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Abstract: We consider the uniform model of computation over any structure with two
constants. For several structures, we construct oracles which imply that the relativized
versions of P and NP are equal or are not equal. We construct universal oracles which
imply the equality of the relativized versions of P and NP and we show that we lose
the possibility to define these oracles recursively if we try to compress their elements
to tuples of fixed length. Moreover we give new oracles for the BSS model in order to
separate the classes P and NP relative to these oracles.
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1 Introduction

The uniform model of computation over arbitrary algebraic structures IK can
be defined in analogy to the BSS model over the real numbers introduced by L.
Blum, M. Shub, and S. Smale in [Blum et al. 1989] (see also [Blum et al. 1998]).
For the structure IK ¢ 13 =qar ({0,1};0,1;; =) which is also the basic structure for
Turing machines (cf. [Balcazar et al. 1988/90]) and for structures like the ordered
ring of reals used in case of the BSS model, questions like P L NP are open. For
the classical setting, T. Baker, J. Gill, and R. Solovay constructed relativized
versions of P and NP which imply different relationships between these classes
(cf. [Baker et al. 1975]). There are oracles O such that the classes P and NP©
are equal and other oracles such that they are not equal. T. Emerson transferred
these results to the ring of reals and other ordered rings in [Emerson 1994].
In the classical setting, the proofs rely on the enumerability of the programs
of oracle machines. Emerson introduced oracles of a new kind where he used
the codes of BSS machines as specified in [Blum et al. 1989]. In this way the
authors showed that, in both settings, for Turing machines as well as for BSS
machines, the extension of the machines by oracles is not very helpful for solving
the central problems like P Z NP. This implies questions like the following for
any structures IK: Which relationships between the relativized versions of P
and NPk will we obtain if we permit oracles for machines over IK? Can we
provide evidence that the construction of new oracles is not really helpful for
solving the P L NP problem, by defining oracles O and Q satisfying P$ = NP](ID(
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and P]%( # NP]I% for structures for which the relation between P and NP is
known? Is it possible to derive new relations from these oracles in order to get
P = NPy for new structures IM?

2 The Model of Computation

Let struc(U) be the class of structures IK = (Us;(d;)jet,; (fi)jen; (Rj)jers, =)
with the constants d; € U, the operations f;, and the relations R;. For j € Ji,
fj is an operation of arity ny, > 1. For j € J», R; is a relation of arity ng;. For
any K € struc(U), we define the machines over IK, the IK-machines, in analogy
to [Blum et al. 1989] such that we get a natural format of abstract computers
over IK, on the one hand, and such that one has to consider only a small number
of kinds of instructions, on the other hand.

Every IK-machine M is equipped with registers Zi, Zs, . .. for the elements of
U and with a fixed number of registers I, I, . . ., It.,, for indices in Nt = IN\ {0}.
For an input (z1,...,z,) € U =a¢ Ui, U?, the sequence z1,...,Zn, Tn, T, - . -
is assigned to the registers Z;, Zo,.... The index registers get the content n.
After the input the machine executes its program defined by a finite sequence
of labelled instructions until an output instruction is reached. The computation,
copy, and branching instructions have the form Z; := fk(Zjl,...,Zjnf ), Zj =
di, Z1; := Zr,,, and if cond then goto I, else goto Iy where cond can be of the
form Z; = Zy or Ry(Zj,,...,Zj,,, ). The IK-machines perform these instructions
as a computer where we assume that each function and each relation of IK
can be processed within a fixed time unit. The index registers are used in the
copy instructions. For useful copying the value from Zj, into Zj;, we also allow
Ij :=1,1; :=I; + 1, and if I; = I}, then goto I, else goto l>. Moreover, oracle
machines can execute if (Z1,...,2Z1,) € O then gotol; else goto l» for some oracle
O C U®. The non-deterministic machines are able to guess an arbitrary number
of arbitrary elements y1,...,y, € U in one step after the input and to assign
the guesses to Zr, 41, .., Z1,+m- We do not restrict the domain for m to simplify
matters. That means that m is independent of n. However, a machine can use at
most ¢ guesses within ¢ steps. In any case, the size of an input (z1,...,z,) is, by
definition, its length n. If the output instruction is reached, then (Z1,...,Zy,) is
the output and the machine halts.

Let M and MY, be the classes of deterministic and non-deterministic K-
machines, respectively. Let, moreover, the machines in M (0) and M (O) be
able to use the oracle O. Then, we have Mk C MI;. and M (O) C M (O) since
we assume that non-deterministic machines need not guess any elements.

In the following we only consider structures containing two constants. We
denote the class of these structures by struc, ,(U) where we assume that a,b
are two constants belonging to U. Then we say that a deterministic IK-machine
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accepts (or rejects, respectively) a tuple x € U if the machine outputs a (or
b, respectively) on input x. For any problem P C U, its decidability and its
recognition (or semi-decidability) over IK result from the computability of the
characteristic function of P, fp : U*® — {a,b}, by some IK-machine and from
the computability of the partial characteristic function of P, fp : U® — {a},

respectively. A non-deterministic IK-machine M accepts an input (zy,...,z,) €
U if there is some finite sequence of guesses (y1,...,Yym) € U such that M
outputs a on input (z1,...,z,) for the guesses y1, ..., Yym. The execution of one

instruction is one step of the computation process. Each step can be executed in
a fixed time unit. A IK-machine will come to a halt in polynomial time if there
is a polynomial function p such that, on every input (z1,...,z,) € U™ (and for
any guesses), the machine performs at most p(n) instructions before the output
is generated.

