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Abstract: This paper presents a Hammerstein-Wiener recurrent neural network (HWRNN) 
with a systematic identification algorithm for identifying unknown dynamic nonlinear systems. 
The proposed HWRNN resembles the conventional Hammerstein-Wiener model that consists 
of a linear dynamic subsystem that is sandwiched in between two nonlinear static subsystems. 
The static nonlinear parts are constituted by feedforward neural networks with nonlinear 
functions and the dynamic linear part is approximated by a recurrent network with linear 
activation functions. The novelties of our network include: 1) the structure of the proposed 
recurrent neural network can be mapped into a state-space equation; and 2) the state-space 
equation can be used to analyze the characteristics of the identified network. To efficiently 
identify an unknown system from its input-output measurements, we have developed a 
systematic identification algorithm that consists of parameter initialization and online learning 
procedures. Computer simulations and comparisons with some existing models have been 
conducted to demonstrate the effectiveness of the proposed network and its identification 
algorithm.  

Keywords: Hammerstein-Wiener model, recurrent neural networks, parameter initialization/ 
optimization 
Category: I.2.6, I.2.8, F.1.1 

1   Introduction 

In the past decade, block-oriented (BO) models, such as Hammerstein, Weiner or 
Hammerstein-Wiener models that consist of an interconnection of linear dynamic and 
nonlinear static subsystems, have been widely used in the problems of system 
identification. For example, Bai and Li [Bai and Li 04] introduced the convergence 
property of iterative Hammerstein systems in the system identification problem, and 
Jia et al. [Jia et al. 05] proposed a non-iterative identification procedure for a neuro-
fuzzy-based Hammerstein model to overcome the problems of initialization and 
convergence of the model parameters. Chen et al. [Chen et al. 97] utilized a Wiener 
model to identify chaotic systems. The dynamic element is represented by a simple 
linear plant, and the static nonlinear element is represented by a feedforward neural 
network. Arto et al. [Arto et al. 01] proposed a MIMO Wiener model for the 
chromatographic separation process. The dynamic linear component was replaced by 
Laguerre filters and the static nonlinear component was described as a feedforward 
neural network. Westwick and Kearney [Westwick and Kearney 01] used a 
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Figure 1: The block diagram of the Hammerstein-Wiener model. 

Hammerstein model to identify a stretch reflex dynamic system. Kalafatis et al. 
[Kalafatis et al. 05] successfully applied a Wiener model to the PH processes. Also, a 
Hammerstein-Wiener model was utilized to analyze the submarine detection by 
Abrahamsson et al. [Abrahamsson et al. 07]. There are three main advantages of these 
block oriented models. First, the feature of dynamics is involved essentially in the 
linear system, while the complexity of nonlinearity is contained only in the static 
nonlinear subsystems. Thus we can use less computation time and memory in system 
identification problem. Second, the well-developed dynamic linear or static nonlinear 
theory can be applied in the modeling procedure directly instead of using a complex 
dynamic nonlinear theory. Finally, control of these models is easy since a divide-and-
conquer strategy can be applied to these models. Among these BO models, the 
Hammerstein-Wiener model is expected to have better performance because it 
contains the advantages of both Hammerstein and Wiener models [Zhu 02]. 

 

In this paper, we proposed a Hammerstein-Wiener recurrent neural network for 
dynamic system identification. The static nonlinear parts of our proposed 
Hammerstein-Wiener model is constituted by feedforward neural networks with 
nonlinear functions, and the dynamic linear part is approximated by a recurrent 
network with linear activation functions. To identify an unknown system efficiently, 
our research effort has been directed to investigate the following subjects: 1) model 
selection, 2) model construction and initialization, and 3) model parameterization. In 
the model selection, we realized a conventional Hammerstein-Wiener model by a 
simple recurrent network whose structure can be mapped into a state-space equation. 
For the model construction and initialization, we developed a hybrid Hammerstein-
Wiener initialization algorithm (HHWIA) which includes an active region boundary 
initialization algorithm for the first static nonlinear subsystem; a frequency domain 
eigensystem realization algorithm (FDERA) for the dynamic linear subsystem; and 
the least-squares method for the second static nonlinear subsystem to reduce the 
model error. The HHWIA guarantees that the initial network can be operated within 
the range that is close to a local minimum in the error space. Thus, the learning 
convergence of the identification process can be enhanced. Finally, for the model 
parameterization, we derived a recursive recurrent learning algorithm based on the 
concept of the ordered derivatives to adapt the network to emulate the dynamic 
behavior of the unknown system. In this study, our objective is to develop a powerful 
system identification algorithm for the proposed structure which can accomplish 
system identification automatically and effectively. 

