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Abstract: This paper presents a programming language that facilitates the implemen-
tation of coordination artifacts which in turn can be used to regulate the behaviour
of individual agents. The programming language provides constructs inspired by social
and organisational concepts. Depending on the scheduling mechanism of such con-
structs, different operational semantics can be defined. We show how one such possible
operational semantics can be prototyped in Maude, which is a rewriting logic software.
Prototyping by means of rewriting is important since it allows us both to design and
to experiment with the language definitions. To illustrate this, we define particular
properties (like enforcement and regimentation) of the coordination artifacts which we
then verify with the Maude LTL model-checker.
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1 Introduction

One of the challenges in the design and development of multi-agent systems is to
coordinate and control the behaviour of individual agents. Some approaches aim
at achieving this objective by means of exogenous coordination artifacts, which
are designed and built in terms of concepts such as action synchronisation and re-
source access relation [Arb04, GZ97, RVO07]. Other approaches advocate the use
of social and organisational concepts (e.g., norms, roles, groups, responsibility)
and mechanisms (monitoring agents’ actions and sanctioning mechanisms) to or-
ganise and control the behaviour of individual agents [FGM03, Dig03]. Yet other
approaches aim at combining these by proposing organisation-based coordination
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artifacts, i.e., coordination artifacts that are designed and developed in terms
of social and organisational concepts [DGMT08, TDM08, BvdT08, ERRAA04,
HSB02]. In such combined approaches, a multi-agent system is designed and
developed in terms of an organisation artifact and the constituting individual
agents. In order to ensure that the developed multi-agent systems achieve their
overall design objectives and satisfy some global desirable properties, one has
to verify the organisation artifact that constitutes the coordination and control
part of the multi-agent system.

In this paper we focus on two aspects. We first introduce a programming
language that is designed to facilitate the implementation of norm-based organ-
isation artifacts. Such artifacts refer to norms as a way to signal when violations
take place and sanctions as a way to respond (by means of punishments) in the
case of violations. Basically, a norm-based artifact observes the actions performed
by the individual agents, determines their effects in the environment (which is
shared by all individual agents), determines the violations caused by performing
the actions, and possibly, imposes sanctions. We make the remark that, though
the concepts we introduce are simple, a couple of design decisions need to be
considered. We can, for example, describe different scheduling strategies for the
application of norms. From these strategies, if implemented directly into the lan-
guage, different semantics arise, each characterising a different type of normative
system. For instance, in the extreme case of an “autocratic agent society” each
action an agent performs is followed by an inspection of the normative rules
which might be applicable. At the other extreme, in a “most liberal society” the
monitoring mechanism runs as a separate thread, independent of the executions
of the agents. Furthermore, while in autocratic societies certain correctness (in
terms of safety) properties are modelled by definition, this is no longer the case
in liberal societies with infinite executions. This implies that we need to con-
sider additional fairness constraints in order to ensure the well-behaviour of the
systems. Such technicalities we discuss in more detail in Section 3.

The second aspect we approach is the verification of normative multi-agent
systems in a rewrite-based framework. More precisely, in Section 4, we prototype
the normative language in Maude [CDE+07], a rewriting logic software. As it is
already stated in [SRM07], translating operational semantics in Maude is direct.
This means that the Maude implementation is faithful to the semantics. The
fact that there is no gap between semantics and implementation implies that
there is no need to implement an interpreter in order to execute the semantics
of the designed language. The benefit is considerable since experimenting with
different semantics becomes a relatively easy process, making thus Maude suit-
able for “rapid prototyping”. This is also due to the fact that Maude supports
user-definable syntax and, in consequence, it offers prototype parsers for free.
Another advantage of using Maude is that it provides not only a semantical
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but also logical framework in which many logics can be encoded. Furthermore,
rewriting logic offers a suite of generic tools for formal analysis, for instance, the
Maude theorem prover and LTL model-checker. The latter completes, in fact,
our verification framework since we use it in order to model-check whether re-
quirements like enforcement and regimentation of norms are modelled in given
instances of normative multi-agent systems.