For any structure IK, let Pk and NP denote the usual complexity classes
of decision problems P C U decided or non-deterministically recognized by a
machine in M or in MY in polynomial time (where an input is only accepted
if and only if it is in P). DEC contains all problems decided by a machine in
M. Moreover, let FP be the class of all functions f : U — U which can
be computed by IK-machines in polynomial time. For any oracle O, P$, NPS,
and DECE; denote the classes extended to machines which can also use O.

Let strucg?b(U) be the class of structures of finite signature which have the
form (U;a,b,ds,...,dk; f1y- -y fiy; R1y- oy Riy, =) for some kg > 2 and ky, ko >
0. For any structure IK € strucf"
non-deterministic IK-machines which are able to simulate each machine M € My
and M € MY, respectively, on any input x if they get x and a suitable code of
M as input. In order to encode the programs of machines by strings we use U or
a subset of U as alphabet where this alphabet can also be infinite, e.g., if U = IR,
then real numbers can be the symbols of strings. The concatenation of any strings
s1,82 € U™ is denoted by s1so2, and for r € U* and S,851,82 C U*, we have
S$18 = {s182 | 51 € S1 & 82 € So}, rS = {r}S, and Sr = S{r}. In any case,
we want to distinguish between the product U=?) =4 UU = {uv | u,v € U}
defined by the concatenation of strings and the Cartesian product U? = U x U.
For this reason, we also distinguish between U* and U>. U* = |J52, U= is
the set of all strings over U, U is the set of all tuples over U, and (U*)*® =
Ui, (U*)* is the set of all tuples whose components are strings over U.

(U), we can define universal deterministic and

Definition 1. Let Scoqe =ar b>({a,b}* \ ({a,b}*b*{a,b}*)) be the set of strings
in {a,b}* which contain the sub-string b> as prefiz only. For KK € strucg?b(U),
let Codej; be an injective mapping of the set of all deterministic and non-
deterministic oracle IK-machines into Scoqe Such that every character of the
programs is unambiguously translated into a string by this mapping where the
oracle queries are encoded independent of the used oracle by taking the same
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sequence of characters as code for all oracle queries.

The oracle queries can be encoded independently of the used oracle since we
consider only classes of oracle machines using the same oracle. Note that we omit
the index IK since confusion is not to be expected. Since, in general, the strings
over U are not elements of U, we use tuples as codes. Any (¢1,...,cx) € U can
be stored in k registers.

Definition 2. For every non-empty string s = cy -+ ¢, € U* where |s| =k > 1,
let [s)euple and [s| (we will omit the subscript) be the representation of s in
the form of a tuple (ci,...,cx) € U¥ C U™, that means that [c1 -+ - ck]uple =
|—Cl "'Ck—l = (Cla"'ack)'

To simplify matters, we use the vector notation for tuples and for parts of tuples.
(x,[e1 -+ ex]) stands for (z1,...,2n,c1,...,¢), and so on. Moreover, for any

t > 1, t stands for [bta] and Code is defined by Code(M) = [Code*(M)] for
any machine M € M. (0) where K € struci", (U).

0‘7

Definition 3. Let the Universal NP-Problem, the Halting Problem, and a spe-
fin

cial halting problem with respect to IK € struc,",(U) be given by
UNIk= {(t,x,Code(M))| x € U*® & M € ME. & M accepts x within ¢ steps},
Hik = {(x,Code(M))| x€U>® & MeMk & M halts on x},

HZ = {Code(M) | M € Mk & M halts on Code(M)}.

The first problem can be recognized by a universal non-deterministic machine
in polynomial time since the size of an input

(t,x,Code(M)) = (b,...,b,a,x1,...,2n,b,b,c3,...,c5) € UTITnts
——— —_———
tx =Code(M)

ist+1+4+mn + s. We can generalize some known results.
Proposition 4. For each structure IK € strucﬁ"‘b(U), UNIk is NPk-complete.

a

Corollary 5. For each structure K € strucf", (U), we have
Pk = NP if and only if UNIk € P,

Pk # NP if UNIk ¢ DECK.

Let us mention that the finite signature of a structure IK is a sufficient but not a
necessary assumption for the definition of NP-complete problems. For example,
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the linear IRj;,-machines over the reals as well as the scalar Zgs.-machines over
the integers, which can only execute the multiplication by constants, can be
encoded if the constant factors stand for themselves in the codes. There is not a
universal IRji,-machine and there is not any NPz__-complete problem, but there
are NPy, -complete problems (see [Gainer 1997]).

The undecidability of the Halting Problem is known for Turing machines, for
the BSS model over the real numbers, for While programs on standard algebras
[Tucker and Zucker 2000], and so on. For these problems, the undecidability re-
sults from the enumerability of the codes of machines and the undecidability of
halting sets investigated in [Blum et al. 1989, Blum et al. 1998], respectively. For
BSS machines and restricted classes of BSS machines, further halting problems
were considered, e.g., in [Meer and Ziegler 2005, Meer and Ziegler 2006] and in
[Gafiner (1) 2008].

Proposition 6. For any K € strucg?b(U), Hik € DECk implies H* € DECk.
If all elements of K are also constants of IK, then HY*“ € DEC implies Hik €
DECKk.

