
Assessment of the Design Modularity and Stability of
Multi-Agent System Product Lines

Camila Nunes
(Pontifical Catholic University of Rio de Janeiro, Brazil

cnunes@inf.puc-rio.br)

Uirá Kulesza
(Federal University of Rio Grande do Norte – UFRN, Natal, Brazil

uira@dimap.ufrn.br)

Cláudio Sant’Anna
(Federal University of Bahia – UFBA, Salvador, Brazil

santanna@dcc.ufba.br)

Ingrid Nunes
(Pontifical Catholic University of Rio de Janeiro, Brazil

ioliveira@inf.puc-rio.br)

Alessandro Garcia
(Pontifical Catholic University of Rio de Janeiro, Brazil

afgarcia@inf.puc-rio.br)

Carlos Lucena
(Pontifical Catholic University of Rio de Janeiro, Brazil

lucena@inf.puc-rio.br)

Abstract: A multi-agent system product line (MAS-PL) defines an architecture whose design
and implementation is accomplished using software agents to address its common and variable
features. MAS-PL promotes the large-scale reuse of common and variable agency features
across multiple MAS applications. The development of MAS-PLs can be achieved through
MAS-specific platforms and implementation techniques, such as conditional compilation and
aspect-oriented programming (AOP). However, there is not much evidence on how these
techniques provide better modularity, allowing the conception of stable MAS-PL designs. This
paper presents a quantitative study on the design modularity and stability of an evolving MAS-
PL. The MAS-PL was built following the reactive product line adoption approach. The product
line was developed and evolved based on several versions of a conference management web-
based system, named Expert Committee (EC). Our evaluation is made through a series of
change scenarios related to new agency features, which are agent characteristics that enhance
the system with autonomous behavior. The quantitative study consists of a systematic
comparison between two different versions of the EC MAS-PL based on a MAS-specific
platform, called JADE. One version was implemented with object-oriented and conditional
compilation techniques. The other one relied on AOP. Our analysis was driven by well-known
modularity and change impact metrics.

Keywords: Software Product Lines, Multi-agent Systems, Software Metrics, Empirical
Software Engineering
Categories: D.1.5, D.2.8, D.2.11, D.2.10

Journal of Universal Computer Science, vol. 15, no. 11 (2009), 2254-2283
submitted: 18/1/09, accepted: 29/5/09, appeared: 1/6/09 © J.UCS

1 Introduction

One of the latest trends in software engineering is to produce techniques and tools that
allow the development of families of similar products, instead of individual products.
With the aim to address this need, many approaches have been proposed for software
product line development over the last years [Clements and Northrop, 2001]
[Czarnecki and Eisenecker, 2000] [Pohl et al., 2005]. Software product lines (SPLs)
comprise engineering techniques for systematically creating similar software systems
from a shared set of software assets. Most of the existing SPL approaches motivate
the development of a flexible and reusable architecture to enable large-scale reuse. A
SPL architecture addresses a set of common and variable features of a family of
products. A feature [Czarnecki and Eisenecker, 2000] is a system property or
functionality that is relevant to some SPL stakeholder and is used to capture
commonalities or discriminate among systems.

Similar to development of single-purpose systems, SPL approaches also need to
address change scenarios in a disciplined manner. The evolution of SPLs needs to be
conducted with as minimum impact as possible due to their frequent change demands.
Examples of usual changes in SPLs are: introduction, modification or removal of
optional and alternative features. Thus, SPL architectures need to be stable and
flexible to support such frequent changes in order to allow the reduction of the
modularity degeneration due to evolution scenarios. During the evolution of SPLs, it
is necessary to consider adequate mechanisms to implement a determined variability.
The inappropriate choice can increase the SPL complexity and bring difficulties to its
maintenance. Therefore, it is important to apply and analyze different variability
techniques to promote the stability of the architecture during the SPL evolution.
Examples of such techniques are: object-oriented frameworks [Fayad et al., 1999],
conditional compilation [Antenna, 2008], and Aspect-Oriented Programming (AOP)
[Kiczales et al., 1997].

Recent research presents some studies and benefits of using AOP to improve the
modularization of features in SPLs [Alves et al., 2006] [Alves et al., 2005]
[Figueiredo et al., 2008] [Griss, 2000] [Lee et al., 2006], object-oriented frameworks
[Kulesza et al., 2006a] or multi-agent systems (MAS) [Garcia et al., 2003] [Sant'Anna
et al., 2003]. The increasing complexity of modern applications motivates the use of
AOP [Kiczales et al., 1997] because it is aimed at modularizing crosscutting features.
Crosscutting features produce tangled, scattered and replicated code, and tend to
occur often in the context of SPLs in general [Alves et al., 2005] [Figueiredo et al.,
2008]. All these problems can cause difficulties regarding the management,
maintenance and reuse of common and variable features in SPLs.

On the other hand, over the past few years, the agent technology has emerged as a
new software engineering paradigm to allow the development of distributed complex
systems [Jennings, 2001] [Wooldridge and Ciancarini, 2000]. Some recent research
has investigated the synergy of MASs and SPLs technologies, characterizing the
development of Multi-Agent Systems Product Lines (MAS-PLs) [Pena et al., 2006a]
[Pena et al., 2006b]. A MAS-PL defines a SPL that uses software agents to model,
design and implement its common and variable features in a family of MAS products.
There are some specific platforms to design and implement MASs such as JADE
[JADE, 2008] and Jadex [Jadex, 2008]. These platforms can be used as the base to

2255Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

implement MAS-PLs, but they must be combined with other modularization
techniques in order to improve the modularization of the agency features.

However, recent research only explores the use of AOP to modularize SPL
crosscutting features in general. No work analyzes the impact of adding agency
features to an existing system. Besides, there is no work that assesses the
(dis)advantages and complementarities of using different implementation strategies
for improving MAS-PL design longevity using a specific development platform of
MAS. Nevertheless, it is important to analyze the circumstances in which a variability
technique is more appropriate. This knowledge is essential to support the
development of stable MAS-PL which is resilient to different types of changes.

In this context, this paper presents an empirical study of development and
evolution of a MAS-PL with the aim to compare the modularity and stability of
object-oriented (OO) and aspect-oriented (AO) different implementations of the
MAS-PL. Our MAS-PL has been developed from the evolution of a conference
management web-based system, called Expert Committee (EC) [Nunes et al., 2008a].
In this MAS-PL, we developed seven releases, focusing on several change scenarios.
Each release was implemented separately using two sets of technologies based on
JADE platform: (i) an implementation in Java language with conditional compilation
support; and (ii) the other one using AO techniques using the AspectJ language
[Kiczales et al., 2001]. These techniques were used because they offer mechanisms to
implement and modularize core and varying features. Conditional compilation is
based on preprocessor directives indicating which piece of code should be compiled.
AOP is used to support variability and encapsulation of features though modular units
called aspects. Both techniques provide support to fine-grained variability
implementation. Additionally, conditional compilation is a common technique
adopted in industry to modularize features and AOP is an emergent technique to
improve the modularization of crosscutting features. Most of the new features are
related to the introduction of typical agency features in the original system using
MASs abstractions such as, agents, roles and their associate behaviors [JADE, 2008].
Our objective is to compare the AO techniques and conditional compilation in the
decomposition of agency features, guided by the JADE platform.

The design modularity and stability evaluation of the MAS-PL versions is based
on existing metrics suites for modularity analysis [Sant'Anna et al., 2007] [Sant'Anna
et al., 2003] and change impact metrics [Yau and Collofello, 1985]. Through that
assessment of the design modularity and stability of MAS-PL, it is possible to
compare and analyze specific techniques to implement variabilities in SPL. The main
contributions of this paper are: (i) the assessment of the design modularity and
stability of different implementation techniques using a MAS platform for
implementing and evolving a MAS-PL; and (ii) discussions about which techniques
are more appropriate to allow superior stability in the implementation of agency
features and support the construction of reusable and maintainable MAS. The results
of the design modularity showed the AO solution presented a high number of
components and operations for some features when compared to the OO solution.
However, the AO solution presented better values in terms of tangling of
features/concerns by enabling their modularization using AOP. In terms of design
stability, the AO solution exhibited less change in its components, operations, and

2256 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

lines of code. As general conclusions, we can say that the AO solution was more
appropriate to implement optional features and maintain a more modularized SPL.

The remainder of this paper is organized as follows. Section 2 presents the study
settings. Section 3 presents the empirical study phases. Section 4 describes the results
of the modularity analysis. Section 5 describes the results of the stability analysis.
Section 6 presents the threats to validity of the study. Section 7 discusses some
lessons learned. Related work is presented in Section 8. Finally, final remarks are
presented in Section 9.