2 Programming Normative Multi-Agent Systems

In this section, we present a programming language that facilitates the imple-
mentation of multi-agent systems with norms. Individual agents are assumed
to be implemented in a programming language, not necessarily known to the
multi-agent system programmer, who is assumed to have a reference to the (ex-
ecutable) program of each individual agent. Most noticeably, it is not assumed
that the agents are able to reason about the norms of the system since we do
not make any assumptions about the internals of individual agents.

Agents perform their actions in an external environment which is part of
and controlled by the organisation. The initial state of an environment can be
implemented by means of a set of facts. In order to implement the effects of the
external actions of individual agents in the environment, we propose a program-
ming construct by means of which it can be indicated that a set of facts should
hold in the environment after an external action is performed by an agent. As ex-
ternal actions can have different effects when they are executed in different states
of the environment, we add a set of facts that function as the pre-condition of
those effects. In this way, different effects of one and the same external action can
be implemented by assigning different pairs of facts, which function as pre- and
post-conditions, to the action. The multi-agent system organisation determines
the effect of an action by the following mechanism: if the pre-condition holds in
the current state of the environment (the execution of the action is enabled),
then the state is updated with the facts which represent the post-condition.

We consider norms as being represented by counts-as rules [Sea95], which as-
cribe “institutional facts” (e.g. “a violation has occurred”) to “brute facts” (e.g.
“the agent is in the train without a ticket”). In our framework, brute facts con-
stitute the factual state of the multi-agent system organisation, which is repre-
sented by the environment (initially set by the programmer), while institutional
facts constitute the normative state of the multi-agent system organisation. The
institutional facts are used with the explicit aim of triggering system’s reactions
(e.g. sanctions). As claimed in [GDM07] counts-as rules enjoy a rather classical
logical behaviour. In our framework, the counts-as rules are implemented as sim-
ple rules that relate brute and institutional facts. It is important to note that
the application of counts-as rules corresponds to the triggering of a monitoring
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mechanism since it signals which changes have taken place and what are the
normative consequences of the changes.

Sanctions can also be implemented as rules, but follow the opposite direction
of counts-as rules. A sanction rule determines what brute facts will be brought
about by the system as a consequence of normative facts. Typically, such brute
facts are sanctions, such as fines. Notice that in human systems sanctions are
usually brought about by specific agents (e.g. police agents). This is not the case
in our computational setting, where sanctions necessarily follow the occurrence
of a violation if the relevant sanction rule is into place (comparable to automatic
traffic control and issuing tickets). It is important to stress, however, that this is
not an intrinsic limitation of the system since we do not aim at mimicking human
institutions but rather providing the specification of computational systems.

2.1 Syntax

In order to represent brute and institutional facts in our normative multi-agent
system programming language, we introduce two disjoint sets of first-order atoms
<b-atoms> and <i-atoms> to denote these facts. Moreover, we use <ident> to
denote a string and <int> to denote an integer. Figure 1 presents the syntax
of the language in EBNF notation. A normative multi-agent system program
N-MAS_Prog starts with a non-empty list of clauses, each of which specifies one
or more agents. The list of agent specifications is preceded by the keyword
’Agents:’. Unlike in non-normative MAS programming language, we do not
specify the agents’ access relation to environments in these clauses because we
assume that the access relations can and should be specified by means of norms
and sanctions. In each clause, <agentName> is a unique name to be assigned to
the individual agent that should be created, <agentProg> is the reference to the
(executable) agent program that implements the agent, and <nr> is the number
of such agents to be created (if the number is greater than one, then the agent
names will be indexed by a number). After the specification of individual agents,
the initial state of the environment is specified as a set of first order literals de-
noting brute facts. The set of literals is preceded by the keyword ’Facts:’. The
effects of an external action of an individual agent are specified by triples con-
sisting of the action name, together with two sets of literals denoting brute facts.
The first set specifies the states of the environment in which the action can be
performed, and the second set specifies the effect of the action that should be
accommodated in the environment. The list of the effects of agents’ external ac-
tions is preceded by the keyword ’Effects:’. A counts-as rule is implemented by
means of two sets of literals. The literals that constitute the antecedent of the rule
can denote either brute or institutional facts, while the consequent of the rules
are literals that denote only institutional facts. This allows rules to indicate that
a certain brute or institutional fact counts as another institutional fact. For ex-
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〈N-MAS Prog〉 = "Agents:" ( 〈agentName〉 〈agentProg〉 [〈nr〉] )+