Proof. The first part of the proposition is obvious. For the proof of the sec-
ond part, let us consider any deterministic IK-machine A" and any input x =
(®1,...,2pn). Let My« be the machine which works by means of its ky + 2
index registers I,..., I, +2 as follows. First, M x replaces its own input
values in the first n registers Zy,...,Z, by z1,...,z, and My x assigns the
length n of x to its registers I,..., I, +2. Then, this machine follows the pro-
gram of N where the maximal value of the registers Iy, ..., I, is also stored in
Iy41 and Ii, 42 and My x writes z, in each further register Z, 1, Zpy2,. ..
by IkN+2 = IkN+2 + 1; ZI’“N+2 = ZIkN'+1; IkN+1 = IkN+1 + 1 before this
register is used. Consequently, the output behaviour of My x on any input
(also on input Code(Myrx)) is the same as one of A" on x. That means that
Code(Myr x) € HL® if and only if (x, Code(N)) € Hik. By definition of Code
there is a IK-machine which can compute Code(My x) for any x and any N if
it gets (x, Code(N')) as input. Thus, Hk can be reduced to Hiz®, and, thus, Hk
is decidable by a IK-machine if H2® is decidable by some IK-machine. 0

Proposition 7. For any IK € struc, 3(U), which allows to define a special halt-
ing problem analogously to HL*® by any encoding method, this special problem
is not in DEC.

Proof. We give the proof for Hi?®“. Assume that there is a IK-machine M,
which decides HR*. Let M; be the following machine. M; works as My until
the output instruction of My is reached, M does not halt if the output of M,
is a, and M halts if the output of My is b. That means, that M; executes
instructions like
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l: Zy:=a; if Zy = Z5 then goto I; output Z;
if My executes an output instruction of the form
[: output Z;.

Therefore, M; halts on Code(M;) if and only if the output of Mg on Code(M;)
is b, and consequently, if and only if Code(M) is not in HZ*, and thus, if and
only if M; does not halt on Code(My). This is a contradiction.

The proof is the same one for any system for encoding machines. O

Remark. In the proof of Proposition 7 the existence of the constants a and b
is a necessary assumption only if we want to use our definition of acceptance
and rejection of inputs by means of the output of constants. The decidability
of a problem could also be defined by the halting properties of two machines
recognizing the problem and its complement, respectively. Then, we can prove
Proposition 7 since the complement of HiZ® cannot be recognized by any IK-
machine.

Corollary 8. For each KK € strucg?b(U), Hi is not decidable by a IK-machine.

3 The Equality of Relativized Versions of P and NP

We shall define a universal oracle O with P$ = NP for any structure K €
struc, »(U) which permits to compute the codes of the programs of machines over
IK. The first construction is restricted to structures of finite signature with two
constants. We transfer and modify the definitions given in [Baker et al. 1975] and
[Emerson 1994]. The ideas for the definitions go also back to S. A. Cook, R. Karp,
A. Meyer, M. Fischer, and H. B. Hunt. (For more details see [Baker et al. 1975].)
The tuples which can occur in the oracles O (= (’)?K)) and Oy (= OSK)) (for a
given IK € struc, 4(U), we omit the index IK) can be derived from a universal
problem.

Definition 9. For any KK € strucl", (U), let
UNI®(0) = {(,x, Code(M)) | x € U™ & M € MY(0) & M(x) '}

be the Universal NP]?(—Problem where M(x) |t means that M accepts x within
t steps. Let O1(= (’)?K)) be a universal oracle defined by O1 = ;5o W; where
Wo =0 and

Wi = {(f,x, Code(M)) € U* | M € M (| W;) & M(x) |'}.

Jj<i
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For any oracle O, UNI?K)((’)) is NP{-complete since the codes of machines
allow to simulate the single steps of the oracle machines in M, (0) by only one
universal oracle machine using the oracle O in polynomial time. Moreover, for
any i > 0, we have UNI{"™)(0;) nU? = UNI™ (U, _, W;) N U = W; since the
length of a tuple in an oracle query, executed within the first ¢ steps, is less than
t+n < i for any input (z1,...,2,). This implies UNI?K) (O1) = Oy. Because of
0O; € P]% we get, the following.

Proposition10. For anyIK € strucg?b(U), there is an oracle O such that P, =
NP

A further characterization of the power of the universal oracle O; is possible
by comparison of the classes P]% and NP]?(1 with the classes of the polyno-
mial hierarchy PH and the class PATk containing the problems recognized in
polynomial alternating time. Let us define the higher alternation levels of the
polynomial hierarchy for any IK € strucg?b(U). A problem P C U* is in Xk,

(k > 0) iff there exist a problem Py € P and polynomial functions py, ..., ps
such that, for any x € U™, the condition

xeP e (Qy) e UMY ... (Qry™ e UP™)((x,yM), ...,y ")) e Py)

holds where (Q; stands for the existential quantifier 3 if 7 is odd and for the
universal quantifier V if i is even. ITf; denotes the class obtained if the alternating
quantifiers start with the universal one. The polynomial hierarchy is defined by
PHK = Upso Tk = Upso . A problem P C U belongs to the class of the
problems recognized in polynomial alternating time, PAT, for IK € strucg?b(U)
iff there exist a set Py € Pk and some polynomial function ¢ such that, for any

xeU",
Xx€P & (T €U)Var €U) -+ (Fygen) € U)(Vzgm) €U)
((X7Z/1,Z1,---,yq(n)azq(n)) € PO) (1)

holds.