2 Study Settings

This section describes the MAS-PL used in the context of our study. Initially, the
feature model of the MAS-PL is described (Section 2.1). After that, we describe the
development and evolution process of the MAS-PL (Section 2.2). The MAS-PL
architecture is then presented in terms of the components and agents that compose the
system (Section 2.3). Finally, the AO and OO designs of the MAS-PL are presented
in Section 2.4.

2.1 The Expert Committee System

The Expert Committee (EC) [Nunes et al., 2008a] is a MAS-PL for web applications
that aims at managing the paper submission and reviewing processes of conferences
and workshops. The EC system provides functionalities to support the complete
process of conference management. such as: (i) create conferences; (ii) define
conference basic data, program committee, areas of interest and deadlines; (iii) choose
areas of interest; (iv) submit paper; (v) assign papers to be reviewed; (vi) accept/reject
to review a paper; (vii) review paper; (viii) accept/reject paper; (ix) notify authors
about the paper review; and (x) submit camera ready. Each of these functionalities
can be executed by an appropriate user type, such as, chair, coordinator, program
committee members and authors. Figure 1 presents a partial view of the EC feature
model according to the FODA notation [Czarnecki and Eisenecker, 2000] with the
mandatory, optional and alternative features.

Figure 1: Simplified EC feature model

2257Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

2.2 Development and Evolution of the EC MAS-PL

According to [Krueger, 2002], there are three strategies to implement SPL, which are:
proactive, extractive and reactive. The proactive approach motivates the development
of all the artifacts of the SPL. The extractive approach the SPL is developed starting
from existing software systems. Finally, the reactive approach adopts the incremental
development of SPLs.

The EC MAS-PL was developed following the reactive approach. During the
development and evolution of our MAS-PL, we first implemented the SPL base
architecture of the EC. After that, we applied a series of change scenarios, adding
optional and alternative features to the SPL architecture. Seven new releases of the
EC MAS-PL were generated. Each release of our MAS-PL was always implemented
in two different versions: (i) one codified in Java with conditional compilation
[Antenna, 2008]; and (ii) the other one codified in Java and AspectJ. Each new
release was also implemented based on the previous one. For example, the OO release
2 represents the evolution of the OO release 1. Most of the change scenarios are
related to the addition of new agency features. In order to implement these features,
new software agents and roles have to be added. Roles represent collaborative
activities of the agents in a specific context [Bäumer et al., 1997]. Each role also
involves the specification of its knowledge. Table 1 summarizes the changes
undertaken to implement the releases.

Releases Description Change Type
R1 ExpertCommittee core

R2 Addition of the Reviewer role. Inclusion of optional
feature.

R3 New feature to add user agents
including the author and chair roles.
New feature to allow the suggestion of
conferences to the authors.

Inclusion of optional
features.

R4 Addition of a Notifier agent to send
messages to the system users through
email and SMS.

Inclusion of optional and
alternative feature.

R5 Addition of the Deadline agent. This
agent is responsible for monitoring the
conference deadlines.

Inclusion of optional
feature.

R6 Addition of a feature that allows the
chair to automatically assign papers to
reviewers. Extension of the deadline
agent to allow reminder deadlines.

Inclusion of alternative
feature and extension of
optional feature.

R7 Addition of a Task agent. Inclusion of optional
feature.

Table 1: Scenarios of change in MAS-PL

During the evolution of the EC MAS-PL, we basically added three types of
optional/alternative features:

2258 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

• New conference management features – these features represent new
functionalities related directly to the conference management process, such
as the addition of support to program committee members assign papers to
reviewers (release R2);

• New autonomous behavior – several software agents were introduced in the
EC MAS-PL architecture (releases R3, R4, R5 and R7). These agents were
implemented in the system with the purpose of implementing autonomous
behavior related to recommendations to researchers (paper authors), deadline
monitoring and pending tasks monitoring. The Task Management feature
(release R7), for example, implied in the addition of a new agent to the
system with a set of associated behaviors, which can be present or not,
depending on the product being derived;

• New behavior for an agent or role – added internal variabilities to the agents,
such as new agent roles or behavior. These types of features were
modularized as: (i) specific plans to be executed by the agent under specific
conditions (releases R5 and R6) or (ii) specific roles to be played by the
agent in a specific context (release R3). The conference suggestion feature
(release R3) is an example of such autonomous optional feature. The user
agent, or more specifically the author role, can perform it. When a paper is
registered in a conference, the author agent role perceives it and sends
suggestions of related conferences for the author who has registered his/her
paper.

2.3 The MAS-PL Architecture

The EC MAS-PL was structured according to the Layer architectural pattern
[Buschmann et al., 1996]. It is composed of the following components/layers: (i) GUI
– this layer is responsible for processing the web requests submitted by the system
users; (ii) Business – is responsible for structuring and organizing the business
services provided by the EC system; and (iii) Data – aggregates the classes of
database access, and it was implemented using the Data Access Object (DAO) design
pattern [Alur et al., 2001]. The agents are in a separated module, named Agents
Module.

Figure 2 illustrates the architecture of the EC web-based system and highlights
the core architecture. In our implementation, the JADE platform [JADE, 2008] was
used as base platform to implement the software agents. These agents are responsible
for monitoring the execution of different functionalities of the EC core system in
order to provide the new agency features. The integration between the web
architecture and the agents was accomplished by means of the adoption of the
Observer pattern [Gamma et al., 1995]. Next, a brief detail about the agents of the EC
MAS-PL is presented:

• Environment Agent - this agent monitors the EC system by observing the
execution of specific business operations and its aim is to notify the other
agents of the MAS-PL about the system changes. Each user agent is
specified to perceive changes in the environment and take actions according
to them. The environment agent was implemented using the Observer design
pattern [Gamma et al., 1995];

2259Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

• User Data Agent – this agent receives notifications when new users are
created in the database. When it happens, it creates a new user agent that will
be the representation of the user in the system. The initial execution of the
user data agent demands the creation of a user agent for each user already
stored in the database;

• User Agent – each user stored in the system has an agent that represents
him/her in the system. This is the autonomous behavior, agents performing
actions that the users should do. The user agent was designed in such a way
that it can dynamically incorporate new roles. An example of autonomous
behavior is when the paper submission deadline expires and the user agent in
the chair role will automatically distribute the papers to the committee
members. Besides this example, most of the user agents are responsible: (i)
for analyzing and discovering pending tasks for user agents based on the
roles the users play in the system; and (ii) for asking the notifier agent to
send email or SMS notifications;

• Deadline Agent – this agent is responsible for monitoring the conference
deadlines. This monitoring serves two purposes: (i) to notify the user agents
when a deadline is nearly expiring; and (ii) to notify the user agents when a
deadline has already expired;

• Notifier Agent – this agent receives requests from other agents to send
messages to the system users. In the current implementation, it sends these
messages through email and SMS;

• Task Agent - this agent is responsible for managing the user tasks. It receives
requests for creating, removing and setting the execution of tasks. The
requests are made by the user agents.

Figure 2: Expert Committee MAS-PL Architecture

2260 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

2.4 MAS-PL Object and Aspect-Oriented Design

Figure 3 presents a partial class diagram of the OO implementation of the MAS-PL,
illustrating the main components that were affected during the evolution of the system
architecture. The OO releases were implemented using the Java programming
language. The AO implementation was also structured following the Layer
architectural pattern. Figure 4 shows a partial diagram of the AO implementation of
the MAS-PL, illustrating a subset of its aspects. The <<aspect>> stereotype
represents the aspects of the system. The dependency arrows represent that an aspect
“crosscuts” the structure of system classes. The classes and aspects were marked in
Figures 3 and 4 with a sequence of Rs above them. This indicates whether a class or
aspect was added (+Rx) or changed (~Rx) during the implementation of the release X.
In the AO implementation (Figure 4), we cannot observe any changes in its classes
and aspects, it happens because only new aspects were added. The reasons will be
explained in the next sections.

Figure 3: OO EC MAS-PL Simplified Architecture

During the MAS-PL development, the changes were performed following the
best practices of design, using several patterns and current technologies that provided
an important support in the development [Buschmann et al., 1996] [Gamma et al.,
1995] [Bäumer et al., 1997]. In R2 (Figure 3), some classes were added and other
modified, which are identified by the symbols +R2 and ~R2 respectively:

2261Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

ReviewServiceImpl, Review, ReviewPaperAction and Reviewer. The
changes in these classes were done through conditional compilation in the OO EC
MAS-PL. While in the AO EC MAS-PL (Figure 4), aspects were included to affect
the core classes in order to preserve the base architecture. Thereby, we did not need to
change the MAS-PL core classes, making the changes less invasive than using
conditional compilation. From R3, we included the agents. In order to connect the
agents and the existing architecture we used the Observer pattern. In the inclusion of
this pattern in the OO EC MAS-PL, the original services implementation was changed
to codify it, for example: ConferenceServiceImpl and PaperServiceImpl.
While in the AO EC MAS-PL, aspects were added to affect these classes without
modifying them directly, and include the code related to the Observer pattern such as:
ServicesInterceptAspect and ConferenceDAOAndServiceAspect. In R4,
agents and roles are included, such as: NotifierAgent and ChairRole. In the OO
implementation, we used the role pattern [Bäumer et al., 1997] to separate better the
roles. In order to include roles in the user agent it was necessary to modify the
UserAgentRole and UserAgentCore classes (Figure 3). In the AO
implementation, aspects were included to affect the UserAgentRole and
UserAgentCore classes every time a role is included, for example:
UserAgentAspect and ChairRoleAspect (Figure 4). This implementation was
based on the AO role pattern [Kendall, 1999].

