Journal of Universal Computer Science, vol. 15, no. 12 (2009), 2287-2310
submitted: 15/12/08, accepted: 25/6/09, appeared: 28/6/09 © J.UCS

Causality Join Query Processing for Data Streams via a
Spatiotemporal Sliding Window

Oje Kwon
(Pusan National University, South Korea
kwonoj@isel.cs.pusan.ac.kr)

Ki-Joune Li
(Pusan National University, South Korea
lik@pnu.edu)

Abstract: Data streams collected from sensors contain a large volume of useful in-
formation including causal relationships. Causality join query processing involves re-
trieving a set of pairs (cause, effect) from streams of data. However, some causal pairs
may be omitted from the query result, due to the delay between sensors and the data
stream management system, and the limited size of the sliding window. In this pa-
per, we first investigate temporal, spatial, and spatiotemporal aspects of causality join
query processing for data streams. Second, we propose several strategies for sliding
window management based on these results. The accuracy of the proposed strategies
is studied via intensive experimentation. The result shows that we can improve the
accuracy of causality join query processing in data streams with respect to the simple
FIFO strategy.

Key Words: data stream, causality join query processing, spatiotemporal sliding win-
dow

Category: H.3.3

1 Introduction

Data streamed from diverse smart sensors contains a large volume of practical
information for realizing intelligent environments. The causality analysis on data
streams from sensors is often crucial for many applications, to understand en-
vironmental phenomena and achieve suitable control of actuators. Consider, for
example, an automatic fire detection service in a massive building. Leakage data
on gas is detected by gas sensors and that of electricity by electric sensors. The
response to a fire should depend on where the fire originates from leakage of gas
or electricity.

In data stream management systems (DSMS), one of the important analysis
functions is to discover pairs (cause, effect) in a data stream from sensors. In this
paper, this is called causality join query processing for data streams. Temporal,
spatial, and spatiotemporal relationships are often very helpful for discovering
the causal relationships in data streams, in addition to domain-specific knowl-
edge. First, the cause always precedes its effect. Second, the locations of cause
and effect often satisfy certain spatial conditions, such as the effect occurring

2288 Kwon O., Li K.-J.: Causality Join Query Processing ...

within a given radius from the cause. Third, the cause is propagated at a given
speed to the effect. These three examples correspond to temporal, spatial, and
spatiotemporal relationships, respectively.

In most cases, the data collected at sensors is streamed to DSMS with a cer-
tain delay, for several reasons. The delay is an important factor, which degrades
the accuracy of causality join query processing for data streams stored in lim-
ited sliding windows. For example, it is hard to rapidly respond to a fire if either
the cause or effect arrives late at DSMS, due to the delay. However, the FIFO
policy, which is a popular method of sliding window management, significantly
degrades the accuracy of join query processing. In order to improve the accuracy,
several issues must be carefully examined, in particular the temporal, spatial,
and spatiotemporal relationships.

In this paper, we study the temporal, spatial, and spatiotemporal relation-
ships between cause and effect. Based on these results, we propose three buffering
methods for the sliding window, and compare them with the FIFO policy via
intensive experimentation. The contributions of this paper are summarized as
follows,

e Introduction of causality join query processing in data streams

e Study on temporal, spatial, and spatiotemporal relationships for causality
join query processing and

e Buffering policies of the sliding window for causality join query processing,
to improve the accuracy.

This paper is organized as follows. First we survey the related work in section
2. We introduce the motivations of the study in section 3 and give the definition
of causality join query processing in data streams. In section 4, we investigate
the temporal, spatial, and spatiotemporal properties of causal relationships in
data streams collected from sensor networks. And, we analyze and compare the
accuracy of the proposed methods and FIFO policy via intensive experimentation
in section 5, and conclude the paper in section 6.

2 Related work

Sensor data transferred to DSMS forms an infinite stream. To deal with a sensor
stream, DSMS has to consider two central critical constraints, 1) Limited buffer
capacity and 2) Real-time query processing. In this section, we survey previous
studies on these constraints.

Kwon O., Li K.-J.: Causality Join Query Processing ... 2289

2.1 Query processing with a limited buffer capacity

Since DSMS has a limited buffer, non-blocking operators for continuous par-
tial processing are required, instead of operators for processing the entire data
stream. A well-known method is the sliding window in STREAM [Arasu et al. 03]
, Fjord [Madden and Franklin 02] and TelegraphCQ [Chandrasekaran et al. 03].
The performance of the sliding window is determined by the window size. The
larger the window size, the more accurate the query result, because the volume
of concurrently processed data is large, but query processing is more expensive.

Sliding window methods in [Arasu et al. 03], [Chandrasekaran et al. 03] and
[Madden and Franklin 02] adopted the FIFO buffering policy, and only consid-
ered the transactional time of the data. But the valid time is more important
than the transactional time for detecting causal relationships in the data stream.

D. Papadias and his fellows applied the sliding window method to pro-
cessing k nearest neighbor monitoring in a stream data [Tao and Papadias 06]
[Mouratidis and Papadias 07]. They proposed two methods; one finds k nearest
neighbor pairs based on conceptual cells which are partitioned around the query
point; the other finds the pairs based on the skyline that is a result of the time
and distance between the query and each point. Nevertheless, the sliding win-
dow methods in [Tao and Papadias 06] and [Mouratidis and Papadias 07] were
performed in a FIFO manner and were based on the transactional time.

In Joe Khor et al. applied the sliding window method to multiple routing
protocols in ad-hoc environments [Khor et al. 05]. They proposed a solution to
improve the security performance of multiple routing via sliding window. In
particular, when there are node insertions/deletions to/from a window, they
reset the security keys of nodes within the sliding window, without stopping
transmission. Hua-Fu Li et al. utilized the sliding window method for mining
changes of a data stream within a limited buffer [Li et al. 05]. However, the
aforementioned methods did not consider the stream data sequence.