For any K € struci" (U), we know that PHx C PATK (for details, cf.
[Cucker 1993, Bournez et al. 2006]). In the classical setting, we have PAT =
PATK,,,, = PSPACE (cf. [Balcizar et al. 1988/90, Bournez et al. 2006]).

Proposition11. For any structure IK € strucg?b(U), there holds

PHy C PAT) C P

for the universal oracle O .
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Proof. 1t is enough to show that any problem in PATk can be reduced to Oy
by some function in FP. We want to use the logical equivalence Jy;Vz; H
Jy;—~(3z;—H). Let P be any problem defined by some problem Py € P and
some polynomial function g such that (1) is satisfied for any x € U™. Let M,
decide the problem Py without using guesses in a time bounded by some poly-
nomial function p. Then, M; recognizes P non-deterministically if, for i < g(n),
the machines M; and N; and the machine M(n) use the programs given be-
low and if ./\fq(n) outputs a on input y@(") for any guess Zq(n) if and only if
([or(n+2a(m) q] y(a(m) [z ), Code(Mo)) & O1. Ny(, can simulate M, or it can
query the oracle. In the latter setting N,y computes the code Code(M;) and
it assigns the constant b to the first p(n + 2¢(n)) registers before it queries the
oracle. The number of steps, s,(,), executed by ./\fq(n) is bounded by some linear
combination of |Code*(Mo)| and p(n + 2¢(n)). Thus, the program of Ny, has
the time complexity O(p(k)) and we can specify the program of N, so that
the complexity of its length is only dependent on the degree and the coefficients
of p. The behaviour of Nq(n) on input y(@(™) is queried by M(n), and so on.
For i < ¢(n), the number of steps t; which are done by M; in order to exe-
cute its program is bounded by a linear combination of |Code*(N;)| and s;. For
i < q(n), s; is bounded by a linear combination of |Code*(M;y1)| and t;41.
Therefore, there is a reduction function in FPx which assigns the code of the
non-deterministic oracle machine M; where this code implicitly determines the
code of the next oracle machine N7, and so on, to any input x € U™ C U™,

The program of M.
1: Input 2079 =g¢ (x, 41,21, -, Yi—1,2i—1); SUESS Y;;
2: compute (8;, Code(N;));
3: if (3;,207Y, y;, Code(N;)) € O then goto 4 else goto 5;
4: output b;
5: output a.
The program of N;.
1: Input y =a¢ (%,91,21, 42,5 2i-1,4i);  guess z;
: compute (£;11,Code(M;is1));
2 if (L1, ¥?, 2, Code(M;y1)) € Oy then goto 4 else goto 5;

[\

3

4: output b;

5: output a. a
A statement like Proposition 10 can be formulated for any structure IK €

struc, 3 (U) if every oracle machine can be encoded by a computable tuple u €
V =gt {[v] € U® | v € b>(U* \ (U*b?U*))}. For structures of enumerable
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signature, the possible codes are the indices of a list of all programs like in the
definition in [Baker et al. 1975], or they can have a form like the codes of the
linear or scalar real machines, where the operations are encoded by real numbers,
and so like. In this way we get the wished oracles also for many structures of
infinite signature. Let, for any oracle O,

UNI™(0) = {(,x,u) e U™ |
ueV & (IM e ME(0))(u is the code of M & M(x) |})}

be a universal problem restricted to non-deterministic IK-machines which can
use O. UNISK) (0) is NPQ-hard if every code of a machine M can be computed
by a deterministic IK-machine Ny on any input x. For Oy (= OSK)) =Uiso Wi
defined by Wy = () and B

Wi ={(t,x,u) e U’ |
ueV & (IM e Mg (U, Wj))(u is the code of M & M(x) |1},

there holds UNIS®)(0,) N U C W; for any i > 0. This implies the following.

Proposition 12. For any K € struc, ,(U), for which all oracle machines can be
encoded by suitable computable tuples in U, there is some oracle O such that
PQ. = NP{.

Remark. We can transfer the proof of Proposition 11 in order to get PHi C
PATK C P% if the code of the machine which works as M is computable by
some IK-machine in polynomial time.

4 The Inequality of Relativized Versions of P and NP

We shall present three kinds of oracles Q;(= Q?K)), Qa(= QSK)), and Qsz(=
(TK)
5 )
the corresponding relativized versions of the classes Pk and NP. The first two
oracles are defined recursively by means of diagonalization techniques. These
techniques were also used by Gill, Baker, Solovay, and R. Ladner (for details see
[Baker et al. 1975]) and Emerson (see [Emerson 1994]).

for several classes of structures IK, in order to get the inequality between

4.1 The Classical Way to Define the First Kind of Oracles

If K is in the class struci"y™(U) of structures of enumerable signature, then
the wished oracle can be defined recursively on the number of programs as in
[Baker et al. 1975]. We take the positive integers in order to

— enumerate all programs of oracle machines whose form (including the oracle
queries) is independent of the used oracle,
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— encode all polynomial functions which can be used to define time bounds for
the computation processes,

— encode all couples of polynomial functions and programs.

Let i € INT be the code of a pair (p;, P;) which determines a class of deterministic
oracle IK-machines {N? | B C U*} by the following.

(a) The machine N® performs the instructions of the program P;.
(b) If NP queries an oracle, then NVZ uses the oracle B.