Figure 4: AO EC MAS-PL Simplified Architecture

2262 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

3 Empirical Study Phases

This section describes how the empirical study was organized. The study was
structured following the guidelines and principles of Experimental Software
Engineering defined by [Wohlin et al., 2000]. It focuses on the definition (Section
3.1), planning (Section 3.2) and operation (Section 3.3) of the experiment.

3.1 Definition of the Experiment

Initially, following the experiment process [Wohlin et al., 2000] the first step is to
elaborate its definition. The purpose of the definition phase is to define the goals of
the experiment. This definition is based on the GQM template [Basili and Rombach,
1988]. Following this template, our experiment goals were:

Analyze the two different versions of the EC MAS-PL
for the purpose of evaluating programming techniques
with respect to their modularity and stability
from the point of view of the developer
in the context of MAS-PL.

3.2 Planning the Experiment

The planning phase of the experiment is divided in the following way: (i) context
selection and selection of subjects; and (ii) variables selection.

Context Selection and Selection of Subjects. The experiment was run off-line, not
in an industrial software development environment. The subjects were two MS.c
students and four senior researchers. The EC MAS-PL has been developed by the
MS.c students. The MS.c students have good experience in the MAS design and
development. All the senior researchers have good experience in the software
engineering area. All the participants already had experience in the elaboration of
empirical studies of MAS [Garcia et al., 2003], product lines [Figueiredo et al., 2008],
architectures of typical web-based information system [Kulesza et al., 2006b]
[Greenwood et al., 2007] and more recently MAS-PL [Nunes et al., 2008b] [Nunes et
al., 2008c].

Variables Selection. The variables selection comprises the independent and
dependent variables. The independent variables are the two techniques used together
with the JADE platform, which are: conditional compilation and AOP. For all these
implementations, the main aim was to provide good modularizations of the new
features introduced in the EC MAS-PL. The dependent variables in the experiment
are modularity and stability. In our study, we use a suite of metrics for quantifying the
modularity, which are: separation of concern metrics, interaction between concerns,
size, cohesion and coupling [Sant'Anna et al., 2003] [Sant'Anna et al., 2007]. Table 2
briefly presents the modularity metrics used in this work. Our study also comprised
typical change impact measures [Yau and Collofello, 1985] (Section 5). We chose
these metrics for several reasons. First, they are conventional measures (previously
used to assess single systems and program families), which were already validated in
terms of software stability [Greenwood et al., 2007] [Figueiredo et al., 2008]. [Eaddy

2263Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

et al., 2008] conducted a study with the concern metrics (e.g. CDO and CDC), which
demonstrates a statistic correlation between them and a relevant stability factor,
namely error proneness. We also noticed from other studies that these metrics have a
correlation with instability factors in different artifacts of abstraction levels, including
use cases [Conejero et al., 2009], architectural descriptions [Sant’Anna et al., 2008],
and source code [Greenwood et al., 2007] [Figueiredo et al., 2008]. Moreover, a
combined analysis of the metrics that we used is similar to the isolate use of some
Eaddy’s metrics, for example, with size metrics (e.g. number of components).
Because some Eaddy’s metrics are normalized, measuring scattering/tangling in terms
of the total number of components of a system.

Attributes Metrics Definition
Concern Diffusion over
Components (CDC)

It counts the number of classes and
aspects whose main purpose is to
contribute to the implementation of a
concern and the number of other classes
and aspects that access them.

Concern Diffusion over
Operations (CDO)

It counts the number of methods and
advices whose main purpose is to
contribute to the implementation of a
concern and the number of other methods
and advices that access them.

Separation of
Concerns

Concern Diffusion over LOC
(CDLOC)

It counts the number of transition points
for each concern through the lines of
code. Transition points are points in the
code where there is a “concern switch”.

Interaction
Between
Concerns

Component-level Interlacing
Between Concerns (CIBC)

It counts the number of other concerns
with which a given concern shares at least
a component.

Lines of Code (LOC) It counts the lines of code.
Number of Components
(NOC)

It counts the number of components
(classes and aspects).

Size

Number of Operations
(NOO)

It counts the number of operations of a
given component.

Coupling Coupling Between
Components (CBC)

It counts the number of other classes and
aspects to which a class or an aspect is
coupled.

Cohesion Lack of Cohesion in
Operations (LCOO)

It measures the lack of cohesion of a class
or an aspect in terms of the amount of
methods and advice pairs that do not
access the same instance variable.

Table 2: The Metrics suite

We have carefully avoided proposing new metrics in our study because it does
not know the empirical correlation with stability. Second, despite not proposing new
SPL-specific metrics, the choice of the metrics was performed taking characteristics
of SPL into consideration. For example, we used the concern-sensitive metrics that
allowed us to evaluate the modularity properties from each feature point of view.
Additionally, coupling and cohesion metrics were used because they allow us to

2264 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

evaluate the dependencies of the core/variable modules. Finally, from our experience
it is possible to use conventional metrics to SPL domain provided that the
measurement analyses focus on SPL specificities. However, as said previously, the
analysis and application are different, focusing mainly on the features modularity
analysis and thus relevant to the SPL evolution.

3.3 Operation

Preparation. Initially, the EC MAS-PL was developed by two subjects (Section 3.2).
We have initially implemented the version with the JADE platform and conditional
compilation technique. After that, we implemented the other version with JADE
platform and AO techniques. During the development of both EC MAS-PL versions,
we first implemented the MAS-PL core. After that, we applied a set of changes (Table
1). The changes applied to the OO and AO versions have been done by two MS.c
students and one MS.c student, respectively. All the changes were supervised and
validated by the senior researchers to guarantee the best design practices of MAS, OO
and AO development were adopted. These changes were originally predicted by all
involved subjects. Both students and researchers have good knowledge in the design
and development of OO and AO systems. Besides, they have good knowledge in
software metrics. During the development, we have used the same best design
practices throughout all versions of the EC MAS-PL releases, such as, to adopt the
layer architectural style and common OO and AO design patterns [Buschmann et al.,
1996] [Gamma et al., 1995] [Bäumer et al., 1997] [Hannemann and Kiczales, 2002]
that refine each layer. These good practices and validation activities were
accomplished by the subjects, evaluating the MAS-PL design. These designs assure
the comparison was equitable and fair.

Execution. The execution has been applied in the following way: (i) application of
change impact metrics; (ii) application of the modularity metrics; and (iii) data
analysis. The counting process was done by two MS.c students. The other four senior
researchers monitored the counting process and helped to interpret the collected data.
This monitoring was important to guarantee that the data were being collected in the
right way. Thereby, during the couting process there was much communication
among the subjects. The students dedicated one hour per day to count the metrics in
order to avoid the tiredness.

4 Modularity Analysis

In this section, we discuss the study results for the modularity metrics, which are
related to the following software attributes: separation of concerns, interaction
between concerns, cohesion, coupling and size. Our goal was to observe the stability
of each modularity attribute in the EC MAS-PL implementations.

4.1 Separation of Roles and Agent Concerns

In our study, we have analyzed three optional features included in the releases 2, 3,
and 4 of the EC MAS-PL using the separation of concerns metrics (Table 2). These
selected features represent multi-agent abstractions (roles or agents) that modularize

2265Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

relevant agency features of the MAS-PL. The chosen features also represent fine- and
coarse-grained implementations in MAS-PLs. In addition, these features were also
selected because they were added to the MAS-PL during the first three evolution
scenarios. This allowed us to analyze the behavior of these features throughout the
last three releases (Section 2.2). Figure 5 presents the results of the CDC, CDO and
CDLOC metrics for the Reviewer role, which is an optional feature, added in the R2
(Table 1). The results show that the Reviewer role is scattered over fewer components
and operations (CDC and CDO metrics) and tangled with fewer features in the AO
implementation (CDLOC metric). This indicates that the AO implementation was
more effective to modularize this feature when compared to the OO implementation.
This occurred because in the AO solution, the pieces of code in charge of realizing the
optional roles are transferred from classes to a set of dedicated classes and one or
more glue aspects. In the AO implementation of SPLs, aspects usually play an
excellent role as the glue between the core and optional features [Alves et al., 2005]
[Kulesza et al., 2006b]. The conditional compilation technique, adopted in the OO
solution, lacks this ability because it has a somewhat intrusive effect on the code, due
to the need to add the #ifdef and #endif clauses locally at the places where features
intersect.

