
On Finite-time Computability Preserving Conversions1

Hideki Tsuiki
(Graduate School of Human and Environmental Studies, Kyoto University

Japan
tsuiki@i.h.kyoto-u.ac.jp)

Shuji Yamada
(Faculty of Science, Kyoto Sangyo University

Japan
yamada@cc.kyoto-su.ac.jp)

Abstract: A finite-time computable function is a partial function from Σω to Σω

whose value is constructed by concatenating a finite list with a suffix of the argument.
A finite-time computability preserving conversion α : X → Y for X, Y ⊂ Σω is a
bijection which preserves finite-time computability. We show that all the finite-time
computability preserving conversions with the domain Σω are extended sliding block
functions.

Key Words: Finite-time Computable Functions, Constant-time Computable Func-
tions, Sliding Block Functions, Computable Analysis, Domain Theory.

Category: F.1.m, F.4.3, G.2.m

1 Introduction

In Type2 theory of effectivity [Weihrauch 2000], computability of a function on
a space A is defined through a representation ϕ :⊂ Σω → A and a Type2
machine, which inputs and outputs Σω sequences and defines the notion of
computable functions on Σω. One way of implementing infinite sequences in ’real’
programming languages is (lazy) infinite lists, and one can write computable
functions on Σω with programming languages which support lazy lists, such as
Haskell and ML.

In such an implementation, the output infinite list is constructed from the
input infinite list. In many cases, the whole output is constructed one by one
by applying infinite number of cons operations. However, for some functions,
the input and output infinite list share a suffix and therefore the output can be
constructed by using a part of the input. That is, the output is constructed by
concatenating a finite list and a suffix of the input, both of which are computed
from the input. In this case, the output is constructed in a finite time when the
input infinite list is given. Therefore, we call such a partial function on Σω a
1 An extended abstract version of this paper has appeared in

[Tsuiki and Yamada 2008].

Journal of Universal Computer Science, vol. 15, no. 6 (2009), 1365-1380
submitted: 4/11/08, accepted: 4/2/09, appeared: 28/3/09 © J.UCS

0 0.5 1.0

0

0.25 0.75

1

2

3
4

0 0.5 1.0

0

0.25 0.75

1

2

3
4

Figure 1: The Binary representation and Gray representation of [0, 1]. Here, line
segments mean the corresponding digit is 1, and otherwise 0.

finite-time computable function. When a representation ϕ :⊂ Σω → A is given,
we define a finite-time computable (multi-valued partial) function on a set A as
one which is realized by a finite-time computable partial function on Σω.

Note that the class of finite-time computable functions depends on the rep-
resentation to use. For example, on the closed unit interval I = [0, 1] and
Σ = {0, 1}, we consider, in addition to the binary representation δB : Σω → I,
the Gray representation δG : Σω → I [Tsuiki 2002]. It is the continuous function
which satisfies the following,

δG(0 · x) = δG(x)/2,

δG(1 · x) = 1 − δG(x)/2.

Note that the binary representation δB satisfies

δB(0 · x) = δB(x)/2,

δB(1 · x) = 1/2 + δB(x)/2.

Figure 1 shows the binary representation and the Gray representation. Gray rep-
resentation is based on binary reflected Gray-code, which is a coding of natural
numbers different from the ordinary binary code [Gray 1953].

In Section 2, some examples of finite-time computable functions with respect
to these representations are given. As we will show, a finite-time computable
function with respect to binary representation is finite-time computable with
respect to Gray representation, but not vice versa. This fact can be explained
through the following relation between the two representations

δB = δG ◦ G . (1)

Here, G : Σω → Σω is the Gray-code conversion function defined as G(x)n =
xn ⊕ xn−1 with a ⊕ b the exclusive-OR of a and b, xn the n-th digit of x, and

1366 Tsuiki H., Yamada S.: On Finite-time Computability ...

x−1 defined to be 0. We can show that if ϕ and ϕ′ are two representations of
a set and ϕ′ is the composition of ϕ with G as (1), then all the finite-time
computable functions with respect to ϕ′ are finite-time computable with respect
to ϕ. Therefore, we can consider it a property of the conversion function G.
We generalize this property and define that a conversion function α : X → Y

for X, Y ⊂ Σω is finite-time computability preserving if α is computable and
α ◦ f ◦ α−1 is finite-time computable for any finite-time computable partial
function f .

On the other hand, Gray-code conversion is a sliding block function, which is
a function whose n-th output value is calculated only from a fixed size of “win-
dow” around the n-th cell of the input[Lind and Marcus 1995]. In this paper,
we will define a more general class of functions, called extended sliding block
functions for the case X = Σω.

With this preparation, we show our main theorem. It says that all the finite-
time computability preserving conversions from Σω to Y are extended sliding
block functions. We first show that, in this case, a finite-time computability
preserving conversion satisfies some recursive equation and it coincides with the
least fixed-point. Then, we show that it is an extended sliding block function.

