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Abstract: We discuss the integral and Fubini’s Theorem for a Fine-computable func-
tion F(z,y) on the upper-right open unit square [0,1) x [0,1). The core objective is

Fine-computability of f(z) = f[o H F(z,y)dy as a function of z € [0,1).
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1 Introduction

Notions of Fine-continuity and of Fine-computabilities on [0, 1) are defined with
respect to the Fine-topology, which is equivalent to the one defined by the Fine-
metric (cf. Section 2, [Fine 1949], [Mori 2002a], [Mori et al. 2007]). We note that
a Fine-computable function may be discontinuous at dyadic rationals and may
be unbounded (cf. [Mori 2002a] Example 4.3). We have defined effective integra-
bility for Fine-computable functions on [0, 1) and effectivized some fundamental
theorems of integral theory [Mori et al. 2007], [Mori et al. 2008b].

We then studied some notions of Fine-computability of functions on the
upper-right open unit square [0, 1)? as well as some properties of their integrals
[Mori et al. 2008c]. This article has come out ot it, extended and revized.

In classical analysis, the integral operator with a kernel F'(x,y), which maps
a function g(x) on X to (T'g)(x) = [ 9(y)F(x,y)dy, is a central subject. Mea-
surability and integrability of T'g are fundamental properties to be proved and
Fubini’s Theorem is a fundamental tool to deal with investigations of such an
operator.

! This work has been supported in part by Research Grant from KSU (2008, 339)

2 The work has been supported in part by JSPS Grant-in-Aid No. 20540143
3 This work has been supported in part by Research Grant from KSU (2008, 282)



Mori T., Yasugi M., Tsujii Y.: Fine-computable Functions ... 1265

Theorem 1. (Fubini’s Theorem) Let F(z,y) > 0 be a measurable and inte-
grable function on the upper-right open unit square [0,1)2. Then the following
holds.

(i) For almost all z, F(z,-) and F(-,z) are measurable and integrable.

(ii) f[M) F(x,y)dy and f[0,1) F(z,y)dz are measurable.

(iii) ff[o,l)z F(z,y)dzdy
= f[o,l) (f[(),l) F(z, y)dy) doe = f[o,l) (f[o,l) F(x, y)da:) dy.

In this article, we discuss an effectivization of Fubini’s Theorem for a uni-
formly Fine-computable function on [0,1)? (Definition 23) and for bounded Fine-
computable functions (Definition 28). We also make some observations on the
transformation 7. In effectivization, Fine-computability and effective integrability
correspond to measurability and integrability respectively.

From the standpoint of computable analysis, it is plausible that f(z) =
f[0,1) F(z,y)dy is defined everywhere on [0,1) and f(z) is Fine-computable for
a Fine-computable function F(x,y) on [0,1)%. So, we assume that F(z,y) is
integrable with respect to y for all z € [0,1).

Since Fine-computable functions are continuous at all dyadically irrational
points with respect to the Euclidean topology, they are measurable, and Fubini’s
Theorem holds classically for integrable Fine-computable functions. Therefore,
effectivization of Fubini’s Theorem boils down to the proof of Fine-computability
of f(z), and hence this property is the main objective of this paper.

Roughly speaking, continuity of T'g is deduced from that of F'(z,y). Hence,
by modifying the proof of Fine-computability of f(z), we can easily prove Fine-
computability of T'g under some suitable conditions.

Our main assertions are that Fine-computability of f(z) holds for a “uni-
formly Fine-computable” function F(z,y) and for a “bounded Fine-computable”
function F(z,y).

In Section 2, we review Fine-computability and effective integrability for a
function on [0,1).

In Section 3, we define the two-dimensional Fine-space and notions of Fine-
computability and prove prove some elementary properties.

In Section 4, we prove that f(x) = f[0,1) F(z,y)dy is uniformly Fine-
computable if F(z,y) is uniformly Fine-computable (Theorem 26).

In Section 5, we prove that f(z) is Fine-computable for a bounded Fine-
computable F(z,y) (Theorem 32).

In Section 6, we give such examples that Fine-computability of f(z) does not
hold in general and give an sufficient condition for F'(z,y) to assure that f(x) is
Fine-computable.

Consult [Fine 1949] as to Fine-continuous functions on [0, 1).
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2 Preliminaries

We summarize Fine-computability properties on [0, 1) and effective integrability
of such functions (cf. [Mori et al. 2007], [Mori et al. 2008a], [Mori et al. 2008b]).
We assume basic knowledge of computability on the Euclidean space (cf.
[Pour-El and Richards 1989]).

A left-closed right-open interval with dyadic end points is called a dyadic
interval. We call I(n,k) = [k27",(k + 1)27") a fundamental dyadic interval
(of level n) and J(xz,n), the unique fundamental dyadic interval I(n, k) which
contains x, the fundamental dyadic neighborhood of x (of level n).

Lemma 2. [Mori et al. 2007] (1) The following three properties are equivalent
for any z,y € [0,1) and any nonnegative integer n.

(i) yeJ(z,n). (i) zeJ(y,n). (i) J(z,n)=J(y,n).