2.2 Real-time query processing

The second constraint dealing with infinite sensor streams is real-time query
processing. A causality query is a type of join operator. STREAM proposed
a binary join operator that uses a hash table. Fjord provided a zipper join,
which joins two data stream elements if their transactional times are the same.
T. Urhan and M. J. Franklin proposed the XJoin operator, which copes with
a delay of the data stream [Urhan and Franklin 00]. This operator conducts a
memory-based join first, and switches to a disk-based join when the stream has
a slow delivery because of the delay. But binary join, zipper join and XJoin only
focused on the transactional time of the data stream. They did not consider the
valid time of the data stream, nor did they focus much on its spatiotemporal
properties.

2290 Kwon O., Li K.-J.: Causality Join Query Processing ...

L. Ding et al. proposed a MJoin operator using the static and dynamic
meta-data on the stream [Ding et al. 03]. In [Ding et al. 03], punctuation is used,
which is the predicate that specifies the data that cannot appear after the punc-
tuation mark. Non-prior data elements appearing after the punctuation mark are
first purged from the window. But the punctuation conditions are not based on
the valid time of the data, but rather the data values, and punctuation marking
is included in the preprocessing steps. M. A. Hammad et al. proposed a multiple
join operator, viz., Stream Window Join, based on the different delays of each
stream [Hammad et al. 03]. They create a maximum threshold for delays among
multiple streams, and continue processing the join until the join pair of differ-
ent streams is completed. But, they only focused on the sequential order of the
stream according to the transactional time. Bugra Gedik et al. proposed a Grub-
Join [Gedik et al. 07] to decrease the CPU overhead during the processing join
operation of multiple streams, and they applied it to the multiple stream mon-
itoring system [Kun-Lung et al. 07]. They proposed two methods; an operator
throttling method, which tunes the frequency of operations based on the trans-
fer period of the stream; and, a window harvesting method which finds stream
data that is directly related to join operation. However, they only considered the
transactional time of the stream data.

K-L. Tan and his research team have performed numerous studies about real-
time query processing for data streams. J. Wu et al. attributed the degradation of
the join performance to the user-defined static window size [Wu et al. 07]. They
proposed a memory-efficient algorithm to determine the window size, based on
both the order of the streams and the delays among multiple streams. But, this
join operator is performed in a FIFO manner, which only considers the trans-
actional time. Yongluan Zhou et al. proposed COSMOS middleware, which pro-
cess multiple queries in a distributed stream system using a publish/subscribe
mechanism [Zhou et al. 08]. They proposed graph-based methods to increase
the load-balance of each system and decrease the communication cost when
queries are disseminated. However, they considered the transactional time of
the stream data. HyperGrid, which provides common generic procedures to con-
vert raw spatiotemporal sensor stream data into analytic data, was proposed in
[Wu et al. 09]. This represents data with a grid model, and it provides customiz-
able and generic operators for users. But, it does not distinguish between the
valid time and the transactional time, because it fails to consider the communi-
cation delay in USN.

Causality in data mining involves inferring the causal relationships in in-
formation [Silverstein et al. 00] [Freedman 04] [Holland 86] [Pearl 00]. LTCCS
statistically inferred causal relationships in data on truck accidents [LTCCS 07].
XinZhou Qin and Wenke Lee proposed a statistical causality analysis method
for alerts in a security mechanism [Qin and Lee 03]. But causal relationships in

Kwon O., Li K.-J.: Causality Join Query Processing ... 2291

e 9 \
1T io- i
m —_— »| Temporal »| Spatial Spills p| Domain 4
—ITTTT] | condition | |__¢ € Condition ¢ € el ¢ € Sheaiio c e
Test p1 | p2 Test p1 p2 Condition | [Mp1 [p2 Condition [™p5 | p2
p3 | p4 p5 p2 Test p5 | p2 Test
0 p5 | p2 p7 | p10 Causalt
ausall airs
p7 | p10 Spatio-temporal VP
p8 | pit Spatial candidates candidates
Temporal candidates

Figure 1: Conceptual evaluation procedure for causality join query processing in
data streams

sensor streams must be analyzed in real-time, and statistical analysis is impos-
sible, due to the limitations of the window size in DSMS. For this reason, new
approaches are necessary for dealing with causal relationships in sensor streams.

3 Causality Join Query Processing in Data Streams

In this section, we give the definition of causality join query processing for data
streams from sensors. And, we discuss the problems in processing a causality
join query in sensor network environments.

3.1 Causality Join Query Processing for Data Streams

Causality join query processing in data streams is defined as the selection of pairs
(cause, effect) from data streams satisfying the following causality condition;

Definition 1. Causality Join Query Processing for Data Streams
Given the data streams, the result of causality join query processing is defined
as follows;

RCQX) ={(c,e)lc e W(X;),e € W(X,), and Pcg(c,e)=TRUE} (1)

where X={X3, Xo, ... Xk} is the set of streams, ¢ and e represent cause and
effect, respectively, and W (X;) denotes the window buffer of the X, stream.