One of the properties of a finite-time computability preserving conversion is
that it preserves suffix identity in that if two arguments have the same suffix then
their values also have the same suffix. However, not all suffix-identity preserv-
ing conversions are finite-time computability preserving, and our main theorem
does not hold for suffix-identity preserving conversions from Σω. The important
thing about finite-time computability is that the shared suffix between x and
f(x), which exists from the definition of finite-time computability, should be
computable from x.

We introduce finite-time computable functions with some examples in Section
2, and finite-time computability preserving conversions in Section 3. Then, in
Section 4, we concentrate on the case X = Σω and show our main theorem. In
Section 5, we show relations between finite-time computability preserving and
suffix-identity preserving conversions.

Notation and Terminology:
In this paper, we denote by N the set of non-negative integers. Let Σ be

a finite alphabet. For a cardinal number c ≤ ω, we denote by Σc the set of
sequences on Σ of length c. We also denote by Σ∗ the set of sequences on Σ

of finite length, and by Σ∞ the set Σ∗ ∪ Σω. We denote by |x| the length of a
sequence x and denote by ε the empty sequence.

For a finite or infinite sequence x, we denote by xn the n-th element of x.
For a finite or infinite sequence x = {xi}0≤i<c (c ≤ ω), we denote by x ↑m the
sequence {xi}m≤i<c obtained by discarding the first m digits (elements) of x

and denote by x ↑n the sequence {xi}0≤i<n obtained by extracting the first n

1367Tsuiki H., Yamada S.: On Finite-time Computability ...

digits of x. We define x ↑m to be the empty sequence ε if |x| ≤ m and x ↑n to
be x if |x| ≤ n. We denote by x↑n

m the sequence (x↑n)↑m= {xi}m≤i<n. We also
denote by x↑∗ the set {x↑n | n ∈ N} and denote by x↑∗ the set {x↑n | n ∈ N}.
We call an element of x↑∗ a prefix of x and an element of x↑∗ a suffix of x. On
Σ∞, we define the order relation x ≤ y if x ∈ y↑∗ or x = y.

For u ∈ Σ∗ and v ∈ Σ∞, we denote by u · v the concatenated sequence of u

and v. For a letter a ∈ Σ and a sequence x, we also denote by a ·x the sequence
obtained by prepending a to x. For finite sequences x(0), x(1), . . . , x(n) ∈ Σ∗,
we denote by

∏
0≤i≤n x(i) the concatenated sequence x(0) · x(1) · · · · · x(n).

When f is a partial function from Σω to Σω, we say that f is computable
if there is a Type2 machine M which outputs f(x) when x ∈ dom(f) is given
as the input. It is well known that computable functions on Σω are continuous.
Note that we do not require f to be strong, that is, dom(f) may be a proper
subset of dom(M). We also define computable functions from Σω to Σ∗, and
from Σω to N similarly. For X, Y ⊂ Σω, we call a bijection from X to Y a
conversion function.

2 Finite-time computable functions

Definition 1. We say that a partial function f :⊆ Σω → Σω is finite-time
computable if there are computable partial functions g :⊆ Σω → Σ∗ and μ :⊆
Σω → N such that

f(x) = g(x) · x↑μ(x)

for x ∈ dom(f).

Definition 2. We say that a partial function f :⊆ Σω → Σω is constant-time
computable if f is finite-time computable and there is a k ∈ N such that the
values of g(x) and μ(x) in the definition of finite-time computability of f depend
only on x ↑k for all x ∈ dom(f). That is, x ↑k= y ↑k implies g(x) = g(y) and
μ(x) = μ(y).

Proposition3. A finite-time computable function is a computable function.

Proposition4. If the domain of a finite-time computable function is compact,
it is a constant-time computable function.

When a representation ϕA :⊆ Σω → A is given, we can define finite-time
computability of a function on A.

Definition 5. Let ϕ : Σω → A be a representation of A. We say that a partial
multi-valued function F :⊆ A ⇒ A is finite-time computable with respect to ϕ if
F is realized by a finite-time computable partial function f :⊆ Σω → Σω. That
is, ϕ(f(x)) ∈ F (ϕ(x)) for every x ∈ Σω.

1368 Tsuiki H., Yamada S.: On Finite-time Computability ...

We also define constant-time computable partial multi-valued function F :
A ⇒ A, similarly.

Note 6. We can generally define finite-time computability for multi-valued func-
tions with the domain and the range different. We have this definition because
we are only interested in the case they are the same in this paper.

Example 1. Let Σ = {0, 1}, I = [0, 1] be the closed unit interval, and δB : Σω → I

be the binary representation of I. That is, δB(x) = Σ∞
n=0xn/2n+1. Then, each

of the following (multi-valued) function Fi : I ⇒ I (i = 1, 2, 3) is constant time
computable with fi : Σω → Σω the function which realizes Fi.

1. F1(a) = a/2.
f1(x) = 0 · x.

2. F2(a) =
{

2a if 0 ≤ a ≤ 1/2,
2a − 1 if 1/2 ≤ a ≤ 1.

f2(x) = x↑1.

3. F3(a) =
{

a + 1/2 if 0 ≤ a ≤ 1/2,
a − 1/2 if 1/2 ≤ a ≤ 1.

f3(x) = not(x0) · x↑1.