(c) The number of the instructions of P; carried out by AP is simultaneously
counted by ME by means of an additional index register.

(d) For any input in U™, the machine NP halts after at most p;(n) steps of
the execution of P;. (The bound p;(n) can be computed by using index
registers.)

(e) If the output of P; is reached in this time, then NP outputs the value
determined by P;. If the output instruction of P; is not reached in this
time, then ./\/'ZB rejects the input.

Then, for any oracle B and any problem P € P5 there is an i > 1 such that the
machine N? decides P.
The Construction of Q;. Let Vi = 0 and mo = 0. We construct the set Q, in
stages.
Stage © > 1: Let n; be any integer such that n; > m;—1 and p;(n;) +n; < 2™,
Moreover, let
Wi=U;«;Vjs
Vi ={x € {a,b}" | N rejects (a,...,a) € U™
& x is not queried by /\/iWi on input (a,...,a) € UM},

m; = AL

Finally, let Qi = U5, Wi and Ly = {y | (3i e N*)(y € U™ & V; #0)}.
Lemmal3. L, € NP2 \ P2'.

Proof. pi(n;) < 2" implies that V; # 0 if N}"* rejects (a,...,a) € U™. The
computation of the machines MW and /\fiQ1 is the same on all inputs in U™
since the length of the tuples in the oracle queries is bounded by p;(n;) +n; and
the queries of NVi and N}V*" with respect to V; are the same. Let us assume
that there is an ip such that /\ff1 decides L. However, the machine ./\/'i‘;vio, and
hence /\/iogl, accepts (a,...,a) € U™o if and only if L1 NU™o = () and it rejects
(a,...,a) € UMo if and only if L; N U™ = U™o. Thus, L1 & PHQ(l. O
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Proposition 14. For any structure IK € struci™y™(U) there is an oracle Q such
that P2 # NPg..

Ezample 1. Structures with PQ! = NP]?(1 and P]I%l # NP]I%1

Structures of finite signature with two constants:
K = ({0,1};0,1;5=),
K = (N;0,1;s;=) where s(n) =n+1,
K= (Z;0,1;+, —=), K=(Z;0,1;+,— <,=),
K= (Q;0,L+ — =), K=(Q0,L+,-,-;<,=),
K= R;0,1;+,—,-;=), K=(R;0,1; 4+, —,-; <,=).
Example 2. Structures with P% = NP]?(2 and P]I%l # NP]I%1

Structures of enumerable signature:
K=(ZZ;+,-=), K=(Z;Z;+, - <,=),
K=(QQ+ ;=) K=(QQ+ —-<,=)
A structure of enumerable signature without an NP-complete problem:

K = (Z;0,1;(sc. : ¢ € Z);=) where sc.(z) = cz for all z € Z.

4.2 The Second Kind of Oracles

Now, we want to consider mainly structures IK € struc, ;(U) whose signature
and, consequently, the programs of oracle machines over IK are not countable.
We simplify and generalize the construction given by Emerson for Archimedean
rings in [Emerson 1994] and for special groups in [Gafiner (2) 2008].

Let us assume that, for any oracle B, all machines in M (B) can be encoded
by tuples in a set 4 C U independently of the used oracle such that each
u € U represents a pair (pu, Py) which determines a class of deterministic oracle
IK-machines {NB | B C U} satisfying the properties in analogy with (a), (b),
(c), (d), and (e). Again this implies that, for any problem P € P%,, there is some
u € U such that V% decides P in polynomial time. In the following construction
we use the properties (i) and (ii).

(i) We permit any structure IK with an infinite universe U which allows to
define the necessary codes by tuples in U°.

(ii) Since U is infinite, we shall assume that there is an element ao and an
injective mapping o : U — U satisfying o(a;) = a1 and a1 # ap
for all 4+ € IN. The mapping need not belong to the structure and it is not
necessary that this mapping can be defined or computed over IK. We denote
the infinite sequence of images by 1,2, ... where (= k) =qf o(a,_1) for
any n € IN*.
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The Construction of Qs. Let us assume that U contains an infinite sequence
1,2,... given by an injective mapping o described above. Let Vo = (). We con-
struct the set Qs in stages.
Stage i > 1: Let

K,={ueld]|(Vj>i)(VBCU®)

(NEB does not compute or use the value j on input u)},

W; = Uk<i ka

Vi ={(i+1,u) |uc K; & N rejects u}.
Finally, let Qs = J;5, Wi and L» = {y | 3n € NT)((n,y) € Q2)}.

Lemmal5. L, € NP2? \ PR2.
Proof. Let us assume that some machine
N2 decides L. (2)

We consider the cases where u is in Ly and where u is not in Ls. If u € Lo,
then there is some 4 such that (i + 1,u) € V;. Thus, by the definition of K; the
machines V22 and AV¢ do not use any value j in any query on input u if j > i.
Hence, N2> works as N/Vi and, consequently, it rejects u. Thus, u & Ly holds
because of (2). If u € Ly, then because of (2), N2 rejects u. Since by definition
of the sets K, K>, ... there is some 7o such that u € K; for all i > ip, that means
that (ip + 1,u) € Q and hence u € L. |

Proposition 16. For any structure IK € struc, ,(U) with an infinite universe U
which allows to encode the IK-machines by means of tuples in U, there is an
oracle Q such that P11Q< # NP]%

