
  

A Neural Network Based Vehicle Classification System 
for Pervasive Smart Road Security 

 
 

Naixue Xiong, Jing He1,2 
(1Dept. of Computer Science, Georgia State University, Atlanta, Georgia, USA 

nxiong@cs.gsu.edu, jinghe@cc.usu.edu) 
 

Jong Hyuk Park 
(Department of Computer Science and Engineering, Kyungnam University, Korea 

jhpark1@kyungnam.ac.kr) 
 

Donald Cooley 
(2Dept. of Computer Science, Utah State University, Logan, Utah, USA 

cooley@don.cs.usu.edu) 
 

Yingshu Li 
(Dept. of Computer Science, Georgia State University, Atlanta, Georgia, USA 

yli@cs.gsu.edu) 
 
 
 

Abstract: Pervasive smart computing environments make people get accustomed to convenient 
and secure services. The overall goal of this research is to classify vehicles along the I215 
freeway in Salt Lake City, USA. This information will be used to predict future roadway needs 
and the expected life of a roadway. The classification of vehicles will be performed by a 
synthesis of multiple sets of features. All feature sets have not yet been determined; however, 
one such set will be the reduced wavelet transform of the image of a vehicle. In order to use 
such a feature, it is necessary that the image be normalized with respect to size, position, and so 
on. For example, a car in the right most lane in an image will appear smaller than one in the left 
most lane, because the right most lane is closest to the camera. Likewise, a vehicle’s size will 
vary depending on where in a lane its image is captured. In our case, the image capture area for 
each lane is approximately 100 feet of roadway. A goal of this paper is to normalize the image 
of a vehicle so that regardless of its lane or position in a lane, the features will be approximately 
the same. The wavelet transform itself will not be used directly for recognition. Instead, it will 
be input to a neural network and the output of the neural network will be one element of the 
feature set used for recognition. 
 
Keywords: Neural Network, Wavelet, Wavelet transform, Vehicle classification, Recognition, 
Normalization, image processing 
Categories: H.5.1, I.2.0, I.2.11, I.2.8, I.2.6, L.2.0 

1 Introduction  

Pervasive smart computing environments make people get accustomed to convenient 
and secure services. Traffic management and smart information systems, for 
pervasive smart road security, depend on a lot of sensors to estimate traffic 
parameters. Recently, magnetic loop detectors are usually used to compute the 
number, which is for vehicles passing over them. Vision-based video monitoring 
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systems offer a number of advantages. Besides vehicle counts, a lot of traffic 
parameters (such as vehicle classifications, lane changes, and so on) can be measured, 
and cameras are much less disadvantaged to install than magnetic detectors. 
It is important for vehicle detection and classification in the computation of the 
percentages of vehicle classes, which are used in streets and highways. The current 
situation is described by outdated data, and it is human operator to manually count 
vehicles at a specific street. Thus, one uses an automated system to obtain perfect 
design of pavements (e.g., the decision about thickness and width) with obvious 
results in cost and quality. Even in metro areas, there is a requirement for data about 
vehicle classes, which use a particular street. A classification system, like the above 
one, can provide important data for a particular design scenario [Gupte, 00]. 

In this paper, we use a single camera system mounted on a pole to look down on 
the traffic scene, and detecting and classifying vehicles in multiple lanes are for any 
direction of traffic flow. Except for the camera parameters and direction of traffic, it 
requires no other initialization.  

The rest of this paper is organized as follows. Section 2 gives an overview of 
related work, In Section 3, we talk about the relevant theory on Neural Network. 
Section 4 gives our theory analysis for the classification system based on wavelet and 
wavelet transform. In Section 5, we present our algorithm description for the 
implement of the vehicle classification system. Finally, we give the results and 
relevant discussion on our vehicle classification system in Section 6, and present the 
conclusion in Section 7. 

2 Related Work 

There has been a lot of literature on vehicle detection and classification, and vehicle 
classification is an inherently hard problem.   

Neural networks have gotten successful applications in various fields from 
pattern recognition to road security diagnosis due to their strong capacity to handle 
formidable problems and to improve system performance, including vehicle detection 
and classification. A lot of papers used Neural Networks to solve relevant problems or 
optimize relevant performance [Chen, 2008; Zuo, 2008; Guarneri, 2008; De, 2008].  
In [Chen, 2008], two types of uncertain delays were considered because the 
asymptotic stability of neural networks is uncertain delays. By combining the 
discretized procedure on Lyapunov–Krasovskii functional method and the free-
weighting matrix technique, the authors developed a new discretized method for 
analyzing stability of delayed neural networks. The integrated scheme leads to the 
establishment of novel delay-dependent sufficient conditions in form of linear matrix 
inequalities for asymptotic stability of delayed neural networks [Chen, 2008], but the 
results in recent papers [Park, 2006; Ensari, 2005a; Ensari, 2005b] are not applicable. 

