

Pattern-Oriented Workflow Generation and
Optimization

Yong Xiang
 (Dept. of Computer Science and Technology, Tsinghua University, Beijing, P.R.China

xyong@csnet4.cs.tsinghua.edu.cn)

Shaohua Zhang
(Dept. of Computer Science and Technology, Tsinghua University, Beijing, P.R.China

zshua@csnet4.cs.tsinghua.edu.cn)

Yuzhu Shen
(Dept. of Computer Science and Technology, Tsinghua University, Beijing, P.R.China

syzhu@csnet4.cs.tsinghua.edu.cn)

Meilin Shi
(Dept. of Computer Science and Technology, Tsinghua University, Beijing, P.R.China

shi@csnet4.cs.tsinghua.edu.cn)

Abstract: Automatic workflow generation is becoming an active research area for dealing with
the dynamics of grid infrastructure, because it has a pervasive impact on system usability,
flexibility and robustness. Artificial intelligence technology and explicit knowledge have been
exploited in some research for workflow construction or composition. With the increasing use
of knowledge, its quality has growing impact on system performance. In this report, we present
the process pattern as a vehicle for knowledge representation to capture process expertise at the
business level. A pattern-based planning approach is proposed for automated workflow
generation. Our pattern-oriented approach decreases user-visible complexity and makes
systems more scalable and flexible by utilizing explicit knowledge support. Then we propose a
hybrid method of pattern knowledge optimization for pattern-based workflow generation
planning; experts define the primary model, and subsequent classifier training adjusts and
improves the pattern knowledge settings. Experiments with a prototype application
demonstrated that this approach can substantially reduce modelling difficulties and effectively
improve pattern knowledge quality.

Keywords: workflow pattern, workflow generation, knowledge management, business
knowledge optimization, classifier training
Categories: C.2.4, H.1.0, H.4.3, I.2.6

1 Introduction

With the ever-increasing popularity of grid computing, grid workflow, which is an
important enabling technology for complex grid applications, has become an active
research area. Nowadays, grid workflow offers an attractive basis for supporting

Journal of Universal Computer Science, vol. 15, no. 9 (2009), 1924-1944
submitted: 15/8/08, accepted: 25/4/09, appeared: 1/5/09 © J.UCS

processes ranging from in silico experiment analysis in bioinformatics to global
business activities spanning different organizations.

Generally, a grid workflow system accepts a group of tasks or jobs and assigns
them to suitable services or resources for execution. Most existing grid workflow
systems build an entire process specification before execution in the grid environment.
A process specification can be constructed based on simulation [Cao, 03] or
performance prediction [Berman, 01], or even manually [Oinn, 04] [Montoto, 08].
Because all information needed in the execution stage is specified, this method is also
called full-ahead plan. In this case, users are often required to know many technical
details of the grid environment (e.g. resources’ physical locations, service endpoints)
for defining the process specification. Moreover, the full-ahead plan often raises
exceptions owing to hardware failures or resource usage policy changes at runtime.
The situation gets even worse when workflow duration spans several days or weeks.
To deal with the issues in large-scale, complex and dynamic environment like grids,
automatic workflow construction is becoming necessary. The demand is growing in
visibility as grid computing shifts from the scientific community to the business
context.

Recently, techniques utilizing artificial intelligence (AI) for automated workflow
generation have emerged in some research. This approach offers several advantages.
First, it eases the users’ burden and improves system usability. Some potential users
who are afraid of grid complexity will be encouraged to use the grid [Gil, 04]. Second,
the workflow becomes more fault-tolerant and responds more rapidly to exceptions
[Cheatham, 05], because the system can promptly handle an error by producing an
alternative process plan.

Pegasus [Pegasus, 04] [Deelman,03] is a typical workflow system that integrates
AI planning techniques for workflow construction. It is used in GriphyN
[GriPhyN, 00] developed by the University of Southern California. Pegasus can take a
user’s highly specified desired results and then generate a valid workflow for
execution. In more detail, Pegasus takes the desired data product as a “goal state”, and
takes the application components as “operators”. Like a typical AI planning system,
Pegasus receives inputs of the current state of the environment, a declarative
representation of a goal state, and a library of operators that can change states and
then searches for a valid, partially ordered set of operators that will transform the
current state into goal state with heuristics. The planning result is an executable
workflow. It can be transformed into a directed acyclic graph for execution by Condor
DAGMan [Frey, 02] to provide the target data product.

The main disadvantage of this planning approach is its lack of explicit knowledge.
More exactly, its planner and the knowledge used in planning are mixed together.
Therefore, when the description becomes abstract or contains less detail, the planner
has more difficulty to yield a good planning result. On the contrary, when the
description becomes more exhaustive, the result may be better, but the planner has to
understand more complexity. In other words, the planner is tightly bound to a specific
domain. This drawback jeopardizes the domain independence of the planner and may
harm system scalability. As the problem scale grows, the search space will expand to a
huge size and certainly overwhelm the planner.

1925Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

WMP van der Aalst proposed the “workflow pattern” [Aalst, 03] for
systematically analyzing the functionalities of workflow management systems (WfMS).
These workflow patterns have been utilized to analyze the workflow behaviour
expressiveness of some description languages for the implementation of web service
interfaces [Musicante, 06]. Here we propose the use of process patterns to carry the
knowledge necessary for workflow planning. Although a process pattern seems very
similar to a workflow pattern, they are essentially different. A workflow pattern is
mainly about workflow functions and is organized according to control flow structures,
e.g. sequence, parallel split. Furthermore, a workflow pattern has no context or
solution part in its description. In contrast, a process pattern is a kind of business
expertise which is designed to represent knowledge for dynamic workflow generation.
A process pattern provides a process solution for a specific user task or goal in a
particular scenario, e.g. an express claim procedure in insurance. Problem, context and
solution are absolutely necessary in a process pattern.

