed to ‘exit’ and the conversation is terminated. Con-
versation can also be moved to ‘exit’ state if the executed action is the last
scenario action for a particular role the agent is playing. [Fig. 7] depicts state
transitions in a simple ContractNet example where an Inititator1 request
proposals from two participants. Initiator1 creates a conversation context con-
taining two independent conversations with participants. The conversations will
progress in parallel until one of them is terminated by #REJECT message, sent
by Initiator1. Initiator1 will remove conversation with Participant2 from

916 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

CFP (2)

initiator1: Initiator
Participant1:
Participant

CFP (1)

Participant2:
Participant

PROPOSE (1)

PROPOSE (2)

ACCEPT (1)

REJECT (2)

COMMIT (1)

i1

i0

p2'

p0'
p0

i2

p1

p2

p1'

i0'

i1'

i2'

Conversation start ExitTransition

Figure 7: Conversation states

its own conversation context and continue only with Participant1. Similarly,
conversation context on Participant2 side will also be destroyed.

Pronouncing a conversation as terminated is not the only step that needs
to be taken; scenario conversation actions may still enforce message reception
and transmission conditions including atomic conditions involving agents that
are no longer reachable. Without conducting the constraint elimination pro-
cedure on all existing reception and transmission conditions currently defined
within the scenario instance, the system would end in a deadlock or its execu-
tion being seriously affected by a large number of timeouts. An example of a
condition elimination procedure is presented on [Fig. 8], where a transmission
condition is eliminated in Participant2 agent (received a terminating message
from Initiator1), and a reception condition is eliminated in Initiator1 agent
(terminated conversation with Participant2 by sending him a #REJECT mes-
sage).

3.3.3 Conversation Actions

Conversation actions are atomic units of scenario execution. Each agent perform-
ing a certain role is characterised by a sequence of scenario-specific conversation
actions. As defined in the SDLMAS language specification, for an action to be
triggered a set of messages conforming to the action’s reception conditions must
be received. As a consequence of successful action execution, the messages are
sent to various scenario participants and the agent’s current conversation action
is changed.

917Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

i1

i0

i2

i0'

i1'

i2'

procedure

Agent

PERF

PERF

Agent

PERF

PERF

Agent

PERF

PERF

Agent

PERF

PERF

Procedure name

Message reception
conditions

Message transmission
conditions

sendCFP()

Participant1

CFP

Participant2

CFP

processProposeRefuse()

Participant1

PROPOSE

REFUSE

Participant2

PROPOSE

REFUSE

Participant1

ACCEPT

REJECT

Participant2

ACCEPT

REJECT

processCommitRollbck()

Participant1

COMMIT

ROLLBACK

Participant2

COMMIT

ROLLBACKX

p1

p0

p2

processCFP()

Initiator1

PROPOSE

processAcceptReject()

Initiator1

ACCEPT

REJECT

Initiator1

COMMIT

ROLLBACK

Initiator1 Participant1

Initiator1

CFP

REFUSE

p1'

p0'

processCFP()

Initiator1

PROPOSE

processAcceptReject()

Inicijator1

ACCEPT

REJECT

Initiator1

COMMIT

ROLLBACK

Participant2

Initiator1

CFP

REFUSE

p2'

X

Reception
condition
eliminated

C
onversation flow

C
F

P
 (1)

C
F

P
 (2)

P
R

O
P

O
S

E
 (1)

P
R

O
P

O
S

E
 (2)

A
C

C
E

P
T

 (1)

R
E

JE
C

T
 (2)

C
O

M
M

IT
 (1)

Transmission
condition
eliminated

Figure 8: Constraint elimination

Message reception process is a three-step process involving scenario instance
routing, message expectance verification and conversation action triggering. In
the first step, an active scenario instance within an agent is selected according
to the scenario identifier field value of the received message, and the message
is forwarded to its message handling subsystem. In the second step, a message
expectance is determined according to the basis of several factors:

– current scenario conversation action defining message reception conditions,

– current conversation state,

– message originating agent,

– message performative.