Here, not : Σ → Σ is the function defined as not(0) = 1 and not(1) = 0.

Example 2. Let Σ = {0, 1, ’.’}, X = {x ∈ Σω | x contains one ’.’}, and δ′B :⊆
Σω → R

+ be the binary representation of the set R
+ of non-negative real num-

bers. That is, dom(δ′B) = X and δ′B(x) = δB(x ↑k ·x ↑k+1)2k for k the index of
’.’ in x. Then, F4 : R

+ → R
+ defined as F4(a) = 2a is finite-time computable,

with its code the function f4 : X → X defined recursively as follows,

f4(x) =
{

x0 · f4(x↑1) if x0 = 0, 1,
x1 · . · x↑2 if x0 = ’.’.

Example 3. Let Σ = {0, 1} and δG : Σω → I be the Gray representation defined
in Section 1. We can extend it to the representation δ′G :⊆ {0, 1, ’.’}ω → R

+ of
R

+ as we did for the binary representation in Example 2. As we will show in
the next section, all the finite-time computable and constant-time computable
functions with respect to δB and δ′B belong to the same class of functions with
respect to δG and δ′G, respectively. For example, with respect to δG, F1 is realized
by f1, F2 is realized by

f5(x) =
{

x↑1 if x0 = 0,

not(x1) · x↑2 if x0 = 1,

1369Tsuiki H., Yamada S.: On Finite-time Computability ...

and F3 is realized by

f6(x) = not(x0) · not(x1) · x↑2 .

Besides, F4 is realized by f4 with respect to δ′G.
In addition to them, there are functions finite-time computable with respect

to δG but not with respect to δB. For example, the following functions F6 and F7

are constant-time computable with respect to δG with f2 and f3 the functions
which realize them, respectively.

4. F6(a) =
{

2a if 0 ≤ a ≤ 1/2,
2 − 2a if 1/2 ≤ a ≤ 1.

5. F7(a) = 1 − a.

However, F6 and F7 are not finite-time computable with respect to δB.

3 Finite-time computability preserving conversions

Definition 7. Let X and Y be subsets of Σω. We say that a bijection α :
X → Y is a finite-time computability preserving conversion if α is computable
and α ◦ f ◦ α−1 is finite-time computable for all finite-time computable partial
function f :⊆ Σω → Σω, whose domain and range are subsets of X .

Proposition8. Let X and Y be subsets of Σω, α : X → Y be a finite-time
computability preserving conversion and ϕ :⊆ Σω → A be a representation of
a set A with dom(ϕ) = X. If a partial multi-valued function F :⊆ A ⇒ A is
finite-time computable with respect to ϕ, then it is finite-time computable with
respect to ϕ ◦ α−1.

Proof. If F is realized by a finite-time computable function f with respect to ϕ,
then F is realized by α ◦ f ◦ α−1 with respect to ϕ ◦ α−1.

For integers k, m ≥ 0 and a function B : Σk+m+1 → Σ, we define a sliding
block function α : Σω → Σω as α(x)n = B(xn−k, . . . , xn+m). Here, we assume
that xn is defined to be some constant for n < 0. Gray-code conversion defined
in Section 1 is a sliding block function for k = 1, m = 0, B : Σ2 → Σ the
exclusive-OR function, and x−1 = 0.

More generally, we define an extended sliding block function as follows.

Definition 9. Let Y be a subset of Σω. We say that a function α : Σω → Y

is an extended sliding block function if there are an integer n and computable
functions λ : Σω → Σ∗, ρ : Σn → Σ∗, and s : Σω → N such that

α(x) = λ(x) · ρ(x↑s(x)+n
s(x)) · ρ(x↑s(x)+1+n

s(x)+1) · · · · = λ(x) ·
∏

s(x)≤i<ω

ρ(x↑i+n
i).

1370 Tsuiki H., Yamada S.: On Finite-time Computability ...

Proposition10. Let Y be a subset of Σω. If α is a computable bijection from
Σω to Y , then α−1 is computable.

Proof. Since α is computable, there is a monotonic computable function h :
Σ∗ → Σ∗ which approximates α. That is, for x ∈ Σω and k ∈ N, h satisfies
h(x ↑k) < α(x) and limk→ω h(x ↑k) = α(x). We define a function g from Σ∗

to Σ∗ which approximates α−1 as follows. For each u ∈ Σ∗, let Uu be the set
{v ∈ Σ∗ | h(v) ≥ u} and Vu be the set of minimal elements of Uu. We define
g(u) ∈ Σ∗ be the longest common prefix of elements of Vu.

Let u ∈ Σ∗. Since Σω is compact, there is k ∈ N such that if |v| ≥ k then
|h(v)| ≥ |u|. Therefore, Vu ⊂ Σ≤k for Σ≤k = ∪i≤kΣi. Thus, one can enumerate
all the elements of Vu in finite time, and one can compute g(u) from u. From
the definition, g is a monotonic function from Σ∗ to Σ∗. On the other hand, if
α(x) > u for x ∈ Σω and u ∈ Σ∗, then h(x↑n) > u for some n and thus x↑n∈ Uu,
and we have g(u) ≤ x↑n and thus x > g(u). Therefore, g(y ↑k) < α−1(y) for all
y ∈ Y and k ∈ N.