In this definition, Pcg(c,e) is the predicate describing the causality condi-
tions, and it can be represented in conjunctive form as:

PCQ (C, 6) = PCQ,l(C, 6) A PCQVQ(C, 6) A PCQ.n (C, 6) (2)

2292 Kwon O., Li K.-J.: Causality Join Query Processing ...

In order to process a causality join query, DSMS should evaluate a given set
of predicates defined by the application. The predicates given in equation (2)
are classified into four categories as follows.

e Temporal predicate: The cause and effect always satisfy the temporal
condition that the cause occurs before the effect.

e Spatial predicate: The locations of cause and effect satisfy spatial condi-
tions. For example, the distance between the cause and effect must be less
than a given threshold.

e Spatiotemporal predicate: Since the phenomena of cause and effect are
dynamic, the relationship contains spatiotemporal properties. One of the ob-
vious spatiotemporal properties is the velocity of propagation. For example,
a fire expands from the firing position at a certain speed, which is a useful
fact in understanding fire phenomena. It means that the propagation delay
from the firing point to the effect is a function of the velocity and distance.

e Domain-specific condition: While the aforementioned predicates are in-
dependent of the type of application, there are conditions defined by the
type of application. We exclude these, since they are beyond the scope of
the paper.

The conceptual evaluation procedure for causality query predicates is ex-
plained in figure 1. First, the predicates concerning the temporal condition are
evaluated with the data stream gathered from the sensors, to produce the first
set of candidate pairs (cause, effect) for the causality join query. Second, the
spatial predicates are evaluated with the candidate pairs, to obtain the spa-
tial candidates. In a similar manner, we evaluate spatiotemporal predicates and
domain-specific predicates.

3.2 Buffering and Causality Join Query Processing

Unlike database management systems, join queries are processed with the data
stored in a sliding window with a limited size, which is explained in figure 2. Note
that for the sake of simplicity we assume a sliding window of a single stream for
causality join query processing in this paper.

In figure 2, it is supposed that all data elements p; in the sliding window
W were previously examined to determine whether they satisfy the causality
predicates. When a new data element x arrives at DSMS, as shown in figure 2,
the following tasks must be performed.

e Causality join with data elements in W : Each data element ¢ in
W must be examined with z, regardless of whether the causality predicate
Pcg(p, z) is TRUE or not.

Kwon O., Li K.-J.: Causality Join Query Processing ... 2293

p7 | p6 | p5 | p4 | p3 | p2 | p1

New data Window W

(a) Initial data stream in window

| Whnax Wlin
> 1 \ ¢

D]
[c Te]
Spatial, —»

temporal and
spatio-temporal p7 | p6 | p5 | p4 lp3] p2 | pt

Tests
) delete
insert Delete p

iff Priority(p) < Priority(q) | VqEW

“.
B/R]
[IRLCIREN

[x]
R
B

.E :
a H
o

]
)
N

(b) Casuality join query procedure

Figure 2: Causality join query processing procedure for data streams

¢ Removal of a data element from W : Since the size of W is limited,
one of the data elements in W will be removed. The data element must be
selected such that the probability of causal relationships with the arriving
data elements is minimal.

3.3 Problems in causality join query processing for data streams

In this paper, we assume computing environments consisting of sensor networks
and a DSMS that collects data from sensors, where the data elements are trans-
ferred from a sensor to the DSMS via multi-hops. In order to process causality
join queries in this environment, the following problems must be solved.

e Limited size of window: It is impossible to examine all data elements
streamed to DSMS for the causality join conditions, since the size of the
sliding window is limited, thus only a subset of data elements can be ex-
amined. This means that the result of causality join query processing is
incomplete, and some pairs of cause and effect are likely to be omitted from
the result.

e Delay: The sensors are connected to DSMS via multi-hops transfer. This
means that a transfer delay from a sensor to DSMS is inevitable, for several

2294 Kwon O., Li K.-J.: Causality Join Query Processing ...

Stream Scause c4

c7 | c6 ’ cb

c3 | c2 ’ ct
Spatial,

K Temporal

and Spatio- | | ¢ | e
temporal c5 | e4
Conditions

Test
2

Missing results

Stream Sefect

e7 66’65’64’63 e2’e1

Window W

Figure 3: Example: Inaccurate query result due to the limited size of the window
and transfer delay

reasons. And, we cannot guarantee that the arrival sequence of data elements
is identical to that of the sensors. For example, a data element x captured
at a sensor earlier than another data element y may arrive at DSMS later
than y.

The two aforementioned problems are related, and they degrade the accuracy
of the result of causality join query processing. Figure 3 explains the case where
the system gives an inaccurate result of a query. In this figure, we suppose that
(ch,ed), (4, e2), (c2, e6) is the query result of a causality join. Due to the transfer
delay, e3, e4, €5 and e6 arrives at the DSMS later than e2, although they had been
captured at sensors earlier than e2. If the size of window is four, and the policy
of the sliding window is FIFO, e2 will be removed from the sliding window, and
(c4,e2) cannot be contained in the query result. For a similar reason, (¢2, e6) is
not included in the query result, which contains only (c5, e4), as shown by figure
3. Note that the FIFO policy in the figure is based on the transactional time (t:)
rather than the walid time (t,). However, the valid time is more significant for
causality join query processing than the transactional time.

In this paper, we propose several methods for improving the accuracy of query
results. The goal of these methods is to ensure that probable causes and effects
remain in the sliding window at the same time. To this end, we firstly analyze the
temporal, spatial, and spatiotemporal properties. Secondly, we propose several
policies for sliding window buffering based on this analysis.

Kwon O., Li K.-J.: Causality Join Query Processing ... 2295

4 Temporal, Spatial, and Spatiotemporal Relationships
between Cause and Effect

In this section, we explore the temporal, spatial, and spatiotemporal properties
between cause and effect in data streams from sensor networks, which are not
specific to a given application domain. Based on these results, we propose several
policies for buffer management of the sliding window.

4.1 Temporal relationships in causality

The most obvious property between cause and effect is the temporal relationship
that a cause must precede an effect, and the temporal distance must be within
a certain threshold. This property is described by the following predicate,

TRUE ift,(c) <ty(e) < ty(c)+ or,

P, c,e) =
car(e,e) {FALSE otherwise

where t,(c) and t,(e) represent the valid time of cause ¢ and effect e, respec-
tively. The temporal property of causal relationships is summarized as

Property 1
Temporal property of causal relationships

Pog.r(c,e) = TRUE if c is a cause and e is its effect.