The organization of this paper is as follows. The structure of the proposed 
Hammerstein-Wiener recurrent neural network is presented in Section 2. In Section 3, 
we introduce the system identification algorithm that contains a model construction 
and initialization algorithm and a parameter learning algorithm in detail. Computer 
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Figure 2: (a) The topology of the proposed Hammerstein-Wiener recurrent neural 
network. (b) The block diagram of the proposed network. 

simulations and comparisons with some existing approaches on benchmark examples 
are provided in Section 4. Finally, conclusion is given in Section 5. 
 

2   Structure of Hammerstein-Wiener Recurrent Neural Network 

In this paper, we developed a novel recurrent neural network structure that realizes a 
Hammerstein-Wiener model. Figure 1 shows the block diagram of the proposed 
Hammerstein-Wiener model. The network consists of a linear dynamic subsystem that 
is sandwiched in two nonlinear static subsystems. The proposed network is a four-
layered recurrent neural network with three subsystems. The first nonlinear static 
subsystem is implemented by a simple feedforward neural network composed of an 
input layer and a hidden layer. The input layer is only responsible to transmit the 
input values into the network while the hidden layer provides a nonlinear 
transformation for mapping the input values into a state-space. The second subsystem 
is a linear dynamic model that contains a dynamic layer. This layer consists of a set of 
neurons with feedback connections embedded with time-delay elements. The dynamic 
layer integrates the information of the transformed input data from the hidden layer 
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and the state history from the memories of the dynamic layer to form the current state 
of the network. Finally, the third subsystem, a nonlinear static subsystem consisting of 
summation functions and nonlinear activation functions, is the output layer of the 
whole network. In the output layer, the state variables acquired from the dynamic 
layer are linearly combined by different weights and are then sent to a nonlinear 
transformation to obtain the network output. In our network, hyperbolic tangent 
sigmoid functions are chosen as the activation functions in both nonlinear static 
subsystems because the functions can provide dual polarity signals. Moreover, the 
invertible property of the functions can help us to obtain the desired outputs of the 
linear dynamic subsystem conveniently for estimating the initial parameters of the 
linear dynamic subsystem. According to the block diagram shown in Fig. 2(b), the 
structure in Fig. 2(a) can be expressed by the following state-space equations: 
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( 1) ( ) ( ) ,

     ( ) ( ( )),

k k k

k k

+ = +

=

x Ax BN u

y N Cx
 (1) 

where A∈ q×q, B∈ q×p, C∈ r×q, N1∈ p, N2∈ r, u = [u1, …, up]T is the input vector, 
y = [y1, …, yr]T is the output vector, and x = [x1, …, xq]T is the state vector. In addition, 
p and r are the dimensions of the input and output layers, respectively. q is the total 
number of the states which is equal to the number of neurons in the dynamic layer. 
The components of matrix A represent the degrees of the inter-correlations among the 
state variables. Matrices B and C stand for the weights of the inputs in the dynamic 
layer and the weights of state variable to output layer. Finally, N1 = [n1

1, …, np
1]T and 

N2 = [n1
2, …, nr

2]T are nonlinear function vectors in the first and second nonlinear 
static subsystem, respectively. We now summarize the equations of the proposed 
network as follows: 
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where w1
ji is the weight between the ith input neuron and the jth neuron in the hidden 

layer 1, w2
ji is the weight between the ith neuron of the hidden layer 2 and the jth 

output neuron, and dj is the bias of the jth hidden neuron. 
Since our network can be represented by a state-space equation as shown in (1), 

we can analyze the characteristics, such as the stability, controllability and 
observability of the proposed network without much effort. For instance, it is well 
known that the stability of a dynamic system is sensitive to time delay feedback term 
[Cao et al. 06]; i.e., the system matrix A in (1). If all of the eigenvalues of matrix A 
are located in the unit circle, then we can ensure the stability of the proposed network. 
Based on this advantage, we have developed a system identification algorithm for the 
proposed Hammerstein-Wiener recurrent neural network in the next section. 