In [Zuo, 2008], the authors proposed an adaptive Fourier neural network control 
scheme for controlling a class of uncertain nonlinear systems. Combining Fourier 
analysis and neural network theory, this scheme used orthogonal complex Fourier 
exponentials as the activation functions. One obvious feature in this approach is that 
all the nonlinearities and uncertainties of the dynamical system are focused on and 
compensated online by this scheme.  So it could be applied to uncertain nonlinear 
systems without any a priori information about the system dynamics, and actually, it 
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is a frequency domain scheme, which can assure asymptotic stability of the closed-
loop system. This scheme should improve the robustness because a network with 
orthogonal activation functions sometimes is more sensitive to weight disturbances 
than conventional neural networks does.  

Many vehicle classification schemes for traffic are presented recently [Ma, 05; 
Chen, 07; Mohottala, 03; Yoshida, 02; Urazghildiiev, 07; Morris, 06; Duarte, 04]. In 
[Ma, 05], the authors presented an approach on vehicle classification under a midfield 
surveillance framework for traffic, explored a repeatable and discriminative feature 
using edge points, and improved Scale Invariant Feature Transform descriptors. After 
that, a rich representation for vehicle classification was introduced. While vehicle 
classification with view changes and occlusion is still to be investigated, more 
experiments on more vehicle types and vehicle identity recognition should be done. 
This kind work has been done in our work in next sections. In [Chen, 07], the 
computer vision is explored based on vehicle classification at a nice granularity, and 
then the authors gave a framework, which included various aspects of an Intelligent 
Transportation System and vehicle classification. Furthermore, they implemented an 
intelligent scheme to identify the features of each vehicle, and used One-class SVM to 
categorize every vehicle into a certain class.  

This paper [Lipton, 98] presented a vehicle tracking and classification system, 
and it could categorize moving objects between vehicles and humans. However, how 
to further classify the vehicles into various classes? This paper did not solve it. In 
[Koller, 93], an object classification scheme, using parameterized 3-D models, was 
presented. By a 3-D polyhedral model, the system could classify vehicles in a traffic 
sequence. While they assume that cars are more common than other types of vehicles 
in typical traffic scenes. The extensive work in classification of the tracked vehicles 
based on 3-D model matching methods was done by the University of Reading. Baker 
and Sullivan [Baker, 92] and Sullivan [Sullivan, 92] used the knowledge of the 
camera calibration and the information that vehicles move on a plane in their 3-D 
model-based tracking, then they developed three-dimensional wireframe models of 
various types of vehicles, such as sedans, hatchbacks, wagons, and so on. In [Sullivan, 
95], the above scheme was optimized so that the image features act as the forces on 
the model. This decreased the number of iterations and optimized performance. Later, 
Sullivan et al. [Sullivan, 97] developed a simplified version of the model-based 
tracking scheme by orthographic approximations to get real-time performance [Gupte, 
00].    

In this paper, we used NeuralSIM to train the neural network whose input is the 
output of the wavelet transform. NeuralSIM is a neural network training package 
designed by aspen software. It allows for rapid testing of neural networks without 
having to actually write code for individual neutrons, etc. 

3 Neural Network 

3.1 Introduction 

Neural networks consist of a number of processing elements called neutrons. It is a 
complicated, non-linear, dynamic system that the neutrons connect each other in some 
topological structure. It is drawn from research on organization structure and behavior 
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features of the human brain and mimicking the simplified information processing 
capabilities of biological neural systems. Depending on their structure, neural 
networks can be categorized into multi-layer feed forward (MLF) networks, self-
organization feature map (SOFM), and adaptive resonance theory (ART). The MLF 
network is the most commonly used network. In this paper, a three layer MLF with 
sigmoid transfer functions was used. 

3.2 Network Architecture 

In this project we build a multilayer feed forward neural network model with one 
hidden layer (Figure 1). There are 256, 19, and 5 neutrons in the input, hidden, and 
output layer respectively. The number of processing elements in the input layer 
corresponds to the number of features obtained in each traffic image. The output 
nodes represent the vehicle types or categories to recognize, i.e., there were 5 
categories or classes. To take into account interrelations among the processing 
elements, a full connection architecture is used. One bias unit, whose input value is 1, 
is included in each layer in the network. The transfer function for all elements was the 
sigmoid function.   