(2) If{zm} is Fine-computable, then we can decide effectively whether x,, €
I(n,k) or not for all m,n and k,0 < k < 2™ —1.

{J(z,n)} satisfies the axioms of the effective uniformity [Tsujii et al. 2001].
We call the topology generated by {I(n,k)} the Fine topology and put prefix
Fine- to such notions. We put no prefix to the notions which are defined by
means of Euclidean topology.

A double sequence of dyadic rationals {r, .} is said to be recursive if there
exist recursive functions a(n,m), 3(n,m) such that r, ,, = B(n,m)2= ™),

Definition3. (1) (Effective Fine-convergence of reals) A double sequence
{Zn,m} is said to Fine-converge effectively to {x,} if there exists a recursive
function a(n, k) which satisfies that m > «a(n, k) implies =, m € J(zn, k).

(2) (Fine-computable sequence of reals) A sequence of real numbers {z,,}
in [0, 1) is said to be Fine-computable if there exists a recursive double sequence
of dyadic rationals {r., ,} which Fine-converges effective ly to {z.,}.

If 5, =z, and z,, = z, we obtain the definition of effective Fine-
convergence of {z,,} to z.

Remark. (1) The original definition of a Fine-computable sequence of real
numbers is that {r, »} be a recursive sequence of rational numbers. The present
definition is equivalent to the original one. (cf. [Yasugi et al. 2005])

(2) The set of computable numbers and that of Fine-computable numbers
coincide.

(3) A Fine-computable sequence is (Euclidean) computable, but the converse
fails [Yasugi et al. 2005].

(4) {e;} will denote an effective enumeration of all dyadic rationals in [0, 1).
It is an effective separating set of the Fine-space [0,1) (cf. [Mori et al. 1996]).
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Lemma4. (Monotone convergence, [Pour-El and Richards 1989]) Let {z, 1}
be a computable sequence of reals which converges monotonically to {z,} as k
tends to infinity for each n. Then {x,} is computable if and only if the conver-
gence is effective.

We will subsequently use this lemma without mention.

Definition 5. (Uniformly Fine-computable sequence of functions, [Mori 2002a],
[Mori et al. 2007]) A sequence of functions {f,} is said to be uniformly Fine-
computable if (1) and (ii) below hold.

(i) (Sequential Fine-computability) The double sequence {f,(z,)} is com-
putable for any Fine-computable sequence {z,,}.

(ii) (Effectively uniform Fine-continuity) There exists a recursive function
a(n, k) such that, for all n,k and all z,y € [0,1), y € J(z,a(n,k)) implies
fal@) — faly)] <2°*.

Definition 6. (Effectively uniform convergence of functions, [Mori 2002a],
[Mori et al. 2007]). A double sequence of functions {gm .} is said to converge
effectively uniformly to a sequence of functions {f,,} if there exists a recursive
function a(m, k) such that, for all m,n and k, n > a(m, k) implies |gm, n(z) —
fm(z)| <27% for all z € [0,1).

Definition 7. (Fine-computable sequence of functions, [Mori et al. 2007]) A se-
quence of functions { f,} is said to be Fine-computable if it satisfies the following.

(i) {fn} is sequentially Fine-computable.

(ii) (Effective Fine-Continuity) There exists a recursive function a(n,k,1)
such that

(ii-a) x € J(es,a(n,k,i)) implies |f,(z) — fn(es)| < 27F,

(ii-b) Ui2, J(ei,a(n, k,i)) =[0,1) for each n, k.

Definition 8. (Effective Fine-convergence of functions, [Mori et al. 2007]) We
say that a double sequence of functions {gm n} Fine-converges effectively to
a sequence of functions {f,,} if there exist recursive functions «(m,k,4) and
B(m, k, ), which satisfy
(a) = € J(ei,a(m,k,i)) and n > B(m,k,i) imply |gm .(z) — fm(z)] < 27F,
(b) Uiz, J(ei,a(m,k,i)) =[0,1) for each m and k.

Definition 9. (Computable sequence of dyadic step functions,
[Mori 2002a], [Mori et al. 2007]) A sequence of functions {,} is called a com-
putable sequence of dyadic step functions if there exist a recursive function a(n)
and a computable sequence of reals {c,;} (0 < j < 20(n) = 1,2,.. .) such
that

2%(n) 1

on(T) =520 CnyiXI(a(n).)(T),

where x4 denotes the indicator (characteristic) function of A.
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Proposition 10. [Mori et al. 2007] Let f be a Fine-computable function. The
computable sequence of dyadic step functions {pn}, which is defined by

on(z) = 350" F27) X 1(ng) (@), (1)

Fine-converges effectively to f.
Moreover, if f is uniformly Fine-computable, then {¢,} converges effectively
uniformly to f.

We will briefly review effective integrability of functions on [0, 1). For details,
see [Mori et al. 2007], [Mori et al. 2008a], [Mori et al. 2008b].

Definition 11. (Effective integrability of a sequence of functions,

[Mori et al. 2008a], [Mori et al. 2008b]) A sequence of Fine-computable func-
tions {f.} is called effectively integrable if each f, is integrable and both of
{ f[O,l) fH(z)dz} and { f[O,l) f(z)dz} are computable sequences of real numbers.

