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1 Introduction

Let X be an infinite-dimensional Banach space over F ∈ {R,C}. A sequence
(xi)i ∈ Xω is called a Schauder basis (or simply a basis) of X if for every x ∈ X

there is a unique sequence (αi)i ∈ Fω such that x is the limit of the norm
convergent series

∑
i αixi. If X is a finite-dimensional vector space then a finite

sequence (x1, . . . , xn) ∈ F<ω is a (Schauder) basis of X if for every x ∈ X there
are unique α1, . . . , αn such that x =

∑n
i=1 αixi. A finite or infinite sequence is

called basic if it is a basis of the closure of its linear span. (Finite sequences are
hence basic if, and only if, they are linearly independent.)

The theory of Schauder bases is a central area of research and also an im-
portant tool in functional analysis. Background information can be found in e.g.
[Singer 1970, Singer 1981, Megginson 1998, Albiac and Kalton 2006].

In computable analysis2, [Brattka and Dillhage 2007] have shown that com-
putable versions of a number of classical theorems on compact operators on Ba-
nach spaces can be proved under the assumption that the computable Banach
spaces under consideration possess computable bases (with certain additional
properties). The restriction to spaces with computable bases does not seem to
be too costly in terms of generality because virtually all of the separable Banach
spaces that are important for applications are known to possess a computable
basis.

Complete orthonormal sequences in Hilbert spaces are particularly well-
behaved examples of Schauder bases. It is a fundamental fact that every separa-
ble Hilbert space contains such a complete orthonormal sequence. It is further-
more known (see [Brattka and Yoshikawa 2006, Lemma 3.1]) that every com-
putable Hilbert space contains a computable complete orthonormal sequence
and hence a computable basis. Can this be generalized to arbitrary computable
1 This paper is an adaption of a chapter of the author’s doctoral dissertation.
2 See [Brattka et al. 2008, Weihrauch 2000] for introductions to computable analysis.
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Banach spaces with bases? More precisely: If a computable Banach space pos-
sesses a basis, does it necessarily possess a computable basis? The aim of the
present note is to show that the answer is “no” in general. Our example will be
a subspace of the space of zero-convergent sequences in Enflo’s space – a famous
example of a separable Banach space that lacks the approximation property (see
below). The construction will proceed by direct diagonalization.

Some remarks on notation: As we will never consider more than one norm on
the same linear space, we will denote every norm by ‖ · ‖; which norm is meant
will be clear from what it is applied to. On spaces of continuous linear operators
we always consider the usual operator norm. If x1, x2, . . . are elements of a Ba-
nach space, denote by [x1, x2, . . .] the closure of their linear span; analogously,
let [x1, . . . , xn] denote the linear span of x1, . . . , xn. Whenever we speak of the
rational span of a set of vectors, we mean all their finite linear combinations with
coefficients taken from Q (if F = R) or Q[i] (if F = C), respectively. If X is a
normed space, put BX := {x ∈ X : ‖x‖ ≤ 1}. Denote by K(X) the hyperspace
of compact subsets of X .

As far as computable Banach spaces are concerned, we refer the reader to the
literature for the necessary definitions and basic results; see e.g. [Brattka 2001,
Brattka and Presser 2003, Brattka and Dillhage 2007]. Computability of points
in a computable Banach space shall be understood as computability with respect
to the Cauchy representation. We use the following representations for open and
compact sets: an open set is represented by a sequence of basic open balls that
exhausts it (this corresponds to the representation δO(X) in [Brattka 2001]); a
compact set is represented by a list of all minimal finite covers3 consisting of
basic open balls (this corresponds to δmin−cover in [Brattka and Presser 2003]).
Tuples and sequences of objects from represented spaces, as well as continuous
functions on represented spaces shall always be represented by the derived stan-
dard representations. We recall that f−1(U) can be computed given continuous
f and open U . Similary, f(K) can be computed given continuous f and com-
pact K. We can also compute minima and maxima of continuous real-valued
functions on compact sets.

2 Computable Enflo’s space

The question whether every separable Banach space has a basis had been posed
by Banach in 1932; fourty years later, it was answered in the negative by
[Enflo 1973]. Enflo in fact constructed a Banach space that lacks the approxima-
tion property (AP): A Banach space is said to have AP if the identity operator
can be approximated uniformly on every compact subset by finite rank operators
3 A cover of a set is called minimal if every element of the cover has nonempty inter-

section with the set.
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(see [Megginson 1998, Definition 3.4.26, Theorem 3.4.32]). A Banach space with
a basis necessarily has AP (see [Megginson 1998, Theorem 4.1.33]).