Figure 5: Concern Metrics for Reviewer feature (R2)

In the OO implementation, the Reviewer feature is spread over a number of
classes, such as: Reviewer, Review, ReviewPaperAction, and
ReviewDAOHibernate. In Figure 3 these classes underwent changes in the R2
(symbol ~R2). Such changes were carried out in order to introduce code related to
Reviewer role in the mentioned classes. Also note that the Review class has a direct
association with the Reviewer class. The Reviewer class was introduced in the R2
and is totally dedicated to implement the Reviewer role. In the AO implementation
(Figure 4), part of the Reviewer role is implemented by the Reviewer class and three
aspects: ReviewerAspect, RedirectAspect and
ReviewDAOAndServiceImplAspect. These aspects introduce the Reviewer role
behavior in the Review, ReviewPaperAction, and ReviewDAOHibernate
classes, which are therefore free from code related to this specific role. The
ReviewerAspect aspect is responsible for adding the Reviewer attribute and some
methods using inter-type declarations from AspectJ. This aspect works as glue code
between the Review and Reviewer classes. The

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
LO

C
 (C

D
LO

C
)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7
Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

(C
D

C
)

Java
AspectJ

0

10

20

30

40

50

60

1 2 3 4 5 6 7
Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
O

pe
ra

tio
ns

 (C
D

O
)

2266 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

ReviewDAOAndServiceImplAspect is responsible to affect business and database
access methods that manipulate the review object. This aspect affects methods from
ReviewServiceImpl and ReviewDAOHibernate classes to treat by different ways
the reviews done by a reviewer or a program committee member. This is the main
reason for the decreasing of the degree of scattering and tangling in the AO solution,
reflected in the concern metrics. Note that the four classes affected by the aspects
were not changed in release 2 of the AO implementation (Figure 4). In Figure 5, we
can see that the tangling of the Reviewer feature with other features is largely higher
in the OO implementation. On the other hand, the scattering of the Reviewer feature
over operations and components is almost the same in both implementations. This
occurred because the Reviewer feature is not much scattered in the OO version. Thus,
the benefits of using AO in this case were not so significant for this feature.

In the OO and AO implementations of the R7, there is a significant increase in all
SoC metrics because the addition of the Task Agent feature includes several event
classes that communicate with the Reviewer feature. Besides, there are changes in
other classes that implement the roles and they also communicate with the reviewer
feature, such as: ChairRole and CommitteeMemberRole. For example, Figure 6
depicts the communications of the committee member with the reviewer defined in
the CommiteeMemberRoleAspect aspect. Some types of communications are:
reviewer reviewed the paper and reviewer rejected the review. If the review is
rejected by the reviewer, the committee member is notified and the
reviewerRejectedReview method is called.

Figure 6: Communication between committee member and reviewer with AOP

Figure 7 shows the results of the CDC, CDO and CDLOC metrics for the User
Agent feature, which is also an optional feature, in terms of concern metrics. For this
feature, the collected values for the AO solution did not present better results
compared to the OO solution in terms of CDO and CDC metrics. The number of
operations of the User Agents feature increased through the evolution of the MAS-PL
because new operations were added in the MAS-PL core using inter-type statements
to implement this feature. Figure 3 shows that in the OO implementation, the User
Agent feature is spread over fewer components (classes or aspects). This happens
because with conditional compilation, it is only necessary to add the #if/#endif clauses
locally in a few classes. Thus, the degree of scattering along classes and operations

2267Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

presents low values in the OO solution. The UserAgent, UserAgentCore and
UserAgentRole classes were introduced in the R3 and are totally dedicated for
implementing the User Agent feature in the OO and AO implementations. Note that
Figure 3 shows that the classes added in R3 were modified during the evolution of the
MAS-PL. The changes in these classes increase the tangling as can be seen in Figure
8. In the AO implementation (Figure 4), a significant part of the User Agent feature is
implemented by: (i) the UserAgent, UserAgentCore and UserAgentRole classes;
and (ii) a set of aspects that affect the specified roles, such as AuthorRoleAspect
and ChairRoleAspect. Due to the use of the role pattern, the number of aspects to
manage the roles separately that belong to User Agent feature are higher. But on the
other hand, this AO implementation of the agent roles is less tangled with other agent
features. This way, the degree of scattering is higher in the AO solution (CDC and
CDO), but less tangled than the OO solution. This high number of aspects can be seen
as a negative characteristic of the AO solution, because it can harm the understanding
of the feature, since there are more components to deal with.

Figure 7: Concern Metrics for User Agent feature (R3)

Figure 8: Concern Metrics for Notifier Agent feature (R4)

Figure 8 shows the results of the CDC, CDO and CDLOC metrics for the Notifier
Agent feature. During the evolution of the MAS-PL, there was a significant increase
in the number of components for the AO implementation from R5. This occurred
because in the OO implementation, the notification code from specific system events
was codified directly in the classes using #ifdef/#endif clauses. On the other hand, in
the AO implementation, different aspects were created to affect these existing classes.
They were created because each of them is related to one specific role of user agent

0

10

20

30

40

50

60

1 2 3 4 5 6 7

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
LO

C
 (C

D
LO

C
)

0

5

10

15

20

25

1 2 3 4 5 6 7

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
C

om
po

ne
nt

s
(C

D
C

)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
O

pe
ra

tio
ns

 (C
D

O
)

Java
AspectJ

0

10

20

30

40

50

60

1 2 3 4 5 6 7
Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
 L

O
C

 (C
D

LO
C

)
0

5

10

15

20

25

30

1 2 3 4 5 6 7
Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
C

om
po

ne
nt

s
(C

D
C

)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7
Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r
O

pe
ra

tio
ns

 (C
D

O
)

Java
AspectJ

2268 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

which needs to be managed separately in order to guarantee an easy
inclusion/removal of the optional feature that it represents. Thus, in the AO
implementation the code was modularized in separated aspects, such as:
AuthorRoleInterceptAspect and ChairNotifierServices (Figure 4). As a
consequence of the number of added components, in the AO solution we have more
operations related to the feature implementation. However, this high number of
components in AO solution gets to reduce the tangling, as can be seen in the results of
the CDLOC metric.

4.2 Coupling and Cohesion

This section presents all the coupling and cohesion measurement of the EC MAS-PL.
Figure 9 presents the coupling average per component (classes and aspects), CBC
metric (Table 2). The coupling average in the AO solution presented a better result
than the OO solution. Observing the chart, the AO implementation presented more
stable values for the coupling. Despite many aspects reducing the coupling among the
classes along of the MAS-PL evolution, some of them still maintain references to
some classes. This occurs due to the use of inter-type declarations to allow the
modular introduction of optional or alternative features. However, the AO solution
presented more components (classes and aspects) during the EC MAS-PL change
scenarios, but the final components are more decoupled between them than the OO
solution. One example of this coupling in OO solution is the role pattern
implementation [Bäumer et al., 1997]. In the OO implementation, each role class
accesses methods of several classes, while in the AO solution the roles were
modularized in aspects, which contributed to reduce the coupling.

 Coupling Between Components (CBC)

0,0

2,0

4,0

6,0

8,0

10,0

1 2 3 4 5 6 7

Releases

Java

AspectJ

Figure 9: Coupling Average per Component

Figure 10 presents the results of the cohesion average per component during the
MAS-PL change scenarios, LCOO metric (Table 2). When the LCOO metric presents
low values, this indicates a high cohesion, while superior values indicate a lack of
cohesion. In the presented chart, the value 0.2 for the R2, for example, means that the
sum of the cohesion metric for all the components in R2 divided by the total number
of components is 0.2. According to Figure 10, the LCOO metric also presents better
results in the AO solution. One reason that contributed for this improved cohesion
was the implementation of the Observer pattern [Gamma et al., 1995] and the
inclusion of the task agent feature with AOP. Thus, AOP contributed to modularize

2269Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

attributes and operations more strongly related thus contributing to improve the
cohesiveness of the MAS-PL. For example, when a new user is stored in the system,
the Environment Agent discloses that information, and the User Data Agent perceives
it and creates a new agent (User Agent) for representing the new user in the system.
That notification is done by the ServiceInterceptAspect aspect, which affects
the store() method of the UserServiceImpl class and creates a user creation
event to notify the Environment Agent. In Figure 11, it is possible to see that the
ServiceInterceptAspect aspect affects some services implementation such as:
PaperServiceImpl and UserServiceImpl. According to this diagram, the code
of the Observer pattern is included in a transparent way by the
ServiceInterceptAspect aspect. One reason for the better results in the AO
solution in terms of LCOO metric is that in the OO implementation, the classes
contain methods and attributes of its original implementation as related to the
Observer pattern. Besides, the OO implementation is more coupled with the classes of
the pattern (CBC metric).