In some research [Chung, 03] [Rohit, 04], the system has a pre-defined process
library for improving planning efficiency. A process pattern is also substantially
distinct from a process library. First, a process pattern is a synthesis of business
expertise and workflow knowledge. It is defined in an application domain, whereas a
process library is a collection of workflow definitions and is defined at the technical
level. Second, a process pattern is a dynamic description in multiple dimensions
including problem, scenario and solution. The current state of the environment plays
an important role in choosing a process pattern. On the contrary, a process in a library
is a static description of activities and their dependencies and is used as a building
block. Context changes have no direct influence on which process will be used.

As Yolanda Gil et al. [Gil, 04] conclude: “to address more aspects of the grid
environment’s workflow management problem … we find that, as mentioned, a more
distributed and knowledge-rich approach is required.” In this work, we put forward
the process pattern as a knowledge representation structure to capture process
expertise at the business level. Based on process patterns, a knowledge-rich, goal-
driven planning approach is proposed to automatically generate grid workflow.
Besides declarative representation of grid resource entities, it utilizes process patterns
to capture business expertise and knowledge. Using pattern-oriented workflow
generation planning, the user can submit the business goal in application terms, and
the system will generate an executable workflow that can achieve the specified goal.

With the increasing growth in popularity of knowledge, the quality of the
knowledge has a significant impact on workflow system performance [Dustdar, 05].
Therefore, a new question has arisen: How can we ensure the correctness and
efficiency of knowledge in workflow? This paper also focuses on that problem. To
help with this effort, we propose a hybrid mechanism that combines ‘expert fuzzy
modelling’ and ‘machine learning’ to construct and refine knowledge in pattern-
oriented planning. Experts first build the fundamental pattern models based on their
business experience. For some elaborate parameters in a process pattern, the experts
assign them estimated values. Then, after necessary tagging of workflow history data,
we can calibrate these parameters in more precisely via machine learning.

1926 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

2 Pattern-oriented planning

In order to develop scalable, domain-independent mechanisms for dynamic workflow
generation, knowledge should be integrated into the grid workflow management
system. In the grid workflow context, we categorize related knowledge into two basic
types: grid environment knowledge and application level knowledge. Grid
environment knowledge is the declarative representation of grid resource entities and
their relationships, capabilities and usage policies. Application level knowledge
consists of business process expertise, user preferences, policy constraints, and other
intelligence related to business procedures.

Compared with grid environment knowledge, it seems that the value of
application-level knowledge is underestimated; it is not addressed adequately in recent
research. However, high-level knowledge is even more important when we broaden
the range of applications outside the scientific community. In the past, grid workflow
often performed MPI/PVM jobs or data-intensive analysis tasks, which are more
related to underlying resources, such as computation and storage capacity. Nowadays,
grid workflow has broadened its field and begun to supports business processes, i.e.
procurement, supply-chain, and coordination of activities or services in different
organizations. In these cases, application level knowledge probably plays a more
significant role than environment knowledge in the coordination of workflow
generation, execution and exception handling.

This section first introduces the process pattern as the knowledge structure that
captures implicit knowledge. Then, we introduce the knowledge base used in the
system. Finally, pattern-oriented planning is described.

2.1 Process Pattern

There are some requirements for a knowledge representation for grid workflow
management, especially workflow generation. First, it should be suitable for
representing procedural knowledge. In the workflow domain, the most important
knowledge is procedural knowledge; the representation approach must be adequate for
describing it. Second, it should be efficient for use. We integrate it in applications, so
the representation structure must be convenient to program and manipulate. Third, it
should be easy to understand, so that a user from a business field could smoothly
accept it, use it and examine it.

According to these criteria, some traditional knowledge representation techniques,
like predicate logic, frames, semantic networks, rule-based methods etc. are not
suitable. The rule-based method is not fit for describing procedural knowledge; frames
and semantic network are hard to program into systems; and predicate logic seems too
intricate for users and business experts.

In this work, the process pattern is proposed for knowledge representation in the
grid workflow generation process.

Pattern originally comes from the architecture domain, and “describes a problem
which occurs over and over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use this solution a million
times over [Alexsander, 77]”. The basic pattern structure, as shown in Figure 1,
includes three parts: problem, scenario and solution. Problem is a description of the

1927Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

task to be handled; Scenario describes the contextual information of the environment
that the problem inhabits; Solution provides a guideline to perform the task or gives
answer to the problem. A practical pattern may contain more properties such as intent,
diagnosis, known uses etc. [Lukosch, 04]. In summary, a pattern can be considered as
a kind of expertise about a problem and its solution in a specific context.

Figure 1: Process pattern simple form

The process pattern is the fundamental business knowledge representation
structure. It is an extension of the pattern concept to the workflow domain; it can be
thought of as a process solution for a specific business task or goal in a particular
situation. It is a kind of empirical knowledge that describes how to solve a problem in
specific situation.

, ,pattern task scenario solution= (1)
As illustrated in (1), pattern.task describes the business goal or the problem that

needs to be solved. It is often a reference to a task instance. pattern.scenario portrays
the most suitable environment for applying this pattern by some context terms. The
scenario section identifies context information about the characteristic environment.
pattern.solution provides a guideline to achieve the task. It is often a relatively
cohesive process fragment provided for solving the pattern’s problem, and consists of
a series of activities, transitions and data dependencies.