Enflo’s example was simplified by Davie [Davie 1973]. It is not surprising
that the space defined by Davie is computable. For the reader’s convenience,
we shall give some details of the construction: For any k ∈ N, let Gk be the
additive group Z/(3 · 2k)Z. For j = 1, · · · , 3 · 2k, let γ(k)

j be the (unique) group
homomorphism from Gk into the multiplicative group C \ {0} with

γ
(k)
j (1) = exp

(
2πi

j

3 · 2k

)
.

It is shown in [Davie 1973] (with a probabilistic argument) that there is a con-
stant A2 such that for every k, the set

{γ(k)
j : 1 ≤ j ≤ 3 · 2k}

can be partitioned into two sets

{σ(k)
j : 1 ≤ j ≤ 2k} and {τ (k)

j : 1 ≤ j ≤ 2 · 2k}

with

(∀ g ∈ Gk)

⎛⎝
∣∣∣∣∣∣2

2k∑
j=1

σ
(k)
j (g) −

2·2k∑
j=1

τ
(k)
j (g)

∣∣∣∣∣∣ < A2(k + 1)1/22k/2

⎞⎠ .

Similarly, it is shown that there is a constant A3 such that for every k ≥ 1, there
are ε(k)

j ∈ {−1, 1} (j = 1, . . . , 2k) with

(∀ g ∈ Gk)(∀h ∈ Gk−1)

⎛⎝
∣∣∣∣∣∣

2k∑
j=1

ε
(k)
j

τ
(k−1)
j (h)

σ
(k)
j (g)

∣∣∣∣∣∣ < A3(k + 1)1/22k/2

⎞⎠ .

By exhaustive search, σ(k)
j , τ (k)

j , ε(k)
j (1 ≤ j ≤ 3 · 2k) such that the above two

inequalities are fulfilled can be found effectively in k. Let G be the disjoint union⋃
k∈N

Gk. Let ν be a computable bijection between the set

{(k, j) : k, j ∈ N, 1 ≤ j ≤ 2k}

and N. We define a mapping e from N into the linear space of bounded complex
functions on G by

e(ν(k, j))(g) :=

⎧⎪⎪⎨⎪⎪⎩
τ

(k−1)
j (g) if k ≥ 1 and g ∈ Gk−1,

ε
(k)
j σ

(k)
j (g) if g ∈ Gk,

0 otherwise.
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We equip the space of bounded complex functions on G with the sup-norm. In
this Banach space, we consider the subspace

Z := [e(0), e(1), . . .].

Davie showed that Z lacks AP. Furthermore, it is straightforward to check that
(Z, ‖ · ‖, e) is a computable Banach space. We hence have:

Lemma1. The computable Banach space (Z, ‖ · ‖, e) constructed above lacks
AP. ��

3 Basis constants and local basis structure

The following characterization of basic sequences (see [Megginson 1998, Corol-
lary 4.1.25]) is due to Banach:

Proposition2. Let X be an infinite-dimensional Banach space over F. A se-
quence (xi)i ∈ Xω is basic if, and only if,

(1) no xi is equal to zero, and

(2) there exists a constant M ∈ R such that

∥∥ m∑
i=0

αixi

∥∥ ≤M
∥∥ n∑

i=0

αixi

∥∥ (1)

for all m,n ∈ N, m ≤ n, and α0, . . . , αn ∈ F.
��

If (xi)i ∈ Xω is basic, then the basis constant bc((xi)i) of (xi)i is defined as
the minimum M such that (1) holds for allm,n ∈ N,m ≤ n, and all α0, . . . , αn ∈
F. If (x1, . . . , xn) ∈ X<ω is basic, then the basis constant bc((x1, . . . , xn)) of
(x1, . . . , xn) is defined as the minimum M such that

∥∥ m∑
i=1

αixi

∥∥ ≤M
∥∥ n∑

i=1

αixi

∥∥
holds for all m ∈ N, m ≤ n, and all α1, . . . , αn ∈ F. If X is a Banach space with
a basis, then the basis constant bc(X) of X is defined as the infimum over the
basis constants of all bases of X .

It is obvious that any basis constant must be at least 1. A basis (xi)i of some
infinite-dimensional Banach space X is called monotone if bc((xi)i) = 1. (xi)i

is called shrinking if

(∀ f ∈ X∗)
(

lim
n→∞ sup{|f(x)| : x ∈ B[xn,xn+1,...]} = 0

)
.
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A Banach spaceX is said to have local basis structure if there exists a constant
C such that for every finite-dimensional subspace V of X , there is a finite-
dimensional space W with V ⊆ W ⊆ X and bc(W ) < C. This notion was
introduced by [Pujara 1975] (under a different name; cf. [Singer 1981, p. 820]).