Now, we only need to prove that for each n ∈ N, there is m ∈ N such
that |g(y ↑m)| ≥ n for every y ∈ Y . Since Σω is compact, Y is also compact
and α−1 is a uniformly continuous function. Therefore, for each n ∈ N, there
exists k ∈ N such that if α(x) ↑k= α(x′) ↑k then x ↑n= x′ ↑n. Take m =
max(k, max{|h(u)| | u ∈ Σn}). Then, we have |g(α(x) ↑m)| ≥ n for every x ∈
Σω.

Proposition11. Any extended sliding block bijection preserves finite-time com-
putability.

Proof. Let α : x �→ λ(x) · ∏
s(x)≤i<ω ρ(x ↑i+n

i) be an extended sliding block
bijection. Let f be a finite-time computable partial function, which satisfies
f(x) = g(x) · x ↑μ(x) for x ∈ dom(f). For x ∈ dom(f), we denote y = α(x),
z = f(x) and w = α(z). We will show that the function α ◦ f ◦α−1, which maps
y to w, is finite-time computable.

Since z = g(x) · x ↑μ(x), we have x ↑μ(x)= z ↑|g(x)|. Set an integer k = max
{0, s(x)−μ(x), s(z)− |g(x)|}, then xk+μ(x)+i = zk+|g(x)|+i for all i ≥ 0, and this
implies y ↑|λ(x)·ρ(x↑s(x)+n

s(x))·····ρ(x↑k+µ(x)−1+n

k+µ(x)−1)|= w ↑|λ(z)·ρ(z↑s(z)+n

s(z))·····ρ(z↑k+|g(x)|−1+n

k+|g(x)|−1)|.

If we set g′(y) = λ(z) · ρ(z ↑s(z)+n
s(z)) · · · · · ρ(z ↑k+|g(x)|−1+n

k+|g(x)|−1), μ′(y) = |λ(x) ·
ρ(x↑s(x)+n

s(x)) · · · · · ρ(x↑k+μ(x)−1+n
k+μ(x)−1)|, then we have w = g′(y) · y↑μ′(y). By Propo-

sition 10, z = f(α−1(y)) is computable from y and therefore g′ and μ′ are
computable functions.

Corollary 12.
(1) A sliding block bijection preserves finite-time computability.

1371Tsuiki H., Yamada S.: On Finite-time Computability ...

(2) Gray-code conversion preserves finite-time computability.
(3) Every finite-time computable function with respect to the binary representa-
tion is finite-time computable with respect to the Gray representation.

4 Characterization of finite-time computability preserving
conversions from Σω

In this section, we show the converse of Proposition 11 as our main theorem.

Theorem 13. If α : Σω → Y is a finite-time computability preserving conver-
sion, then α is an extended sliding block function.

To prove this theorem, we need some lemmata. We divide the proof into
three parts and show them in the following subsections. Let α : Σω → Y be a
finite-time computability preserving conversion.

4.1 A Recursive equation that α must satisfy

For a letter a ∈ Σ, let pa : Σω → Σω be the function which prepends the letter
a to sequences, that is, pa(x) = a · x. This prepending function pa is a typical
finite-time computable function on Σω.

Lemma14. There are an integer n ≥ 0 and computable functions g : Σn → Σ∗

and μ : Σn → N such that the following recursive formula holds.

α(x) = g(x↑n) · α(x↑1)↑μ(x↑n) . (2)

Proof. Since α ◦ pa ◦ α−1 is a finite-time computable function, it must have the
form ga(x) · x↑μa(x) for computable functions ga : Σω → Σ∗ and μa : Σω → N.
Thus, we have

α(a · x) = ga(α(x)) · α(x)↑μa(α(x)) .

We define computable functions g : Σω → Σ∗ and μ : Σω → N by

g(x) = gx0(α(x↑1)),

μ(x) = μx0(α(x↑1)).

Then, α must satisfy

α(x) = α(x0 · x↑1) = g(x) · α(x↑1)↑μ(x) .

Since Σω is compact and g and μ are computable, there is an integer n ≥ 0
such that the values of g(x) and μ(x) are defined by x↑n and we can regard the
domains of these functions as Σn.

1372 Tsuiki H., Yamada S.: On Finite-time Computability ...

Equation (2) says that α(x) is composed of the sequence g(x ↑n) and the
infinite sequence obtained by removing the first μ(x) characters from α(x ↑1).
Therefore, one way of computing the sequence α(x) would be to compute and
output g(x↑n), calculate the number μ(x), and start the computation of α(x↑1)
and output it disregarding the first μ(x) characters. We define a function α′ :
Σω → Σ∞ which can be computed with this procedure.