Consequently, the pairs (¢, e) satisfying the temporal property must be se-
lected from the data stream for causality join query processing.

An important requirement of buffering is to remove a data element with the
lowest probability of being a cause or an effect. The temporal property implies
that the probability that (¢, e) is a causal pair decreases as t,(e) —t,(c) increases.
This can be described by the following assumption.

Assumption 1
For two data elements p and q in the sliding window W,

if ty(p) < ty(q), then

Prob(Pcg.r(p,x) = TRUE) < Prob(Pcg.r(q,x) = TRUE),

where x is a data element that arrives from the sensor network.

It may be impossible to prove this assumption, but it is intuitively reasonable.
And, this assumption means that we must remove the data elements in the sliding
window according to the order of the valid time, rather than FIFO. Based on this
observation, we propose a buffering policy for a sliding window, called FHFO
(First Happens First Out) as follows,

2296 Kwon O., Li K.-J.: Causality Join Query Processing ...

< t
19 17 14 13 12 | 1
t, 12 NS 1 4 10|
m p5 p4|p2|p3 p7‘
Effect data | Cause data FIFO policy

W= {p2, p3, p4, p5, p6}
Window W | and size(W) > ©
min(t(p)) = p3 then

fisr (i delete p3
< I t Missing result
2 19 117 14 13 | 12
t 12 12 18 11 4 |10
4 e

p5|p4|p2 p3‘ p3ip7

v
o] [

Effect data | Cause data

Window W

(a) FIFO buffering policy

ti
“ t

<
tt 19 12 17 13 1

14
t, 12 \41 10 8 4 |1
] [l
Effect data | Cause data FHFO policy
W ={p2, p3, p4, p5, p6}

Window W' | and size(W) > 8
min(ty(p)) = p2 then

fis |l delete p2
« 1 t
22 19014 12 17 | 13
¢ 12 21 10 8 |4
v [e

p6 | p4 | p3 | p5 | p2 p3|p7

Effect data |Cause data

Window W

(b) FHFO buffering policy

Figure 4: Comparison of FIFO and FHFO

Definition 2. FHFO (First Happens First Out)
The buffering policy FHFO for a sliding window W is defined as

FHFO(W) : remove p € W such that ¢,(p) = min({t,(¢)|g € W})

In comparison with FIFO, we reduce the omission of pairs, and consequently
improve the accuracy of the query results, as explained in figure 4.

Kwon O., Li K.-J.: Causality Join Query Processing ... 2297

In this example, we assume that the pair (p3,p7) is a causal pair. When a
new data element p6 arrives, p3 is removed from the window according to the
FIFO policy. When the next data element p7 arrives, p3 has been previously
removed, and consequently the pair (p3, p7) cannot be included in the result set.
Compared with FIFO, p3 remains in the window, and p2 is removed from the
window, since t,(p2) < t,(p3). This means that (p3,p7) may be included in the
query result.

4.2 Spatial Relationships in Causality

Spatial relationships between cause and effect are also an important property, as
well as temporal relationship. In general, spatial relationships are more compli-
cated than temporal relationships, and expressed in several manners, including
geometrical and topological relationships. However, in this paper, we focus on
a general and obvious spatial relationship, in terms of the distance between the
cause and effect.

TRUE if dist(p(c),p(e)) < ds,

Peo.s(c,e) =
ca.s(¢e) {FALSE otherwise

p(c) and p(e) represent the locations of cause and effect, respectively. If these
locations are too distant, they cannot be a cause and its effect. Note that the
distance is defined according to the type of space and application.

The spatial property implies that the probability that (c, e) is a causal pair
decreases as dist(p(c),p(e)) increases, and it can be described by the following
assumption,

Assumption 2
For two data elements p and q in the sliding window W,

if dist(p(p), p(x)) < dist(p(q), p(x)), then

Prob(Pcq.s(p,x) = TRUE) > Prob(Pcg.s(q,x) = TRUE),

where x is a data element that arrives from the sensor network.

While we can sort the data elements in W according to the valid time, we
cannot sort them according the position. In order to apply this assumption to
buffering of a sliding window, we sort them according to the distance from DSMS.
Although this distance may not fully reflect the spatial property for the buffering
policy, it could affect the sequence of the data stream. This spatial buffering pol-
icy, viz. FCFO, involves removing the data element p with the smallest dist(p, b),
where b is the location of DSMS. This policy is summarized as follows,

2298 Kwon O., Li K.-J.: Causality Join Query Processing ...

t

? 18 13 16 10 15
10 7 11 8 10
d 4 NS 3 3 1
d
pz | p4 ‘ p1 ‘ P3| FcFo policy diSt(Pﬁ b)=4'é',t(2b)=5
N ist(p2, b) =
Effect data | Cause data W={p1, p2, p3, p4, p5} \\\ ’/’ P
) and size(W) >0
Window W | min(dist(p, b)) = p3 then . ==
delete p3 P dist(p4, b) = 3
tr+7 ti < I’
3 t I dist(p3, b) =1
y 2 13i 18 16 10| 15 dist(05, b) =4 |
t, 15 7 0 11 8| 10 ’ ,’
d s 5:4 3 3|t I dist(p6, b) =8
IEnnE

Effect data | Cause data

Window W

Figure 5: Example of FCFO

Definition 3. FCFO (First Closely located First Out)
The buffering policy FCFO, for a sliding window W, is defined as

FCFO(W) : remove p € W such that
dist(p,b) = min({dist(q,b)|g € W}) or teur — t:(p) > tmaz.stay,

where .y and t;(p) implies the current time and transactional time of p.