For every n ≥ 1, the Banach space 
n∞ is defined as the linear space Cn

equipped with the sup-norm (cf. [Megginson 1998, Example 1.2.9]). The follow-
ing criterion for local basis structure is found in [Szarek 1987, Proposition 1.3]:

Proposition3. Let X be a Banach space such that there exists a constant C
such that for every n ≥ 1, there is a subspace Vn of X and an isomorphism
Fn : Vn → 
n∞ with ‖Fn‖‖F−1

n ‖ ≤ C. Then X has local basis structure. ��
Corollary 4. The space Z from Lemma 1 has local basis structure.

Proof. For every n ≥ 1, there is even an isometric isomorphism from a subspace
of Z onto 
n∞: For any k, j ∈ N, the function e(ν(k, j)) : G→ C is supported on
Gk−1 ∪Gk. So we can choose k1, . . . , kn such that e(k1), . . . , e(kn) have pairwise
disjoint supports. The norm of Z (just like the norm of 
n∞) is the sup-norm. So it
is obvious that the subspace [e(k1), . . . , e(kn)] of Z is isometrically isomorphous
to 
n∞ via Fn with

Fn(e(ki)) = (0, . . . , 0, 1︸︷︷︸
i-th

, 0, . . . , 0), i = 1, . . . , n.

(Note that all functions in the range of e have norm 1.) ��
We need an effective version of the previous statement:

Lemma5. Let (X, ‖ · ‖, e) be an infinite-dimensional computable Banach space
such that X has local basis structure, witnessed by a constant C ∈ N. There exists
a computable linearly independent sequence (xi)i ∈ Xω and a strictly increasing
computable function σ : N → N such that [x0, x1, . . .] = X and

(∀n ∈ N) (bc([x0, . . . , xσ(n)]) < C).

Before we prove this lemma, we have to provide a number of auxiliary propo-
sitions: For every linear space X over F, define

INDX := {(x1, . . . , xn) ∈ X<ω : n ≥ 1, x1, . . . , xn linearly independent}.
If (x1, . . . , xn) ∈ INDX , there is a unique vector (f1, . . . , fn) of continuous coor-
dinate functionals : The domain of each fi :⊆ X → F is [x1, . . . , xn], and the fi

are uniquely defined by the condition

(∀x ∈ [x1, . . . , xn])

(
x =

n∑
i=1

fi(x)xi

)
.
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Lemma6. Let (X, ‖ · ‖, e) be a computable Banach space over F.

(1) The mapping
(x1, . . . , xn) �→ (f1, . . . , fn)

that takes (x1, . . . , xn) ∈ INDX to the corresponding vector (f1, . . . , fn) of
coordinate functionals is computable.

(2) The mapping
(x1, . . . , xn) �→ B[x1,...,xn]

that takes (x1, . . . , xn) ∈ INDX to the compact set B[x1,...,xn] is computable.

Proof. Given linearly independent x1, . . . , xn. For i = 1, . . . , n, we can compute
the mappings

(α1, . . . , αn) �→ xi +
∑

1≤j≤n
j �=i

αjxj , α1, . . . , αn ∈ F. (2)

It is furthermore easy to see that we can compute

{(α1, . . . , αn) ∈ Fn : (∀ 1 ≤ i ≤ n) (|αi| ≤ 1)}

as a compact set. Applying the mappings (2) to this set, we can compute the
compact sets

Ci :=
{
xi +

∑
1≤j≤n

j �=i

αjxj : αj ∈ F, |αj | ≤ 1
}
, i = 1, . . . , n.

We can compute the minimum value M that ‖ · ‖ obtains on the sets C1, . . . , Cn.
The linear independence of x1, . . . , xn yields M > 0.

Let x ∈ [x1, . . . , xn] \ {0} be arbitrary, say

x =
n∑

i=1

αixi.

Let 
 ∈ {1, . . . , n} be such that

|α�| = max
1≤i≤n

|αi|.

Then
n∑

i=1

αi

α�
xi ∈ C�,

which implies

M ≤
∥∥∥∥∥

n∑
i=1

αi

α�
xi

∥∥∥∥∥ .
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For any 1 ≤ j ≤ n we have

|fj(x)| =

∣∣∣∣∣fj

(
n∑

i=1

αixi

)∣∣∣∣∣ = |αj | ≤ |α�| ≤ |α�|M−1

∥∥∥∥∥
n∑

i=1

αi

α�
xi

∥∥∥∥∥
= M−1

∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥ = M−1‖x‖.

As x was arbitrary, we have ‖fj‖ ≤ 1/M .
It is sufficient to demonstrate how to compute fj on any given x ∈ [x1, . . . , xn]

up to precision 2−k for any given k ∈ N. This can be done by using exhaustive
search to find rational scalars α1, . . . , αn ∈ F such that∥∥∥∥∥x−

n∑
i=1

αixi

∥∥∥∥∥ < M2−k.

Then

‖fj(x) − αj‖ =

∥∥∥∥∥fj

(
x−

n∑
i=1

αixi

)∥∥∥∥∥ < 2−k.