If there is at least one atomic reception condition within the current conversa-
tion action’s message reception condition whose source and type (performative)
match the received message’s source and type, the message is considered to be

918 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

expected. Expected messages are forwarded to conversation action’s message
buffer, while non-expected messages are discarded.

The third step, triggered by a buffer message insertion, involves checking the
message reception constraint satisfaction. If the set of messages currently present
in the conversation action’s message buffer satisfies the action’s compound re-
ception constraint, conversation action execution is triggered. A set of messages
satisfying the constraint is forwarded to the action procedure implementation
along with an outgoing message template. The SDLMAS platform does not pre-
scribe any constraints on implementation of conversation action procedures, just
expects that all the outgoing messages, according to the forwarded template, are
properly formed and they conform to message transmission conditions.

A timeout mechanism is invoked if the active action’s reception conditions are
not satisfied for a specified time period. When timeout occurs, all expected but
not received messages are provided by the platform run-time with the #TIMEOUT
terminating performative set, and the conversation action execution is triggered.

Message transmission conditions determine a set of allowable combinations
of outgoing messages (characterized by their performatives) and their receivers.
No explicit consistency checking mechanisms are employed; an implicit one is
used by providing an outgoing message template structure during procedure
invocation. Agent logic implementers are advised to use provided outgoing mes-
sage templates. Outgoing message template contains an allowed set of outgoing
messages with a limited number of selectable performatives and preset receiver
agents, valid at the point of scenario execution.

3.3.4 Security

Providing security in multi-agent systems does not require addressing of only
standard security issues present in multi-user distributed systems, but several
MAS-specific issues as well [FIPA 01] [Poggi et al. 01] [Novák et al. 03]. Existing
multi-agent platforms generally combine two approaches to usage of security
mechanisms with regards to agent implementation. Transparent mechanisms are
implemented at the infrastructural level and do not influence the implementation
of agents forming the multi-agent application. In contrast, opaque mechanisms
are used to implement security at the application level and require explicit usage
of security API within agent implementation code.

The SDLMAS platform security and security of applications built on top of
the SDLMAS platform rely solely on security mechanisms provided by the tar-
get agent platform or its security extensions. For example, SDLMAS for JADE
as a target agent platform requires JADE Security add-on [JADE-S] to provide
security mechanisms for the developed application. Basic security is achieved
using only transparent security mechanisms provided by the add-on: principal-
based resource usage authorization and secure communication among platform

919Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

containers is configured using respective configuration files, requiring no changes
in the original SDLMAS for JADE platform code or in implementation of appli-
cation agents.

However, such an approach does not resolve security issues related to integrity
and/or confidentiality of exchanged messages and authorized usage of SDL-
MAS platform security-critical services. SDLMAS platform contains three such
security-critical services: (1) agent registration/deregistration with the Naming
Service agent, (2) adding/revoking group change notification subscriptions and
(3) external scenario triggering. To resolve mentioned issues, it is necessary to
employ opaque target platform security mechanisms within a SDLMAS platform
implementation for signing and/or encryption of exchanged messages.

We are in the process of deriving a secure SDLMAS for JADE-S platform
implementation from existing SDLMAS for JADE platform by using JADE-S
provided opaque security mechanisms. Required modifications are confined to
the Platform Abstraction Layer, where all the messages shall be signed and
encrypted automatically. In this way we will, transparently to the application
agent implementation layer, ensure integrity and confidentiality of exchanged
agent messages, and enforce authorized access to security-critical platform ser-
vices (for example, only the Management agent will be allowed to externally
trigger scenarios).

In our future work we plan to address fine-grained communication security
among agents by allowing declaration of security-related information within sce-
nario descriptions in concert with adding target platform-independent security
sub layer within the SDLMAS Platform layer.