3   System Identification Algorithm 

In this section, we will introduce a system identification algorithm for identifying an 
unknown system automatically by the proposed Hammerstein-Wiener recurrent 
neural network. This algorithm can automatically perform the identification task using 
the input-output measurements of the nonlinear system. For most of the studies on 
system identification using Hammerstein-Wiener models, researchers usually used 
multi-stage approaches to establish their models; i.e., take each subsystem as an 
individual problem which can be realized separately. Here, we adopted the concept of 
multi-stage approaches to develop an identification algorithm for our proposed 
Hammerstein-Wiener model. The proposed hybrid Hammerstein-Wiener initialization 
algorithm (HHWIA) consists of three parts: 1) an active region boundary initialization 
algorithm for first static nonlinear subsystem, 2) a frequency domain eigensystem 
realization algorithm (FDERA) for the dynamic linear subsystem, and 3) a least-
squares method for the second static nonlinear subsystem. Finally, we introduce a 
recursive parameter learning algorithm to optimize the overall system performance. 

3.1   Active Region Boundary Initialization Algorithm 

The underlying idea of the active region boundary initialization algorithm is to select 
the parameters so that all activation functions in the first static nonlinear subsystem 
can always be operated in an active region. With this objective, we need to find a 
better parameter set for the Hammerstein-Wiener recurrent neural network, because 
the change of the derivative in an active region is more significant than that in a 
saturation region. Furthermore, the active region boundary initialization algorithm can 
avoid the network getting stuck in the beginning of the recursive learning algorithm, 
and thus the network is expected to reach a desirable local minimum using the 
parameter optimization algorithm with fewer training epochs. 

This algorithm is used to search the parameters w1
ij and dj in (2) to ensure that the 

outputs of the neurons can be operated in an active region. Here, we follow the 
suggestion of Yam and Chow [Yam and Chow 01]: the active region is defined in the 
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region where the derivative is greater than one-twentieth of the maximum derivative. 
Also, we assume that the weights w1

ij are independent and identically distributed 
(i.i.d.) uniform random variables within the range [−w1

max, w1
max]. Then we can find 

the active region of hyperbolic tangent sigmoid functions should be: 
1

1 21( ) cosh ( ) 2.178.
20jm k

−−≤ =  (8) 

where ( )jm k is defined in (2). If ( )jm k is located out of the region, the training process 
will be stuck in the saturation region and thus the training speed will be slow. Now, in 
order to guarantee the neurons operate within the boundaries for all input data, the 
maximum possible Euclidean distance Dmax among input data points must be within 
the boundaries. With this property, we can derive the maximum value of w1

ji and dj in 
the following equations. 
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where 

( ) 10.5 , , ,
Tbound max min bound bound

pc c⎡ ⎤= − = ⎣ ⎦C u u …  (11) 

and umax and umin are the upper and lower bounds of the input data. Next, we shall 
construct the dynamic linear subsystem of the Hammerstein-Wiener recurrent neural 
network according to this static nonlinear subsystem. 

3.2   Frequency Domain Eigensystem Realization Algorithm 

After the first static nonlinear subsystem is initialized, we shall focus on the 
initialization of the dynamic linear subsystem. In this study, the frequency domain 
eigensystem realization algorithm (FDERA) will be applied to determine a reasonable 
system size for network and realize the corresponding state-space equation for the 
dynamic linear subsystem. This algorithm is an extension of the eigensystem 
realization algorithm (ERA) [Juang and Pappa 85] and is expected to improve the 
disadvantages of the ERA. In the early 1960s, because a lot of control approaches 
were developed based on state-space models, a large amount of algorithms were 
developed to solve the state-space realization problems. To name a few, Ho and 
Kalman [Ho and Kalman 65] introduced an important principle of minimum 
realization theory, which realizes a state-space model by the Hankel matrix 
constructed by a sequence of Markov parameters of the system. Next, the well-known 
ERA, proposed by Juang and Pappa [Juang and Pappa 85], was developed to realize 
the unknown system with noisy input-output measurements, and the algorithm 
provided accurate parameter estimation and system order determination for 
multivariable linear state-space models. But this algorithm suffers some 
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disadvantages. This is due to the ERA takes the pulse response of the system as its 
Markov parameters. For a complex system, it is very difficult to excite all the modes 
by a single pulse input. Even if we can excite the system by a single pulse input, the 
Markov parameters and Hankel matrices will become too large to compute its 
singular value decompositions [Medina et al. 94, Quan 94]. Moreover, for some 
systems, such as natural phenomena, we may not obtain their system pulse responses, 
and thus we cannot apply the ERA to these systems [Quan 94]. To overcome these 
deficiencies, Juang and Suzuki [Juang and Suzuki 88] combined the frequency 
response function with the concept of the ERA. The algorithm derives the Markov 
parameters based on the data of the frequency response function first, and then 
realizes the state-space model according to the constructed Hankel matrix. The 
proposed algorithm not only conquers the drawbacks of the original ERA but also 
inherits the properties of the ERA. The algorithm achieves better performance in 
realizing multivariable linear state-space models than the original ERA. Some 
advantages of the ERA in frequency domain are summarized as follows. First, the 
ERA in frequency domain can be applied to the systems which cannot obtain the 
pulse response by experiments. Second, the computation time for identification can be 
substantially reduced. A copious time sequence for the ERA can be substituted by 
finite data in frequency domain, thus the proposed Hankel matrix for the ERA in the 
frequency domain will be smaller than that of the original ERA. Finally, the system 
size can be determined by cutting off the relatively insignificant singular values of the 
Hankel matrix, and thus we can avoid using a trial-and-error approach to find a 
suitable size for the proposed model. 