We have proved item (1).
In order to show item (2), we need to demonstrate how to semidecide whether

a given tuple (U1, . . . , Uk) of basic open balls is a minimal cover of B[x1,...,xn].
We first semidecide whether every Um intersects B[x1,...,xn]. This can be done by
exhaustively searching for rational q1, . . . qn ∈ F with∥∥∥∥∥

n∑
i=1

qixi

∥∥∥∥∥ < 1, and
n∑

i=1

qixi ∈ Um.

It remains to semidecide whether (U1, . . . , Uk) is a cover of B[x1,...,xn]. Note
that B[x1,...,xn] = BX ∩K, where

K :=
{ n∑

i=1

αixi : αi ∈ F, |αi| ≤ 1/M
}
.

By similar arguments as for the Ci above, we can compute K as a compact set.
X \K can be computed as an open set by [Brattka and Presser 2003, Corollary
4.11.1]; the same is true for X \BX (as it can be written as the preimage of the
computably open set (1,∞) over the computable function x �→ ‖x‖). So

X \B[x1,...,xn] = (X \BX) ∪ (X \K)

can be computed as an open set. We hence have an enumeration (Vj)j of basic
open balls with ⋃

j

Vj = X \B[x1,...,xn].
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As B[x1,...,xn] ⊆ K and K is compact, we have that (U1, . . . , Uk) is a cover of
B[x1,...,xn] if, and only if, there exists an 
 such that

(U1, . . . , Uk, V0, . . . V�)

is a minimal cover of K. As we have a list of all minimal covers of K, this
condition can be semidecided effectively. ��
Lemma7. Let (X, ‖ · ‖, e) be a computable Banach space over F. The set INDX

is computably enumerable.

Proof. Given a vector (x1, . . . , xn) ∈ X<ω, we need to semidecide whether the
vector is in INDX . If n = 0, the vector is not in INDX . If n = 1, we simply
semidecide ‖x1‖ > 0. If n > 1 the procedure can be reduced to the procedure for
n − 1: First semidecide whether x1, . . . , xn−1 are linearly independent. In case
this is detected, use Lemma 6.2 to compute B[x1,...,xn−1] as a compact set. We
can now compute the distance between xn/‖xn‖ and B[x1,...,xn−1]. It remains to
semidecide whether this distance is positive. ��
Lemma8. Let (X, ‖ · ‖, e) be a computable Banach space.

(1) The mapping
(x1, . . . , xn) �→ bc((x1, . . . , xn))

for (x1, . . . , xn) ∈ INDX is computable.

(2) The mapping
(x1, . . . , xn) �→ bc([x1, . . . , xn])

for (x1, . . . , xn) ∈ INDX is upper semi-computable4.

Proof. Let (x1, . . . , xn) ∈ INDX be given.
For item (1): By Lemma 6, we can compute the compact set B[x1,...,xn] as

well as the coordinate functionals (f1, . . . , fn). By effective maximization, we
can hence compute the numbers

C� := sup
{∥∥ �∑

i=1

xifi(x)
∥∥ : x ∈ B[x1,...,xn]

}
, 
 = 1 . . . , n.

We can now compute bc((x1, . . . , xn)) as the maximum of C1, . . . , Cn.
For item (2): As a consequence of item (1), the basis constant of a finite basis

depends continuously on the basis’ elements. This implies that bc([x1, . . . , xn])
is the infimum of the set

{bc(a1, . . . , an) : a1, . . . , an linearly independent elements of

the rational span of x1, . . . , xn}.
4 This means: Given any linearly independent x1, . . . , xn, we can effectively enumerate

all rational numbers greater than bc([x1, . . . , xn]).
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By item (1) and Lemma 7, we can compute a sequence that exhausts this set.
We can hence compute its infimum from above. ��
Proof of Lemma 5. The function σ and the sequence (xi)i are computed re-
cursively as follows: Search for an arbitrary 
 with e(
) �= 0. Put σ(0) = 0,
x0 = e(
). Now suppose that σ(n) and x0, . . . , xσ(n) have already been com-
puted. By Lemma 6.2, we can compute B[x0,...,xσ(n)], and so we can compute

the sequence (d(n)
m )m, where d

(n)
m is the distance between e(m)/‖e(m)‖ and

B[x0,...,xσ(n)]. For all m, j ∈ N, we can semidecide both d
(n)
m > 2−(n+j+1) and

d
(n)
m < 2−(n+j). We can hence compute a binary double sequence (t(n)

m,j)m,j such
that

d(n)
m ≤ 2−(n+j+1) =⇒ t

(n)
m,j = 0

and
d(n)

m ≥ 2−(n+j) =⇒ t
(n)
m,j = 1

for all m, j ∈ N. We finally search the triangular scheme

t
(n)
0,0 ,

t
(n)
0,1 , t

(n)
1,1

t
(n)
0,2 , t

(n)
1,2 , t

(n)
2,2

t
(n)
0,3 , t

(n)
1,3 , t

(n)
2,3 , t

(n)
3,3

...