In this policy, we remove the data element if tcyr — t(p) > tmas.stay. This
is to prevent the data element from remaining in the window indefinitely. This
may happen when a data element arrives from a sensor very distant from b. If a
data element remains in the window longer than ¢,,4z.stay, then we remove this
element. An example of this policy is explained in figure 5.

We suppose that sensors are located as shown in figure 5. When a new data
element p5 arrives, then the data element that has remained longer than t,,4z.stay
is removed. If no data element remains longer than #,,4z.stay, then the data
element with the smallest distance from DSMS, which is p3 in figure 5, is deleted
from the window.

4.3 Spatiotemporal Relationships in Causality

The third relationship between cause and effect is the spatiotemporal one. In
this paper, we only focus on the spatiotemporal relationship concerning the

Kwon O., Li K.-J.: Causality Join Query Processing ... 2299

< t

t, 10 1M1 6 7 8 |FHCFO policy
d 4/ N 15 3 lw={p1,p2 p3, p4 ps)
pd p4 | p3 ‘ p2 ‘ p1 |and size(W) > 6 o1] ’ _
. If t,(p)-4(q) < tp+Bp then—s] WPILPT)=3 <4
Effect data | Cause data p2 | t(pd)-t(p2)=2<4
Window W pi‘l
If min(dist(p, b)) =p1 > > dist(p1, b) < dist(p2,b)
ber |l then delete p1 LP |
« t
t, 15 i1t 6 7|8
d s 4 i3 1 5|3
EEE

Effect data Cause data

Window W

Figure 6: Example of FHCFO

propagation speed. Assuming that the propagation speed is v and the distance
between the cause and effect is s, then the effect occurs at least ¢, = s/v later
than the cause. This relationship is expressed as the spatiotemporal predicate

Peg.st(ce)

TRUE ift, <ty(e) —ty(c) < tp+0p,

P, c,e) =
ca.s1(c€) {FALSE otherwise

In this relationship, d p represents the maximum tolerance of the propagation
time from the cause and effect. This means that the event cannot be the effect
of the cause if it happens after a (¢, + dp) delay. Note that the spatiotemporal
predicate becomes a temporal predicate when ¢,=0.

Based on this result, we apply this relationship to the buffering policy. Sup-
pose that a new data element x arrives at DSMS. A data element p in W may be
the cause of the subsequent data elements, if ¢, (p) —t, () < tp+0dp. This means
that p must remain in W until the propagation delay with the given tolerance
has expired. After the time has expired, the probability of a causal relationship
decreases as time advances. Based on this result, we propose a buffering policy
as follows,

Definition 4. FHCFO (First Happens and Closely located First Out)
The buffering policy FHCFO for a sliding window W is defined as

2300 Kwon O., Li K.-J.: Causality Join Query Processing ...

FHCFO(W) : If (t,(p) — tu(z) < t,+dp), then
remove p € W such that dist(p,b) = min({dist(q,b)|qg € W})
Else
remove p € W such that t,(p) = min({t,(q)|lg € W})

This policy is in fact a hybrid of FHFO and FCFO. An example of this policy
is shown in figure 6.

In this example, we assume that ¢, + 6p=4 and the sensors are located as
shown in figure 5. When a new data element p5 arrives, we search p in W such
that t,(p) — t,(p5) < tp + dp. Since every data element in W satisfies this
condition, we select the data element with the minimum distance to DSMS. pl
is then removed, because dist(pl,b) is the minimum.

5 Empirical Analysis

In this section, we present the results of experiments for analyzing and comparing
the proposed methods and FIFO.

5.1 Experiment Setup

In order to perform the experiments, we prepared a data set with the following
parameters.

e Spatial extent: [0, 1]2

e Location of DSMS: (0.5, 0.5)

e Number of sensors: 100

e Number of data elements per sensor: 1000

e Data detection period per sensor: randomly generated by an exponential
distribution with a given expected value A\

e Delay per hop: randomly generated by an exponential distribution with a
given expected value Ao

e Type of sliding window: tuple-based

® tmaz.stay Of the FCFO: ny X avg(A t;)

Kwon O., Li K.-J.: Causality Join Query Processing ... 2301

Table 1: Parameters and their experimental values

Parameter|Description Range |
A1 Expected value of detecting period per sensor [0.1,0.15,...,0.5(sec)
Ao Expected delay per one hop 0.02,0.04,...,0.2(sec)
tp Minimal propagation time from cause to effect|0.2,0.4,...,2.0(sec)
dp Tolerance of t, 0.1,0.2,...,1.0(sec)
nw Size of sliding window 50,100,...,500

S Distance between cause and effect 0.2

We apply two exponential distributions using the expected value A1 and A
respectively, to generate realistic transactional and valid time for sensor streams.
There are generally two types of sliding window: tuple-based and time-based. The
objective of the proposed buffering methods is to ensure that the data elements
that satisfy the causality query remain within the limited window over the long-
term. This problem is particularly important when the limited sliding window
over-flows. For this reason, we focus on the tuple-based sliding window rather
than the time-based one. We set t;,42.stay 0f FCFO as the time when the window
fills up. The parameters and their ranges are shown in table 1.

We measured the recall rate of the query results, to check the accuracy of the
results. In this paper, the recall rate is defined as the number of pairs selected
from the data stream with the proposed buffering policies over the number of
all pairs satisfying the causality predicates.

Recall(P) = numgesuit(P)/numcausality
where P = {FIFO, FHFO, FCFO,FHCFO}

5.2 Results of experiments

We ran the experiments on Athlon 2.6GHZ Processor with 2.00GB RAM. We
performed several experiments with the parameters in table 1, to check the accu-
racy of each buffering policy. There are a number of combinations of parameter
values shown in table 1. We performed most experiments for the possible com-
binations. But we only present the significant results in this paper, excluding
results where the accuracy was nearly 100% for every method.