4 Related Work

In the last few decades, numerous methodologies for development of agent-based
systems appeared as a part of an initiative to formalize and define the process
of design and implementation of multi-agent systems. Agent interactions are not
usually treated separately as they are seen as an ingredient element of activities
like design, development or deployment of such systems. In general, the major-
ity of models [Gmez-Sanz et al. 03] [Wood et al. 00] [Wooldridge et al. 00] are
based on AUML [AUML], Petri Nets [Cost et al. 99] or state-chart diagrams.
Although AUML achieved significant level of popularity, generally for its visual
representation, it lacks the expressiveness required due to the multi-lateral na-
ture of agent interactions [Paurobally et al. 03a]. Additionally, the diagrams can
become hard to read if they need to describe slightly more complicated conversa-
tions with several agents involved. Also, they do not include mapping definitions
between interaction protocols and agent’s internal actions which makes this lan-
guage impractical for rapid agent development by automatic code generation.

920 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

Petri Nets are also not very appropriate for interaction description due to their
lack of clarity and scalability [Richters et al. 98] [Paurobally et al. 03b], espe-
cially for protocols like Contract-Net [Purvis et al. 02]. State-charts have clearer
representation of interaction protocols but they are still missing clear definition
of relationship between protocol execution and an agent’s business logic.

The model described in [Bratman et al. 88] is based on a belief-desire-inten-
tion (BDI) scheme where an agent tries to fulfill its own goals by executing tasks
based on own knowledge base about environment. Although the model influenced
definitions of widely accepted FIPA and ACL [FIPA] standards, it suffers from
the ”semantic verification” problem [Wooldridge 00] where it is not possible to
guarantee the equal understanding of ontology terms by all agents involved.

The MAP language [Walton 03] for dialogue protocol definition is based on
the principles found in Electronic Institutions [Estava et al. 01] while its seman-
tics is inspired by logic which is basis for communication and parallel systems
[Milner 89]. The key concept of the language is the decomposition of a dialogue
into scenes. A scene can be seen as an interaction context within which agents
are communicating with each other. A scene also contributes to a better orga-
nization of complex multi-agent systems by enabling start of interactions only
when all agents are present within a given scene, or, by preventing agents to
leave a scene before a dialogue completes. Another key concept is an agent’s
role, a certain set of behaviors that an agent will adopt during interactions. An
agent adopts an interaction protocol based on the role it plays. The language
also allows agents to interact asynchronously and simultaneously which might
cause unforeseen system activities, even if a well-structured protocol is intro-
duced in order to guarantee system’s emergent behavior. A potential solution to
this problem lies in the exhaustive search of the entire dialogue space in order to
check potential conflicting protocol definitions, such as loops or deadlocks during
interactions [Clarke et al. 99]. It is important to note that this language is not
based on message flows.

Another attempt to represent agent interactions and roles in a standard-
ized way resulted in the appearance of AgentUML (or AUML) [Huget 04]. The
UML standard is taken as the base in order to mitigate a paradigm shift from
object-oriented to agent-based concepts, and to enable standardized notation
for analysis, design and implementation of agent systems. UML class diagram
is amended in order to include concepts of roles and behaviors while sequence
diagram is extended by specificities of agent interactions. Visual representation
of agent dialogues is one of the advantages of the AgentUML. In order to achieve
practical usability, it is necessary to define the ways of its transformation into
textual notation of protocols, and various language transitions are proposed
[Warmer et al. 99] [Winikoff 05]. In spite of these efforts, AUML lacks enough
representation capabilities of agent’s states, which causes an inability to define

921Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

conditions under which messages can be received or sent by an agent. Although
AUML lacks some features mentioned above, it has influenced other language
designs [Warmer et al. 99] [Winikoff 05] [Dinkloh et al. 05] [Huget 02] and mod-
eling frameworks [Quenum et al. 06]. The OCL language [Warmer et al. 99] is
the way to represent UML in a textual format and it can be used to represent
AUML too but it was shown to have limited usability in [Richters et al. 98].

The IOM/T language [Doi et al. 05] introduces a formal way of mapping
interaction protocol from AUML and in general emerged from a tendency to
strictly define protocols in a textual notation. Unlike the MAP language, the lan-
guage is based on message flow which means the definitions of protocol-related
agent activities are not separated but defined in the single definition. Unfortu-
nately it lacks some important characteristics related to scenario descriptions.