(3)

row by row and from left to right for the first occurrence of 1. There must be an
occurrence of 1 in the scheme, because else one would have

(∀m ∈ N) (d(n)
m = 0),

which would imply

(∀m ∈ N) (e(m) ∈ [x0, . . . , xσ(n)]),

in contradiction to X being infinite dimensional. If the first 1 occurs at index,
say, (m0, j0), put xσ(n)+1 := e(m0).

Before we describe how to compute σ(n+ 1) and xσ(n)+2, . . . , xσ(n+1), let us
point out that our method for choosing xσ(n)+1 already ensures that eventually
[x0, x1, . . .] = X : Assume the contrary. Then there is an N ∈ N such that

e(N) �∈ [x0, x1, . . .]. (4)

Let d > 0 be the distance between e(N)/‖e(N)‖ and B[x0,x1,...]. Let n be so large
that

{e(0), . . . , e(N − 1)} ∩ {x0, x1, . . .} = {e(0), . . . , e(N − 1)} ∩ {x0, x1, . . . , xσ(n)}
(5)

1153Bosserhoff V.: On the Effective Existence of Schauder Bases



(such an n exists because the sequence (xi)i is constructed to be linearly inde-
pendent and can hence not have dublicate elements) and d ≥ 2−n. Consider the
construction of xσ(n)+1. As

d
(n)
N ≥ d ≥ 2−n ≥ 2−(n+N),

we have t(n)
N,N = 1. Let (m0, j0) be the first index in (3) with tm0,j0 = 1. If

(m0, j0) �= (N,N), then necessarily xσ(n)+1 = e(m0) and m0 ≤ N − 1, in con-
tradiction to (5). So necessarily (m0, j0) = (N,N), and hence xσ(n)+1 = e(N),
in contradiction to (4).

We now resume the construction and describe how to compute σ(n+ 1) and
xσ(n)+2, . . . , xσ(n+1): As X has local basis structure, there must be a number
k ∈ N and points a1, . . . , ak ∈ X such that

(x0, . . . , xσ(n)+1, a1, . . . , ak) ∈ INDX

and
bc([x0, . . . , xσ(n)+1, a1, . . . , ak]) < C.

Lemma 8.2 yields that suitable a1, . . . , ak can then be found in the rational span
of e (for reasons of continuity) and can furthermore be searched for effectively. So
once such k, a1, . . . , ak are found, put σ(n+1) = σ(n)+1+k and xσ(n)+1+i = ai

for i = 1, . . . , k. ��

4 A class of computable spaces with bases

For any sequence (Xn)n of Banach spaces over F, let (X0 ×X1 × · · · )c0 be the
Banach space of all sequences (xn)n with xn ∈ Xn for all n and limn→∞ ‖xn‖ =
0, equipped with the norm

‖(xn)n‖ := sup
n∈N

‖xn‖.

The dual of a space of the form (X0 ×X1 × · · · )c0 has a simple description
in terms of the duals of the spaces Xi:

Lemma9. Let (Xn)n be a sequence of Banach spaces over F. Put

X := (X0 ×X1 × · · · )c0 .

If (fn)n is a sequence with fn ∈ X∗
n for every n and

∑∞
n=0 ‖fn‖ < ∞, then f

with

f((xn)n) =
∞∑

n=0

fn(xn), (xn)n ∈ X, (6)

is a well-defined element of X∗ with ‖f‖ =
∑∞

n=0 ‖fn‖. Furthermore, every
element of X∗ is of this form.
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Proof. This is a straightforward generalization of [Megginson 1998, Example
1.10.4]. ��

Consider the computable Banach space (Z, ‖ · ‖, e) from Lemma 1. Define

Y := (Z × Z × · · · )c0 .

For every n ∈ N, let proj(n) : Y → Z and emb(n) : Z → Y be given by

proj(n)((zi)i) := zn, (zi)i ∈ Y

and
emb(n)(z) := (0, . . . , 0, z︸︷︷︸

index n

, 0, 0, . . .), z ∈ Z.

Apply Lemma 5 to (Z, ‖ · ‖, e); let σ and (xi)i be as in the statement of that
lemma. For every n ∈ N, put

Zn := [x0, . . . , xσ(n)].

For every τ : N → N, define

Yτ := (Zτ(0) × Zτ(1) × · · · )c0 .

The fact that the Zn have uniformly bounded basis constants goes into the
proof of the following proposition:

Proposition10. Let τ : N → N be arbitrary. Then Yτ has a shrinking basis.