This FDERA starts with the transformation of the original input-output patterns 
[u(k), y(k)] to another input-output patterns [û(k), y(k)] for dynamic linear subsystem, 
where û(k) is the output of the first static nonlinear subsystem. Note that the acquired 
input-output patterns [û(k), y(k)] can be regarded as the data with minimum 
nonlinearity, because the first static nonlinear subsystem is expected to eliminate the 
nonlinearity of the proposed unknown system. Thus we can use the patterns [û(k), 
y(k)] to obtain a linear state-space model for the dynamic linear subsystem. 
Subsequently, the patterns [û(k), y(k)] are mapped to the frequency domain to 
evaluate the spectral density, frequency response function and Markov parameters. 
The Fourier transformation will be applied to map the data from the time domain into 
the frequency domain. The transformations between the time domain input-output 
patterns [û(k), y(k)] and the frequency domain input-output patterns [U(ω), Y(ω)] are: 
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where l is the length of the time domain pattern. With the frequency domain input-
output patterns, we can evaluate the corresponding spectral density for the dynamic 
linear system, where the spectral density between the ith input and the jth input is 
defined as: 
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where U*(j)(ω) is the conjugate of U(j)(ω). Similarly, we can define the spectral density 
between the ith output and the jth input as: 
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Thus, for a MIMO system with m inputs and n outputs, we can calculate its 
frequency response function G(ω) with the spectral density: 
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(16) 

where Syu(ω) is an n × m matrix and Suu(ω) is an m × m diagonal matrix. Once we get 
the frequency response function of the system, we can compute the Markov 
parameters of the system simultaneously, where the Markov parameters M is the 
inverse Fourier transform of the frequency response function G: 

2( )

0
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j k
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ω
ω

∞

=
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Now, with these Markov parameters, we can form the Hankel matrix and perform 
the ERA to realize the proposed dynamic linear system. Before performing the ERA, 
we shall explain the meaning of Markov parameters in the proposed algorithm. The 
target representation of the dynamic linear subsystem can be written as: 

ˆ( 1) ( ) ( ),
     ( ) ( ),

k k k
k k

+ = +
=

x Ax Bu
y Cx
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where we assume that the initial conditions, x(0) = 0. The relationship between 
Markov parameters and the system is: 

[ ]1
1 2 ,τ

τ
−⎡ ⎤= =⎣ ⎦M CB CAB CA B M M M" "  (19) 

where τ is the length of Markov parameters. Next, to apply the ERA, we form a 
generalized Hankel matrix H(0) and a shifted Hankel matrix H(1) by the Markov 
parameters as follows: 
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where p and r are the number of system input and output and α and β are self-defined 
integers. Subsequently, the Hankel matrix H(0) is decomposed by the singular value 
decomposition: 

(0) ,T=H PΣQ  (22) 

where P and Q are orthogonal matrices and Σ is a diagonal matrix with its singular 
values σ1 ≥ σ2 ≥ … ≥ σφ > 0, which φ is the index in the diagonal matrix. Thus, we can 
determine the order of the linear system by examining the singular values of the 
Hankel matrix H(0). The first relatively large q singular values will be selected to 
compute the system matrix A, B, and C, and q is the order of the network. The 
decomposition of H(0) then becomes 