Lack of Cohesion over Operations (LCOO)

-

0,05

0,10

0,15

0,20

0,25

1 2 3 4 5 6 7
Releases

Java
AspectJ

Figure 10: Cohesion Average per Component

Figure 11: Simplified Diagram of the Observer Design Pattern

Figure 12 shows the ServiceInterceptAspect aspect, which implements the
observing relationship for the Environment Agent (Observer). This aspect is
responsible for intercepting some methods of the PaperServiceImpl and
UserServiceImpl service classes and notifying the Environment Agent. First, the
advice associated to the createUser pointcut is called to store the user. After the
user creation, roles can be dynamically added to this agent. For example, the author

2270 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

role is assigned to the agent when the user submits some paper to the conference.
Thus, after the paper submission, the Environment Agent divulges that event and the
UserAgentCore agent perceives it and assigns the author role to the agent. That
notification is also done for the Observer pattern. This can also be viewed in Figure
12 through the submitPaper pointcut. When the notification arrives in the
UserAgentCore agent, the AuthorRoleAspect aspect is responsible for intercepting
the addRole() method of the UserAgentCore class and creates the author role and
includes in the user agent. From this code (Figure 12), it is possible to see how the
AOP helps to reduce the values of the LCOO metric.

Figure 12: Propagation of events using the Observer pattern

4.3 Feature Dependency Analysis

Figure 13 shows the results of the Component-level Interlacing between Concerns
(CIBC). This metric aims at quantifying the interaction between concerns. It shows
the degree of interlacing between concerns/features along the different classes and
aspects in the investigated system or product line. Figure 13 shows, for example, the
interaction of the Reviewer and User Agents features with the other MAS-PL
concerns (Roles: Author, Chair, CommitteeMember, Coordinator; ACLMessage,
Persistence, Review and MessageFactory). According to Figure 13, the Reviewer
feature is encountered tangled with fewer concerns in the AO implementation.

This occurred because the AO implementation transferred almost all the elements
in charge of realizing this feature from Reviewer, Review, ReviewPaperAction,
and ReviewDAOHibernate classes (Figure 3) to aspects: ReviewerAspect,
ReviewDAOAndServiceImplAspect and RedirectAspect (Figure 4). This
contributed to separating this feature from the other concerns. Figure 13 also shows
the CIBC metric for the User Agent feature. Note that the degree of interaction
between the User Agent feature and other concerns also presented lower values in the
AO solution along the MAS-PL evolution. This was due to the same reasons noted for
the Reviewer feature.

2271Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

Figure 13: CIBC metric

4.4 Size

Figure 14 presents the results of the following size metrics: Lines of Code (LOC),
Number of Components (NOC) and Number of Operations (NOO). It shows that the
collected values for the AO implementation were higher when compared to the OO
implementation. This happened mainly because we decided to include different
aspects to maintain and improve separation of concerns and feature management. An
example of this modularization strategy is the inclusion of the Role pattern. This
causes the creation of many aspects (increasing the values collected for the NOC
metric), each of them with different advices and pointcuts (LOC and NOO metrics are
higher in the AO implementation) affecting the system classes. On the other hand, in
the OO implementation, the use of conditional compilation with the addition of AND
and OR operators in the existing classes were sufficient to support the combination of
determined features, such as: User Agents and Notifier Agent. The AO
implementation required the creation of new aspects to represent those combinations
of features, such as: AuthorRoleAspect and AuthorRoleInterceptAspect
(Figure 4). The results obtained for the size metrics showed that although the AO
implementation improved the separation and interlacing of concerns, coupling and
cohesion of agency features (Sections 4.1 to 4.3), it required to create and manage
new aspects with their respective pointcuts and advices (high values obtained for the
NOC, LOC and NOO metrics).

Figure 14: Size Metrics of the Expert Committee

User Agents

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7

Releases

C
IB

C

Reviewer

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7

Releases

C
IB

C

Java
AspectJ

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7

Releases

Li
ne

s
of

 C
od

e
(L

O
C

)

0

50

100

150

200

250

1 2 3 4 5 6 7
Releases

N
um

be
r o

f C
om

po
ne

nt
s

(N
O

C
)

Java
AspectJ

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7
Releases

N
um

be
r o

f O
pe

ra
tio

ns
 (N

O
O

)

2272 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

5 Stability Analysis

Our study comprised the following typical change impact measures [Yau and
Collofello, 1985]: number of added or changed components (aspects and classes),
number of added or changed operations and number of added or changed lines. The
purpose of using these metrics is to assess the propagation effects in terms of
components, lines of code and operations during the introduction of agency features
in this EC MAS-PL. Table 3 presents the change propagation in the EC MAS-PL
implementation considered the mentioned metrics.

 R2 R3 R4 R5 R6 R7

OO 3 27 11 3 3 26 Added
Components OA 9 35 20 6 8 34

OO 9 6 8 8 7 13 Changed
Components OA 0 0 0 0 0 0

OO 32 103 31 29 20 128 Added
Operations OA 43 112 35 49 27 145

OO 4 2 15 2 2 31 Changed
Operations OA 0 0 0 0 0 0

Added
Pointcuts

OA 5 7 9 1 1 19

Changed
Pointcuts

OA 0 0 0 0 0 0

OO 418 1134 639 391 249 2203 Added

LOC OA 511 1202 784 470 496 2166

OO 0 0 0 0 0 0 Changed
LOC OA 0 0 0 0 0 0

Table 3: Change Propagation in the EC MAS-PL releases

According to Table 3, the AO solution presented a high number of added
components to implement the agency features for all the releases when compared to
the OO solution. During the development of the releases R3 and R7, there was a
significant increase in the number of added components for both OO and AO
implementations. In the AO solution, this higher number of components occurred to:
(i) allow the separation of concerns in the roles level; and (ii) because the addition of
the task agent brings impact to several components. Thus, several aspects needed to
be created to allow the easy addition/removal of these features, thus providing a better

2273Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

variability management. In the OO solution, this high number of added components
occurred because of: (i) the addition of the Task Agent feature includes several event
classes that communicate with all the roles; and (ii) the introduction of a series of
associated classes for handling the events of specific users in order to create, remove
tasks, and setting their execution date.

Note that in the AO solution in all releases, there were no changes in its
components (classes and aspects). This is due to the fact that only new aspects were
added to implement new features. This was a positive factor to preserve the design of
the MAS-PL architecture during its evolution. On the other hand, in the OO solution
several components were changed during the MAS-PL evolution along the releases.
This occurred because the use of conditional compilation in the OO solution
demanded the addition of the AND and OR operators in the existing classes to support
the combination of the features. Note that in R7 (Table 3), there were 13 changed
components in the OO solution, while the AO solution did not have any change, thus
providing a better modularization of the agency feature over the components. As a
result, this reflected in the number of added operations: the AO solution presented
higher values for this metric than the OO solution in all releases. This happens
because in the AO solution, the changes are accomplished in existing components of
the core MAS-PL using inter-type declarations and using pointcuts that affect specific
join points of the MAS-PL. However, there were no changes in operations and
pointcuts in the AO solution. In the OO solution, some operations were modified to
allow the combination of the features. As a consequence of the added operations and
components in the AO solution, the number of lines of code was almost always
superior for all the releases.

An interesting observation in the collected data is the absence of changed LOC in
both versions OO and AO. Basically, this occurred because the proposed architecture
through the adoption of design patterns for both OO and AO versions facilitated the
inclusion of new features with minimum impact. This characteristic made the EC
MAS-PL versions design and implementation easy to evolve. Thus, the lines of code
already implemented previously did not need to be changed, only new lines of code
were included to implement a particular optional or alternative feature. Thus, the
results collected for the Changed LOC stability metric has shown that the use of good
OO and AO practices and design patterns can benefit the design stability and facilitate
the development and evolution of MAS-PL by reducing the change of source code
when incorporating new features. In fact, in a recent study [Nunes et al., 2008c], we
have used the same architectural pattern to incorporate autonomous behaviour [Nunes
et al., 2008d] in another web-based SPL, and the results for many stability metrics
were quite similar.

The absence of changes in the components, operations, lines of code and
pointcuts for the AO releases confirmed a superior adherence to the Open-Closed
Principle [Meyer, 1998], which states that “software should be open for extension, but
closed for modification”. The AO solution behaved following this principle, showing
that it was more appropriate to implement the agency features in our case study.

2274 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

6 Threats to Validity

In this section, we discuss the threats to the study validity. Threat to conclusion is
concerned with the relation between treatments and the outcome. The main threat to
conclusion is related to the size of the MAS-PL. Although only one experiment was
presented in this paper, it involved a representative and non-trivial web-based system,
which it was implemented using several mainstream technologies and current best
practices. Additionally, we tried to perform real change scenarios that could be
applied in other web-based modern systems, and related to the introduction of
relevant autonomous behaviour for the investigated domain.