Proof. By Lemma 5, there is a constant C such that every Zn has a basis
an,0, . . . , an,σ(n) with basis constant less than C. For every n ∈ N and 0 ≤
i ≤ σ(τ(n)), put

bn,i := emb(n)(aτ(n),i).

We will show that

b0,0, . . . , b0,σ(τ(0)), b1,0, . . . , b1,σ(τ(1)), . . . , . . . (7)

is a shrinking basis of Yτ .
Let (zn)n ∈ Yτ be arbitrary. Suppose that there exists an expansion

α0,0b0,0+ · · ·+α0,σ(τ(0))b0,σ(τ(0)) + α1,0b1,0+ · · ·+α1,σ(τ(1))b1,σ(τ(1)) + . . . + . . .

(8)
of (zn)n with respect to the sequence from (7). For every n, the continuity of
proj(n) yields

zn =
σ(τ(n))∑

i=0

αn,iaτ(n),i,
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so αn,0, . . . , αn,σ(τ(n)) must be the unique coordinates of zn with respect to the
basis

aτ(n),0, . . . , aτ(n),σ(τ(n)) (9)

of Zτ(n). Every element of Yτ thus has at most one expansion with respect to
the sequence from (7).

To show that (7) is a basis, it remains to show that (8) converges to (zn)n ∈ Yτ

if the αn,i are chosen such that αn,0, . . . , αn,σ(τ(n)) is the expansion of zn with
respect to the basis (9) for every n. The partial sums of the series (8) have the
form

M−1∑
n=0

σ(τ(n))∑
i=0

αn,ibn,i +
N∑

i=0

αM,ibM,i

with N,M ∈ N, 0 ≤ N ≤ σ(τ(M)). We have the following estimate for the
distance to (zn)n:5

∥∥(zn)n − (M−1∑
n=0

σ(τ(n))∑
i=0

αn,ibn,i +
N∑

i=0

αM,ibM,i

)∥∥
=
∥∥ ∞∑

n=0

e(n)(zn) −
M−1∑
n=0

σ(τ(n))∑
i=0

αn,ie(n)(aτ(n),i) −
N∑

i=0

αM,ie(M)(aτ(M),i)
∥∥

=
∥∥ ∞∑

n=0

e(n)(zn) −
M−1∑
n=0

e(n)
( σ(τ(n))∑

i=0

αn,iaτ(n),i︸ ︷︷ ︸
=zn

)− e(M)
( N∑

i=0

αM,iaτ(M),i

)∥∥

=
∥∥ ∞∑

n=M

e(n)(zn) − e(M)
( N∑

i=0

αM,iaτ(M),i

)∥∥
= max

(
sup
n>M

‖zn‖,
∥∥zM −

N∑
i=0

αM,iaτ(M),i

∥∥)
≤ max

(
sup
n>M

‖zn‖, ‖zM‖ +
∥∥ N∑

i=0

αM,iaτ(M),i

∥∥)
≤ max

(
sup
n>M

‖zn‖, ‖zM‖ + C‖zM‖).
In view of the fact that ‖zM‖ → 0 as M → ∞, this estimate yields the conver-
gence of (8) to (zn)n.

It remains to show that the basis (7) is shrinking. Let f ∈ (Yτ )∗ be arbitrary.
f has the form

f((zn)n) =
∞∑

n=0

fn(zn)

5 In this equation only, we abbreviate emb with e
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with certain fn ∈ (Zτ(n))∗ (n ∈ N), and ‖f‖ =
∑∞

n=0 ‖fn‖ (see Lemma 9). For
every 
, let B� be the closed unit ball in the subspace

[b�,0, . . . , b�,σ(τ(�)), b�+1,0, . . . , b�+1,σ(τ(�+1)), . . . , . . .]

= ({0} × · · · × {0}︸ ︷︷ ︸
�-times

×Zτ(�) × Zτ(�+1) × · · · )c0

of Y . Then (again by Lemma 9)

sup{|f(y)| : y ∈ B�} =
∞∑

n=�

‖fn‖,

so
lim

�→∞
sup{|f(y)| : y ∈ B�} = 0.

This completes the proof. ��
The following lemma and its corollary will be useful in the next section:

Lemma11. Let X be a Banach space that has AP, and let V be a closed sub-
space such that there is a linear bounded F : X → X with range(F ) = V and
F (v) = v for every v ∈ V . Then V has AP.

Proof. The claim is trivial if V = {0}. So suppose otherwise. Then necessarily
‖F‖ ≥ 1, in particular F‖ �= 0. Let K be compact in V and ε > 0 arbitrary.
K is also compact in X . As X has AP, there is a finite-rank linear G : X → X

such that
sup
x∈K

‖G(x) − x‖ ≤ ε‖F‖−1.