A Fine-computable function is said to be effectively integrable if the sequence
5 f, ... is effectively integrable.

Integral on a finite union of fundamental dyadic intervals E is defined to be
for, F@xs(@)da.

It is easy to prove that a computable sequence of dyadic step functions is
effectively integrable.

Theorem 12. Let {g,} be a uniformly bounded Fine-computable sequence of
functions which is effectively integrable and Fine-converges effectively to f. Then,
f is Fine-computable and {f[O,l) gn(x)dz} converges effectively to f[071) f(z)dx.
As a consequence, f is effectively integrable.

Theorem 13. [Mori et al. 2008a], [Mori et al. 2008b]
A bounded Fine-computable function is effectively integrable.

Theorem 14. [Mori et al. 2008a], [Mori et al. 2008b] Let {f,} be Fine-
computable and effectively bounded, that is, there exists a computable sequence of
reals {M,} such that |f.(x)| < M, for all x. Then {f.} is effectively integrable.

Theorem 15. (Effective dominated convergence theorem, [Mori et al. 2008a],
[Mori et al. 2008b]) Let {g.} be an effectively integrable Fine-computable se-
quence which Fine-converges effectively to f. Suppose that there exists an ef-
fectively integrable Fine-computable function h such that |g,(z)| < h(z). Then,

{f[o 1) 9n(@)dx} converges effectively to f[o y f(@)da.

Proposition 3.10 in [Mori et al. 2008b] can be easily extended.
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Proposition16. [Mori et al. 2008b] Let f be a nonnegative integrable Fine-
computable function. Then f is effectively integrable if and only if{f[[),l) gn(x)dz}
converges effectively to f[O,l) f(z)dz for an effectively integrable Fine-computable
sequence {gn} which Fine-converges effectively to f and satisfies |gn(z)| < f(z)
for every n and x.

Proposition17. [Mori et al. 2008b] Let f be an effectively integrable Fine-
computable function and let I,, be a computable sequence of dyadic intervals such
that U,Z, In = [0,1). Put E, = Ji_, I;. Then, [, f(z)dx converges effectively
to f[o,l) f(x)dz, or equivalently, fEf f(x)dz converges effectively to zero.

Definition 18. A sequence of sets {E}j} from [0,1) is said to be a computable
sequence of elementary sets if there exist a recursive function N (k) and recursive
sequences of dyadic rationals £(k,¢) and n(k,f) (¢ < N(k)) such that Ey =

évz(f) I(&(k,€),n(k, ). We say that a set E is a computable elementary set if
{E,E,...} is a computable sequence of elementary sets.

We can also prove the following proposition.

Proposition19. Let f be an integrable positive Fine-computable function.
Then, f is effectively integrable if and only if there exists a computable sequence
of elementary sets {E,} such that {fEn f(z)dz} is a computable sequence and
converges effectively to f[O,l) f(x)dx. The latter condition is equivalent to effec-

tive convergence to zero of { [, o f(x)dx}.

Definition 20. Let {f,} be a computable sequence of Fine-computable func-
tions, where each f, is integrable, and {E,, } be a computable sequence of elemen-
tary sets. Then, { f,,} is said to be effectively integrable on { E,, } if {fEm fo(z)dz}
is a computable sequence.

3 Uniformly Fine-computable functions on [0, 1)?2

The main objective of this section is to prove uniform Fine-computability of
flz) = f[O,l) F(z,y)dy for a uniformly Fine-computable function F(x,y) on the
upper-right open unit square [0, 1)2.

We denote [k27™,(k + 1)27™) x [(27™, (£ + 1)2=™) with Iy(n,m;k,£) and
call it a fundamental dyadic rectangle. We also denote J(z,n) x J(y,m) by
Jo(z,y;m,m) and call it a fundamental dyadic neighborhood of (x,y). We call
the topology generated by the set {J2(e;, ej;n,m)}; jn,m the Fine-topology on
[0,1)2 and the space [0,1)? with this topology the two-dimensional Fine-space.
Notions of computability on [0, 1)? are defined with respect to the Fine-topology.

Note that {J2(z,y;n,n)} satisfies the axioms of the effective uniformity (cf.
[Tsujii et al. 2001]).
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Definition 21. (1) A double sequence {(z, 4, )} from [0,1)? is said to Fine-
converge effectively to {(z,,y,)} if there exists a recursive function a(p,n,m)
such that ¢ > a(p,n, m) implies (zp,q,Yp.q) € J2(Tp, Yp; N, m).

(2) A sequence {(zp,yp)} is said to be Fine-computable if there exist recursive
sequences of dyadic rationals {s, 4} and {t, 4} such that {sp 4} and {t, 4} Fine-
converge effectively to {z,} and {y,} respectively.

Lemma22. (cf. Lemma 2) (1) The following three properties are equivalent
for any (z,y), (z,w) € [0,1)? and any positive integers n,m.

(i) (z,w) € Jo(z,y;n,m). (ii) (x,y) € Jo(z,w;n,m). (iii) J(z,y;n,m) =
J(z,w;n,m).

(2) If {(xp,yp)} is Fine-computable, then we can decide effectively whether
(Zp,Yp) € In(n,m; k,€) or not.