The goal of our study was to compare two different implementation technologies
(OO with conditional compilation and AO techniques) in the development and
evolution of a MAS-PL. We have decided to focus on analyzing optional features in
this study in order to fill the gap of previous work. In our recent study [Nunes et al.,
2008c], we have analyzed alternative and mandatory features using different
modularization technologies. On the basis of contrasting our previous experience with
this study, we observed that the maintenance of optional features tend to have more
impact in the MAS-PL core architecture and, therefore, need special attention on SPL
development. The AO implementation was developed using the AspectJ language.
We used the AspectJ due to its stability and because it is widely used and the most
consolidated AO language. Moreover, other works cited below also used AspectJ to
implement different SPLs.

Threats to construct validity are related to the design of the experiment. The
threat to construct validity includes the suite of metrics used for quantifying concern-
sensitive modularity properties and change impact metrics. The metrics used in this
work have already been used and validated in several recent empirical studies
[Figueiredo et al., 2008] [Greenwood et al., 2007] [Kulesza et al., 2006b] [Sant'Anna
et al., 2003] [Eaddy et al., 2008]. The concern metrics had to be calculated manually.
In order to count the concern metrics, it is necessary to do the “shadowing” of the
code to verify the piece of code that implements a determined feature in MAS-PL.
This process started only after all releases (Java and AspectJ) were developed and
aligned. In fact, it may be a threat to validity of the study since it involves direct code
inspection. However, the outcomes were always validated by different subjects of the
study. On the other hand, for gathering the values of the coupling, cohesion, size and
change impact metrics we used automated tools, which were: Eclipse Metrics plugin
[Eclipse, 2008] and the Together tool [Together, 2008]. Therefore, the threats to
construct validity are reduced, because we have used automated tools to count most of
the metrics.

Threats to internal validity are factors that can affect the independent variables.
The threats to internal validity are related the MAS-PL alignment rules, in other
words, to maintain the same design practices throughout all the EC MAS-PL releases.
During the development we have used the same design practices throughout all OO
and AO EC MAS-PL releases, such as, the layer architectural pattern and classical
design patterns in order to minimize this threat. This alignment was necessary to
ensure the quality of design in all versions and to do the comparison fairer and more
equitable.

2275Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

Threats to external validity are conditions that allow to generalize the results of
the experiment. The main threat to external validity is the nature of the chosen
experiment. In order to minimize this threat, we tried to involve a number of
experienced people in the empirical software engineering area. The EC MAS-PL
different versions were implemented by two experienced MS.c students from
Computer Science Department at PUC-Rio. Both students have good knowledge on
Java and AspectJ languages. However, the design decisions taken during the
implementation of the EC MAS-PL architectures were always validated by senior
researchers with good knowledge and experience in the conduction of other empirical
studies. It is important to do more experiments involving other MAS-PLs and subjects
with different experiences in order to be able to generalize the study findings related
to the modularization of MAS-PL agency features with different implementation
techniques. Recently, we have conducted a new and different empirical study with
this aim in mind [Nunes et al., 2008c].

7 Discussions and Lessons Learned

This section discusses and analyzes the collected results with this study. Basically, we
emphasize the advantages and drawbacks of using AOP or conditional compilation.
Besides, we cite some challenges addressed to extend the benefits of such techniques.

Construction of maintainable MAS. Analyzing the design stability (Section 5) of
the EC MAS-PL, we can say that AOP was more effective to allow the superior
stability in the implementation of agency features, demanding less intrusive
modifications in the existing components, operations and pointcuts (Table 3), and
presenting superior adherence to the Open-Closed principle [Meyer, 1998]. In the AO
solution, most of the evolution scenarios were developed with the codification of new
aspects. This choice was made to allow the modularization and (un)plug of the new
features being included. While the OO solution required more extensive and invasive
changes inside its existing and already convoluted classes, as presented in the addition
of the reviewer feature (Section 5). Conditional compilation technology is largely
used in the industry, especially in the development of embedded systems and mobile
games. In our study, we used conditional compilation in a different domain, which is
the web system domain. Nevertheless, this mechanism is not so appropriate, because
it has poor legibility and leads to lower maintainability. Thus, according to change
impact, the AO solution provides a better management of the MAS-PL features,
bringing facilities to their maintenance.

Modularity of the MAS-PLs Implementations. This paper provides empirical
evidences that AOP in determined situations is better than conditional compilation. In
general, the use of conditional compilation presented less components and operations
directly related to feature implementations (CDC and CDO metrics) as can be seen in
the User Agents and Notifier Agent features (Section 4.1). As mentioned previously,
this occurs because the changes are performed locally through the operators using
conditional compilation. However, the impact during the MAS-PL evolution in the
AO solution was less invasive in terms of concerns diffusion over lines of code
(CDLOC) and over components (CDC). In our study, AOP provided a better

2276 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

modularization by decreasing the tangling and coupling between components, and
providing a higher cohesion. On the other hand, the use of AOP resulted in more
components and lines of code to manage. Although there are more components and
lines of code, they are well modularized in separate aspects dedicated to implement
specific optional and alternative features. The implementation of variabilities with
AOP also brings another benefit: the capacity of plugging/unplugging aspects from
the SPL core implementation. With AOP it is possible to extract crosscutting features
to aspects to provide a better modularization [Alves et al., 2005] [Kulesza et al.,
2006a] and to allow the integration among the features in SPL. During the evolution
of the MAS-PL, several aspects worked as a “glue” code between the OO core
structure and the different optional and alternative agency features added to this core.
This design decision was very useful because it allows injecting new properties and
behaviors (agency features) in a transparent way into the base OO structure. Also, the
use of AO technologies makes it easy to remove specific agency features or replacing
them with other implementation (alternative features). The main example in our study
of the use of the aspects as “glue” code was the implementation of the Reviewer
feature (R2). The complete isolation of crosscutting optional and alternative features
in SPLs and application frameworks using AOP also brings benefits to the process of
automatic product derivation as emphasized by some recent works [Voelter and
Groher, 2007] [Cirilo et al., 2008].

Incremental Implementation of the MAS-PL. During the development and
evolution of the MAS-PL, several aspects helped in the integration between the MAS-
PL core architecture and the different optional and alternative agency features. The
AOP mechanisms allowed the non-invasive introduction of code related to agency
features in the MAS-PL core (original web-based system). The integration of the
software agents with the MAS-PL core architecture was accomplished using the
Observer pattern (Figure 12). The AO implementation adopted a variant
implementation of this pattern, which brings minimum impact to the system being
observed. In summary, in the AO version of the MAS-PL, the aspects contributed to
modularize the variabilities related to the agents, agent roles and the integration of the
agents with the system core. The inclusion of the agents and its roles was possible
because the aspects affected some classes adding specific functionalities.

Feature Management. During the MAS-PL evolution the addition of some agency
features (such as User Agents and Notifier Agent) caused a high number of new
components (aspects) in the AO solution. Although the use of aspects increases the
number of components in these cases, it was also useful to reduce the tangling and
coupling between the concerns/features. Thus, the AO solution was more effective to
modularize these features (Sections 4.1 to 4.3). In our study, it was observed that the
AO solution exhibits higher values for all the size metrics (LOC, NOC and NOO).
This was a negative finding regarding the AO implementation because it can demand
the understanding of additional code in the new aspects added to the system, and thus
harming the evolution of the MAS-PL. Therefore, a trade-off analysis is required to
determine if the benefits in terms of separation of concerns, demonstrated for the
MAS-PL features (Section 4.1), can overcome the occasional difficulties to deal with
the additional aspects, operations and lines of code brought by an AO
implementation.

2277Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

8 Related Work

Recent research presents some studies with the use of AOP in SPL development
[Alves et al., 2005] [Colyer et al., 2004] [Griss, 2000] [Hunleth and Cytron, 2002].
There are also some empirical studies comparing OO and AO implementations of
systems and product lines. However, most of these studies focus on the
modularization of conventional crosscutting concerns such as: persistence [Kulesza et
al., 2006b] [Soares et al., 2006], exception handling [Filho et al., 2006] and design
patterns [Garcia et al., 2005] [Hannemann and Kiczales, 2002]. None of the cited
works analyzes the impact of adding agency features in evolution scenarios of a
MAS-PL. We considered a different approach of other works, that is the MAS-PL and
the several change scenarios applied to the core architecture focusing on the
quantitative assessment of AO and OO solutions. Next, we give an overview of the
different AOP studies conducted for different application domains, emphasizing the
main differences and findings between our study and those ones.