Put G′ := F ◦G|V . Then G′ has finite rank. Furthermore

sup
x∈K

‖G′(x) − x‖ = sup
x∈K

‖F (G(x)) − F (x)‖ ≤ ‖F‖ sup
x∈K

‖G(x) − x‖ ≤ ε.

��
Corollary 12. Let (yi)i ∈ Y ω be a basic sequence. Then

emb(n)(Z) �⊆ [y0, y1, . . .].

for every n ∈ N.

Proof. Let us assume that emb(n)(Z) ⊆ [y0, y1, . . .] for some n. The space X :=
[y0, y1, . . .] has a basis and hence has AP. The mapping

F := emb(n) ◦ proj(n)|X
is linear and bounded on X with range(F ) = emb(n)(Z) and F (v) = v for every
v ∈ emb(n)(Z). The previous lemma yields that emb(n)(Z) has AP. emb(n)(Z),
however, is isometrically isomorphic to Z, which lacks AP. Contradiction! ��
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Let us finally equip Y and the Yτ with computability structures: It is straight-
forward to verify that (Y, ‖ · ‖, h) with

h(〈n, i〉) := emb(n)(e(i)), n, i ∈ N,

is a computable Banach space. Recall that a function τ : N → N is lower semi-
computable if there is a computably enumerable set N ⊆ N with

τ(n) = sup{k ∈ N : 〈n, k〉 ∈ N}, n ∈ N.

If τ is lower semicomputable, it is easy to see that there is a computable enu-
meration hτ : N → Y of the set

{emb(n)(xi) : n, i ∈ N, 0 ≤ i ≤ σ(τ(n))};

the span of this set is dense in Yτ . We learn the following from [Brattka 2001,
Proposition 3.10]:

Lemma13. Let τ : N → N be lower semicomputable. Then (Yτ , ‖ · ‖, hτ ) is a
computable Banach space. The injection Yτ ↪→ Y is computable. ��

5 The diagonalization construction

In this section, we will prove our main result:

Theorem 14. There exists a lower-semicomputable τ : N → N such that the
computable Banach space (Yτ , ‖ · ‖, hτ ) as defined above possesses a basis, but
does not possess any computable basis.

In view of the results of the previous section, it remains to construct a lower-
semicomputable τ such that (Yτ , ‖ · ‖, hτ ) does not possess any computable basis.
By Lemma 13, every computable sequence in Yτ is computable in Y . So it is
sufficient to compute τ such that every computable sequence (yi)i ∈ Y ω has one
of the following two properties:

– (yi)i is not basic.

– Yτ �⊆ [y0, y1, . . .].

We will proceed by diagonalization over all computable sequences in Y . We
first note the following fact which follows immediately from the definition of the
Cauchy representation: Let αh be a canonical notation of the rational span of
h (cf. [Brattka and Dillhage 2007]). For every computable sequence (yi)i ∈ Y ω,
there is a total computable function ψ : N × N → N such that (αh(ψ(i, k)))k

converges rapidly to yi for every i. It is well-known that there exists a universal
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partial computable Ψ :⊆ N×N×N → N; that means, for every partial computable
ψ :⊆ N × N → N, there is an n ∈ N such that

(n, i, k) ∈ dom(Ψ) ⇔ (i, k) ∈ dom(ψ)

and
(i, k) ∈ dom(ψ) ⇒ Ψ(n, i, k) = ψ(i, k)

for all i, k ∈ N. In this case, n is called a Gödel number of ψ. Let ψn be the
partial computable function with Gödel number n. Denote by TOT the set of all
n such that ψn is total. Denote by SEQ the set of all n such that ψn corresponds
to a computable sequence in Y as described above.

Lemma15. There is a computably enumerable set M ⊆ N with

TOT \ SEQ ⊆M ⊆ N \ SEQ.

Proof. M shall be defined as the set of all n with

(∃ i ∈ N)(∃ k ∈ N)(∃ j ∈ N)
(
j > k, (i, k) ∈ dom(ψn), (i, j) ∈ dom(ψn),

and ‖αh(ψn(i, k)) − αh(ψn(i, j))‖ > 2−k
)
,

which is easily seen to be computably enumerable. The claimed inclusions follow
directly from the definition of rapid convergence. ��

Let (n, k) �→ 〈n, k〉 be a canonical bijective tupling N×N → N. We now define
a lower-semicomputable τ : N → N by giving an algorithm that enumerates a
set L〈n, k〉 ⊆ N with

τ〈n, k〉 = max(L〈n, k〉 ∪ {0}) (10)

for any given 〈n, k〉 ∈ N.
We begin the description of the algorithm: Let 〈n, k〉 be given. The procedure

consists of four parallel processes A, B, C, D. The set L〈n, k〉 is defined to be
the intersection of the sets put out by processes A and D. Each process can make
a terminate call that causes itself and the other three processes to terminate
immediately; this shall be the only way that a process can interfere with another
process’s execution.