Ezample 3. Structures with P2 = NP]?(2 and P]% # NP]I%2

Structures of non-enumerable signature:
K=(R;R;+,—,-;=), K= (R; R; +, -, -; <, =),
K= (R;R;+,—;=), K= (R;R; +, —; <, =),
K = (IR;0,1; (sc. : ¢ € IR); =) where sc.(r) = cr for all r € IR,
K = (R;0,1;(scc : ¢c € R), +,—;=), K = (IR;0,1; (sc. : ¢ € R), +,—; <, =).
Remark. 1. Simpler constructions are possible if there is an element which is not
computable from the codes in I/. For instance, the deterministic oracle machines

over Q[v2] = (Qv2 + ©;0,1;+, —, ;=) can be encoded by integers i € IN.
: : Q Q Q Q
Then, the inequality NPQ[\@] g DECQ[\@], and thus, PQ[\@] # NPQ[\/E] holds

for Q = {(v/2,i) | N? rejects i} since, for any i € IN, the behaviour of N;2 and
./\fi@ is the same on all inputs in IN.
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2. In order to get P]]Q% # NPH% for R = (R;R; +, —,-; <,=) (where any real
number can be a machine constant), Emerson constructed a special oracle Q
in [Emerson 1994]. For any program P, and any polynomial function p,, he
considered the greatest absolute value of all numbers used in a query by one of
the oracle machines in {NF | B C U} if these machines get their own code u as
input. In order to define some oracle recursively, for any natural number ¢ > 0, he
used a set K; formed by taking all codes of (py, P,) for which this greatest value
is in the interval ] — 1,4]. Emerson restricted his proofs to an Archimedean ring
and he mentioned the possibility to transfer his results to other ordered rings if
the Axiom of Choice (AC) and, consequently, the Well-Ordering Axiom (WO)
are assumed. We extended his investigation by using only the properties (i) and
(ii), and in this way we also answer the three questions posed by Emerson in the
last section of [Emerson 1994]. Our assumption is not equivalent to AC. If o is
computable, then neither any restrictions for the operations and the relations of
the structure nor for the domain U \ {ap, @1, ...} are necessary. The cardinality
of the infinite universe U is not important for the construction.

For some other structures, the weaker Axiom of Depend Choice (DC) which
was introduced by P. Bernays in his paper [Bernays 1942] and which is used
instead of the general AC in the Analytical Topology can be sufficient. If we
assume DC, then we can use that, for any binary relation R, there is a sequence
(2;)i>0 such that (x;,2,41) € R for all i > 0. Let us consider an infinite abelian
group which does not contain an element of infinite order. Then we can consider
the inclusion relation on the set of all non-trivial subgroups. By DC there exists,
for instance, an infinite sequence of subgroups (G;);>0 whose members include
their predecessors properly. Moreover, this implies the existence of an injective
mapping o by DC where o(a;) € Git1 \ Gi. (See also [Gafiner (2) 2008].)

4.3 The Third Kind of Oracles

The following oracle is not recursively defined and we can use the undecidability
of the corresponding Halting Problem in the proof. We consider only the class
struc%‘(U) containing all structures IK € strucg?b(U) for which U includes an
infinite set IN = {0, 1,2,...} with the following properties.

— IN is defined by some injective mapping o of U into U where i + 1 = o(i) # 0.

— IN is decidable by a deterministic IK-machine.

— IN is enumerable by a deterministic IK-machine which can compute 0 inde-
pendently of the input and which can compute i + 1 from 3.

— @ and b are elements of IN.
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The constructions given in Sections 4.1 and 4.2 are possible for any classes of time
bounds limiting the work of the deterministic oracle machines if these bounds
are computable by means of index registers. We can build, for instance, some
oracle @ such that EXP2 # NP2 holds if we use the exponential functions
instead of the polynomial functions as time bounds. The next oracle implies the
corresponding inequalities for each class of time bounds.

The Definition of Qs. For IK € strucit(U), let
Q3 = {(£,x,Code(M)) € U® | M € M & t € NT & M(x) ).

Lemma 17. For any K € struct! (U), Hk € NP2 and P? C DECK.

Proof. Let us consider the following program: Input any (x,Code(M)). Guess
y € U. Output a if (y,x,Code(M)) € Qs. The acceptance is possible only if
there is an n € IN' such that y = . Therefore, Hy € NP%. Now let us assume
that {0,1,...} is decidable and enumerable by some IK-machine. For any query
described by z € Q37?, there is a deterministic IK-machine M which can decide
whether z has the form (,x, Code(M)) for some t € INT and some M € Mk
and which can simulate each step of M. Because of the computability of ¢ by
computing 0,1,...,% it is possible to count the number of steps. That means
that P* C DECk. O

By Corollary 8 we can conclude the following,.

Proposition 18. For any K € strucﬁN”(U) there is some oracle Q such that
P2 # NPZ.
Example 4. Structures with P]% = NP]?(1 and P]I%3 # NP]I%3

Structures of finite signature for which IN is decidable:
K =(N;0,1;5;=), K = (IN;0, 1+, —; =), K= (Z;0,1;+, —; =),
K= (Q;071;+a_a';S7:)7 K= (R;071;+7_7';§7:)'
Structures with a finite number of operations and relations:

If we extend the codes so that the constants are represented by themselves,
then we get the same results for the following structures.

K= (]R;]R;+,—,-;§,:),]K:(]R;]R;+,—;§,:).