We introduce a new letter H which does not belong to Σ. We call this letter
H a “hole” which cancels the succeeding ordinary letter when the following
function θ : (Σ ∪ {H})∞ → Σ∞ is applied. We first define θ : (Σ ∪ {H})∗ → Σ∗

on finite sequences. For any sequence x ∈ (Σ ∪ {H})∗,

θ(x) =

⎧⎨
⎩

x0 · θ(x↑1) if x0 ∈ Σ,

θ(x↑1)↑1 if x0 = H,

ε if x = ε.

It can be easily checked that θ is monotonic. That is, for x ∈ (Σ ∪ {H})∗ and
an integer m ≥ 0, there is a integer m′ such that, θ(x↑m) = θ(x)↑m′

. Therefore,
we can extend this function to the function θ : (Σ ∪ {H})∞ → Σ∞ as

θ(x) = lim
m→ω

θ(x↑m)

for x ∈ (Σ ∪ {H})ω.
We define functions hj : Σj+n → (Σ ∪ {H})∗ and h : Σω → (Σ ∪ {H})∞ for

an integer j ≥ 0 by

hj(x) =
∏

0≤i≤j

g(x↑i+n
i) · Hμ(x↑i+n

i),

h(x) =
∏

0≤i<ω

g(x↑i+n
i) · Hμ(x↑i+n

i).

We also extend hj to a function from Σω to (Σ ∪ {H})∗ as hj(x) = hj(x↑j+n)
and define functions

α′
j = θ ◦ hj ,

α′ = θ ◦ h.

By definition, hj and h satisfy the following formulae.

hj+1(x) = g(x↑n) · Hμ(x↑n) · hj(x↑1),

h(x) = g(x↑n) · Hμ(x↑n) · h(x↑1).

If we apply θ to these formulae, we have

α′
j+1(x) = g(x↑n) · α′

j(x↑1)↑μ(x↑n), (3)

1373Tsuiki H., Yamada S.: On Finite-time Computability ...

α′(x) = g(x↑n) · α′(x↑1)↑μ(x↑n) . (4)

The functions α′
j and α′ satisfy α′

0(x) = g(x↑n), α′
j(x) ≤ α′

j+1(x), and α′(x) =
limm→ω α′

m(x). Note that the recursive formula (4) of α′ is the same as the one
(2) of α, though α : Σω → Σω and α′ : Σω → Σ∞ have different ranges.

Lemma15. α′(x) ≤ α(x) for x ∈ Σω.

Proof. We consider the pointwise order on the set [Σω → Σ∞] of functions from
Σω to Σ∞. It becomes a domain, that is, a directed complete partial ordered
set with a least element. For the details of domain theory, see [Gierz et al. 2003]
and [Stoltenberg-Hansen et al. 1994], for example. Let F be the function from
[Σω → Σ∞] to [Σω → Σ∞] defined as

F (β) = λx.g(x↑n) · β(x↑1)↑μ(x↑n) .

Equation (2) and (4) say that F (α) = α and F (α′) = α′, respectively, and
therefore α and α′ are fixed-points of F . On the other hand, it is easy to see that
F is a continuous function, and thus F has a least fixed-point. Let α′

−1(x) = ε.
Then, α′

−1 is the least element of [Σω → Σ∞] and α′
0 = F (α′

−1). In addition,
we have α′

j+1 = F (α′
j) (j ≥ 0) from (3). Therefore, α′ is actually the least fixed-

point of F , and we have α′ ≤ α.

4.2 α is the unique solution of Equation (2)

Note that we still have the possibility that α and α′ are different and, for some
x, α′(x) is a finite sequence and α(x) is an infinite sequence obtained as its
extension. Now, we prove that |α′(x)| = ω for any x ∈ Σω. By Lemma 15, it
means that α = α′ and therefore α is the unique solution of (2). First, we prepare
a small lemma.

Lemma16. For x, y, z ∈ Σω and i, j, k, l ∈ N, if x↑i= y↑j and y↑k= z ↑l, then
x↑i+k= z ↑j+l.

Proof. For m ∈ N, xi+k+m = yj+k+m = zj+l+m.

One of the difficulties in handling h(x) is that each digit of the output is
determined by some interval x↑i+n

i of length n and the intervals overlap for each
i. Therefore, we pick up indexes k1, . . . , kn, . . . for which x ↑ki+n

ki
are the same.

Such a sequence k1, . . . , kn, . . . exists because |Σn| is finite.

Lemma17. Let x ∈ Σω and 0 ≤ k < k′. If x↑k+n
k = x↑k′+n

k′ , then we have the
following.

1374 Tsuiki H., Yamada S.: On Finite-time Computability ...

(1)
∑

k≤i<k′ (|g(x↑i+n
i)| − μ(x↑i+n

i)) > 0.

(2)
∑

k≤i<k′ (|g(x↑i+1+n
i+1)| − μ(x↑i+n

i)) > 0.

Proof. (1) Set
u = x↑k′

k ,

e = |u| = k′ − k,

s =
∑

0≤i<e

|g(x↑k+i+n
k+i)|,

t =
∑

0≤i<e

μ(x↑k+i+n
k+i),

d = t − s,

q =
n/e� + 1.