Process A runs a loop over 
 = 0, 1, 2, . . .. In the body of the loop, ψn is
called with input (i, j) chosen such that 
 = 〈i, j〉. If this call returns, 
 is put
out and the loop continues.

Process B runs a semidecision procedure for “n ∈M”, where M is the set
from Lemma 15. As soon as “n ∈M” (if ever), the process calls terminate.

We will only define the behaviour of processes C, D for n ∈ SEQ. For n �∈
SEQ, the behaviour of C and D shall be undefined. So let (yi)i ∈ Y ω be the
computable sequence corresponding to n.
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Process C performs an exhaustive search for 
,m ∈ N, 
 ≤ m, α0, . . . , αm ∈
Q[i] with ∥∥ �∑

i=0

αiyi

∥∥ > k
∥∥ m∑

i=0

αiyi

∥∥.
Once such numbers are found, the process calls terminate.

Process D performs a loop over 
 = 0, 1, . . .. In the body of the loop, first 

is put out, then an exhaustive search for elements x̃(�)

0 , . . . , x̃
(�)
σ(�) of the rational

span of {yi : i ∈ N} with

(∀ 0 ≤ i ≤ σ(
))
(‖emb(〈n,k〉)(xi) − x̃

(�)
i ‖ < 2−�

)
is performed.6 In case such elements are found, the loop continues.

This completes the description of the algorithm.
τ : N → N is well-defined by (10) if, and only if, L〈n, k〉 is finite for all n, k.

So we have to make sure that the output of either A or D is finite:
Case 1: n �∈ TOT. Then A will sooner or later call the function ψn with an
argument from outside dom(ψn). This call will not return, so the process will
“hang” and not produce any more output.
Case 2: n ∈ TOT \ SEQ. B will sooner or later detect that n ∈ M , so all
processes are terminated after finite time.
Case 3: Otherwise. Then n ∈ SEQ. Let (yi)i be the corresponding sequence.
Case 3a: The nonzero elements of (yi)i form a basic sequence. We show that
the loop in process D will only be iterated a finite number of times: Suppose the
contrary. Then all emb(〈n,k〉)(xi), i ∈ N, can be approximated arbitrarily well by
elements from the rational span of {yi : i ∈ N}. This implies

{emb(〈n,k〉)(xi) : i ∈ N} ⊆ [y0, y1, . . .],

and thus

emb(〈n,k〉)(Z) = emb(〈n,k〉)([x0, x1, . . .])

= [emb(〈n,k〉)(x0), emb(〈n,k〉)(x1), . . .]

⊆ [y0, y1, . . .].

This contradicts Corollary 12.
Case 3b: Otherwise. The nonzero elements of (yi)i do not form a basic sequence.
Proposition 2 ensures that the exhaustive search performed by process C will
succeed, so all processes will sooner or later be terminated.

It remains to show that Yτ �⊆ [y0, y1, . . .] for any computable basic sequence
(yi)i ∈ Y ω: Let n be a Gödel number of (yi)i. Choose k ∈ N greater then the
basis constant of (yi)i. As

emb(〈n,k〉)(Zτ(〈n,k〉)) ⊆ Yτ ,

6 Recall that σ and the xi were defined on page 11.
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it is sufficient to show

emb(〈n,k〉)(Zτ(〈n,k〉)) �⊆ [y0, y1, . . .].

This is fulfilled if, and only if,

{emb(〈n,k〉)(xi) : 0 ≤ i ≤ σ(τ(〈n, k〉))} �⊆ [y0, y1, . . .]. (11)

As n ∈ SEQ, we have n �∈M , so process B will not terminate the other processes.
As k > bc((yi)i), the exhaustive search performed by process C will not succeed,
so C will not terminate the other processes, either. Process A will enumerate the
entire set N. Together, this implies that L〈n, k〉 is equal to the output of process
D. Consider the final iteration of the loop in process D, that means 
 = τ(〈n, k〉).
The exhaustive search in the body of the loop does not succeed (otherwise, this
were not the final iteration). This directly implies (11). The proof is complete.

References

[Albiac and Kalton 2006] Albiac, F. and N. Kalton, “Topics in Banach Space Theory”;
Springer, New York.

[Brattka 2001] Brattka, V.: “Computability of Banach space principles”; FernUniver-
sität Hagen, Informatik Berichte 286,
URL: http://cca-net.de/vasco/publications/banach.html

[Brattka and Dillhage 2007] Brattka, V., Dillhage, R.: “Computability of compact op-
erators on computable Banach spaces with bases”; Math. Logic Quart., 53 (2007)
345-364.

[Brattka et al. 2008] Brattka, V., Hertling, P., Weihrauch, K.: “A tutorial on com-
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