1 2 1 2
0

0

(0) [ ] ,
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q T Tq
q q q q q q q qT
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where Pq and Qq are the matrices formed by the first q columns of P and Q, and Σq = 
diag[σ1, σ2, …, σq]. Next, according to (19) and (22), we can obtain the following 
equalities: 
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and 
1 1 2 .T

q q
β −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦B AB A B Σ Q"  (25) 

Therefore, 
1 2 = first  rows of ,q qrC P Σ  (26) 

and 
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1 2 = first  rows of .T
q qpB Σ Q  (27) 

Based on (21), (24) and (25), the shifted Hankel matrix can be defined as 
1 2 1 2(1) .T

q q q q⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦H P Σ A Σ Q  (28) 

Consequently, we can obtain the realization of A by the following equation: 
1 2 1 2(1) .T

q q q q
− −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦A Σ P H Q Σ  (29) 

Finally, the system matrix A, B, and C in (26), (27), and (29) will be assigned to 
the network as the initial parameters of the Hammerstein-Wiener model. Next, with 
the constructed first static nonlinear subsystem and the dynamic linear subsystem, we 
will find a suitable parameter set for the second static nonlinear subsystem. 

3.3   Least-Squares Method 

We shall use a least-squares method to reduce the error of the proposed initialized 
network. Although the former two algorithms can help us closely mimic the property 
of the unknown dynamic system, there remain some errors between the desired output 
and the output of the former two subsystems. Thus, the objective of the second static 
nonlinear subsystem is to use a least-squares method to eliminate these errors. We 
first computed the output of the former two subsystems, x, and the patterns [x, y] are 
used to evaluate the parameters in the second nonlinear subsystem by: 

2 1( ) ,T T−=w x x x y  (30) 

where the acquired parameters w2 is an r × r matrix and are assigned to the weights of 
the second static nonlinear subsystem.  

After we use the least-squares method to search the parameters of the second static 
nonlinear subsystem, the HHWIA is completed and the network is established 
simultaneously. We now summarize the HHWIA as the following steps. 
Step 1. Construct the first static nonlinear subsystem by the active region boundary 

initialization algorithm. 
Step 2. Obtain the training input-output patterns [û(k), y(k)] for the linear dynamic 

subsystem through the output of first static nonlinear subsystem. 
Step 3. Evaluate the frequency response function of the dynamic linear subsystem. 
Step 4. Estimate the Markov parameters from the frequency response function in Step 

3. 
Step 5. Use the estimated Markov parameters to construct a generalized Hankel 

matrix H(0) and a shifted Hankel matrix H(1). 
Step 6. Find the decomposition of the generalized Hankel matrix H(0) by employing 

the singular value decomposition technique. 
Step 7. Estimate the system order according to the singular values in the diagonal 

matrix Σ. 
Step 8. Realize the matrices A, B and C by the matrix H(0) and H(1) via (20)-(29). 
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Step 9. Construct the second static nonlinear subsystem by the least-squares method 
according to the input-output patterns [x, y] of the second static nonlinear 
subsystem. 

Upon the completion of the HHWIA, we can establish our network to identify the 
unknown dynamic system with good performance. To closely identify the unknown 
system, we have developed a recursive learning algorithm to fine-tune the parameters 
of the network. 

3.4   Recursive Recurrent Learning Algorithm  

In this learning phase, we derived a recursive recurrent learning algorithm for the 
Hammerstein-Wiener recurrent neural network based on the concept of ordered 
derivatives [Werbos 74]. The proposed learning algorithm is expected to tune the 
whole network parameters and thus improve the overall network performance. To 
ease our discussion, the optimization target is characterized to minimize the following 
error function with respect to adjustable parameters (v) of a MISO network. 

2 21 1
2 2( , ) ( ( ) ( )) ( ) ,dE k y k y k e k= − =v  (31) 

where e(k) = yd(k) - y(k), and yd(k) and y(k) are the desired output of the unknown 
system and the actual output of the network. The parameter v represents all the 
adjustable parameters in the proposed network. The general update rule for all 
parameters is shown as follows: 