Firstly, there is no explicit definition of message performative used in con-
versations. A protocol is defined as a sequence of messages whose character
is determined by corresponding performatives. If the language lacks formal ex-
plicit definition of message performatives, message validity needs to be performed
within the agent’s business logic. This increases the complexity of the logic im-
plementation with additional performance penalties since irrelevant or protocol-
incompatible messages will not be immediately ignored after their arrival but
during their processing. Furthermore, it is not possible to determine the differ-
ences between conversational and terminating performatives which prevents an
agent to explicitly recognize a conversation completion. Since there is no clear
distinction between performative types, it is also not possible to define conditions
under which messages can be forwarded to the business logic or just ignored.

Secondly, the cardinality of agent instances is bound to the protocol imple-
mentation inside of agent’s internal logic. The protocol description is linked with
the given scenario and the number of agent instances in a dialogue. If it is re-
quired to change a cardinality of agent instances, the protocol description needs
to be modified too in order to reflect this update since the business logic defines
the interaction description including agent instance cardinality. Consequently,
it is not possible to change number of instances of a particular agent without
re-implementing the internal implementation.

Thirdly, an implementation of agent’s internal logic is language-dependent
on the JADE agent platform [JADE], which disables possibility of usage IOM/T
language in another agent platform.

Q Language [Ishida 02] is another language for interaction protocol definition
in a textual form. Its main purpose is to define interactions with a user or other
agents on behalf of a user. Consequently, it is not based on message flows in
the way that SDLMAS is. Typically, scenario description will be considered only
from the point of view of one agent who is supposed to interact with other parties
assuming their prior knowledge about the scenario they are supposed to follow.

922 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

5 Conclusions and Future Work

In this paper we presented the SDLMAS framework for rapid design, develop-
ment and runtime support of multi-agent systems. The framework consists of a
declarative language for description of interactions within a multi-agent system,
tools for description and model manipulation, and a runtime framework.

The presented language is a declarative one, describing external system be-
havior in a form of a set of interaction scenarios, where each scenario describes
an interaction episode (a trace of communication) among a group of agents. The
interaction-centric perspective the SDLMAS language takes proves to be far
simpler and more intuitive than agent-centric approaches, yet providing enough
expressiveness, flexibility and scalability in describing complex and interwoven
interactions.

Scenario descriptions are transformed into a target agent platform’s program
code, and in conjunction with target platform and platform-specific SDLMAS
runtime support, form a basis of a functional multi-agent system. This transfor-
mation of interaction-centric scenario descriptions into agent-centric implemen-
tation code required both a paradigm shift and a careful mapping of language
constructs to runtime constructs, in order to avoid inconsistencies between de-
clared and runtime system behavior.

By using SDLMAS, an effort invested in design and implementation of inter-
action related portions of multi-agent systems is significantly reduced, allowing
more resources to be dedicated to higher functional aspects of developed systems.

One of the current limitations of the SDLMAS framework is a lack of explicit
support for loops within scenario descriptions. A language construct for speci-
fying timing aspects of message reception constraints would also contribute to
usability of the framework. These limitations, in conjunction with an effort to
support agent platforms other than JADE, will be addressed in our future work
as a part of continuous improvement of the SDLMAS platform.

Acknowledgements

This work has been supported by the Croatian Ministry of Science, Educa-
tion and Sports under the research project “Software Engineering in Ubiquitous
Computing”.

References

[ACL] FIPA Agent Communication Language. See http://www.fipa.org/
repository/aclspecs.html.

[AUML] AgentUML. See http://www.auml.org.
[Bratman et al. 88] Bratman, M. E., Israel, D. J., Pollack, M. E.: “Plans and Resource-

Bounded Practical Reasoning”; Computational Intelligence, 4 (1988), 349-355.

923Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

[Clarke et al. 99] Clarke, E. M., Grumberg, O., Peled, D. A.: “Model Checking”; MIT
Press, Cambridge (1999).

[Cost et al. 99] Cost, R., Chen, T., Finin, T., Labrou, Y., Peng, Y.: “Modeling Agent
Conversations With Colored Petri Nets”; Proc. Workshop on Specifying and Imple-
menting Conversation Policies, Seattle, USA (1999), 59-66.