Figure 2 gives an example of a process pattern in XML format. The <Problem>
section uses <goal> to describe the pattern’s objective. The goal uses the domain
attribute to denote the question domain that it belongs to. In planning, the domain is
used to filter patterns in different areas.

 <Scenario> describes the situation in order to decide whether or not to apply this
pattern. The context terms in the scenario are divided into two groups: positive factors
and negative ones. <PositiveFactors> describe situations suitable for using this
pattern, while negative factors describe situations in which the pattern should not be
adopted. <NegativeFactors> has an impactRatio to measure the intensity of the
dissuasive influence. When the current situation matches the pattern scenario, this
pattern can be applied. Each <ContextTerm> has a weight attribute to describe the
importance of this term in quantitative evaluation. Contextinfo identifies the related
context name, while benchmark is the reference value of the context information.
Evaluator is the evaluation function for this context term. Factor is the custom

1928 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

parameter of the term, which influences this term’s evaluation sensitivity. The
designer can calibrate factor values for specific preferences or fine-grained control.

<Solution> is a functionally independent process fragment, called a
<workflowlet>. It consists of a set of related, cohesive actions for achieving the
pattern objective. A workflowlet includes <actions>, <Transitions> and
<RelevantData>. An action is an abstract activity that is a placeholder for a set of
services matching the action description. In some cases the cardinality of the set is
more than one. If an action has the Goal type, it means that the action is a sub-goal
that needs replanning and refinement by other appropriate patterns. Replanning can be
done at planning time or at runtime according to the pattern’s category attribute.

<Pattern> has two categories: Operational and Strategic. When a strategic
pattern is applied, all the goal type actions in the workflowlet must be expanded by
replanning before execution. Operational patterns may also contain goal type actions,
but their refinements are left to runtime.

<Transitions> describe the control and data dependencies between actions.
<RelevantData> is a collection of parameters or variables used in the workflowlet.

<Pattern id=” 4bec39c6-b727-4a2f-b83f-6f00669c2706” category=”operational”
name=”Express procedure”>
<Problem>
<Goal id=”…” name=”Car Damage Claim” domain =”business.finance.insurance.carDamage”>
…</Goal>

</Problem>
<Scenario>
<PositiveFactors>
<ContextTerm weight=”0.7” contextinfo=”ClientType” benchmark=”VIP”
evaluator=”eGreater” factor=”0” />
<ContextTerm weight=”0.3” contextinfo=”CreditLevel” benchmark=”85”
evaluator=”eGreater” factor=”0.2” />
</PositiveFactors>

<NegativeFactors impactRatio=”0.3”>
<ContextTerm weight=”1” contextinfo=”Amount” benchmark=”3000” evaluator=”eGreater”
factor=”0.2” />
</NegativeFactors>

</Scenario>
<Solution>
<Workflowlet id=”…”>
<Actions>
<Action id=”…” type=”BEGIN” name=”” … />
<Action id=”…” type=”NORMAL” name=”Record” … />
<Action id=”…” type=”GOAL” name=”Assessment”…/>
<Action id=”…” type=”NORMAL” name=”Payment” …/>…
</Actions>
<Transitions/>
<RelevantData/>

</Workflowlet>
</Solution>
</Pattern>

Figure 2: A sample process pattern

In brief, a workflowlet is the preferred process for solving the pattern problem in
a situation conforming to the pattern scenario. When solving a sophisticated problem,
the business goal may be decomposed into sub-goals through pattern matchmaking.
After all sub-goals have been refined, the initial goal is mapped to several
workflowlets. These workflowlets can be composed into a larger logical process
definition.

The pattern structure satisfies the requirements mentioned at the beginning of this
section. First, a pattern is adequate and suitable for representing procedural

1929Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

knowledge. In fact, a pattern naturally connects a process with its objective. Because
there are no additional constraints for process specification, users can define a process
in any way they like.

Second, a pattern is well structured and cost-effective. It is easy to program in
applications. The system mainly uses goal and context information in the planning
phase and finds appropriate process solutions for the execution phase. This is simpler
than taking all details such as operators, preconditions, and effects into consideration
from the beginning of planning.

Grain size or granularity is another important issue in knowledge representation.
A pattern can describe knowledge at different levels of abstraction resolved to various
levels of detail. A well-organized hierarchical pattern library minimizes visible
complexity for the user and also provides adequate details for utilization. This feature
makes it possible for existing planners to use patterns to generate workflows.

Moreover, patterns are relatively independent of one another. This is convenient
for building and updating a pattern library incrementally. A pattern-oriented system
can expand its knowledge by finding implicit patterns during repeated planning for the
same result in specific scenarios.

2.2 Knowledge Base

Without adequate declarative and expressive information about the environment and
the application, making sophisticated planning and scheduling decision become very
difficult or even impossible. In order to build a flexible and intelligent grid workflow
system, patterns alone are not enough. More ontologies and metadata that describe the
grid environment and business activities are needed as the semantic basis for
matchmaking, reasoning and planning.

A suggested knowledge base structure is shown in Figure 3. At the bottom,
metadata and a shared ontology are defined in the form of OWL. The shared ontology
describes basic elements of collaborative activity, including organization, task, event,
goal, space, time and so on. This ontology and basic configuration are shared by the
entire system. The application ontology and knowledge are built on top of the shared
ontology. The application ontology describes the business entities (e.g., meta-context,
goal, evaluator) and their relationships. Process patterns and supported goals are
usually established by business experts. A policy includes rules, constraints and
preferences, and is used for more elaborate process management.