In the following, we use the notation F'(x,-) to designate the function F(z,y)
regarded as a function of y (for each fixed ).

Definition 23. (Uniform Fine-computability) A function F(z,y) on [0,1)? is
said to be uniformly Fine-computable if it satisfies the following two conditions.
(i) (Sequential computability) {F(z,,ym)} is a computable double sequence
of reals for every Fine-computable sequence {(z,Ym)}-
(ii) (Effective uniform Fine-continuity) There exist recursive functions a; (k)
and as (k) such that (z,y) € Ja(z,w; a1 (k), aa(k)) implies |F(z,y) — F(z,w)| <
27k,

Proposition24. Let F(z,y) be uniformly Fine-computable as a function of
(z,y). Then the following hold.

(1) If{zn} is a Fine-computable sequence, then {f,(y)} = {F(zn,y)} is a
uniformly Fine-computable sequence of functions on [0,1) (Definition 5).

(2) If a Fine-computable sequence {x,, n} Fine-converges effectively to {z., },
then {F(Zmn,-)} converges effectively uniformly to {F(zy,,-)} (Definition 6).

Proof. Let ay (k) and as2(k) be as in Definition 23.

(1) Let {ym} be a Fine-computable sequence of reals. Then {f,(ym)} =
{F(zn,ym)} is a computable sequence of reals due to the sequential computabil-
ity of F(2,). |fa(y) — fa(2)] = [F(n,y) — Flzn,2)| < 27 it y € J(z, as(k),
and hence follows effective uniform Fine-continuity of {f.}.

(2) From the effective Fine-convergence of {Z, .} to {x.,}, there exists a
recursive function S(m,¥¢) such that n > g(m, ) implies Ty, , € J (T, ).

If we take 6(m,k) = B(m,ay(k)), then |F(zmn,y) — F(zm,y)| < 2% for
n > §(m, k) and all y € [0, 1). O

It is pointed out in [Mori 2002b] that a uniformly Fine-computable function
g(y) on [0,1) is bounded and has a computable supremum. The latter property
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holds for a uniformly Fine-computable sequence of functions. These properties
are easily deduced from Theorem 2 in [Mori 2002a]. We denote the supremum
of |g| by lg]|-

Similarly, we can prove that a uniformly Fine-computable function F(z,y)
takes a computable supremum.

Regarding uniform Fine-computability of F(x,y), we obtain the following
theorem.

Theorem 25. For a function F(x,y), the following (i) and (ii) are equivalent.
(i) F(z,y) is uniformly Fine-computable.
(i) (ii-a) {F(xn,-)} is a uniformly Fine-computable sequence of functions
on [0,1) for any Fine-computable sequence {x,}.
(ii-b) There ezists a recursive function a(k) such that, y € J(z,a(k)) implies

||[F(z,-) — F(y,-)|| <27* for all k.

Proof. (1)=(ii): (ii-a) follows immediately from Proposition 24 (1).

To prove (ii-b), let us take a; (k) and as (k) in Definition 23. If z € J(y, a1 (k+
1)), then (z,2) € Ja(y, z;a1(k + 1), a2(k + 1)) for all z € [0,1). So, |F(z,z) —
Fly,2) < 20+ and [|F(z, ) — P(y, )| < 2°*.

(ii)=(i): Let a(k) be the recursive function in (ii-b). Then, z € J(z,a(k))
implies ||F(z,-) — F(z,-)|] < 27%. Put rp; = j27°®) for j = 0,1,...,2°H) —1.
By (ii-a), the sequence {F'(rtj,-)} is a uniform Fine-computable sequence of
functions on [0,1). So, there exists a recursive function §(k,j) such that y €
J(w, B(k,j)) implies |F(rg ;,y) — F(re;,w)| <27F.

Define v(k) = max{a(k +2), 3(k+2,0), B(k+2,1),..., B(k+2,200FF2) —1)}
and suppose that (z,y) € Jo(z,w;vy(k),v(k)). Since z € J(z,a(k + 2)), there
exists a 7, such that [j2=*( +2) (j4+1)2-2(*+2)) contains both z and z. Therefore,
we obtain

|F(x,y) — F(z,w)]
< |F(2,y) = F(riaz,, )| + |F(rey2,,y) — F(Tera,j, w)]
+F(rgs2,5,w) — F(z,w)]
< 3.27(2) £ 9=k

This shows effective uniform Fine-continuity of F(z,y).

Let {z,} and {y.} be Fine-computable sequences. Then {F(z,,-)} is a uni-
formly Fine-computable sequence of functions. This implies that {F (2, Yym)} is
a computable sequence of reals. ad

It is easy to check that a uniformly Fine-computable function on [0,1)? is
Lebesgue integrable and that its integral is a computable number, similarly to
the case of uniformly Fine-computable functions on [0, 1) [Mori et al. 2008a).
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Theorem 26. (Effective Fubini’s Theorem for uniform Fine-computable func-
tions) Let F(x,y) be a uniformly Fine-computable function. Then the following
hold.

(i) If{zn} is Fine-computable, then {F(zn, )} and {F(-,z,)} are uniformly
Fine-computable sequences of functions on [0,1).