[Dinkloh et al. 05] Dinkloh, M. Nimis, J.: “A Tool for Integrated Design and Imple-
mentation of Conversations in Multiagent Systems”; Proc. AAMAS03 PROMAS
Workshop on Programming Multi-Agent Systems Selected Revised and Invited pa-
pers, Melbourne, Australia (2003), 187-200.

[Doi et al. 05] Doi, T., Tahara, Y., Honiden, S., “IOM/T: An Interaction Description
Language for Multi-Agent Systems”; Proc. 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’05), Utrecht, Netherlands
(2005), 778-785.

[EMF] The Eclipse Modeling Framework; See http://www.eclipse.org/modeling/
emf/

[Endriss et al. 03] Endriss, U., Maudet, N., Sadri, F., Toni, F.: “Protocol Conformance

for Logic-based Agents”, Proc. 18th International Joint Conference on Artificial
Intelligence (IJCAI-2003), Acapulco, Mexico (2003), 679-684.

[Estava et al. 01] Estava, M., Rodriguez, J. A., Sierra, C., Garcia, P., Arcos, J. L.: “On
the Formal Specifications of Electronic Institutions”; In Agent Mediated Electronic
Commerce, The European AgentLink Perspective, Lecture Notes In Computer Sci-
ence vol. 1991., Springer-Verlag, London (2001), 126-147.

[FIPA] FIPA: Foundation for Intelligent Physical Agents. See http://www.fipa.org
[FIPA 01] FIPA Agent Security Management Specification (obsolete). See http://

www.fipa.org/specs/fipa00020/index.html
[Gmez-Sanz et al. 03] Gmez-Sanz, J. J., Fuentes, R.: “Agent Oriented Software Engi-

neering with INGENIAS”; Proc. 3rd International Central and Eastern European
Conference on Multi-Agent Systems CEEMAS 2003, Prague, Czech Republic (2003),
394-403.

[Greaves et al. 00] Greaves, M., Holmback, H., Bradshaw, J., “What Is a Conversation
Policy?”; In Issues in Agent Communication, F. Dignum and M. Greaves, Eds.
Lecture Notes In Computer Science, vol. 1916. Springer-Verlag, London, UK (2000),
118-131.

[Huget 02] Huget, M. P.: “A Language for Exchanging Agent UML Protocol Dia-
grams”; Technical Report ULCS-02-009, The University of Liverpool, Computer
Science Department, UK (2002).

[Huget 04] Huget, M. P.: “Agent UML Notation for Multiagent System Design”; IEEE
Internet Computing, 8, 4 (2004), 63-71.

[Ishida 02] Ishida, T., Q: “A Scenario Description Language for Interactive Agents”;
Computer, 35, 11 (2002), 42-47.

[JADE] JADE: Java Agent Development Framework. See http://jade.cselt.it
[JADE-S] JADE Security add-on. See http://jade.tilab.com/doc/tutorials/JADE_

Security.pdf (2005)
[Jennings et al. 99] Jennings, N. R., Wooldridge, M.: “Agent-Oriented Software En-

gineering”, Proc. 9th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World: Multi-Agent System Engineering (MAAMAW-99), Valencia,
Spain (1999), 1-7.

[Milner 89] Milner, R., “Communication and Concurrency”; Prentice-Hall Interna-
tional (1989).

[Novák et al. 03] Novák, P., Rollo, M., Hod́ık, J., Vlček, T.: “ Communication Security

in Multi-agent Systems”; Proc. 3rd International / Central and Eastern European
Conference on Multi-Agent Systems CEEMAS 2003, Prague, Czech Republic (2003),
454-463.

924 Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

[Papazoglou 01] Papazoglou, M. P.: “Agent-oriented technology in support of e-
business”; Communications of the ACM, 44, 4 (2001), 71-77.

[Paurobally et al. 03a] Paurobally, S., Cunningham, J.: “Achieving Common Interac-
tion Protocols in Open Agent Environments”; Proc. 2nd international workshop
on Challenges in Open Agent Environments (AAMAS 03), Melbourne, Australia
(2003).