( ) ( 1) ( ).Ek k ξ
+∂= − + −
∂

v v
v

 (32) 

where ξ is the learning rate and ∂+E/∂v is the ordered derivative that considers the 
direct and indirect effects of changing a structure parameter. The adjustable parameter 
v contains six parameters in (2) to (7), aji, bjh, cij, w1

ji, w2
ji and dj. Now we derive the 

update rule of aji as an example. According to (32), the update rule of aji is derived as: 
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ji j ji

x kE k E k
a x k a

++ ∂∂ ∂=
∂ ∂ ∂

 Also, according to (4) to (7), and (31),we can 

obtain 

2

( ) 4( 1) ( ),
(exp( ) exp( ))j

j

E k c k e k
x s s

∂ = − −
∂ + −

 (34) 

and 

( ) ( ) ( ) ( 1)
,

( 1)
j j j j

ji ji j ji

x k x k x k x k
a a x k a

+ +∂ ∂ ∂ ∂ −
= +

∂ ∂ ∂ − ∂
 (35) 
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where ( ) ( 1)j ji ix k a x k∂ ∂ = − , ( ) ( 1) ( 1)j j jjx k x k a k∂ ∂ − = − and (1) (0)j ji ix a x∂ ∂ =  

when k = 1. Also, the value of j jix a+∂ ∂ is set to zero initially. This value will be 
accumulated recursively as the error signal generated in each training time step. 
  Similarly, the update rules for bjh, cij, w1

ji, w2
ji and dj can be obtained in the same 

process. Also, We shall set different the learning rates (that is ξ and ξac), for the 
parameters, of w1

ji, w2
ji and dj , and the parameters, aji, bjh, and cij, because the system 

is more sensitive to the parameters in the dynamic layer than the parameters in the 
hidden layer [Cao et al. 06]. 

4   Simulation Results 

To validate the performance of the Hammerstein-Wiener recurrent neural network 
with its identification algorithm, we have conducted extensive computer simulations 
on benchmark examples. Also, to demonstrate the merit of our network and 
identification algorithm, we have made some comparisons with other existing notable 
approaches.  

Example 1: Identification of nonlinear dynamic system. In this example, we first 
constructed a nonlinear plant with multiple time delays [Juang and Lin 99, Narendra 
and Parthasarathy 90]. 

2 2

( ) ( 1) ( 2) ( 1)( ( 2) ) ( )( 1) ,
1 ( 1) ( 2)

y k y k y k u k y k u ky k
y k y k

βα − − − − − ++ =
+ − + −

 (36) 

where the above plant will become unstable when β > 1. From the above equation, it 
is obvious that the proposed system output is affected by three previous outputs and 
two previous inputs. In [Narendra and Parthasarathy 90], all of these five variables are 
fed into the feedforward neural network to determine the next output y(k+1). Here, to 
provide a fair comparison with other existing models, we follow the method proposed 
by Juang and Lin [Juang and Lin 99]; that is, the nonlinear plant parameters (α, β) are 
assigned to (1, 1) and only u(k) and y(k) are used as the network inputs. Also, for the 
training data, an i.i.d. uniform sequence within [-2, 2] was generated as the input 
signal u(k) for the half of the training time steps, and a sinusoid signal, 1.05sin(πk/45), 
was subsequently given for the remaining training time steps. The training data are 
first used to initialize the proposed network and then used for training the network. 
Finally, the testing data is defined as  

( )

( )

( ) ( )
( )

sin / 25                      0< k <250,
1.0                                  250 k <500,

1.0                                500 k <750, 
0.3sin / 25 0.1sin / 32

    0.6sin /10         750 k <1000. 

k

u k
k k

k

π

π π
π

⎧

≤
= − ≤⎨

+

+ ≤

⎪
⎪
⎪

⎪
⎪
⎪⎩

 (37) 

To initialize the Hammerstein-Wiener recurrent neural network for identifying 
nonlinear dynamic system (36), we first constructed the first static nonlinear 
subsystem by the active region boundary initialization. The input series u(k) and y(k) 
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are transformed to the dynamic linear subsystem through the first static nonlinear 
subsystem. Subsequently, the FDERA is applied to determine the state-space equation 
in the dynamic linear subsystem according to the transformed input series û(k) and the 
output y(k). Moreover, according to the singular values evaluated from FDERA, only 
two neurons are constructed in the dynamic layer; thus, there are totally 17 parameters 
in the proposed network. Finally, the process of HHWIA focuses on determining the 
initial parameter of the second static nonlinear subsystem, where the least-squares 
method is used to reduce the overall error of the proposed initial network. After the 
HHWIA, the initialized network will only be trained for one epoch, i.e., 9000 time 
steps, with the learning rate ξac = 0.006 and ξ = 0.06. After the training, we can obtain 
the state-space model of the trained network as follows: 
 
 

 

( )( )

[ ]( )

1

2

0.0136 0.1637 0.4405 0.3553
( 1) ( ) ,

0.2891 0.4424 0.0878 0.1183

( ) 0.5860 0.0974 ( ) ,

x k x k N u k

y k N x k

− −⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
= −

 (38) 

where the eigenvalues of the system matrix A are (0.0775, -0.5334), which indicates 
our network is stable after the training. Also, to demonstrate the effectiveness of the 
HHWIA, we have compared the HHWIA with the random initialization method. In 
the random initialization method, all of the weights and biases are generated randomly. 