. (i) f[0,1) F(z,y)dy and f[0,1) F(z,y)dz are uniformly Fine-computable func-

tions.

(iii) ff[o,1)2 F(z,y)dxdy = f[0,1) dx f[[),l) F(z,y)dy = f[o,l) dy f[o,l) F(z,y)dz
holds and the value is computable.

Proof. (i) is Proposition 24 (1).

(ii) To prove sequential computability, let {z,} be a Fine-computable se-
quence. Then {F(z,,-)} is a uniformly bounded uniformly Fine-computable se-
quence of functions. Hence, { f[O,l) F(zn,y)dy} is a computable sequence of reals
by Theorem 14.

Effective uniform Fine-continuity follows from the inequality

| f[O,l) F(m,y)dy - f.[()’l) F(Zay)dm < ||F(1‘, ) - F(y> )||
and Theorem 25 (ii-b).

(iii) follows from Theorem 13 and the comment before Theorem 25. O

We can easily extend (ii) above as follows.

Theorem 27. Let F(xz,y) be a uniformly Fine-computable function on [0,1)>
and let g be an effectively integrable Fine-computable function on [0,1). Then
(Tg)(z) = f[0,1) 9(y)F(z,y)dy is uniformly Fine-computable.

Especially, the operator T maps any uniformly Fine-computable function to
a uniformly Fine-computable function.

Proof. First, we note that M = sup(, ,)co,1)2 |[F(#,y)| is computable if F(z,y)
is uniformly Fine-computable on [0,1)2.

Let {z,} be Fine-computable. Then {g(y)F(z,y)} is a Fine-computable
sequence of functions of y by Theorem 26 (1). We take the approximating
computable sequence of dyadic step functions {¢mn(y)} obtained by Propo-
sition 10. It Fine-converges effectively to {g(y)F(zm,¥y)}, and it is an effectively
integrable Fine-computable sequence satisfying |pm..(y)| < M|g(y)|- Hence,
{f[o,l) ©m.n(y)dy} converges effectively to {f[o,l) 9(y)F(zm,y)dy} by Theorem
15. Therefore, {f[OJ) 9(y)F (zm,y)dy} is a computable sequence.

Effective uniform continuity follows from the following inequality;
| Jio.0) S F (@, 9)dy — [ 1, 9 F(z,9)dy| < ||F(2,7) = F(2,°)l] Jig1) l9(2)d.

O
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4 Fine-computable functions on [0, 1)?2

In the following, we treat Fine-computability of f(z) = f[O,l) F(z,y)dy for a
Fine-computable function F'(z,y). First we define Fine-computability of func-
tions on [0,1)2, which is weaker than uniform Fine-computability (Definition
23), as follows.

Definition 28. (Fine-computable functions on [0,1)?) Let F(z,y) be a func-
tion on [0, 1)2. F is said to be Fine-computable if it satisfies the following (i) and
(ii).

(i) F is sequentially computable.

(ii) (Effective Fine-continuity) There exist recursive functions ay (k, 1, j) and
as(k,i,7) which satisfy

(ii-a) (z,y) € Ja(es, e5;a1(k, i, ), ax(k,i,7)) implies |F(z,y) — F(es,e;)] <

—k

)

(ii-b) Uiy J2(ei,ej;an(k,i, ), aa(k,i,5)) = [0,1)? for each k.

i,j=1

2

We state Proposition 3.1 in [Mori et al. 2007] for the case {r;} = {e;}.

Proposition29. A function g on [0,1) is effectively Fine-continuous if and
only if there exist a recursive sequence of dyadic rationals {ri 4} and a recursive
function §(k, q) which satisfy the following.

(a) @ € J(rkq,0(k,q)) implies |g(z) — g(rr,q)| < 27F.

(b) U2y I (g, (K, q)) = [0,1) for each k.

(c) The intervals in {J(rk.q,0(k,q))} are mutually disjoint with respect to q
for each k.

In the proof of Proposition 3.1 in [Mori et al. 2007], the crucial properties
are those of Lemma 2, whose two-dimensional version is Lemma 22, and the fact
that the complement of a finite (disjoint) union of fundamental dyadic intervals
can be represented as a finite disjoint union of fundamental dyadic intervals. A
similar fact also holds for fundamental dyadic rectangles. So, we can prove the
following proposition.

Proposition 30. Effective Fine-continuity of a function F on [0,1)? is equiva-
lent to the following: There exist a recursive sequence of pairs of dyadic rationals
{(Sk,p,tr,p)} and recursive functions B1(k,p), B2(k,p) which satisfy the following
three conditions.

(a‘) (:v,y) € JQ(S’CJD’tk,p;ﬁl(kap)vﬁ2(k7p)) implies |F(a:,y) - F(Sk7p’tk7p)| <
27k,

(b) U;ozl J2(Sk,p7tk,p;ﬂl(k)p)762(k)p)) = [07 1)2 fOT each k.