1930 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

Figure 3: Structure of knowledge base

If the system needs to support a new application, the knowledge of this
application domain should be added to the knowledge base, as shown on the right side
of Figure 3. Theoretically, a system can support new business domains incrementally
by adding new sets of application-specific knowledge and doing some configuration
and administrative work.

Obviously, how well the system performs mostly depends on the quality of the
knowledge base. Although the ontologies and patterns are created by workflow
experts and business analysts, knowledge, especially patterns, still needs to be
validated, updated and improved in practice. Further discussion of knowledge
management, especially process pattern conflict detection and resolution, will appear
in a sequel to this paper.

2.3 Pattern-oriented planning

Ab
st

ra
ct

io
n

Le
ve

l

Figure 4: Pattern-oriented planning

Figure 4 outlines the basic procedure of pattern-oriented workflow generation.
The knowledge base is shown decomposed into an ontology repository, a pattern base

1931Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

and a policy. The ontology repository contains representations of goals supported by
system. The pattern-oriented planning approach has multiple phases: a goal transform
phase, a matchmaking phase, a planning phase and an execution phase. A business
goal is mapped to a suitable process pattern according to the current situation. Then,
sub-goals in the pattern solution can also refined by process matching. In this way, the
goal is incrementally refined to an executable process.

In detail, Figure 5 gives the basic algorithm for pattern-oriented planning.
First, the user submits a business goal in terms of application vocabulary. The

system then parses the user request and transforms it into the system goal format and
attaches some context information to the user request.

Second, the system checks the goal-context relationship in the policy, and finds
the ‘most common context’ related to the goal. If there are some new contexts related
to the goal, the system get their values from the corresponding context services. After
that, system gets a declarative representation of the goal and a group of relevant
context information.

Third, a partial workflow, which is the interim result of the planning process, is
initialized and the goal node is sent to the planning queue.

Fourth, the system retrieves goal nodes from the planning queue in sequence,
performs pattern matching and chooses suitable process patterns.

Algorithm: GenerateWorkflow (BizGoal task)

Input: bizTask
Output: proc

<g, cxt> Parser.transform(task)
<g, cxt> getMostRelatedContext(g, cxt)
partialFlow φ
queue.enQueue(new node(g))

while (node = queue. deQueue())≠ φ do
if node.type = goal then

p MatchMaker.PatternMatching(node.goal, cxt)
partialFlow.add(p.solution)
if p.category = strategic then

foreach (action in p.solution) then
queue.enQueue(new node(action))

end foreach
end if

end if
end while

proc WorkflowComposer.compose(partialFlow)
return proc

Figure 5: Planning algorithm

1932 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

Fifth, the solution of the applied pattern is added to the partial workflow. If the
pattern is strategic, the system converts goal type actions to goal nodes and adds them
to the queue. The system repeats these steps until the planning queue is empty.

Finally, the partial workflow may have several workflowlets after planning. The
system needs to compose and orchestrate these workflowlets into an integrated
process according to the inter-dependencies of the corresponding patterns. After that,
the process result probably still contains unexpanded portions. These sub-goal actions
will be refined by replanning at runtime.

Pattern matching includes domain filtering, goal matching and context matching.
Every goal belongs to a specific domain. The system uses the target goal domain as a
filter in the pattern library to reduce the scope of patterns. Then, all domain patterns
are matched with the target goal to get candidate patterns that could solve the target
problem. Finally, context matching measures the fit between the current situation and
the scenarios in candidate patterns to decide whether or not to apply a pattern.

The context terms in pattern scenarios are organized into two categories: positive
factors and negative factors. The former depict suitable circumstances for application
of this pattern, while the latter characterize situations in which this pattern should not
be adopted. A score can be calculated to measure the concordance between the current
situation and the pattern scenario. This context-scenario matching evaluation is shown
as (2):

1 1

(,) (,)
n m

i i j j

P P P N N N
i j

s r w f x p r w f x p b
= =

= − +∑ ∑ (2)

where x denotes current context data. ()i

Pf and ()j

Nf are specified as context
evaluation functions. p contains additional parameters for the context evaluators.
Each evaluator returns a decimal score in [0, 1] assessing the context suitability.

1
(,)

n
i i

P P P
i

r w f x p
=
∑ is the quantitative metric of the pattern’s degree of suitability. i

Pw

and j
Nw are the weights of the context evaluators, and 0i

Pw ≥ , 0j
Nw ≥ ,

1 1
1, 1

n m
i j
P N

i j
w w

= =

= =∑ ∑ . The weights reflect the different importance of context terms in

the pattern scenario. rP measures the intensity of the positive factors’ influence. For

convenience, we often let rP=1. Similarly,
1

()
m

j j
N N N

j
r w f x

=
∑ assesses the degree of

unsuitability of the pattern in the current environment. b is a bias constant; we often let
b=0.
The activities in pattern.solution are categorized into two types: atomic activity or
abstract activity. An atomic activity can be directly bound to a resource for execution,
whereas an abstract activity describes a business goal/sub-goal in the process.
Pattern-oriented hierarchy planning can be summarized in five steps as follows:

1) Parsing the business goal and collecting relevant context information.
2) Pattern matching, including domain filtering, goal matching and context

matching. Choosing the winning pattern for the goal by evaluation scores.

1933Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

3) Taking abstract activities in the pattern solution as new goals for pattern
matching and planning.