4.4 Further Oracles for the Ordered Ring of Reals

In Section 4.2 we could simplify and generalize the construction given by Emer-
son in order to given suitable oracles for structures of non-enumerable signa-
ture since the main arguments are of logical nature. However, for the ring
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R =4 (R;R;+,—,-;<,=) considered by Emerson we can give other simple
oracles Q satisfying PH% # NPH%.

Since, for any input 2 € IR, we can find a k € IN with —2¥ < z < 2% it is
possible to decide Z by binary searching. In order to accept or reject an input,
an IR-machine needs O(log([|z|]) many steps (where [z] is the smallest integer
greater than z). If we allow to decide Z within one step, then @ can be non-
deterministically recognized by a machine in M%(Z) which queries the oracle
whether the guesses y; and y» are integers and which checks y; # 0 and y12 = y»
for any input z. On the other hand, we know from the original BSS paper that
Q@ is not decidable over IR. Thus, we also have @ ¢ P]% since the oracle queries
can be simulated by a machine in M. Hence, we have P% # NP%.

In order to show P](% # NP% we consider the set

Q= 1{¢° g€ Q}.

Q€ DEC% holds (cf. [Meer and Ziegler 2006]), but we can show Q, ¢ P% by
the following lemma. In the proof of Q,, ¢ P](% it is important that we have to
consider only a finite number of computation paths.

Lemma19. For any polynomial function p € R[z] \ Q[z], there is only a finite
number of rational numbers q € Q satisfying p(q) € Q.

Proof. For any p € R[z] given by p(z) = ap + a1z + - -+ + a,z™ for some n > 0
and some ay, ..., a, € IR, there are polynomial functions qo,...,q, € Q[z] and
linearly independent coefficients a;,, a;,, ..., a;, (v < n+ 1) which satisfy

p(x) = qo (%) + aiy i () + -+ + i, 4o (7)

where y+aqa;, +---+aya;, =0impliesy=a; =--- =, =0ifv,aq,...,0, €
Q. Thus, for any z € Q, the condition p(z) € Q means that ¢;(z) = -+ =
gv(z) = 0 and p(x) = qo(x). These equations are satisfied either by all rational
numbers, and then p = ¢o and all coefficients of p are rational numbers, which
are determined by Lagrange’s interpolation formula, or only by a finite number
of rational numbers. O

Proposition 20. For the ordered ring R of real numbers, Qy, € NPH(Q,L \ P%
holds.

Proof. @, can be non-deterministically recognized by a machine in MR (Q)
which queries the oracle whether a guess y is a rational number and which
checks = = y? for any input z.

Now, assume that there is a machine N’ in Mg(Q) which decides Q, in
polynomial time. Let M = {p1,...,pn} contain all polynomial functions of arity
1 and degree d > 1, such that each of the computation paths of A" on inputs of
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size 1, P, can be described by a system Sp consisting of conditions of the form

pk(l') <0, pk('r) <0, pk('r) g Qa and pk(x) € Q (k < m)
Now, let r be a prime number satisfying (3) and (4).

r>max{s | (Ik <m)(pk(s) = 0)}, (3)
r>max{s € Q| 3k <m)(pr & Q[z] & pr(s) € Q)}. (4)

The number r exists since both sets are finite. The second set is finite by Lemma
19. Because of (3), we have py(r) # 0 and pi(r?) # 0 for all k < m since r2 > r.
Between r and r2, there is not a zero of pi. Thus pi(r) < 0 holds if and only if
pi(r?) < 0. Moreover, by (4) we have pi(r) € Q and pi(r?) € Q for k¥ < m in
case that py & Q[z].

Then, r € Q \ Q, and r2 traverses the same computation path of . That
contradicts the assertion. O

5 Relations Instead of Oracles?

Since, for many structures IK, we do not know the relationship between P and
NPk, we want to discuss the following question. Is it possible to replace the
oracle (’)?K) for some IK € strucg?b(U ) by one additional relation in order to get
a structure IM of finite signature with Ppy = NPp?

If we want to derive a new relation R (which can be satisfied only by tuples of
a fixed length ng) from the oracle @y such that any oracle query (Z1,...,Zy,) €
O can be replaced by a condition of the form R(Zy, ..., Zy,,), then we have to
compress the tuples in O; to tuples of length ng. Since, for many structures,
it is not possible to compute a bijection of the set of the finite sequences of
elements into a set of tuples of a fixed length, here we want to consider a class
of structures over strings which allow to encode finite sequences of elements by
single elements.

Definition 21. For any universe U, let A = U* such that the elements of U are
the characters of the strings in A, and let struc™(A) be the class of structures
of the form (A; Ao; f1,..., fr,,add,subj,sub;; Ry, ..., Ry,,=) where Ag C A is
a finite set of constants and a,b,e € Ag. add is a binary operation for adding
a character to a string. sub, and sub, are unary operations for computing the
last character and the remainder of a string, respectively. That means that these
functions are defined for the strings s € A, r € A\ U, and ¢ € U by add(s,c) =
sec, suby(sc) = s, suby(sc) = ¢, add(s,r) = ¢, subj(e) = €, and sub,(¢) = . Each
fi is an operation on A. Each R; is a relation on A.

In encoding the elements of oracles we can use that the tuples of strings can be
encoded by strings in the following way.
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Definition 22. For every string s € A, let the value (s) be recursively defined
by () = a and (rcy = (r)ca for all strings r € A and all character ¢ € U. For
every integer n > 1 and every tuple s = (s1,...,8,) € A", let (s1,...,8,) be the
string (s1)b% -+ (s,_1)b%(sp,).