5.2.1 Experiments on sliding window ny

Figure 7 shows the recall rate of each buffering policy with respect to the size
of the sliding window ny in DSMS. The x- and y-axis represent the size of the

2302 Kwon O., Li K.-J.: Causality Join Query Processing ...

\1=0.1sec, \,=0.2sec, tp=0.4sec, 5,=0.1sec, s=0.2

Recall

50 100 150 200 250 300 350 400 450 500

Nw

(a) A2=0.2

Aq1=0.1sec, A,=0.1sec, tp=0.4sec, 5,=0.1sec, s=0.2

Recall

50 100 150 200 250 300 350 400 450 500
Nw

(b) A2=0.1

Figure 7: Recall of four policies according to window size ny,

sliding window ny and recall rate, respectively. It is obvious that the recall rate
increases as the window size increases. The experiments show that FHCFO is
up to 5% better than FIFO, and FHFO is up to 4% better than FIFO. FHCFO
has an accuracy of up to 7% better than FIFO, especially with a small sliding
window. This means that we must consider the spatiotemporal property of sensor
streams, to improve the accuracy of causality query processing in small device
with limited memory, such as mobile devices.

When the expected delay is small (A = 0.1, refer to figure 7(b)), the accuracy
approaches 100% with a small sliding window. This means that the probability
of the reverse of sequence is low, if there is no long transfer delay. This is clearly
shown by figure 9. In this experiment, FHCFO also shows better accuracy than
FIFO, especially with a small window. One important result from this experi-

Kwon O., Li K.-J.: Causality Join Query Processing ...

2303

ment is that the size of the sliding window greatly affects the accuracy. When the
size of window is insufficient, more than half the results may be omitted. And,
we observe that FCFO gives the worst accuracy in most of our experiments. This

means that we cannot improve the accuracy only via spatial considerations.

5.2.2 Experiments on detection period per sensor \;

A2=0.2sec, ny=300, t,=0.4sec, 5,=0.1sec, s=0.2
120

Recall

——FIFO
—=—FHFO |-
—&— FCFO
—%— FHCFQ
01 015 02 025 03 035 04 045 05
\i(sec)
(a) nw=300
A2=0.2sec, nyw=200, t,=0.4sec, 5,=0.1sec, s=0.2
100 [rommmmmmmmsmsms s e Rl
80 freeerrremenes g
]
é BQ [rmmemrn e e s s ol s s s e
% —e—FIFO
—#%— FHFO
20 frorrrr e s e —&— FCFO
—*%— FHCFO
01 015 02 025 03 035 04 045 05
\i(sec)

(b) nw =200

Figure 8: Recall of four policies according to detection period per sensor \;

Figure 8 shows the recall rate for each buffering policy with respect to the
expected value of the detection period per sensor A;. The x- and y-axis represent

the detection period A\; and recall rates, respectively. As the detection period

2304 Kwon O., Li K.-J.: Causality Join Query Processing ...

increases, the probability that the sequence of the data stream does not satisfy
that of the occurrences decreases. Figure 8 shows that FHCFO is up to 4%
better than FIFO with the large window (ny = 300, refer to figure 8(a)) and
3% Dbetter with the small window (ny = 200, refer to figure 8(b)). FHFO is
up to 3% better than FIFO as well. This is because FHCFO and FHFO control
the buffer using the valid time of the stream data, to avoid the reverse sequence
of the stream. In the case that ny exceeds 450, the accuracy of each method
approaches 100%, regardless of the detection period A;.

5.2.3 Experiments on transfer delay per hop A2

M=0.1sec, t,=0.4sec, dp=0.1sec, nw=300, s=0.2

Recall

002 004 006 0.08 01 012 014 0.16 0.18 02
\a(sec)

(a) nw=300

M=0.1sec, t,=0.4sec, 6p=0.1sec, nw=200, s=0.2

Recall

0.02 0.04 006 008 0.1 0.12 014 0.16 0.18 0.2
Ao(sec)

(b) nw =200

Figure 9: Recall of four policies according to transfer delay per hop Ag

Kwon O., Li K.-J.: Causality Join Query Processing ... 2305

Figure 9 shows the relationship between the recall rate of each buffering
policy and the delay per hop As. The x- and y-axis represent the delay per hop
A2 and recall rate, respectively. When the delay is short, the probability of the
reverse sequence of the stream is also low, and consequently this gives a high
accuracy. In the case that the delay Ay is long, where the probability of the
reverse sequence of the stream is high, FHCFO is nearly 4% better than FIFO
with the large window (nw = 300, refer to figure 9(a)) and 7% better with the
small window (nw = 200, refer to figure 9(b)). FHFO is also nearly 3% and 5%
better than FIFO with the respective windows. FHCFO shows better accuracy
than FHFO, because FHCFO includes spatial as well as temporal consideration.
And, we found a significant reduction in accuracy with a small window size (refer
to figure 9(b)). This means that we must set a sufficiently large sliding window
to avoid omitting results.

5.2.4 Experiments on effect propagation time ¢,

Figure 10 shows the relationship between the recall rate and effect propagation
time between the cause and effect. The x- and y-axis represent effect propagation
time ?,, and recall rate, respectively The decrease of the recall rate according to
the increase of the propagation time is as we expect. However the reduction in
accuracy is significant when the delay is large (refer to figure 10(a)). This means
that setting the size of the sliding window appropriately is very important to
avoid omitting results. We can verify this in figure 10(b), where the size of
window is sufficiently large. The reduction in accuracy is slight when the size of
window is sufficiently large. When nyy is sufficiently large, FHCFO is up to 5%
better than FIFO, and FHFO is up to 4% better than FIFO.