From the assumption x ↑k+n
k = x ↑k′+n

k′ , xi = xi+e for k ≤ i < k + n. If
e < n then u = x ↑k+e

k = x ↑k+2e
k+e = x ↑k+3e

k+2e= · · · = x ↑k+(q−1)e
k+(q−2)e and x ↑k+e+n

k+(q−1)e=

u ↑n−(q−2)e. If e ≥ n then q = 2 and x ↑k+e+n
k+e = u ↑n. Therefore we have

x↑k′+n
k = uq ↑e+n.
Consider a word y = uq+1 · w, where w is an arbitrary word in Σω. Then

y↑i+n
i = x↑k+i+n

k+i for 0 ≤ i < e. From the recursive equation (2), we have

α(y↑i)↑|g(y↑i+n
i)|= α(y↑i+1)↑μ(y↑i+n

i)

for 0 ≤ i < e. Therefore, by Lemma 16, we have α(y)↑s= α(y↑e)↑t. That is,

α(uq+1 · w)↑s= α(uq · w)↑s+d .

Since this holds for arbitrary w ∈ Σω, by applying it repeatedly, we have

α(uq+� · w)↑s= α(uq · w)↑s+d�

for all positive integer � such that s + d� > 0.
To prove that d < 0, we will derive contradictions from assumptions d > 0

and d = 0.
Assume that d > 0. Since α is computable, there is an integer p (> q) such

that
α(up · w)↑s+d

s = α(up · w′)↑s+d
s

for all w, w′ ∈ Σω. Then, for all � ≥ 0,

α(up · w)↑s+d�+d
s+d� = α(up+� · w)↑s+d

s = α(up+� · w′)↑s+d
s = α(up · w′)↑s+d�+d

s+d� .

Therefore, α(up · w) ↑s= α(up · w′) ↑s. This means that α(up · w) has only |Σ|s
different values for w ∈ Σω. This contradicts that α is an injection.

1375Tsuiki H., Yamada S.: On Finite-time Computability ...

Assume that d = 0. We have

α(u�+q · w)↑s= α(uq · w)↑s (5)

for all � ≥ 0. Since α is computable, for any integer i (≥ s), there is an integer
p (> q) such that

α(up · w)i = α(up · w′)i

for all w, w′ ∈ Σω. Therefore, from (5), we have

α(uq · w)i = α(uq · w′)i

for any i ≥ s and w, w′ ∈ Σω. This means that α(uq · w) has only |Σ|s different
values for w ∈ Σω. This contradicts that α is an injection.

(2) Since g(x↑k+n
k) = g(x↑k′+n

k′), we have the result from (1).

Lemma18. For any x ∈ Σω,

lim
i→ω

|α′
i(x)| = ω.

Proof. We can choose infinitely many integers 0 ≤ k1 < k2 < · · · < kj < · · ·
such that x ↑k1+n

k1
= x ↑k2+n

k2
= · · · = x ↑kj+n

kj
= · · · . From the previous lemma,

|α′
k1

(x)| < |α′
k2

(x)| < · · · . Then we have limi→ω |α′
i(x)| = ω.

Therefore, we have the following.

Lemma19. α′ = α.

4.3 α is an extended sliding block function

Finally, we show that α′ is an extended sliding block function. Set N = |Σ|n and
M = maxw∈Σn μ(w). Since α′

j(x) is monotonic to j and limi→ω |α′
i(x)| = ω, we

have j0, j1, . . . such that α′
ji+1(x) > α′

ji
(x). In the following lemma, we consider

the case M > 0 and show that such ji appear in every interval of length MN2.

Lemma20. Suppose that M > 0. For any x ∈ Σω and any integer j ≥ 0,
|α′

j(x)| < |α′
j+MN2 (x)|.

Proof. Let j0 be the least non-negative integer such that α′
j0

(x) = α′
j(x). It is

enough to show that |α′
j0

(x)| < |α′
j0+MN2(x)|.

For any integer k ≥ j0, we denote
∑

j0≤i<k(−μ(x ↑i+n
i) + |g(x ↑i+1+n

i+1)|) by
e(k). It is easily checked that |α′

�(x)| − |α′
j0(x)| = maxj0≤k<� e(k) for � > j0. We

shall show that e(k′) > 0 for some k′ (j0 < k′ ≤ j0 + MN2).
Let j0 < j1 < j2 < · · · < jm ≤ j0 + MN2 be the indices at which

minimal value of e is updated, namely, {j′ |j0 ≤ j′ ≤ j0 + MN2and e(i) >

1376 Tsuiki H., Yamada S.: On Finite-time Computability ...

e(j′) for all i (j0 ≤ i < j′)} = {j0, j1, j2, . . . , jm}. Then e(j0) = 0 > e(j1) >

e(j2) > · · · > e(jm) = minj0≤k<j0+MN2 e(k). From Lemma 17, x ↑j0+n
j0

, x ↑j1+n
j1

, . . . , x↑jm+n
jm

must be mutually distinct. Therefore m < N . Since e(j�)−e(j�−1) ≥
−M for all � = 1, . . . , m and e(j0) = 0, we have e(jm) > −MN .