[Paurobally et al. 03b] Paurobally, S., Cunningham, J., Jennings, N. R.: “Developing
Agent Interaction Protocols Using Graphical and Logical Methodologies”; Proc.
AAMAS03 PROMAS Workshop on Programming Multi-Agent Systems Selected
Revised and Invited papers, Melbourne, Australia (2003), 149-168.

[Podobnik et al. 08] Podobnik, V., Petric, A., Jezic, G.: “Agent-Based Solution for
Dynamic Supply Chain Management”; Journal of Universal Computer Science, 14,
7 (2008), 1080-1104.

[Poggi et al. 01] Poggi, A., Rimassa, G., Tomaiuolo, M.: “ Multi-user and security
support for multi-agent systems”; Proc. WOA 2001, Modena, Italy (2001), 13-18.

[Purvis et al. 02] Purvis, M. K., Cranefield, S., Nowostawski, M., Ward, R., Carter, D.,
Oliviera, M. A., “Agent Cities Interaction Using the Opal Platform”; Proc. Work-
shop on Challenges in Open Agent Systems, The 1st International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS02), Bologna, Italy
(2002).

[Quenum et al. 06] Quenum, J. G., Aknine, S., Briot, J-P, Honiden, S.: “A Modelling

Framework for Generic Agent Interaction Protocols”; Proc. 4th International Work-
shop on Declarative Agent Languages and Technologies, Hakodate, Japan (2006),
207-224.

[Richters et al. 98] Richters, M., Gogolla, M.: “On Formalizing the UML Object Con-

straint Language”; Proc. 17th International Conference on Conceptual Modeling,
Singapore (1998), 449-464.

[Sliwko et al. 07] Sliwko, L., Nguyen, N. T.: “Using multi-agent systems and consensus
methods for information retrieval in internet”; International Journal of Intelligent
Information and Database Systems, 1, 2 (2007), 181-198.

[Stranjak et al. 08] Stranjak, A., Dutta, P. S., Ebden, M., Rogers, A., Vytelingum, P.:
“A Multi-Agent Simulation System for Prediction and Scheduling of Aero Engine
Overhaul”; Proc. 7th International Conference on Autonomous Agents and Multia-
gent Systems: industrial track (AAMAS2008), Estoril, Portugal (2008), 81-88.

[Walton 03] Walton, C. D.: “Multi-Agent Dialogue Protocols”; Proc. 8th International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida
(2003).

[Warmer et al. 99] Warmer, J., Kleppe, A.: “OCL: The Constraint Language of the
UML”; Journal of Object-Oriented Programming (1999), 10-13.

[Winikoff 05] Winikoff, M.: “Towards Making Agent UML Practical: A Textual Nota-

tion and a Tool”; Proc. 5th International Conference on Quality Software (QSIC’05),
Melbourne, Australia (2005), 401 - 412.

[Wooldridge 00] Wooldridge, M.: “Semantic Issues in the Verification of Agent Com-
munication Languages”; Autonomous Agents and Multi-Agent Systems, 3, 1 (2000),
9-31.

[Wood et al. 00] Wood, M. F., DeLoach, S. A.: “An Overview of the Multiagent
Systems Engineering Methodology”; Proc. 1st International Workshop on Agent-
Oriented Software Engineering, Limerick, Ireland (2000), 207-221.

[Wooldridge et al. 00] Wooldridge, M., Jennings, N. R., Kinny, D.: “The Gaia Method-
ology for Agent-Oriented Analysis and Design”; Autonomous Agents and Multi-
Agent Systems Archive, 3, 3 (2000), 285-312.

[Zhang et al. 08] Zhang, D., Simoff, S., Aciar, S., Debenham, J.: “A multi agent rec-
ommender system that utilises consumer reviews in its recommendations”; Interna-
tional Journal of Intelligent Information and Database Systems, 2, 1 (2008), 69-81.

925Cavrak I., Stranjak A., Zagar M.: SDLMAS: A Scenario Modeling Framework ...