 

Figure 1: An example of a simple feedforward network 

3.3 Backpropagation Learning Rule 

The neural network learning rule used in this experiment was backpropagation 
[Martin, 95]. The following notation is used to represent formulations of the 
backpropagation learning processes (bolded symbols represent vectors): 
 P = input vector 
 t = target output 
 a1 = actual output of input layer 
 a2 = actual output of hidden layer 
 a3 = actual output of output layer  
 b1 = bias of input layer 

b2 = bias of hidden layer 
b3 = bias of output layer 

 W1 = weight vector of input layer 
W2= weight vector of hidden layer 

 W3 = weight vector of output layer 
 α  = learning rate 
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As noted in 1.3.1, the transfer function is a sigmoid function, with 
backpropagation-based learning conducted via the following steps: 

1. Compute the actual output of the network: 

a1 = 
)bP(W e

11
1

1
+−+

 (sigmoid function)                 (3.1) 

a2 = 
)ba(W e

212
1

1
+−+

                                             (3.2) 

a3 = 
)ba(W e

323
1

1
+−+

                                            (3.3) 

2. Compute the error of the output: 
δ = t – a3                                                   (3.4) 

3. Compute the weight adjustment Δ Wm (m=1, 2, 3) according to the 
backpropagation rule.  

4. Modify the weights: 
W m (n + 1) = W m (n) + Δ W m  + α [W m (n) – W m (n – 1)]          (3.5) 

5. If all training samples have not been inputted repeat steps 1 through 4. 
6. Compute the value of the error functionε . 

ε = 
j

)(t-a
j
∑ 23

 (RMS of individual errors)                 (3.6) 

7. Repeat steps 1 through 6 until ε  (the error value) satisfies some desired 
condition. 

4 Wavelet and Wavelet Transform 

4.1 Comparison of Fourier Transform and Wavelet Transform 

A wave is usually defined as an oscillating function of time and space, such as a 
sinusoid. Fourier analysis is wave analysis. It expands signals or functions in terms of 
sinusoids (or, equivalently, complex exponentials), which has proven to be extremely 
valuable in mathematics, science, and engineering, especially for periodic, time-
invariant, or stationary phenomena. A wavelet is a “small wave” which has its energy 
concentrated in time. It is a tool for the analysis of transient, non-stationary, or time-
varying phenomena. It still has an oscillating, wave-like characteristic but also has the 
ability to allow simultaneous time and frequency analysis with a flexible 
mathematical foundation.   

Fourier analysis has been used for frequency domain representation of signals for 
many years. Wavelet theory is a general mathematical tool primarily used for 
representing signals including image and video data more efficiently. The difference 
between Fourier transforms and wavelet transforms is the selection of the basis 
functions. The basis functions of a Fourier transform are sinusoidal waves. For 
wavelet transforms, wavelets are the basis functions. Figure 2 shows the basis 
functions of Fourier and wavelet transforms. In the Fourier analysis of a set of data 
points, each Fourier coefficient is computed by using the entire data set with 
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exponential weighting. Thus, Fourier analysis provides “global” properties of the 
data. The wavelet transform has a wavelet (also called a mother wavelet) replacing 
the exponential. Scaling and translation replace frequency shifting. A two-
dimensional surface of wavelet coefficients replaces the one dimensional Fourier 
coefficients. The “local” properties of the data can be obtained by a proper choice of 
the mother wavelet [Chen, 00]. 

Wavelet theory is much more general than Fourier theory and it provides a better 
representation of the data. For image data, wavelet analysis can decompose the image 
into different resolution levels and at each level different frequency sub-bands can 
provide different texture and edge information making it very convenient for image 
compression and feature extraction. 

 
 
 
 
 
 
 
 

 

Figure 2: Typical basic function of Fourier transform and wavelet 

There are two ways to implement wavelet transforms: the fast wavelet transform 
and the lifting scheme [Chen, 00]. The fast wavelet approach is a convolution 
approach as it performs convolution between the original signal and the mother 
wavelet. The lifting scheme is an interpolation approach that performs sub-sampling 
and interpolation.  

4.2 Wavelets and Wavelet Expansion Systems 

4.2.1 What is a Wavelet Expansion or a Wavelet Transform? 

A signal or function f (t) can often be better analyzed, described, or processed if 
expressed as a linear decomposition by 

f(t) = )(ta l
l

lϕ∑     (4.1) 

where l is an integer index for the finite sum, a l  are the real-valued expansion 
coefficients, and )(tlϕ are a set of real-valued functions of t called the expansion set. 
If the expansion (4.1) is unique, the set is called a basis for the class of functions that 
can be so expressed. If the basis is orthogonal, meaning 

〈 )(),( tt lk ϕϕ 〉 = ∫ (t)dt(t) lk ϕϕ  = 0, k ≠ l,   (4.2) 
then the coefficients can be calculated by the inner product 

a k  = 〈 f(t), )(tkϕ 〉 = ∫ (t)dt.f(t) kϕ    (4.3) 
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One can see that substituting (4.1) into (4.3) and using (4.2) gives the single a k  

coefficient. If the basis set is not orthogonal, then a dual basis set )(tk

−
ϕ exists such 

that using (4.3) with the dual basis gives the desired coefficients. 
For a Fourier series, the orthogonal basis functions )(tkϕ  are sin(k 0ω t) and 

cos(k 0ω t) with frequencies of k 0ω . For a Taylor’s series, the nonorthogonal basis 

functions are simple monomials t k , and for many other expansions they are various 
polynomials. There are expansions that use spines and even fractals. 