Let w ∈ Σn be the sequence which appears most frequently in the MN2 + 1
sequences {x↑i+n

i }j0≤i≤MN2 . Then w appears more than MN times. Let x↑k+n
k

be the first appearance of w and x ↑k′+n
k′ be the last appearance of w. From

Lemma 17, e(k′) > e(k)+MN . Since e(k) ≥ e(jm) > −MN , we have e(k′) > 0.

Lemma21. Suppose that M > 0. For any x ∈ Σω and j ∈ N, |α′
j+MN2 (x ↑1

)| > μ(x↑n).

Proof. By Lemma 20, |α′
1+MN2(x)| > |α′

1(x)| holds. On the other hand, by
Equation (3), we have α′

1+MN2(x) = g(x↑n) · α′
MN2(x↑1)↑μ(x↑n) and |α′

1(x)| ≥
|α′

0(x)| = |g(x↑n)|.
Therefore, |α′

MN2(x ↑1) ↑μ(x↑n) | > 0. It means that |α′
MN2(x ↑1)| > μ(x ↑n).

Since |α′
j+MN2 (x↑1)| ≥ |α′

MN2 (x↑1)|, we have the result.

Lemma22. Suppose that M > 0. For any x ∈ Σω and i ∈ N,

α′
i+1+MN2 (x)↑|α′

i+MN2(x)|= α′
1+MN2(x↑i)↑|α′

MN2(x↑i)| .

Proof. We first prove

α′
j+2+MN2 (x)↑|α′

j+1+MN2 (x)|= α′
j+1+MN2 (x↑1)↑|α′

j+MN2(x↑1)| (6)

for every j ∈ N. By (3), we have α′
j+2+MN2(x) = g(x↑n)·α′

j+1+MN2 (x↑1)↑μ(x↑n)

and |α′
j+1+MN2 (x)| = |g(x↑n)|+ |α′

j+MN2(x↑1)↑μ(x↑n) |. By Lemma 21, we have
|α′

j+MN2 (x↑1)↑μ(x↑n) | > 0. Therefore,

α′
j+2+MN2 (x)↑|α′

j+1+MN2(x)| = (α′
j+1+MN2 (x↑1)↑μ(x↑n))↑|α′

j+MN2(x↑1)↑µ(x↑n)|
= α′

j+1+MN2 (x↑1)↑|α′
j+MN2(x↑1)| .

Now, we can repeatedly apply Equation (6) to have

α′
i+1+MN2 (x)↑|α′

i+MN2(x)| = α′
i+MN2 (x↑1)↑|α′

i−1+MN2(x↑1)|
= . . .

= α′
1+MN2(x↑i)↑|α′

MN2(x↑i)| .

1377Tsuiki H., Yamada S.: On Finite-time Computability ...

We define functions λ : Σω → Σ∗, ρ : Σn+1+MN2 → Σ∗, and s : Σω → N as
follows:

λ(x) = α′
MN2(x),

ρ(x) = α′
1+MN2(x)↑|α′

MN2(x)|,

s(x) = 0.

We will accomplish the proof of the theorem with the following lemma.

Lemma23.
α(x) = λ(x) ·

∏
s(x)≤i<ω

ρ(x↑i+n+1+MN2

i).

Proof. If M > 0, we have α′
1+MN2(x↑i)↑|α′

MN2(x↑i)|= α′
i+1+MN2 (x)↑|α′

i+MN2(x)|
from the previous lemma, Therefore, α′

i+MN2+1(x) = α′
i+MN2(x) · ρ(x↑i). Then

we have, α(x) = α′
MN2(x) · ∏0≤i ρ(x↑i).

If M = 0, from (2), we have α(x) = g(x ↑n) · α(x ↑1) =
∏

0≤i<ω g(x ↑i+n
i) =

g(x↑n)·∏0≤i<ω g(x↑i+n+1
i+1). On the other hand, we have λ(x) = α′

0(x) = g(x↑n)
and ρ(x) = α′

1(x)↑|α′
0(x)|= (g(x↑n) · g(x↑n+1

1))↑|g(x↑n)|= g(x↑n+1
1).

By Proposition 11, Theorem 13, and Lemma 23, we have the following.

Theorem 24. Let α be a conversion from Σω to Y ⊂ Σω. The following are
equivalent.
(1) α is a finite-time computability preserving conversion.
(2) α is an extended sliding block function.
(3) α can be expressed as

α(x) = λ(x) ·
∏

0≤i<ω

ρ(x↑i+n
i).

5 Suffix identity preserving conversions

Definition 25. We say that two infinite sequences x and y share a suffix if
there are non-negative integers m and n such that x↑m= y ↑n. We write x ∼ y

when x and y share a suffix. We say that a partial function f :⊆ Σω → Σω is
suffix-identical if x and f(x) share a suffix for all x ∈ dom(f).

From the definition, a partial function f is suffix-identical if and only if f(x)
has the form g(x) ·x↑μ(x) for partial functions g :⊆ Σω → Σ∗ and μ :⊆ Σω → N.
The difference between a suffix-identical function and a finite-time computable
function is that g and μ are required to be computable in the latter case.