4) Repeating matching until all pending abstracts node have been expanded.
5) Finally, creating a new process in compliance with the plan tree.
After planning, the workflow generated is assigned to appropriate services or

resources by a scheduler for execution. The enactment engine can be a distributed job
scheduler like DAGMan, a service choreography engine such as BPEL4WS, or
another, user-developed enactment engine. The partially-specified portions of the
process, i.e. goal type actions, will be refined at runtime on the basis of the context
and the current state of the execution.

In this approach, planning and execution is decoupled into two independent
phases. The design of interleaved planning and execution stages makes the system
more flexible for choosing suitable execution schemes for specific business domains.
More importantly, the planner does not need to understand technical-level operators.
This will help the planner to be domain-independent.

The key issue that differentiates our approach from Pegasus is that we exploit
high-level business knowledge to assist workflow generation. The knowledge and
expertise of business processes are expressively represented as process patterns. As
mentioned before, Pegasus lacks explicit knowledge. Its planner and the knowledge
used in planning cannot be separated, so it is tightly bound to a specific application
domain. In contrast to Pegasus, the pattern-oriented approach separates the planner
from the knowledge. The process pattern is proposed as a knowledge representation
structure and is used in workflow generation. It is domain-independent and these
features enable the system to be more flexible and scalable.

Currently, semantic web research has provided some service choreography
methods for process management, e.g. Web Service Modelling Language (WSML)
[wsml, 06] and METEOR-S [Rohit, 04]. METEOR-S deploys QoS and preferences as
constraints to turn the service composition problem into a constraint satisfaction
problem. The process designers can bind Web Services to an abstract process based
on constraints and generate an executable process. In contrast to the METEOR-S
constraint satisfaction problem, our approach utilizes application knowledge to solve
business tasks. From the user perspective, it is goal driven and more convenient to use.
In addition, METEOR-S depends on semantic web service technology, whereas our
approach can choose any suitable execution technology because the planning and
execution stages are interleaved. In this way, the system can avoid being tightly
coupled to underlying implementation techniques.

3 Pattern Modelling and Optimization

As the semantic basis of matchmaking, reasoning and planning in workflow
generation, knowledge, such as the goal ontology, context and especially the process
patterns, plays an essential role in the system. It is not only the foundation for
workflow generation planning, but also promotes understanding between developers
and workflow users.

The scenario is the most complex and essential part of a pattern. Although every
variable in (2) has a clear meaning, it is still a big challenge for experts to define

1934 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

pattern scenarios. First, a complicated pattern scenario may involve many variables. It
is very difficult for experts to accurately specify them depending only on empirical
experience. Second, experts have to define appropriate context evaluators for each
context term in a scenario, which requires considerable insight into business as well as
mathematical capability. Finally, long-term, delicate manual modelling is costly.

In order to reduce the difficulties in pattern modelling and make knowledge more
precise, we provide a three-step method: predefined context evaluators, expert fuzzy
modelling and machine learning.

1) A set of evaluation functions (){ },iF f x p= are provided by the system. The
modeller can directly choose proper functions rather than define them. These
evaluators cover the most common numerical comparison and set operators.
In addition to the context input x , the evaluation function can also accept
additional parameters p for fine-grained adjustment of the evaluation
calculation.

2) Specialists build patterns using domain expertise, including choosing
evaluators, determining parameters and weights, etc. For some abstruse
parameters, experts can provide estimates.

3) After a period of running, the pattern knowledge can be calibrated by the
results of machine learning. We use tagged history data as the training sample,
and then update the parameters of scenarios by classifier training.

There are several advantages to this approach: First of all, the prior knowledge is
utilized in pattern modelling. Although some parameters are estimates, the values
given by experts are still approximately correct. This makes the subsequent training
converge more rapidly. Second, because every variable in the context evaluation
formula has a clear definition, the effect of changing the parameters is easier to
understand for the user. This helps experts gain deeper insight into the business. For
example, if a weight value grows substantially after training, it indicates that the
experts probably underestimated the importance of the relevant context. Finally, this
approach reduces difficulties and the workload of process pattern knowledge
modelling.

3.1 Pattern scenario classifier

We first introduce the concepts of pattern cluster and scenario classifier.
Definition 1: A pattern cluster is a set of patterns which have the same task or goal.
PatternCluster(t) denotes the pattern cluster of task t. The count of patterns in a
pattern cluster is called the cluster cardinality.
Definition 2: A scenario classifier is a two-layer feed forward network for pattern
clusters. The input units of layer 1 consist of the evaluation functions of pattern
scenarios in PatternCluster(t) and a bias unit. Layer 2 contains sum units. The number
of sum units is the cluster cardinality. There are weighted connections between the
units in the two layers. The classifier takes a context vector as input and outputs
scenario evaluation scores for patterns in the cluster. The scenario classifier of
PatternCluster(t) is named Classifier(t).

1935Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

Figure 6: Pattern scenario classifier

As shown in Figure 6, the context x is the input vector of evaluation units f1, …,
fn. In addition to x , evaluator fj also accepts an additional parameter vector jp , and

returns (),j j jy f x p= . The connection between the k-th output unit and j-th

evaluation unit has the weight kjw . The sum output unit calculates the dot product of
the evaluators’ outputs and the weights of relevant connections. Hence, the output of
scenario classifier sk is by definition:

() 0
1

,
n

k kj j j k
j

s w f x p w
=

= +∑ (3)

Obviously, (3) can be easily transformed to the previous scenario evaluation
equation (2), so sk is the context-scenario matching score of the k-th pattern in the
cluster.