For the wavelet expansion, a two-parameter system is constructed such that (4.1) 
becomes 

f (t) = ∑∑
k j

kjkj ta )(,, ϕ     (4.4) 

where both j and k are integer indices and the kj,ϕ (t) are the wavelet expansion 
functions that usually form an orthogonal basis. 

The set of expansion coefficients a kj,  are called the discrete wavelet transform 
(DWT) of f (t) and (4.4) is the inverse transform. 

4.2.2 What is Wavelet System? 

The wavelet expansion set is not unique. There are many different wavelet systems 
that can be used effectively. They have the following three general characteristics. 

• A wavelet system is a set of building blocks to construct or represent a signal 
or function. It is a two-dimensional expansion set (usually a basis) for some 
class of one- (or higher) dimensional signals. In other words, if the wavelet 
set is given by )(, tkjϕ  for indices of j, k = 1, 2, …, a linear expansion would 

be f (t) = ∑∑
k j

kjkj ta )(,, ϕ for some set of coefficients a kj, . 

• The wavelet expansion gives a time-frequency localization of the signal. 
This means most of the energy of the signal is well represented by a few 
expansion coefficients, a kj, . 

• The calculation of the coefficients from the signal can be done efficiently. It 
turns out that many wavelet transforms (the set of expansion coefficients) 
can be calculated with O(N) operations. This means the number of floating-
point multiplications and additions increase linearly with the number of 
samples of the signal. More general wavelet transforms require O(Nlog(N)) 
operations, the same as for the fast Fourier transform (FFT). 

Virtually all wavelet systems have these general characteristics. Where the 
Fourier series maps a one-dimensional function of a continuous variable into a one-
dimensional sequence of coefficients, the wavelet expansion maps it into a two-
dimensional array of coefficients. It is this two-dimensional representation that allows 
localizing the signal in both time and frequency. A Fourier series expansion localizes 
in frequency in that if a Fourier series expansion of a signal has only one large 
coefficient, then the signal is essentially a single sinusoid at the frequency determined 
by the index of the coefficients. The simple time-domain representation of the signal 
itself gives the localization in time. If the signal is a simple pulse, the location of that 
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pulse is the localization in time. A wavelet representation will give the location in 
both time and frequency simultaneously. Indeed, a wavelet representation is much 
like a musical score where the location of the notes tells when the tones occur and 
what their frequencies are. 

4.2.3 Characteristics of Wavelet Systems 

There are three additional characteristics that are more specific to wavelet expansions. 
• All so-called first-generation wavelet systems are generated from a single 

scaling function or wavelet by simple scaling and translation. The two-
dimensional parameterization is achieved from the function (sometimes 
called the generating wavelet or mother wavelet) ϕ (t) by 

 )2(2)( 2/
, ktt jj
kj −= ϕϕ  j, k ∈ Z   (4.5) 

• where Z is the set of all integers and the factor 2 2/j  maintains a constant 
norm independent of scale j. This parameterization of the time or space 
location by k and the frequency or scale (actually the logarithm of scale) by j 
turns out to be extraordinarily effective. 

• Almost all useful wavelet systems also satisfy the multiresolution conditions. 
This means that if a set of signals can be represented by a weighted sum of 
ϕ (t-k), then a larger set (including the original) can be represented by a 
weighted sum of ϕ (2t-k). In other words, if the basic expansion signals are 
made half as wide and translated in steps half as wide, they will represent a 
larger class of signals exactly or give a better approximation of any signal. 

• The lower resolution coefficients can be calculated from the higher 
resolution coefficients by a tree-structured algorithm called a filter bank 
[Burus, 98]. This allows a very efficient calculation of the expansion 
coefficients (also know as the discrete wavelet transform) and relates 
wavelet transforms to an older area in digital signal processing. 

The operations of translation and scaling seem to be basic to many practical 
signals and signal-generating processes, and their use is one of the reasons that 
wavelets are efficient expansion functions.   Figure 3 is a pictorial representation of 
the translation and scaling of a single mother wavelet described in (4.5). As the index 
k changes, the location of the wavelet moves along the horizontal axis. This allows 
the expansion to explicitly represent the location of events in time or space. As the 
index j changes, the shape of the wavelet changes in scale. This allows a 
representation of detail or resolution. Note that as the scale becomes finer (j larger), 
the steps in time become smaller. It is both the narrower wavelet and the smaller steps 
that allow representation of greater detail or higher resolution. For clarity, every 
fourth term in the translation (k= 1, 5, 9, 13, …) is shown. What is not illustrated 
here, but is important, is that the shape of the basic mother wavelet can also be 
changed. That is done during the design of the wavelet system and allows one set to 
represent a class of signals. 