A finite-time computable function is obviously suffix-identical. However, the
converse is not true, as we will see in Example 4.

1378 Tsuiki H., Yamada S.: On Finite-time Computability ...

Definition 26. For X, Y ⊂ Σω, we say that a conversion α from X to Y pre-
serves suffix identities if α(z) and α(w) share a suffix for any z, w ∈ X which
share a suffix.

Since ∼ is an equivalence relation, we consider the quotient Σω/ ∼. A suffix
identity preserving conversion α determines a function from Σω/ ∼ to Σω/ ∼.

Proposition27. A finite-time computability preserving conversion preserves
suffix identities.

Proof. Suppose that α : X → Y is a finite-time computability preserving con-
version and w ↑n= z ↑m for w, z ∈ X . Consider the partial finite-time com-
putable function f(x) = z ↑m x ↑n with the domain {w}. We have f(w) = z,
dom(f) ⊂ X and range(f) ⊂ X . Therefore, h = α ◦ f ◦ α−1 is a finite-time
computable function and it has the form g(y) · y ↑μ(y). Since h(α(w)) = α(z),
α(z) = g(α(w)) · α(w) ↑μ(α(w)). For k = μ(α(w)) and l = |g(α(w))|, we have
α(w)↑k= α(z)↑l.

On the other hand, not all suffix identities preserving conversions are finite-
time computability preserving.

Example 4. For n > 0, we denote z(n) =
∏

1≤i≤n 1i0 = 10120130 · · · 1n−101n0
and z(ω) =

∏
1≤i 1i0 = 10120130 · · · 1n−101n0 · · · , and define a function β :

Σ∗ → Σ∗ by

β(0m01n00m11n1 · · · 0mk1nk) = 0m0z(n0)0m1z(n1) · · · 0mkz(nk),

where n0, . . . , nk−1, m1, . . . , mk > 0 and nk, m0 ≥ 0. Since β(x ↑n) is a prefix
of β(x) for any n ∈ N and x ∈ Σ∗, we can extend β to β : Σω → Σω. Let
Y = range(β).

The conversion β : Σω → Y preserves suffix identities. That is, if x↑n= y↑m,
then β(x) ↑k= β(z) ↑l for some k and l. Note that we need to study separately
the case x contains finite number of 0, in which case β(1ω) = z(ω) is a suffix
of x. On the other hand, β is not finite-time computability preserving. Consider
the finite-time computable function p1(x) = 1 · x. Let h = β ◦ p1 ◦ β−1 : Y → Y .
It satisfies the followings.

h(0 · x) = 1 · 0 · 0 · x,

h(z(n) · 0 · x) = z(n + 1) · 0 · x,

h(z(ω)) = z(ω).

One can consider these equations as a procedure to compute h, and thus h is a
computable function. One can see that h is a suffix-identical function.

However, h is not a finite-time computable function. Suppose that h(y) =
g(y) · y ↑μ(y) for g :⊆ Y → Σ∗ and μ :⊆ Y → N computable functions. We have

1379Tsuiki H., Yamada S.: On Finite-time Computability ...

μ(z(n) ·0 ·x) ≥ |z(n)|−n−1, and limn→ω μ(z(n) ·0 ·x) = ω. On the other hand,
limn→ω z(n) · 0 · x is z(ω) and μ(z(ω)) must have a finite value. Therefore, μ is
not continuous, and therefore it is not computable.

Since dom(β) = Σω, this example also shows that our main theorem does
not hold for suffix-identity preserving conversions.

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research
(No.18500013) and Grant-in-Aid for Scientific Research (No.19650029) from
Japan Society for the Promotion of Science.

References

[Gierz et al. 2003] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove,
M., and Scott, D. S.: “Continuous lattices and domains”; Cambridge Univer-
sity Press, Cambridge (2003).

[Gray 1953] Gray, F.: “Pulse code communications”; U. S. Patent 2632058 (March
1953).

[Lind and Marcus 1995] Lind, D. A., Marcus, B.: “An Introduction to Symbolic Dy-
namics and Coding”; Cambridge University Press, Cambridge (1995).

[Stoltenberg-Hansen et al. 1994] Stoltenberg-Hansen, V., Lindstrom, I., Griffor, E. R.:
“Mathematical theory of domains”; Cambridge University Press (1994).

[Tsuiki 2002] Tsuiki, H.: “Real number computation through gray code embedding”;
Theoretical Computer Science, 284,2 (2002) 467-485.

[Tsuiki and Yamada 2008] Tsuiki, H., Yamada, S.: “On Finite-time Computability
Preserving Conversions”; in Brattka, V., Dillhage, R., Grubba, T., Klutsch, A.
(eds.): “Proceedings of the 5th International Conference on Computability and
Complexity in Analysis”; Electronic Notes in Theoretical Computer Science 221
(2008), 299-308.

[Weihrauch 2000] Weihrauch, K.: “Computable analysis, an Introduction”; Springer-
Verlag, Berlin (2000).

1380 Tsuiki H., Yamada S.: On Finite-time Computability ...