3.2 Sample acquisition

In pattern matching, the system evaluates pattern suitability by matching the context
with the pattern scenario. Candidate patterns are sorted in descending order of
evaluation score in a queue called CP. The main purpose of machine learning is to
generate more appropriate pattern sequences from context-scenario evaluation.

The sample data provides an ideal CP for specific context information. It
determines the priority of applying patterns for achieving the cluster’s task.

First, context data is generated by a simulation program. The simulation can be
specified with different probability distributions on sampling intervals. Then, the
system takes the context input, evaluates matching scores on corresponding pattern
clusters and returns relevant CPs. Finally, business analysts review the data, and
modify some CPs based on their experience.

1936 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

Therefore, the sample data TS is composed of two parts: automatic data TSA and
revised data TSM. They have different significances; the automatic data calculated by
the system confirms the correct aspects of prior knowledge, while the revised data
modified by users reflects the unsatisfactory aspects.

3.3 Classifier training

In Figure 6, the outputs of the scenario classifier are the context matching scores for p1,
p2, …, pc. In training, the output of the feed-forward calculation s is compared with a
target vector t . The training algorithm will adjust the classifier according to the
comparison error to reduce the difference between s and t .

The back propagation (BP) algorithm is adopted in classifier training. It is a
supervised learning technique based on gradient descent. BP is widely used in training
neural networks and is successful in many fields. Based on back propagation, the
training algorithm is listed in Table 1.

The classifiers are saved in hash table CM. The training sample DS is divided into
two sets: training set TS and validation set VS.

The algorithm adopts a stochastic training protocol. At the beginning of each
epoch, a training instance , ,td tk x i=< > is randomly selected. Then, the system
performs a feed forward calculation and gets score vector s . After that, the
components of s are sorted in descending order, returning a new score vector 's and
subscript vector 'i . 'i records the original positions of the components in s . If 'i is
not equal to i in the training data, the system would train classifier(tk) with this error.

ClassifierTraining (DS, tkList)

Input: DS: sample data set
 tkList: task list for training.
Output: null

foreach tk in tkList // tk is the goal/task
[] ()CM tk classifier tk← // construct classifiers

end foreach
(),TS VS partition DS←

do
0rE ← // error ratio

foreach td in TS
 , ,tk x i td< >←
 ()[],s forwardCalculation CM tk x←

 ()', ' ,s i sort s DESC< >←

if 'i i≠ then
 (',)t resortByIndex s i←

1937Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

()[] [], ,CM tk backpropagation CM tk x t←
end if

end foreach
foreach td in VS
 , ,tk x i td< >←
 ()[],s forwardCalculation CM tk x←

 ()', ' ,s i sort s DESC< >←

if 'i i≠ then 1r rE E← +
end if

end foreach
r rE E VS←

until | |rE εΔ ≤ or _epoch EPOCH MAX>

()updatePatterns CM // update process patterns

Table 1: Classifier training algorithm

Because there are no teacher scores in the training data, the algorithm obtains a
teacher vector t by resorting 's based on i . For example, supposing
that 0.56, 0.71, 0.33s = ; after resorting we have ' 0.71, 0.56, 0.33s = ,

{ }' 2, 1, 3i = ; if in the sample data 3,1, 2i = , then the teacher vector is

0.56, 0.33, 0.71t = .

4 Case study

4.1 Overview

S-Power is a pilot application of a cooperative research project in the logistics field
that combines process management and a variety of wireless technologies. Pattern-
oriented workflow generation is the essential component of S-Power. This section uses
the sub-task “determining transportation mode” in a logistics process to illustrate how
to model and optimize the related process pattern knowledge.

First of all, we specified the most related contexts of the goal “determine
transportation”. As shown in Table 2, the contexts are the most important factors for
choosing the most suitable transport mode. The value ranges for each context were
assigned empirically. SpecialLevel denotes the degree of difficulty of the transport.
For example, special freight, such as oversize, overweight, fragile or liquid, will make
the transportation more arduous and costly.

1938 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

 Sym Range Notes
ClientLevel c 0 ~ 100 Customer importance
Distance d 2~3000 km Comm. distance
Urgent u 0 ~ 10 Urgency degree
TimeLeft t 1 ~ 200 Time left for delivery
InsuranceAmt i 100~ 100000 Value
DangerLevel a 0 ~ 10 Hazardous material

level
SpecialLevel s 0 ~ 100 Laboriousness

Table 2: Contexts in transportation

After that, an expert constructed the process patterns for different transportation
modes. According to practice, the PatternCluster(lgs:transportation) had 5 patterns,
including special plane pattern sap , air transport pattern ap , railway pattern rp ,
express truck pattern stp and road transport tp . Thus, the transportation problem
involved 7 contexts and 5 patterns with dozens of parameters. It was very difficult for
experts to specify every parameter accurately. Therefore, fuzzy evaluation and
estimation were used in pattern construction.

As demonstrated in Table 3, experts gave fuzzy partitions of each context and
estimated each evaluator’s weight. Literals such as ‘High’ or ‘Average’ denote
different context evaluation functions. Negative values are the weight values of
negative factors in pattern scenarios, while a value in row ‘-‘ is the negative impact
ratio.