For the Fourier series and transform and for most signal expansion systems, the 
expansion functions (bases) are chosen, then the properties of the resulting transform 
are derived and analyzed. For the wavelet system, these properties or characteristics 
are mathematically required, and then the resulting basis functions are derived. 
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Because these functions do not use all the degrees of freedom, other properties can be 
required to customize the wavelet system for a particular application. Once you 
decide on a Fourier series, the sinusoidal basis functions are completely set. That is 
not true for the wavelet. There is infinity of very different wavelets that all satisfy the 
above properties.    
 
 
 
 
 
 
 
 
 

Figure 3: Translation (every fourth k) and Scaling of a Wavelet 4Dϕ  

Wavelet analysis is well suited to transient signals. Fourier analysis is appropriate 
for periodic signals or for signals whose statistical characteristics do not change with 
time. It is the localizing property of wavelets that allow a wavelet expansion of a 
transient event to be modelled with a small number of coefficients. This turns out to 
be very useful in applications [Burus, 98]. 

4.3 The Haar Wavelet 

The Haar wavelet is probably the simplest of all wavelets, and is also the oldest. It has 
been used in image analysis for many years as the Haar transform. We used this 
transform in this work. The Haar wavelet is a step function taking the values +1 and –
1. Specifically: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<≤−

<<

=
,Otherwise

t,

t,

(t)H

0
12

11
2

101

ϕ                                                   (4.6) 

A convenient (but not the only) way to scale these wavelets is by power of two. 
For example, the function jϕ (t) = Hϕ (2 j t) is scaled versions of Hϕ (t). A wavelet is 
simply a function that, unlike the Fourier transform, not only has a frequency 
associated with it, but also a scale. Scaling is performed by dividing the argument by 

a scaling factor. The wavelet g(
s
x ) is simply g(x) scaled by a factor s. In the above 

example the scale factor s = j2
1 . Translation is done by shifting the functions along 

the axis. A scaled and translated Haar wavelet can be described as  

kj,ϕ (t) = Hϕ (2 j t - k)    (4.7) 
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A sample collection of these wavelets can be seen as graphs in Figure 4. They 
have the appearance of square waves, scaled and translated over a small range. A 
continuous function can be approximated by these Haar functions in a way similar to 
the use of sine and cosine functions in the Fourier series approximations. A linear 
combination of Haar functions is constructed, whose sum approximates the required 
function: 

f (t) = ∑∑
∞

−∞=

∞

−∞=
−

k

j
Hkj

j
j ktBA )2(, ϕ     (4.8) 

For any problem that is to be solved using a computer, the bounds of the sums are 
finite, which is acceptable for an approximation as long as the result has a small 
specified error bound. Indeed, for image processing and vision purposes, the function 
f actually consists of regularly sampled values as defined by the sampling grid. 

What is called a wavelet transform with respect to the Haar basis is really the 
calculation of the values for A j and B kj  , . Thus the formula for the wavelet transform 
can be found by [Rafael, 92]: 

A j B kj ,  = 2 j ∫
+−

−
)1(2

2 ,)( )()(k
k kj

j

j dtttf ϕ   (4.9) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4: Haar wavelets of various scales and translations 

4.4 Why We Used the Wavelet Transform to Extract Vehicle Features 

4.4.1 Use wavelet transformation as image compression 

The wavelet transformation can be used in image compression, so we can use the 
smallest size wavelet that maintains all necessary features (shape, length, height, and 
width) of each vehicle. The wavelet transform approach to image compression is 
better than the traditional Fourier based approach using the discrete cosine transforms. 
In practice, a discrete cosine transform (DCT) is generated based on small blocks of 
image pixels. Often the image block size of the DCT is 8X8 or 8X16. This blocking 
operation can degrade the image quality with blocking artifacts. Due to the 
quantization process that discards the high frequency components, the distortions in 
highly textured areas are much more significant than in homogeneous areas.  

j = -4, k = 0 j = -3, k = 0 j = -3, k = 1

j = -2, k = 0 j = -2, k = 1 j = -2, k = 3
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The wavelet transform can operate on a whole image with linearly increasing 
computation which means the computation time is linearly related to the image size. 
Without breaking the image into several blocks, wavelet-based approaches do not 
suffer from blocking artifacts. Many research works have shown that the wavelet 
transform has a better-reconstructed image quality than the DCT. The difference 
between the wavelet transform and the DCT is especially noticeable as the 
compression ratio increases [Chen, 00].  

4.4.2 NeuralSIM to train the neural network whose input is the output of the 
wavelet transform. 

NeuralSIM is a neural network training package designed by Aspen software. It 
allows for rapid testing of neural networks without having to actually write code for 
individual neutrons, etc. 