Note that each deterministic machine over (U*;a, b, ¢; add, suby, sub,; =) can
be simulated by some machine over (U;a, b; ; =) in polynomial time if the inputs
are given in a suitable form. If a machine over (U*;a,b,e;add,suby,sub;;=)
processes guessed strings, then, in general, the simulation is not possible in
polynomial time.

Since we can take £ = b’ for any ¢ € IN, we have struc"(A) C strucf?(A)
because of the following lemma.

Lemma23. {0’ € A|i € IN} is decidable and enumerable over IK € strucfi"(A).

Although, for any IK € strucfi"(A4), the elements of the oracles O = (’)?K)
and Q = QSK) have a similar form, we have different relationships between
the relativized versions of P and NPx. That implies, on the one hand, the
conjecture that it could be easy to define oracles O, Q C A or new unary relations
R by compressing the sequences of strings in O,Q C A> to single strings in
order to get P9 = NP$. and P # NPS and P, = NP, or Px,, # NPk,
for new structures IKz. On the other hand it implies the conjecture that it
is not possible to define oracles O C A with P](?( = NP{ since the different
relationships between the complexity classes, relativized by using the oracles O
and Q, respectively, mainly are the result of the different representation of the
number of steps: In case of O, the number of possible steps, ¢, is determined by
the length of the tuple . In case of Q, the number of steps is given by only one
element of the structure, . To use only single strings as codes of the elements
of O in defining a new oracle O could be easier said than done. The following
results bear that out.

Theorem 24. For any K € strucfi"(A), the oracle
Q = {t'(x)Code*(M) € A | M e MK &t € Nt & M(x) |'}
implies P]?( # NP]IQ;.

Proof. First we want to show that PHQ( C DECKk. Let My be any machine in
M (Q). A query of the form s € Q? carried out by My can be simulated by
a deterministic machine which decides whether s has the form b?(x)Code* (M)
for some ¢t > 1 and for some M and which simulates the first ¢ steps of M on
input x if s has a suitable form. By Lemma 23 it is possible to count the steps.
Thus, there is a machine in M which can simulate any instruction of Mg on
every input.
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HE € NP holds since there is some machine in M} (Q) such that, for any
input Code(M), this machine is able to guess a string b® € A in one step, to
compute s = bt(Code(M))Code* (M) in polynomial time, and to check s € Q.
Therefore, the assertion follows from Proposition 7. O

Whereas it is easy to transfer the construction of oracles in order to again
obtain inequalities between the relativized polynomial time complexity classes
for structures over strings, the method does not work if we want to again get
equations for the relativized classes as it is shown by the following theorem.

Theorem 25. For any K € strucfi"(A), there is not any oracle satisfying

bt (x)Code* (M) € O & M e MK(0) & t € NT & M(x) |!. (5)

Proof. Let us assume that such an oracle O satisfying (5) is given. Then, there
holds NP{; C DEC{, by (5). Since we suppose that the set of the codes of the
deterministic oracle machines in M (O) is decidable by some IK-machine and
that we can extend the code of any machine such that any output b is avoided by
an infinite loop, the Halting Problem for deterministic oracle machines can be
non-deterministically recognized by guessing strings of the form b*. Consequently,

HZ*°(0) = {Code(M) € A* | MEMK(O) & M halts on Code(M)}

is also in NP](?(, and consequently in DEC](?(, too. That means, that there exists
some deterministic oracle machine which decides the special halting problem
H;P°°(0). Since in analogy to Proposition 7 H2*°(O) cannot be in DECf, we
get a contradiction. O

Each deterministic machine over IKy, 53+ = ({a, b}*; a,b,¢; add, suby, sub,; =)
can be simulated by some Turing machine. Thus, the following statement fol-
lows from the undecidability of the Halting Problem for the set TM of Turing
machines.

Proposition 26. The set
Orm = {b(x)Code* (M) € {a,b}* | M e TM & t e Nt & M(x) '}

and, hence, PR™  # NPR™ .

*

N ) )
implies NPH{?Z’I’W z DEC]KT{T_,,}

Remark. The last result remains true if we consider machines over the structure
({a,b}*;a,b,¢; add, suby, sub,; = a,= b) where any test has the form Z; = a or
Zj =b.
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A possibility to define new relations R (or oracles containing only single el-
ements of the universe) derived from O?K) such that, for the new structures
Kpg, Pk, = NPk, holds is presented in [Gafiner (1) 2004, GaBiner (2) 2004,
Gafiner 2007]. The crucial idea used to overcome the barriers resulting from
Theorem 25 is to define new relations R satisfied by padded codes of the ele-
ments of an NP, -complete problem. (For more details see [Gafiner (1) 2006,
Gafiner (2) 2006], too.) The subject of [Gafiner (1) 2004] is the construction of a
new structure over binary trees for which the equality of trees cannot be decided
in one step.

In this way we can once more substantiate the thesis that additional oracles
are not, very helpful for solving the Pk L NP problem for any structure IK. On
the one hand, we know structures IK with P # NP (cf., e.g., [GaBner 2001,
GaBner 1997]) and we can define an oracle O which implies P$ = NPg. On
the other hand, we know structures IM with Ppy = NPy and we can define an
oracle Q implying P, # NP,
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