SA. sap Air ap Rail rp Exp. stp Truck tp

c Highest
0.2

High
0.2

Average
0.2

High
0.2

Average
0.14

d Far
0.2

Far
0.2

Average
0.2

Far
-0.5

Near
0.15

u Highest
0.2

High
0.2

Average
-0.5

Higher
0.2

Low
0.14

t Less
0.2

Little
0.2

Much
0.2

More
-0.5

Average
0.15

i High
0.2

Average
0.2

Average
-0.5

High
0.2

Low
0.14

- 0.3 0.3 0.3 0.3 0
a Low

-0.5
High
-0.5

Low
0.2

High
0.2

Low
0.14

s Average
-0.5

High
-0.5

High
0.2

Low
0.2

Average
0.14

Table 3: Primary pattern modelling

1939Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

The fuzzy concept gives experts a more convenient way to describe business
expertise. When a problem is complicated, precise definitions will be very difficult or
impossible. Consequently, using fuzzy and qualitative estimation is a feasible
approach that brings stronger fault-tolerance to knowledge representation. For
evaluating the context ClientLevel, the expert adopted three predefined evaluation
functions: FuzzyGreater (f>), FuzzyEqual (f=) and FuzzyLess (f<) for describing
highest, high and average rankings of client level. The fuzzy evaluators were
implemented by Gaussian-like or Sigmoid-like functions. Fuzzy evaluators give the
system more flexibility and smoother performance.

The fuzzy partition and qualitative estimations seem imprecise, but they were still
approximately correct because they were based on prior knowledge. These parameters
would be optimized in subsequent classifier training. Therefore, this approach
provided a good balance between correctness and modelling workload.

Air transport ap Rail transport rp

c 0.2×f=(6, 85) 0.2×f<(0.6, 80)
d 0.2×f>(0.01, 2100) 0.2×f=(300, 1500)
u 0.2×f=(1, 7) (-0.5)×f=(1, 6)
t 0.2×f=(16, 60) 0.2×f=(16, 140)
i 0.2×f=(1400, 3000) (-0.5)×f=(1400, 3000)
- 0.3 0.3
a (-0.5)×f>(2, 6) 0.2×f<(2, 6)
s (-0.5)×f>(0.3, 75) 0.2×f>(0.3, 75)

Table 4: Pattern evaluator parameters

Because many contexts were involved in each pattern, the weights of the contexts
were initialized uniformly, as shown in Table 3. Table 4 shows two pattern scenario’s
evaluators and parameters in detail. Only patterns | ap and | rp are listed due to space
limitations.

Supposing context , , , , , ,x c d u t i a s=< > , according to (2) and Table 4, the
scenario matching score of railway transport pattern rp could be calculated as follows:

(,) 0.2 (0.6,80,) 0.2 (300,1500,)
0.2 (16,140,) 0.2 (2,6,) 0.2 (0.3,75,)
0.3 [0.5 (1,6,) 0.5 (1400,3000,)]

rs p x f c f d
f t f a f s

f u f i

< =

= < >

= =

= ⋅ + ⋅
+ ⋅ + ⋅ + ⋅
− ⋅ ⋅ + ⋅

x <84.7, 2132, 8, 106, 88902, 2.85, 87.5>

CP 4 3 5 2 1

Table 5: A training sample

1940 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

The sample data could be obtained as described in Section 3.2. Table 5 shows a
sample training instance, where CP=(4 3 5 2 1) represents the pattern sequence <Pst
Pr Pt Pa Psa>. The scenario classifier training was offline learning implemented in
Matlab 7.0.

4.2 Result analysis

First, the classifier(lgs:transportation) was built. It had 7 input components and 25
evaluation units. There were 5 output components in layer 2 representing the matching
scores of sap , ap , rp , stp , tp respectively. Training set DS contained 500 sample
data. The first 350 samples comprised the training set TS and the remaining 150 the
validation set VS. The result of training is shown in Figure 7.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
training error
validating error

Figure 7: Classifier training result

The X-axis scale represents training epochs, and the Y-axis scale represents error
ratio. The training error curve indicates the efficiency of the training algorithm, and
the validation error curve reflects the generalization ability of the network. As shown
in Figure 7, the training error ratio and validation error ratio decreased dramatically
during the training. The initial errors of training and validation were both
approximately 30%. After 5 epochs, the error ratios declined to about 10%. After 50
training epochs, the error ratios were both under 10%, reaching 4% and 7.3%
respectively. A small amount of overfitting after the 10th epoch occurred because some
constraints had been applied to the parameters and weights according to their
attributes in the evaluation functions.

The initial error shows that the system performance couldn’t meet the users’
expectations with the primary knowledge modelling. However, the classifier training
can could effectively optimize pattern knowledge and improve system performance.
Furthermore, the training result could help the expert to better understand the business.
For instance, in the primary modelling, the weights of positive factors in ap and rp
were set to 0.2, and the negative factor weight was -0.5. After training, the weight
values were changed as shown in Table 6.

1941Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

 Air transport ap Rail transport rp

c 0.17302 0.1784
d 0.22332 0.20448
u 0.21809 -0.5361
t 0.21287 0.16371
i 0.18644 -0.4531
a -0.5458 0.19612
s -0.4336 0.23947

Table 6: Context weights after training

The changes of weights indicated that different contexts had different importance
in scenario matching. In the air transport pattern, the importance of the client level c
was only 77% of the importance of the communication distance d, but the difference
of the two weight values was just 0.05. Such a subtle difference is difficult for an
expert to clearly specify. In the rail transport pattern, the weight of SpecialLevel s was
0.23947, apparently higher than the TimeLeft t weight 0.16371, which implies that
‘transport difficulties’ had a larger influence on railway transport decision than
TimeLeft.