5 Algorithm Description 

In this chapter we describe the algorithm (the general process is shown in Figure 6) 
used to extract a vehicle image and ultimately give it a classification. The process 
begins by generating a background image (the process is shown in Figure 7). 
Subsequent captured frames are then compared to the background image (Figure 5). 
The difference between the captured image (Figure 8) and the background (if it is 
above a threshold) is a vehicle (Figure 9). Next we normalize the extracted vehicle to 
a given standard view (Figure 11) and then perform a wavelet transform on the gray-
scale equivalent of the normalized vehicle (Figure 12 (b)).  The output of the wavelet 
transform is the input to the neural network. The output of the neural network is the 
category of the vehicle. 
 
5.1 Generating the background image 

The process of actually generating a background image was a three-step process 
defined as follows: 
(1) For each captured frame the pixels are grouped by color. Two colors are 
considered to be the same when they are in the same group although the intensities of 
these two colors maybe different. In this project, 32 color groups were used.  
(2) Capture 100 images at a preset frequency. For this work, the capture rate was three 
images per second. 
(3) The background image is generated based on the individual pixel values in these 
100 images. For each pixel p with coordinate (x, y) find the color group that has the 
greatest number of occurrences. The color of the pixel p is the color of this group. A 
color group represents a range of colors. In our case the middle color in the range was 
used. 
 
5.2 Extract vehicles from the images 

A simple approach for detection of changes between two image frames f (x, y, ti) and 
f (x, y, tj) taken at times ti and tj, respectively, is to compare the two images pixel by 
pixel. One procedure for doing this is to form a difference image, i.e., an “image” in 
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which each pixel value is the difference between corresponding pixels in frames ti and 
tj. Suppose that we have a reference image containing only stationary components 
(background image generated in step 2.1). Subtracting this image from a subsequent 
image that has a moving object results in a difference (pixels) image in which 
stationary components (pixels) are cancelled leaving only nonzero entries 
corresponding to the nonstationary image components. 
 

 

Figure 5: Background Image developed from 100 captured frames 

 
 

 
 
 
 
 
 
 
 
 
  

Figure 6: General process for vehicle classification 

 
 
 
 
 
 
 
 
 
 

Figure 7: Generate the background image 
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A difference between two images taken at times ti and tj may be defined as 
 

( )
⎩
⎨
⎧ >−

=
Otherwise

tyxftyxfif
yxd ji

ji ,0
|),,(),,(|,1

,,
θ

                                 (5.1) 

where θ  is a threshold. 
       Figure 8 is an image of a moving vehicle. Figure 9 is the difference between 
images 5 (background image) and 8. 
 

 

Figure 8: Original Image (Moving Vehicle) 

 

Figure 9: Vehicle extracted (difference image) from the original image 

5.3 Perspective Transform 

In order to normalize for features such as size, it was necessary to perform a 
perspective transformation on the vehicle image. This transformation generated a new 
“view” of the vehicle so that it was oriented and located at a pre-set location. In this 
way, the view is normalized (Figure 5). 
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A perspective transformation projects 3-D points onto a plane. Figure 10 shows a 
model of the image formation process. The camera coordinate system (x, y) has the 
image plane coincident with the xy plane and the optical axis (established by the 
center of the lens) along the z-axis. Thus the center of the image plane is at the origin, 
and the center of the lens is at coordinates (0, 0, λ). If the camera is in focus for 
distant objects, λ is the focal length of the lens. Here the assumption is that the 
camera coordinate system is aligned with the world coordinates system (X, Y, Z) 
[Sullivan, 95]. 

If we know an image point (x0, y0), then according the following formula, we can 
determine its world coordinates. (Assuming Y - the height, is a constant.) 
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If we know the distance we want to move in the image (ΔX, ΔZ), according to the X 
and Z-axes, then we know the real world coordinate will be changed to the following 
point: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Basic model of the imaging process. The camera coordinate system (x,y) is 
aligned with the world coordinate system (X,Y,Z) 
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According to (5.2) and (5.3), we can determine the new image point x0’ and y0’as: 
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Thus we can “move” an extracted vehicle image to any standard position and its size 
will be normalized. 
 

   

Figure 11:  Extracted Vehicle normalized to standard view 

5.4 Perform wavelet transform 

After computing the normalized color image, we translate it to gray-scale using the 
simplest formula:  

jiG , = gray scale intensity of pixel (i, j) 
r,g,b = color intensities of pixel (i, j) 

222

222

,
255255255 ++

++
=

bgr
G ji                     (5.5) 
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Using the gray-scale normalized image, we next perform a Haar wavelet transform. 
We positioned all vehicle images (128 X 128 pixels) in the left-bottom corner of the 
wavelet matrix. The wavelet matrix was also reduced to a manageable size of 16 X 16 
pixels. This was the smallest size that maintained the features (shape, length, height 
and width) of each vehicle when we performed a reverse-wavelet transform. This 
reduction was done by taking only the upper left 16 X 16 coefficients of the 128 X 
128 matrix. Figure 12 (a) is a duplicate of Figure 5. Figure 12 (b) is the gray-scale 
equivalent of Figure 12 (a). Figure 12 (c) is the wavelet to inverse wavelet transform 
using 16 X 16 coefficients.  
 