5.2.5 Experiments on the effect propagation tolerance dp

Figure 11 shows the relationship between the recall rate and effect propagation
tolerance §p. The x- and y-axis represent effect propagation tolerance ép and
recall rate, respectively. A high value of the effect propagation tolerance means
that the difference between t, (cause) and ¢, (effect) is large. Then, the probability
that the cause and effect are in the buffer at the same time is low, as shown in
figure 11. Both FHCFO and FHFO are up to 5% better than FIFO with a
sufficiently large window size, as shown in figure 11(b). However, FHFO does
not give better accuracy than FIFO, especially when the size of window is not
sufficiently large, as shown in figure 11(a) as well as figure 10(a). These results
show that maintaining a sufficiently large sliding window is very important for
controlling the sensor stream data.

2306 Kwon O., Li K.-J.: Causality Join Query Processing ...

M=0.1sec, A2=0.2sec, dp=0.1sec, nw=300, s=0.2

Recall

01 02 03 04 05 06 07 08 09 1
t,(sec)

(a) nw = 300

AM=0.1sec, A2=0.2sec, 8p=0.1sec, ny=450, s=0.2

B0 s+ rae s

Recall

01 02 03 04 05 06 07 08 09 1
to(sec)

(b) nw = 450

Figure 10: Recall of four policies according to the effect propagation time ¢,

5.2.6 Experiments on CPU time

In order to perform causality query processing in sensor streams, only data ele-
ments in the sliding window at the same time are valid . Therefore the processing
time of buffering methods is entirely related to the size of the sliding window.
We measured the CPU processing time of each buffering method according to
the size of the window ny (refer to figure 12). The x- and y-axis represent the
size of the sliding window ny and CPU time, respectively. It is obvious that the
CPU time increases as the size of window nyy increases. The CPU time of FCFO
FHCFO is larger than that of the others. This is because FCFO and FHCFO
calculate the distance between DSMS and each data element in the window,
to test the spatial constraints of causality query processing. However, the CPU

Kwon O., Li K.-J.: Causality Join Query Processing ...

M=0.1sec, A2=0.2sec, t,=0.4sec, ny=300, s=0.2

Recall

01 02 03 04 05 06 07 08 09 1
Op(sec)
(a) nw=300
AM=0.1sec, A2=0.2sec, t-=0.4sec, ny=450, s=0.2
——FIFO
—#— FHFO
L —4— FCFO
% —_HCEO
80

Recall

60

01 02 03 04 05 06 07 08 09 1
Op(sec)
(b) nw =450

time is negligible, and has no effect on real-time causality query processing.

e The FHFO policy is better than FIFO in most cases, but not always.

2307

Figure 11: Recall of four policies according to the effect propagation tolerance

In order to conclude the experiments, we summarize the important results
on the accuracy.

e The FHCFO policy consistently gives high accuracy causality join query
processing for data streams from sensors.

e The FHCFO policy shows better performance than FHFO. This means that

we must include both spatial and temporal considerations of a data stream,
to deal with causality query processing.

2308 Kwon O., Li K.-J.: Causality Join Query Processing ...

A1=0.1sec, A\,=0.2sec, tp=0.4sec, d,=0.1sec, s=0.2

0.6

——FIFO

—®—FHFO
051 —aFcro

—%~ FHCFO
0.4 frommmmmmem e

0.3 frreerssmnresissns sl

0.2 frreersnsmnrrssssnnsne sl

CPU time(10-%sec)

O Pt e e

50 100 150 200 250 300 350 400 450 500

Nw

Figure 12: CPU time of four policies according to the size of windowny,

e In some cases, the accuracy falls below 50%. In order to guarantee reasonable
accuracy, the size of the sliding window must be sufficiently large. But the
FHCFO policy guarantees more accurate results with a small sliding window.

e The FHCFO policy requires more CPU time than other buffering methods,
but it is still negligible, thus causality query processing can occur in real-
time.

6 Conclusion

Data streams collected from sensors contain a large volume of useful informa-
tion including causal relationships. In this paper, we dealt with causality join
query processing for data streams. To perform causality join query processing
on sensor streams, it is important to study temporal, spatial, and spatiotempo-
ral relationships between cause and effect in sensor streams. But the traditional
FIFO policy, which only considers the transactional time of the sensor data, is
not suitable for causality query processing, because of the limitations of the slid-
ing window and delay. In this paper, we carefully examined the temporal, spatial,
and spatiotemporal relationships, to satisfy causality join query processing, and
proposed new buffering policies for the sliding window based on the results. The
intensive experimentation performed in our study shows that the proposed poli-
cies are better than the traditional FIFO strategy. The contributions of our work
are summarized as follows;

Kwon O., Li K.-J.: Causality Join Query Processing ... 2309

e Causality join query processing on sensor streams. Causality query process-
ing can be used in various applications based on sensor networks.

e Definition of temporal, spatial, and spatiotemporal predicates. These pred-
icates do not deal with transactional time, but rather the valid time of the
sensor data, to clearly reflect the causal relationships between cause and
effect.

e Novel buffering policies based on temporal, spatial, and spatiotemporal con-
siderations. The experiments show that the spatiotemporal buffering policy
is better than FIFO.

Acknowledgements

This work was supported by the Brain Korea 21 Project, 2008, and the Ko-
rean Land Spatialization project.

References

[Arasu et al. 03] Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K.,
Motwani, R., Srivastava, U., Widom, J.: “Stream: The Standford Data Stream Man-
agement System”; IEEE Data Engineering Bulletin 4, 1 (2003).

[Babcock et al. 02] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: “Mod-
els and Issues in Data Stream Systems”; Proc. 2" ACM SIGMOD-SIGACT-
SIGART Symposium on Principles and Data Systems, ACM, NY (2002), 1-16.