Model Before-Training 
MSE 

After-Training 
MSE Testing MSE 

Random 
Initialization 0.2081 0.0215 0.0134 

HHWIA 0.0906 0.0057 0.0026 

 
Table 1: Performance Comparisons of the Proposed Network with HHWIA and Random 

Initialization 
 

 

Figure 3: The learning curves of the proposed network with HHWIA (solid curve) and the 
random initialization (dotted curve). 
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Figure 3 shows the learning curves of the Hammerstein-Wiener recurrent neural 
network with HHWIA and the random initialization. From this figure, it is obvious 
that the HHWIA can provide better initial condition and faster learning convergence 
than those of the random initialization. Also, the comparisons between the HHWIA 
and the random initialization are made in Table 1. Table 1 shows the average MSEs 
of the networks initialized by the random initialization method and our proposed 
HHWIA. Comparing the before-training and after-training MSEs, we can see that our 
proposed HHWIA outperforms the random initialization method very well. This 
validates the effectiveness of the proposed HHWIA. Finally, Fig. 4 shows the overall 
desired nonlinear dynamic system output and the output of the proposed network 
whose testing means square error (MSE) is 0.0026. The performance comparison with 
some existing notable models is summarized in Table 2, where the models are 
represented by the name of authors and the published year. In this table, we can see 
that the proposed network with only 17 parameters achieves a better performance. 
 

Model No. of 
Parameters 

Training 
Time Steps 

Testing 
MSE 

Sastry et al., 1994  
[Sastry et al. 94] 81 62000 0.0752 

Juang and Lin, 1999  
[Juang and Lin 99] 30 9000 0.0441 

Proposed Network 17 9000 0.0026 

Table 2: Performance Comparisons of Hammerstein-Wiener Recurrent Neural Network with 
Other Existing Notable Models for Example 1 

Plant Variations Caused by 
α and β (1,1) (1.03, 0.9) (1.07, 0.8) (1.11, 0.7) (1.15, 0.6) 

MSE for Testing Data (38) 0.0026 0.0027 0.0033 0.0041 0.0050 

Table 3: Robustness Tests for Plant Variations 
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Figure 4: The desired output of nonlinear dynamic system (gray curve) and the output of 
proposed network (black curve) for Example 1. 

To demonstrate the robustness of our identified network expressed in (38) to plant 
variations, we vary the plant parameters α from 1 to 1.15 and β from 1 to 0.6 in (36). 
Table 3 shows the results of the robustness tests. From this table, we can see that our 
network and its identification algorithm can tolerate the plant variations by a little 
sacrifice in system performance. 

Example 2: Box and Jenkins time series. The data of Box and Jenkins time series 
was the recordings of a gas combustion process and have been widely used for 
evaluating the identification capability of networks [Kukolj and Levi 04, Wang and 
Rong 99]. The dataset contains 296 input-output samples, where the input variable is 
the input flow u(k), and the output variable is the concentration of CO2, y(k), which is 
influenced by ten variables y(t-1),…, y(t-4), u(t-1), …, u(t-6) [Kukolj and Levi 04]. 
Here, to conduct fair comparisons with other existing models, we followed the 
method of Kukolj and Levi [Kukolj and Levi 04]; that is, only u(k-4) and y(k-1) are 
used as the network inputs. The data are separated into two sets, the first 100 samples 
are used for the initialization and optimization of the proposed network, while the 
remaining 196 samples are used for testing. 