                   

Figure 12: (a) Extracted vehicle normalized for standard view                                             
(b) Gray-scale equivalent of (a) (128 X 128)                                                                             

(c) Inverse wavelet transform of (b) (16 X 16) 

5.5 Input of the wavelet transform to a neural network 

Because the output of the wavelet transform is M real values, the input to the neural 
network is M values. The output of the wavelet transform for a NXN image is a NXN 
matrix of real values. This matrix is reduced by eliminating high frequency 
components so that the size of the feature set is more manageable, i.e., in our case 256 
real values. Using the NeuralSIM neural network training software, we use a number 
of training images to set the weights of the network. The output of this neural network 
as to the category, the vehicle represents, was its decision.  
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6 Results and Discussion 

The data used for this project were collected in Salt Lake City. A section of the four 
lane I215 freeway at 2500S was videoed with an uncalibrated standard NTSC camera. 
Data were collected for several days and a subset of this data was further processed 
and manually verified, i.e., vehicles identified manually. The data set used for this 
project consisted of approximately 2000 vehicles in moderate flow traffic. Since the 
majority of traffic was composed of passenger cars, this data set was further reduced 
to contain approximately 350 vehicles from different vehicle classes.   
       At first, a training data set composed of 50 vehicles was used for training a 
classification mode neural network. We used the following vehicle categorizes: 

1. Motorcycle (2 data in training set) 
2. Car and car with 1-axle trailer, van/pick up, van/pick up with 1-axle trailer 

(20 data in training set)  
3. Bus, 3-axle truck and limousine (8 data in training set)  
4. 2 or 3 axle semi with 1 or 2 axle trailer (9 data in training set) 
5. >5-axle semi with single or multiple trailers (11 data in training set) 

 
The vehicles were assigned to these categories based on the features that were 

viewable by the stationary camera. So we need re-category it. 
The ultimate or overall goal of this project is to categorize vehicles into one of 

FHWA thirteen-category taxonomy. Appendix A presents sample images for these 13 
categorizes. For this portion of the project, the goal was to improve on the work of 
Surendra Gupte, Osama Masoud, Robert F. K. Martin, and Nikolaos P. 
Papanikolopoulos [Gupte, 00]. In their work, they use vehicle dimensions to classify 
vehicles into two categories: cars (which constitute the majority of vehicles) and 
noncars (vans, SUVs, pickup trucks, tractor-trailers, semis and buses). They tested the 
system on image sequences of highway scenes. In a 20-minute sequence of freeway 
traffic, 90% of the vehicles were correctly detected and tracked. Of these correctly 
tracked vehicles, 70% of the vehicles were correctly classified. 

We then tested the trained neural network on a set of 150 vehicles. The overall 
classification rate was 83%. Almost all of the misclassifications were classified class 
3 as class 4. A more detailed analysis of the results shows that of the 20% errors for 
class 4, most (18% of the 20%) were class 4 being classified as class 5. Of the 
misclassifications for class 5 all were class 4.  (The detailed results are listed in Table 
2.) 

After analyzing the errors from the above testing, we merged classes 3 and 4 into 
a single class. Because of the misclassification rates for class 4 and class 5, we 
enlarged the image size to 256 X 256 pixels. Class 5 vehicles include large semis. We 
then re-categorized as follows: 

1. Motorcycle (2 data in training set) 
2. Car and car with 1-axle trailer, van/pick up, van/pick up with 1-axle trailer 

(113 data in training set) 
3. Bus and 2 or 3 axle truck (33 data in training set) 
4. 2 or 3 axle semi with 1 or 2 axle trailer, 6 or 7 axle semi with single trailer 

(33 data in training set) 
5. >5-axle semi with multiple trailers (19 in training set) 
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Table 1: First Test Results 

After the above modification, in order to improve the overall classification rate, 
we also acquired more data. We trained on a test set composed of 200 vehicles, and 
then ran the network to classify 341 vehicles. The results are as follows:  
 

Table 2: Final Results 

The overall classification rate was 90%. All of the misclassifications were 
assigned to an adjacent category. The misclassifications of class 1 most likely 
occurred because we lacked sufficient motorcycle data. The misclassifications of the 
class 2 are because we classified the car with a trailer as class 3. Most errors occurred 
when a class 4 vehicle was classified as a class 3 or class 5 vehicles. 