[Chandrasekaran et al. 03] Chandrasekaran, S., Copper, O., Deshpande, A., Franklin,
M. J., Joseph M, H., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss,
F., Shah, M.: “Telegraphcq: Continuous Dataflow Processing for an Uncertain
World”; Proc. of the Conference on Innovative Data Systems Research (2003), 11-18.

[Ding et al. 03] Ding, L., Rundensteiner, E. A., Heineman, G. T.: “MJoin: A Metadata-
aware Stream Join Operator”; Proc. 2"¢ International Workshop on Distributed
Event-based Systems, ACM, NY (2003), 1-8.

[Freedman 04] Freedman, D. A.: “Graphical Models for Causation and the Identifica-
tion Problem”; Evaluation Review 28, 4 (2004), 267-293.

[Gedik et al. 07] Gedik, B., Wu, K., Yu, P. S, Liu, L.: “GrubJoin: An Adaptive, Mul-
tiway, Windowed Stream Join with Time Correlation-Aware CPU Load Shedding”;
IEEE Transactions on Knowledge and Data Engineering 19, 10 (2007), 1363-1380.

[Golab and Ozsu 03] Golab, L., Ozsu, M. T.: “Issues in Data Stream Management”;
ACM SIGMOD Record 32, 2 (2003), 5-14.

[Hammad et al. 03] Hammad, M. A., Aref, W. G., Elmagarmid, A. K.: “Stream Win-
dow Join: Tracking Moving Objects in Sensor-network Databases”; Proc. 15" In-
ternational Conference on Scientific and Statistical Database Management, IEEE
Computer Society, Washington, D.C., USA (2003), 75-84.

[Holland 86] Holland, P. W.: “Statistics and Causal Inference”; Journal of the Ameri-
can Statistical Association (1986).

[Khor et al. 05] Khor, I. J., Thomas, J., Jonyer, I.: “Sliding Window Protocol for Se-
cure Group Communication in Ad-Hoc Networks”; Journal of Universal Computer
Science 11, 1 (2005), 37-55.

2310 Kwon O., Li K.-J.: Causality Join Query Processing ...

[Kun-Lung et al. 07] Wu, K., Yu, P. S., Gedik, B., Hildrum, K. W., Aggarwal, C.
C., Bouillet, E., Fan, W., George, D. A., Gu, X., Luo, G., Wang, H.: “Challenges
and Experience in Prototyping a Multi-Modal Stream Analytic and Monitoring
Application on System S”; Proc. 33" International Conference on Very Large Data
Bases, VLDB Endowment (2007), 1185-1195.

[Li et al. 05] Li, H., Lee, S., Shan, M.: “Online Mining Changes of Items over Con-
tinuous Append-only and Dynamic Data Streams”; Journal of Universal Computer
Science 11, 8 (2005), 1411-1425.

[LTCCS 07] LTCCS (The Large Truck Crash Causation Study) (2007). http://www.
loc.gov/marc/specifications/spechome.html.

[Madden and Franklin 02] Madden, S., Franklin, M. J.: “Fjording the Stream: An Ar-
chitecture for Queries over Streaming Sensor Data”; Proc. 18" International Confer-
ence on Data Engineering, IEEE Computer Society, Washington, D.C., USA (2002),
555-566.

[Mouratidis and Papadias 07] Mouratidis, K., Papadias, D.: “Continuous Nearest
Neighbor Queries over Sliding Windows”; IEEE Transactions on Knowledge and
Data Engineering 19, 6 (2007), 789-803.

[Mozer 99] Mozer, M. C.: “An Intelligent Environment Must Be Adaptive”; IEEE In-
telligent Systems and Their Applications 14, 2 (1999) 11-13.

[Pearl 00] Pearl, J.: “Models, Reasoning and Inference”; Cambridge University Press
(2000)

[Qin and Lee 03] Qin, X., Lee, W.: “Statistical Causality Analysis of INFOSEC Alert
Data”; Proc. 6" International Symposium on Recent Advances in Intrusion Detec-
tion, LNCS 2820, Springer Berlin/Heidelberg (2003), 73-93.

[Silverstein et al. 00] Silverstein, C., Brin, S., Motwani, R., Ullman, J.: “Scalable Tech-
niques for Mining Causal Structures”; Data Mining and Knowledge Discovery 4, 2-3
(2000), 163-192.

[Tao and Papadias 06] Tao, Y., Papadias, D.: “Maintaining Sliding Window Skylines
on Data Streams”; IEEE Transactions on Knowledge and Data Engineering 18, 3
(2006), 377-391.

[Urhan and Franklin 00] Urhan, T., Franklin, M. J.: “XJoin: A Reactively-scheduled
Pipelined Join Operator”; IEEE Data Engineering Bulletin 23, 2 (2000), 27-33.
[Wu et al. 07] Wu, J., Tan, K., Zhou, Y.: “Window-oblivious Join: A Data-driven
Memory Management Scheme for Stream Join”; Proc. 19" International Confer-
ence on Scientific and Statistical Database Management, IEEE Computer Society,

Washington, D.C., USA (2007), 21-30.

[Wu et al. 09] Wu, J., Zhou, Y., Aberer, K., Tan, K.: “Towards Integrated and Efficient
Scientific Sensor Data Processing: A Database Approach”; Proc. 12" International
Conference on Extending Database Technology: Advances in Database Technology,
ACM, New York, USA (2009), 922-933.

[Zhou et al. 08] Zhou, Y., Aberer, K., Tan, K.: “Toward Massive Query Optimiza-
tion in Large-Scale Distributed Stream Systems”; Proc. 9" ACM/IFIP/USENIX
International Conference on Middleware, Springer-Verlag, New York, USA (2008),
326-345.