[Figueiredo et al., 2008] present an empirical study focusing on requirements
evolution of two product-lines for the mobile application domain, called MobileMedia
and BestLap. This work analyzes the evolution of product lines in terms of metrics for
modularity, change propagation and feature interaction. Similar to our study, two
variabilities implementation techniques were considered: conditional compilation and
AOP. They concluded that AOP promoted more stable designs, mainly in alternative
and optional features. They also observed that AOP presents stable values for all the
kinds of interlacing interactions. In our study, we have also found that AOP was more
appropriate to modularize optional agency features, like agents and its roles.
Additionally, our study also presented better results in terms of design stability for the
AO implementation, requiring less change in its components, operations, and lines of
code.

[Apel and Batory, 2006] present a study comparing the feature-oriented
programming (FOP) and AOP mechanisms to implement features of a product line.
The SPL implementation used AML (Aspectual Mixin Layers), which is an approach
that integrates FOP and AOP. The metrics used in their study were only: lines of code
and number of components (classes, mixins and aspects). They showed the utility of
FOP to address the inclusion of new classes and members in existing classes; and the
use of aspects to modularize some crosscutting characteristics. In our study, we used a
more extensive set of metrics and focused explicitly on the evaluation of the MAS-PL
modularity and stability. Besides, our study discussed some relevant characteristics of
AOP to implement agency features.

[Kastner et al., 2007] present a case study on refactoring a legacy application into
a SPL using aspects to implement features. Their case study was the Berkeley DB
database system. The goal of their work was to implement features using AspectJ in
order to show the suitability of this language for this purpose. As a general result, they
observed a strong coupling between classes and aspects that makes the maintenance
and evolution of the SPL difficult. In our study, the AO modularization of features
contributed to reduce the coupling average per component of the SPL compared to the
OO implementation, but on the other hand it has created a set of new coupling
dependencies between the aspects and the SPL core (classes). These new coupling

2278 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

relationships between aspects and classes were not affected by the subsequent releases
of the AO MAS-PLs, thus guaranteeing its stability.

[Garcia et al., 2003] present an experiment that makes use of two different OO
techniques for MAS development. The techniques used were: aspect and pattern-
based implementations. Their study was based on a suite of modularity attributes in
order to evaluate the reuse and maintainability of some crosscutting concerns of
MAS, such as: mobility, learning, autonomy. They concluded that AOP is appropriate
to improve separation of MAS concerns, resulting in less components and lines of
code, and lower cohesion and coupling. Different from that experiment, our study
concentrated mainly on the modularization of agent features and their respective
roles, instead of particular agent internal properties (mobility, learning, autonomy).
Similar to that study, our AO MAS-PL implementation have presented better results
for the separation of the features (SoC metrics).

[Lobato et al., 2008] assess four evolution requirements of a code mobility agent
framework, called MobiGrid. Their work assesses quantitatively and qualitatively the
positive and negative impacts of AOP on a number of widely-scoped framework
modifications. Their study showed that AO improved the modularity and stability of
crosscutting mobility concerns in the MobiGrid compared to OO techniques. In our
study, we did not analyze mobility concerns, but we also found that AO was more
appropriate to implement modularized agents in a MAS-PL.

9 Conclusions

Assessing the quality of software has been one the main concerns of software
engineers. The assessment of the software internal quality through suites of
modularity and change impact metrics is an important existing mechanism to improve
the quality of software by making possible to discover modularity problems related to
the inadequate implementation of features. In this paper, we presented a quantitative
and qualitative study of the design modularity and stability of the incremental
development of a multi-agent system product line (MAS-PL). We compared two
different versions of the MAS-PL based on JADE platform, implemented using the
following technologies: (i) one implementation in Java language with conditional
compilation support; and (ii) the other one implemented with the AspectJ language.
The MAS-PL was originated from a traditional web-based system that was extended
to incorporate autonomous or pro-active behavior. We initially developed a traditional
web-based system to support the conference management process, named Expert
Committee. Subsequently, we evolved this system to incorporate a series of change
scenarios (agency features) in the EC MAS-PL.

Our empirical study consisted on applying a suite of modularity and change
impact metrics to the different implementations of the EC MAS-PLs. The collected
results for these different metrics along the different releases have shown the
following general conclusions: (i) the MAS-PL features tended to be more scattered
and less tangled in the AO implementation compared to the OO conditional
compilation-based solution. It means that several aspects were required to implement
the agent features, but on the other hand, they have successfully modularized thus
avoiding the feature interlacing; (ii) the AO implementation also presented better
results in terms of stability, because the codification of new aspects demanded less

2279Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

changes to the existing components (classes and aspects) and operations from the
MAS-PL; (iii) the modularization of agent features in different aspects brought as
consequence the increase in the number of components, operations and lines of code,
bringing complexity to manage these new aspects; and, finally, (iv) regarding the
average coupling and cohesion metrics per component, both AO and OO solutions
presented relative stable values, with a slight advantage for the AO implementation.

References

[Alur et al., 2001] Alur, D., Malks, D., Crupi, J.: Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[Alves et al., 2006] Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.:
Refactoring product lines. In Proceedings of the 5th international conference on Generative
programming and component engineering (GPCE '06). ACM Press, 201-210, New York, USA.
October 2006.

[Alves et al., 2005] Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: Extracting and
evolving mobile games product lines. In Proceedings of the 9th International Conference of
Software Product Lines (SPLC’05), LNCS 3714, Springer-Verlag, 70-81, September 2005.

[Antenna, 2008] Antenna Preprocessor. http://antenna.sourceforge.net/wtkpreprocess.php

[Apel and Batory, 2006] Apel, S., Batory, D.: When to use features and aspects?: a case study.
In Proceedings of the 5th international Conference on Generative Programming and
Component Engineering (GPCE '06). ACM, New York, NY, 59-68. October, 2006.

[Basili and Rombach, 1988] Basili, V., Rombach, H.: The TAME project: towards
improvement-oriented software environments. IEEE Transactions on Software Engineering,
14(6), 1988, 728-738.

[Bäumer et al., 19997] Bäumer, D., Riehle, D., Siberski, W., Wulf, M.: The Role Object
Pattern. Washington University Dept. of Computer Science, 1997.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.,
Sommerlad, P., Stal, M.: Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley Sons, 1996.

[Cirilo et al., 2008] Cirilo, E., Kulesza, U., Lucena, C.: A Product Derivation Tool Based on
Model-Driven Techniques and Annotations. Special Issue on "Software Components,
Architectures and Reuse". JUCS (Online), v. 14, n. 8, 1344-1367, 2008.

[Clements and Northrop, 2001] Clements, P. and Northrop, L.: Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, USA, 2001.

[Colyer et al., 2004] Colyer, A., Rashid, A., Blair, G.: On the separation of concerns in program
families. Technical report, Computing Department, Lancaster University, 2004.

[Conejero et al., 2009] Conejero, J., Figueiredo, E., Garcia, A., Hernandez, J., Jurado, E.: Early
Crosscutting Metrics as Predictors of Software Instability. In 47th International Conference
Objects, Models, Components, Patterns (TOOLS), 2009. (to appear).

[Czarnecki and Eisenecker, 2000] Czarnecki, K., Eisenecker, U.: Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[Eclipse, 2008] Eclipse Metrics Plugin. http://eclipse-metrics.sourceforge.net/.

2280 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

[Eaddy et al., 2008] Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C.,
Nagappan, N., Aho, A. V.: Do Crosscutting Concerns Cause Defects?. IEEE Transactions on
Software Engineering. 34, 4, 497-515. July, 2008.

[Fayad et al., 1999] Fayad, M., Schmidt, D., and Johnson, R. (1999). Building application
frameworks: object-oriented foundations of framework design. John Wiley & Sons, Inc., New
York, NY, USA.

[Figueiredo et al., 2008] Figueiredo, E., Cacho, N., Sant'Anna, C., Monteiro, M., Kulesza, U.,
Garcia, A., Soares, S., Ferrari, F., Khan, S., Filho, F. C., Dantas, F.: Evolving software product
lines with aspects: an empirical study on design stability. In Proceedings of the 30th
International Conference on Software Engineering (ICSE '08), 261-270, New York, NY, USA.
ACM. May, 2008.

[Filho et al., 2006] Filho, F. C., Cacho, N., Figueiredo, E., Raquel Maranhão., Garcia, A.,
Rubira, C. M. F.: Exceptions and aspects: the devil is in the details. In Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software engineering (SIGSOFT
'06/FSE-14), 152-162, New York, NY, USA. ACM. November, 2006.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley, 1995.

[Garcia et al., 2003] Garcia, A., Sant'Anna, C., Chavez, C., da Silva, V. T., de Lucena, C. J. P.,
von Staa, A.: Agents and Objects: An Empirical Study on the Design and Implementation of
Multi-Agent Systems. In ACM International Conference on Software Engineering, Proceedings
on 2nd International Workshop on of Software Engineering for Large-scale Multi-Agent
Systems (SELMAS’03), 19-34, Portland,Oregon,USA, 2003.

[Garcia et al., 2005] Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von
Staa, A.: Modularizing design patterns with aspects: a quantitative study. In Proceedings of the
4th international conference on Aspect-oriented software development (AOSD '05), 3-14, New
York, NY, USA. ACM Press. March, 2005.