(¢) The fundamental dyadic neighborhoods in {J2 (s p, tkp; B1(k, ), B2(k,p))}
are mutually disjoint with respect to p for each k.
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Remark. The conditions (b) and (c) in Proposition 30 signify that the unit
square [0,1)? is partitioned into (infinitely many) disjoint rectangles
{J2(Sk,p, te,p; B1(k,p), B2(k,p))} for each k. Hence, the following holds:

(a) There is the unique number p(k,z,y) such that (z,y) is contained
in Jp (sk,p(k,z,y); Uk p(k,z ) Bi(k,p(k,z,y)), B2(k,p(k,z,y))), for any k and any
(z,9) € [0, 1.

Moreover, (Za w) € Jo (Sk,p(k,w,y) ) tk,p(k,w,y); 61 (k,p(k, T, y)): BQ (ka p(k‘, T, y)))
implies p(k,z,y) = p(k, z,w).

(b) If {(zn,yn)} is Fine-computable, then i(k,n) = p(k, z,, yn) is a recursive
function.

Proposition31. Let F(z,y) be Fine-computable. Then the following hold.

(1) If {zmm} is a Fine-computable sequence of reals, then {F(x,,,-)} is a
Fine-computable sequence of functions.

(2) If {xmmn} is a Fine-computable sequence of reals and Fine-converges
effectively to {z.}, then {F(%m. n, )} Fine-converges effectively to {F(zm,-)}.

Proof. Let us take {(sk,p,tr,p)} and p1(k,p), B2(k,p) in Proposition 30.

Proof of (1): We prove (i) and (ii) in Definition 7 for {F(2y,,")}.

(1): Sequential computability of {F(zm,-)} is an easy consequence of sequen-
tial computability of F'(z,y).

(ii-a): For each m, k and j, we can find effectively and uniquely such p =
p(m, k, j) that (x.,,e;) is contained in Jo(Sk41,p, trt1,p; B1(k+1,p), B2(k+1,p))
by Remark 4. Define a(m,k,j) = p2(k + 1,p(m,k + 1,7)) and suppose that
y € J(ej alm, k. j).

Then (z,,y) is also contained in J2(Sg+1,p, trt1,p; B1(k + 1,p), Ba(k + 1, p)).
So, we obtain

|F(2m,y) — F(Tm,e;)]
<NF (@ms ) = F(stg1,ps ter1,p)| + [F(Skt1,ps togt p) — F(@m,e5)| < 27F.

(ii-b): Let us take p = p(k,z.,,y) for arbitrary y € [0,1), as in Remark
4. Then, Jo(Sk+1,pstkt1,p; B1(k + 1,p), B2(k + 1,p)) contains (x.,,e;) for some
dyadic rational e;. By Remark 4 (a), we obtain p(k, xm,y) = p(k, Tm,e;) and
J2(sk+1,p7 Lke+1,p; /Bl(k + l)p)v /BZ(k + ]-7p)) = ‘]2(1.7”) €j5; B (k + ]-7p)) 62(]{:"_ 1>p))'
Hence, (U2, J(ej,a(m, k, j)) = [0,1) holds.

Proof of (2): We note first that {z,,} is a Fine-computable sequence. Let
v(m, ) be a recursive modulus of Fine-convergence. That is, it satisfies that
n > y(m,£) implies T, n € J(Tm,£).

For any k, m and e;, we can find effectively and uniquely such p = p(k +
1,m, j) that Ja(Sk+1,p, tet1,p; f1(k+1,p), B2(k+1,p)) contains (z,,,e;). We note
that J(skt1,p, 81(k +1,p)) = J(Tm, f1(k + 1,p)) by Lemma 2.
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Ifn 2 ’Y(maﬁl (k + l,p)) and Y € J(tk+1,p762(k + lap)) = J(ejaﬁQ(k + lap))a
then

|F(Tm,n,y) — F(@m, y)|
SNF@mn,y) = F(skt1p terip)| + [F(Skt1,p, trtr,p) — F(@m, y)|
<227 (kHD) = o=k,

By Proposition 30 (b), UJ(sHLp’Bl(kH’p)Dx J(trt1,p, B2(k + 1,p)) = [0,1)
and hence, {J; J(ej, B2(k + 1,p)) = [0,1).

This proves the effective Fine-convergence of {F'(Zm n,-)} to {F(zm, )} with
respect to a(k,j) = B2(k + 1,p(k + 1,m,j)) and 6(k,i) = v(m, f1(k + 1,p(k +
1,m,3))) (cf. Definition 8). O

5 Bounded Fine-computable functions on [0, 1)?2

In this section, we first investigate Fine-computability of the function f(z) =
f[o 1 F(z,y)dy for a bounded Fine-computable function F(z,y).

Theorem 32. If F(z,y) is bounded and Fine-computable on [0,1)2, then f(x) =
f[o 1 F(z,y)dy is Fine-computable on [0,1).

Proof. Sequential computability: Let {x,} be Fine-computable. By Proposi-
tion 31, { F(x,,-)} is a bounded Fine-computable sequence of functions on [0, 1).
So {f(zn)} is computable by Theorem 14.

Effective Fine-continuity: Let us take {(skp,trp)} and p1(k,p), B2(k,p) in
Proposition 30.

First, we define a function N(k,z), on N* x [0, 1), functions h(k,z, ),
ai(k,z,0), as(k,z,f) on Nt x[0,1)x{1,2,..., N(k,z)} and sequences of dyadic
rationals up z ¢, Ugee for each k, z and ¢, 1 < £ < N(k,z), by means of the
following procedure PBy ..