7 Conclusion  

Because pervasive smart computing environments make people get accustomed to 
convenient and secure services. Vehicle classification can be defined as observation 
of highway vehicles and the subsequent sorting of the resulting data into a fixed set of 
categories. In practice, vehicle-classification data are extremely important because 
they are involved in most aspect of transportation and traffic engineering, such as 
pavement design, pavement-maintenance scheduling, commodity flow analysis, 
highway-capacity analysis, weight enforcement, and environmental analysis [Yuan, 
94]. It is difficult to compare the method mentioned in this paper to previous research 
for several reasons. First, the most recent classification scheme used by previous 
researchers [Gupte, 00] differed significantly because it used only two different 
classes instead of the five used in this research. Second, different schemes used 

 Overall Class 1 Class 2 Class 3 Class 4 Class 5 

Classification 
rate 

83% 100% 91% 67% 80% 86% 

Total number 
of vehicles 

150 3 32 15 50 50 

Number of 
misclassified 

25 0 3 5 10 7 

 Overall Class 1 Class 2 Class 3 Class 4 Class 5 

Classification 
rate 

90% 75% 98% 74% 88% 83% 

Total number 
of vehicles 

341 4 192 58 57 30 

Number of 
misclassified 

33 1 3 15 9 5 
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different surveillance technologies, such as inductive loops. Finally, other schemes 
have utilized calibrated cameras placed most advantageously for the process. Such as 
in the paper [Gupte, 00], the camera is placed on the side of freeway. In this project, 
the cameras were un-calibrated, and their placement could not be controlled.  
       The accuracy of this recognizer is encouraging. In addition to the overall 
classification rates of 83% and 90% for the two test datasets, the classification rates 
for individual vehicle classes were also consistent. In other words, this system was not 
biased toward the class with the most samples, namely passenger cars [Sun, 00]. One 
advantage of this method is the simplicity in the implementation and training of the 
neural networks. We used NeuralSIM software to implement and train the neural 
networks.  
       The classification of vehicles should be performed by a synthesis of multiple sets 
of features. All feature sets have not yet been determined. In this work, we used a set 
of features --- the reduced wavelet transform of a normalized image of a vehicle. We 
are also working to extract a specific set of physical features such as length, width, 
and height. Each of these sets of features (wavelet, physical characteristics, etc.) can 
be used to train a separate neural network. The final decision as to vehicle 
classification will then be based on the output of these two neural networks.  
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Appendix A: FHWA thirteen-category taxonomy 
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FHWA TYPE VEHICLE CLASSIFICATION SCHEME 
 

Type Description 1-2  
Axles 

2-3  
Axles 

3-4 
Axles 

4-5 
Axles 

5-6 
Axles 

6-7 
Axles 

1 Motorcycle 0.1-6.0      
2 Car 6.1-10.2      
2 Car w/1 Axle 

Trlr 
6.1-10.2 6.0-18.0     

2 Car w/2 Axle 
Trlr 

6.1-10.2 6.0-18.0 0.1-6.0    

3 Pickup/Van 10.3-13.0      
3 Pickup/Van 

w/1A Trlr 
10.3-13.0 6.0-18.0     

3 Pickup/Van 
w/2A Trlr 

10.3-13.0 6.0-18.0 0.1-6.0    

4 Bus 20.0-40.0      
4 Bus 20.0-40.0 0.1-6.0     
5 2 Axle- Six 

Tire 
13.1-20.0      

6 3 Axle- Single 
Unit 

6.1-23.0 0.1-6.0     

7 4 Axle- Single 
Unit 

6.1-23.0 0.1-9.0 0.1-9.0    

8 2S1 6.1-17.0 14.0-40.0     
8 3S1 6.1-20.0 0.1-6.0 6.1-40.0    
8 2S2 6.1-17.0 14.0-40.0 0.1-6.1    
9 3S2 6.1-22.0 0.1-6.0 6.1-40.0 0.1-

9.0 
  

9 3 Axle w/Trlr 6.1-22.0 0.1-6.0 6.1-23.0 1.1-
23.0 

  

10 6 Axle- Single 
Trlr 

6.1-22.0 0.1-6.0 0.1-40.0 0.1-
11.0 

0.1-
11.0 

 

10 7 Axle- Single 
Trlr 

6.1-22.0 0.1-6.0 0.1-40.0 0.1-
13.0 

0.1-
13.0 

0.1-
13.0 

11 5 Axle- Multi 
Trlr 

6.1-17.0 11.1-25.0 6.1-18.0 11.1-
25.0 

  

12 6 Axle- Multi 
Trlr 

6.1-22.0 0.1-6.0 1.1-25.0 6.1-
18.0 

11.1-
25.0 

 

13 7 Axle- Multi 
Trlr 

0.1-40.0 0.1-40.0 0.1-40.0 0.1-
40.0 

0.1-
40.0 

0.1-
40.0 

15 Unclassified 
Vehicles 

      

 
 

1142 Xiong N., He J., Park J.H., Cooley, D., Li Y.: A Neural Network ...