The weights in Table 6 are raw data from training. Before use for updating
knowledge, these values needed post-processing, including necessary round-off,
weight normalization and other adjustments. Finally, the parameters of the process
patterns could be updated according to the training result.

5 Conclusions and future work

Dynamic workflow generation is a crucial problem in grid workflow. AI planning
approaches have been deployed in some research projects, but a lack of explicit
knowledge is still the main disadvantage of this method.

In this paper, the process pattern is proposed as a knowledge representation
structure for business process knowledge. Based on the process pattern, we proposed a
planning approach to automatically generate workflow by utilizing application-level
knowledge. This approach provides a lightweight, efficient and cost-effective way to
introduce knowledge into workflow generation. Working with an appropriate
knowledge base, this approach can streamline the workflow optimization process and
significantly improve system scalability.

Knowledge plays an increasingly important role in workflow generation and has a
growing influence on system performance. The correctness and efficiency of pattern
knowledge have become crucial. To that end, this paper has proposed a hybrid
approach for pattern knowledge building and optimization. Experts construct a
primary model using their domain knowledge. For a complex pattern scenario, they
can estimate parameters, even using fuzzy partitions in context evaluation. Then
classifier training on tagged history data can adjust the pattern scenario settings.
Finally, we can update the pattern knowledge according to the training result.

1942 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

This approach both reduces the difficulties of manual knowledge modelling and
ensures the correctness and efficiency of the pattern knowledge. Compared with
traditional BP neural networks, classifier training has the advantages of lower initial
errors, rapid convergence, better training outcome and knowledge update.

We have deployed this approach in a prototype system. Our future work will
include semantic-rich multi-modalities of process description, pattern conflict
detection and resolution, more robust semantic reasoning for matching and some
further implementation work. The pattern-oriented approach itself will also be refined
and improved.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under
Grant No. 60736020 and the National High-Tech Research and Development Plan of
China under Grant No. 2007AA010305.

References

[Aalst, 03] Aalst, W., Hofstede, A.,Kiepuszewski, B., et al.: Workflow Patterns, Distributed
and Parallel Databases, 14(3), July 2003, pp.5-51.

[Alexsander, 77] Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language: towns,
buildings, construction, Oxford University Press, 1977.

[Berman, 01] Berman, F., Chien, A., Cooper, K., et al.: The GrADS Project: Software Support
for High-Level Grid Application Development. International Journal of High Performance
Computing Applications (JHPCA), 15(4):327-344, 2001.

[Cao, 03] Cao, J., Jarvis, S., Saini, S., et al.: GridFlow: workflow management for grid
computing, In Proc. 3rd Int. Symposium on Cluster Computing and the Grid, 12-15 May 2003,
pp.198-205.

[Cheatham, 05] Cheatham, M., Cox, M.: AI planning in portal-based workflow management
systems, In Proc. of the 2005 Conference onOptical Network Design and Modelling: Towards
the broadband-for-all era, ONDM 2005, Febrary 07-09,2005, pp.47-52.

[Chung, 03] Chung, P., Cheung, L., Stader, J., et al.: Knowledge-based process management-an
approach to handling the adaptive workflow, Knowledge-Based Systems, 16, 2003, pp. 149-
160

[Deelman,03] Deelman, E., Blythe, J., Gil, Y., et al.: Mapping abstract complex workflows
onto grid environments, Journal of Grid Computing, 2003, 4(1): 25-39.

[Dustdar, 05] Dustdar, S.: Reconciling Knowledge Management and Workflow Management
Systems: The Activity-Based Knowledge Management Approach. Journal of Universal
Computer Science, vol. 11, no. 4 (2005), 589-604

[Frey, 02] Frey, J., Tannenbaum, T., Livny, M., et al.: Condor-G: A Computation Management
Agent for Multi-institutional Grids, Cluster Computing, vol. 5, 2002, pp. 237–246.

[Gil, 04] Gil, Y., Deelman, E., Blythe, J., et al.: Artificial Intelligence and Grids: Workflow
Planning and Beyond, IEEE Intelligent Systems, 2004 Jan/Feb, pp.26-33

[GriPhyN, 00] The GriPhyN project, 2000, http://www.griphyn.org/

1943Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

[Lukosch, 04] Lukosch, S., Schümmer, T.: Patterns for Managing Shared Objects in
Groupware Systems, In Proc. 9th European Conference on Pattern Languages and Programs,
Irsee, Germany, 2004.

[Montoto, 08] Montoto, P., Pan, A., Raposo, J., et al.: A Workflow Language for Web
Automation. Journal of Universal Computer Science, vol. 14, no. 11 (2008), 1838-1856

[Musicante, 06] Musicante, M., Potrich, E.: Expressing Workflow Patterns for Web Services:
The Case of PEWS. Journal of Universal Computer Science, vol. 12, no. 7 (2006), 903-921

[Oinn, 04] Oinn, T., Addis, M., Ferris, J., et al.: Taverna: A tool for the composition and
enactment of bioinformatics workflows, Bioinformatics Journal, vol. 20(17) pp.3045-3054,
2004.

[Pegasus, 04] The Pegasus project, 2004, http://pegasus.isi.edu/

[Rohit, 04] Aggarwal, R., Verma, K., Miller, J., et al.: Constraint Driven Web Service
Composition in METEOR-S, In Proc. IEEE Int. Conf. on Services Computing, September 15-
18, 2004, pp.23-30.

[wsml, 06] Web Services Modeling Language, 2006, http://www.wsmo.org/wsml/

1944 Xiang Y., Zhang S., Shen Y., Shi M.: Pattern-Oriented Workflow Generation ...