Procedures PBy, ,:
First Step: Take (s1,tr,1) and examine the following test TB1y, ;.
Test TB1g ot Jo(Sk,1,tk,1;81(k, 1), B2(k, 1)) intersects {z} x [0, 1).

Test TB1;, . is equivalent to checking the containment x € J(sg 1,61 (k,1)).

If the answer of TB1, , is “No”, then set h(k,z,1) = 0 and go to the next
step.

If the answer of TB1y, . is “Yes”, then define (ug 2,1, Uk 2,1) to be the left lower
endpoint of the fundamental dyadic neighborhood Ja(sk,1,tk,1; 61(k, 1), B2(k, 1)).
Define also ay (k,z,1) = B1(k,1) and az(k,z,1) = B2(k, 1).

Set h(k,z,1) =1 and examine also the following TB2, ,.

TB2y,,: 27 02(kal) 5 1 — 27k,
If the answer of TB2y, , is “Yes”, then terminate PBy, ;.
If the answer of TB2y, , is “No”, then go to the next step.
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n-th Step (n > 2): Take (Skn,trn) and suppose that we have obtained
hk,z,0) (1 <€ < n—1), Urar, Vkae and ai(k,z,f), as(k,z,f), 1 < £ <
h(k,z,n —1).

Apply TB1y . t0 (Sk,n,tk,n) instead of (sg1,tx,1).

If the answers of TB1y, . is “No”, then define h(k,z,n) = h(k,z,n — 1) and
go to the next step.

If the answer of TB1y ., is “Yes”, define h(k,z,n) = h(k,z,n — 1)+ 1. Define
(Uk,2,h(k,z,n)s Vk,a2,h(k,z,n)) tO be the left lower endpoint of the fundamental dyadic
neighborhood J3(Sk,n,tkn; B1(k,n), B2(k,n)), and put a;(k,z, h(k,z,n)) =
Bi(k,n), as(k,z,h(k,xz,n)) = B2(k,n).

Examine also TB2,,: S hkon) g-as(hat) 5 1 _ 9-k,

If the answer of TB2y, , is “Yes”, then terminate PBy ;.

If the answer of TB2y, , is “No”, then go to the next step.

By (b) in Proposition 30, U, s(s.,1 .60 (k41,952  (Brr1ps B2(k + 1,p)) =
[0,1). If p # ¢, J(Sk41,p,01(k+ 1,p)) > x and J(sg41,4,51(k+ 1,¢)) > x hold,
then J(tit1,p, B2(k+1,p)) NJ(tky1,q,82(k+1,q)) = ¢ by (c) in Proposition 30.
Therefore, > o1y, 61 (k+1,0))30 [ (Bet1p, B2(k + 1,p))| =
Zp:J(sHl,p,Bl(k—i-l,p))az 2 P2(k+1,p) — 1 where |.J| denotes the length of the in-
terval J. Hence, Procedure PBy, , terminates within finite steps.

When Procedure PBy, . terminates at Step m, we have h(k,z,m) and ug . ¢,
Ui,z 0, 01 (k,x,0), aa(k,x,€) for 1 < £ < h(k,x,m). Define N(k,x) = h(k,z,m).
Then, the following properties hold.

(a) Dyadic intervals {J(vk,e,¢, a2(k, 7, £)) }1<o<N(k o) are mutually disjoint.
(b) SN g-ca(ket) 5 q _ o=k,

() y € J(pge,axk,z,f) and z € J(ug,e.¢, 1 (k,z,¢)) imply

|F(z,y) — F(z,9)] < 2~*=1 due to Proposition 30 (a) for 1 < £ < N(k,z).

(d) Upae ST < upee+270F20 for 1 <LK N(k,z).

D(eﬁne) E(kyx) = MaxXy KN (k,z) Uk,z,¢ and n(k,z) = Miny o< N (k,2) Ykya,t T
92—a1 k,x,l .

Then, [£(k,x),n(k,z)) is a dyadic interval and contains x. So, we can define
v(k,z) as min{l| J(z, ) C [(k,z),n(k,z))}.

The following properties of v(k, z) and N (k,z) follow from (a) to (d) above:

(i) If z € J(x,v(k,x)), then N(k,z) = N(k,x). Moreover, Uy ¢ = Uk, 2,0,
Va0 = Uk,ze and o;(k,z,0) = a;(k,2,0) for 1 < £ < N(k,z), and hence
v(k,z) = v(k,z).

(ii) Ify e Uévz(k’w) J(Vk,e 0, a2(k, x,0)) and z € J(z,v(k,z)), then
\F(z,y) — F(z,y)] < 270D

(iii) |Uns™) T (vh,z,0, 02k, 7, 0)| = NG 27 aabad) 5 1 — 9k,

Now, we prove the effective Fine-continuity. If = is a dyadic rational, then we
can perform all the above procedure effectively, since we need only finite number
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of comparisons of dyadic rationals for Tests TB1; , and TB2y ..