[Greenwood et al., 2007] Greenwood, P., Bartolomei, T., Figueiredo, E., Garcia, A., Cacho, N.,
Sant'Anna, C., Borba, P., Kulesza, U., Rashid, A.: On the impact of aspectual decompositions
on design stability: An empirical study. In Proceedings of European Conference on Object-
Oriented Programming (ECOOP'07), LNCS, 176-200. Springer-Verlag. August, 2007.

[Griss, 2000] Griss, M. L.: Implementing product-line features by composing aspects. In
Proceedings of the first conference on Software Product Lines: Experience and Research
Directions, 271-288, Norwell, MA, USA. Kluwer Academic Publishers, 2000.

[Hannemann and Kiczales, 2002] Hannemann, J. Kiczales, G.: Design pattern implementation
in Java and aspectJ. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, Systems, Languages, and Applications (OOPSLA '02), 161-173, New York, NY,
USA. ACM. November, 2002.

[Hunleth and Cytron, 2002] Hunleth, F. Cytron, R. K.: Footprint and feature management using
aspect-oriented programming techniques. In Proceedings of the Joint Conference on
Languages, Compilers and Tools For Embedded Systems: Software and Compilers for
Embedded Systems. ACM, New York, NY, 38-45. June, 2002.

[JADE, 2008] JAVA Agent Develoment Framework. http://jade.tilab.com/.

[Jadex, 2008] Jadex BDI Agent System.
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/.

2281Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

[Jennings, 2001] Jennings, N. R.: An agent-based approach for building complex software
systems. Commun. ACM, 44(4):35-41. 2001.

[Kastner et al., 2007] Kastner, C., Apel, S., Batory, D.: A case study implementing features
using aspectj. In Proceedings of the 11th International Software Product Line Conference
(SPLC '07), 223-232, Washington, DC, USA. IEEE Computer Society. September, 2007.

[Kendall, 1999] Kendall, E.: Role Model Designs and Implementations with Aspect-oriented
Programming. In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented
programming, Systems, Languages, and Applications (OOPSLA '02), New York, NY, 353-369.
November, 1999.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,
Loingtier, J. M., Irwin, J.: Aspect-Oriented Programming. In Proceedings European Conference
on Object-Oriented Programming (ECOOP’97), V.1241, 220-242, Berlin, Heidelberg, and New
York. Springer-Verlag, 1997.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.: Getting Started with AspectJ, Communication ACM, 44, 59-65, 2001.

[Kulesza et al., 2006a] Kulesza, U., Alves, V., Garcia, A. F., de Lucena, C. J. P., Borba, P.:
Improving Extensibility of Object-Oriented Frameworks with Aspect-Oriented Programming.
In Proceedings of the 9th International Conference on Software Reuse (ICSR’06), 231-245,
Torino, 2006.

[Kulesza et al., 2006b] Kulesza, U., Sant'Anna, C., Garcia, A., Coelho, R., von Staa, A.,
Lucena, C.: Quantifying the effects of aspect-oriented programming: A maintenance study. In
Proceedings of the 22nd IEEE International Conference on Software Maintenance (ICSM '06),
223-233, Washington, DC, USA. IEEE Computer Society. September, 2006.

[Krueger, 2002] Krueger, C. W.: Easing the Transition to Software Mass Customization. In 4th
International Workshop on Software Product-Family Engineering. F. v. Linden, Ed. Lecture
Notes in Computer Science, vol. 2290. Springer-Verlag, London, 282-293. October, 2003.

[Lee et al., 2006] Lee, K., Kang, K. C., Kim, M., Park, S.: Combining Feature-Oriented
Analysis and Aspect-Oriented Programming for Product Line Asset Development. In
Proceedings of the 10th international on Software Product Line Conference (SPLC’06). IEEE
Computer Society, Washington, DC, 103-112. August, 2006.

[Lobato et al., 2008] Lobato, C., Garcia, A., Kulesza, U., Staa, A. v., and Lucena, C.: Evolving
and Composing Frameworks with Aspects: The MobiGrid Case. In Proceedings of the Seventh
international Conference on Composition-Based Software Systems (ICCBSS 2008) – V (00).
IEEE Computer Society, Washington, DC, 53-62. February, 2008.

[Meyer, 1998] Meyer, B.: Object Oriented Software Construction, 1st ed. Prentice-Hall,
Englewoood Cliffs, 1998.

[Nunes et al., 2008a] Nunes, I., Nunes, C., Kulesza, U., Lucena, C.: Developing and evolving a
multi-agent system product line: An exploratory study. In Luck, M. and Gomez-Sanz, J. J.,
editors, Agent-Oriented Software Engineering IX – LNCS, V. 5386, 228-242.Spring-Verlag,
2008.

[Nunes et al., 2008b] Nunes, C., Kulesza, U., Sant’Anna, C., Nunes, I., Lucena, C.: On the
Modularity Assessment of Aspect-Oriented Multi-agent Systems Product Lines: A Quantitative
Study. In Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS’08). Porto Alegre, Brazil, 122-135. August, 2008.

2282 Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

[Nunes et al., 2008c] Nunes, C., Kulesza, U., Sant’Anna, C., Nunes, I., Garcia, A, Lucena, C.:
Comparing Stability of Implementation Techniques for
Multi-Agent System Product Lines. In 3th European Conference on Software Maintenance and
Reengineering (CSMR’09). Kaiserslautern, Germany, 229-232. March, 2009.

[Nunes et al., 2008d] Nunes, I., Kulesza, U., Nunes, C., Cirilo, E, Lucena, C.: Extending Web-
Based Applications to Incorporate Autonomous Behaviour. In: Brazilian Symposium on
Multimedia and the Web Systems (WebMedia’08). Vilha Velha, Brazil, 115-122. October,
2008.

[Pena et al., 2006a] Pena, J., Hinchey, M. G., Resinas, M., Sterritt, R., Rash, J. L.: Managing
the Evolution of an Enterprise Architecture Using a MAS-Product-Line Approach. In Arabnia,
H. R. and Reza, H., editors, Software Engineering Research and Practice, 995-1001. CSREA
Press, 2006.

[Pena et al., 2006b] Pena, J., Hinchey, M. G., Ruiz-Cortés, A., Trinidad, P.: Building the core
architecture of a multiagent system product line: with an example from a future nasa mission.
In 7th International Workshop on Agent Oriented Software Engineering (AOSE’06). LNCS,
2006.

[Pohl et al., 2005] Pohl, K., Böckle, G., van der Linden, F. J.: Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, New York, USA, 2005.

[Sant'Anna et al., 2003] Sant'Anna, C., Garcia, A., Chavez, C., Lucena, C., von Staa, A.: On the
Reuse and Maintenance of Aspect-Oriented Software: An Assessment Framework. In XVII
Brazilian Symposium on Software Engineering (SBES’03), 19-34, Manaus, Brazil, 2003.

[Sant'Anna et al., 2007] Sant'Anna, C., Figueiredo, E., Garcia, A. F., Lucena, C. J. P.: On the
modularity of software architectures: A concern driven measurement framework. In Software
Architecture, First European Conference (ECSA’07), volume 4758, 207-224. September, 2007.

[Sant’Anna et al., 2008] Sant’Anna, C., Garcia, A., Lucena, C.: Evaluating the Efficacy of
Concern-Driven Metrics: A Comparative Study. In Proceedings of the 2nd Workshop on
Assessment of Contemporary Modularization Techniques (ACoM’08), 25-30, Nashville, 2008.

[Soares et al., 2006] Soares, S., Borba, P., Laureano, E.: Distribution and persistence as aspects.
Software Practices Experience, 36(7):711-759. 2006.

[Together, 2008] Borland Together. http://www.borland.com/us/products/together/index.html.
Borland 1994 - 2008. Borland Software Corporation

[Voelter and Groher, 2007] Voelter, M., Groher, I.: Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. In Proceedings of the 11th international
Software Product Line Conference (SPLC’07). IEEE Computer Society, Washington, DC, 233-
242. September, 2007.

[Wooldridge and Ciancarini, 2000] Wooldridge, M. Ciancarini, P.: Agent-Oriented Software
Engineering: The State of the Art. First International Workshop on Agent-Oriented Software
Engineering (AOSE’00), V. 1957, 1-28. Springer-Verlag, Berlin, 2000.

[Wohlin et al., 2000] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,
A.: Experimentation in Software Engineering: an Introduction. Kluwer Academic Publishers.

[Yau and Collofello, 1985] Yau, S. S., Collofello, J. S.: Design Stability Measures for Software
Maintenance. IEEE Transactions on Software Engineering, 11(9), 849-856 (1985).

2283Nunes C., Kulesza U., Sant’Anna C., Nunes I., Garcia A., Lucena C. ...