The HHWIA is used to initialize the network and suggests that the system order of 
the dynamic subsystem is 2. Thus, after the initialization, we can obtain a model with 
a total 17 parameters. After we train the network for 100 epochs, we can acquire the 
state-space equation of the proposed network: 

( )( )

[ ]( )

1

2

0.2979 0.6124 0.6692 0.3225
( 1) ( ) ,

0.7500 0.0393 0.6008 0.1341

( ) 0.7881 0.8629 ( ) ,

x k x k N u k

y k N x k

⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
= −

 (39) 

where the eigenvalues of the system matrix A are (0.8585, -0.5214), which means the 
system is stable after the training. Figure 5 depicts the desired output and the output 
of the trained proposed network. The MSE of the testing set is 0.1055. Also, the 
comparisons between the proposed network and some existing models are 
summarized in Table 4. From this table, we can confirm the effectiveness of our 
network and its identification algorithm. 

2561Chen Y.-C., Wang J.-S.: A Hammerstein-Wiener Recurrent Neural Network ...



 

Figure 6: The desired Sunspot time series (gray curve) and the output of Hammerstein-
Wiener recurrent neural network (black curve) for Example 3. 

 

Model No. of 
Inputs 

No. of 
Parameters 

Testing 
1 

NMSE 

Testing 2 
NMSE 

Training 
Epochs 

Chellapilla and Rao, 1998 
[Chellapilla and Rao 98] - 16 0.113 0.1895 - 

Jeong and Lee, 2000  
[Jeong and Lee 00] 12 104 0.061 0.205 10000 

Soltani, 2002  
[Soltani 02] 10 - 0.076 0.23 - 

Oh et al., 2005  
[Oh et al. 05] 3 - 0.099 0.168 - 

Proposed Network 3 25 0.0799 0.167 10 

Table 5: Performance Comparisons of Hammerstein-Wiener recurrent neural network with 
Other Existing Notable Models for Example 3 

 
Example 3: Sunspot Time Series. The sunspot time series contains the annual 

average number of sunspots during the period from 1700 to 1979. The series is used 
to do the one-step-ahead prediction and the series is divided into one training set 
(years 1700-1920), and two testing sets (years 1921-1955 and years 1956-1979) 
[Chellapilla and Rao 98, Jeong and Lee 00, Oh et al. 05, Soltani 02]. To show the 
effectiveness of the proposed network and its identification capability, we followed 
the method in [Oh et al. 05] and only used three past inputs u(k-1), u(k-2), and u(k-3) 
to predict the next output y(k), instead of using 10 past inputs to predict the next 
output [Soltani 02]. According to the input-output patterns, the HHWIA constructs a 
Hammerstein-Wiener recurrent neural network with two neurons in its dynamic layer 
and 25 parameters in the network. Similar to Example 1, the proposed network was 
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trained for 10 epochs with the learning rate ξac = 0.006 and ξ = 0.06 and the 
corresponding state-space equation for the network is  

( )( )

[ ]( )

1

2

0.0475 0.5277
( 1) ( )

0.4238 0.4608

0.6754 0.2229 0.4589
              ,

0.1898 0.0368 0.1627

( ) 0.6584 0.3720 ( ) .

x k x k

N u k

y k N x k

⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
− − −⎡ ⎤

+ ⎢ ⎥−⎣ ⎦
= −

 (40) 

Figure 6 shows the prediction result of the sunspot time series. The normalized 
mean square error (NMSE) of the first testing set is 0.0799 and the second testing set 
is 0.1673. The performance comparisons with some existing models are summarized 
in Table 5. From this Table, we can confirm that our network is capable of making 
good predictions with fewer inputs, parameters and training epochs. From the above 
simulations, we can see that the proposed approach performs very well; however, our 
approach may fail to identify the system orders for some chaotic systems or systems 
with high nonlinearity, and thus may not perform as well as the above examples. 

5   Conclusion 

A novel Hammerstein-Wiener recurrent neural network with a systematic 
identification algorithm has been proposed for nonlinear dynamic system 
identification problems. The advantages of our approach include: 1) the integration of 
three subsystems into a simple connectionist neural network whose output can be 
expressed by a nonlinear transformation of a linear state-space equation, and 2) the 
systematic identification algorithm, including the HHWIA and the recursive recurrent 
learning algorithm, is capable of constructing the proposed network within a compact 
structure for a dynamic nonlinear system. Computer simulations on benchmark 
examples have validated the effectiveness and superiority of our proposed network 
and its identification algorithm. This study has reached a limited success; however, 
there still have some questions regarding how to ensure the efficiency and simplicity 
of stable learning algorithm, how to use the stable learning algorithm in a general 
block-oriented network, and how to balance between stability and performance, etc. 
These research problems deserve further investigations. 
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