From boundedness of F'(x,y), there exists an integer K such that |F(z,y)| <
2K for all (z,y). Now, if we define §(k,i) = v(k+ K +2,e;), then § is a recursive
function. Suppose that = € J(e;,d(k,i)) = J(e;,v(k + K + 2,¢;)), and put
Ek,i = Ugf’ei) J(’Uk,&i’g, Ckz(k‘, €, f)) Then, Ek,i = Uﬂf’z) J(’Uk,’x’g, Ckz(k‘, x, f))
by (i), and we obtain by (ii) and (iii)

[f (@) = Fe)l < [y o, F @) = Fleay)ldy + [, o, e [F (@ 9)ldy

+f(Ek+K+2,i)C |F'(ei, y)|dy
< 9-(k+K+2) | 9 oKo—(k+K+2) _ ok

For all z € [0, 1), J(x,d(k,x)) contains a dyadic rational, say, e;. By property
(1), J(z,d(k,i)) = J(e;,d6(k,i)). So z € J(e;,d(k,i)) and we obtain
Ui2, J(es, 6(k,i)) =[0,1). This proves effective Fine-continuity of f(z). O

We now state the effective version of Theorem 1.

Theorem 33. (Effective Fubini’s Theorem for bounded Fine-computable func-
tions) Let F(xz,y) be a positive bounded Fine-computable function. Then the
following holds.

(i) If{zn} is Fine-computable, then {F(zn, )} and {F(-,z,)} are uniformly
bounded Fine-computable sequences of functions.

(ii) f[O,l) F(z,y)dy and f[071) F(z,y)dz are bounded Fine-computable func-
tions.

(iii) f[0,1)2 F(z,y)dzdy = f[[),l) dx f[0,1) F(z,y)dy = f[o,l) dy f[o,l) F(z,y)dz
holds, and the value is computable.

6 General Fine-computable functions on [0, 1)2

We give some examples of such a Fine-computable function F(z,y) on [0,1)?
that f(z) = fol F(z,y)dy is not a Fine-computable function on [0,1).

Ezample 1. (Suggested by Yagishita) Let us define F'(z,y) = ﬁ—ye_(ﬁ)z. Then
F(z,y) is positive and continuous on R x [0,1). It is easy to prove that the

restriction of F(z,y) to [0,1)? is Fine-computable.
It holds that fol F(z,y)dz = fol ﬁe_(ﬁ)zdl‘ = foﬁ e~ dr < \/T.
Hence f_ll dy fol F(z,y)dz < oo.
On the other hand, F(0,y) = 1 and [, F(0,y)dy diverges.

1—

Example 1 shows that Fine-computability and integrability of F'(z,y) do not
assure that f(z) is a total function.
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Ezample 2. Let a(k) be a recursive injection whose range is not recursive. Then
oly) =2F272® jf 127D <y c1-27F k=1,2,...

is Fine-computable and integrable but not effectively integrable [Brattka 2002].
Define F(z,y) = ¢(y)(1 — 2)?¥ -1 and f(x fo oy Fla,y)dy.
Then, F(z,y) is Fine—computable and not bounded It holds that
f[o 1 F(z,y)dz =1 and ff[o 1)2 F(z,y)dzdy = 1, and that f( ) is total.
On the other hand, f(0 f[o 1 F(0,y)dy = > 0,2 —2(*) is not a com-
putable number, and hence sequential computabihty for f(z) does not hold.

Example 2 shows that Fine-computability of F(z,y) and computability of
ff[071)2 F(z,y)dzdy do not imply Fine-computability of f(x) even if it is total.

We give a sufficient condition which assures the Fine-computability of f(x)
for a Fine-computable function F(z,y).

Theorem 34. If F(x,y) is Fine-computable and there exists an effectively in-
tegrable Fine computable function g(y) which satisfies |F(z,y)| < g(y) for all z,
then f(x f[o 1 (z,y)dy is Fine-computable.

Proof. Sequential computability can be proved in a similar way to the proof of
Theorem 27.

To prove effective Fine-continuity, let «(k,i) be the effective modulus of
effective Fine-continuity of g(y). By effective integrability of g( ) and Proposition
17, there exists a recursive function M (k) such that f (y)dy < 27%, where

E;, = Uf\i(lk) J(e;, a(k,7)). This implies f(Ek)C |F(:U,y)|dy <27k forallz €[0,1).
On Ey, g(y) < maxycicar(r){9(ei) +27%}. So, F(z,y) is bounded on [0,1) x E.

We can apply the proof of Theorem 32 to the domain [0,1) x Ej, and obtain
that Fi(z) = fE (z,y)dy is Fine-computable. Let 6(k,i) be a modulus of

continuity, that is, it satisfies that |Fj(z) — Fi(e;)| < 27% if 2 € J(ei, 0(k,i))
and (J;2, J(e;,0(k,i)) = [0,1). From the proof of Theorem 32, 6(k,i) can be
taken as recursive. If we define y(k,i) = 6(k + 2,1), then f(z) is effective Fine-
continuous with respect to y(k, 1), since |f(z) — f(e:)| < |Fria(x) — Fryo(es)| +
Sy 1P @)y + [, e [Flesy)ldy < 2% if 0 € Je, (k). 0
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