"Facts:" 〈bruteFacts〉
"Effects:" { 〈effect〉 }
"Counts-As rules:" { 〈counts-as〉 }
"Regimentation rules:" { 〈regimentation〉 }
"Sanction rules:" { 〈sanction〉 };

〈bruteFacts〉 = 〈b-literals〉 ;
〈effect〉 = "{"〈b-literals〉"}" 〈actName〉 "{"〈b-literals〉"}" ;
〈counts-as〉 = 〈literals〉 "=>" 〈i-literals〉 ;
〈regimentation〉 = 〈b-literals〉 "=> viol⊥" ;
〈sanction〉 = 〈i-literals〉 "=>" 〈b-literals〉 ;
〈agentName〉 = 〈ident〉 ;
〈agentProg〉 = 〈ident〉 ;
〈nr〉 = 〈int〉 ;
〈actName〉 = 〈ident〉 ;
〈b-literals〉 = 〈b-literal〉 {"," 〈b-literal〉} ;
〈i-literals〉 = 〈i-literal〉 {"," 〈i-literal〉} ;
〈literals〉 = 〈literal〉 {"," 〈literal〉} ;
〈literal〉 = 〈b-literal〉 | 〈i-literal〉 ;
〈b-literal〉 = 〈b-atom〉 | "not" 〈b-atom〉 ;
〈i-literal〉 = "viol⊥" | 〈i-atom〉 | "not" 〈i-atom〉 ;

Figure 1: The EBNF syntax of normative multi-agent programs

ample, speeding is a violation of traffic law (institutional fact), but this violation
together with not paying your fine in time (brute fact) is considered as another
violation (institutional fact). The list of counts-as rules is preceded by the key-
word ’Counts-As rules:’. A regimentation rule is a special type of counts-as
rule. The difference is that the antecedent is defined only on brute facts and the
consequent is a specifically designated literal viol⊥. Regimentation rules are
normative enabling conditions on top of external actions. They function as one
look-ahead step, specifying when the execution of an action leads to a forbidden
state of the environment, thus preventing it from taking place. The list of reg-
imentation rules is preceded by the keyword ’Regimentation rules:’. Finally,
the list of sanction rules can be specified in a normative multi-agent program.
The antecedent of a sanction rule consists of literals denoting institutional facts
while the consequent of a sanction rule consists of literals denoting brute facts.
The list of sanction rules are preceded by the keyword ’Sanction rules:’.

Figure 2 presents a normative multi-agent system program that implements
a small part of a train system. The program creates from the specification file
passager_prog one agent called psg. The Facts, which implement brute facts,
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determine the initial state of the shared environment. In this case, the agent is not
at the platform (not at_platform(psg)), nor in the train (not in_train(psg))
and has no ticket (not ticket(psg)). The Effects indicate how the environ-
ment can advance in its computation, for instance, psg performing enter when
not at the platform, results in psg being at the platform (with or without a
ticket). The Counts-As rules determine the normative effects for a given state
of the multi-agent system. In our case, the only count-as rule states that being
at the platform without having a ticket is a specific violation (viol_ticket(X)).
The rule functions as an enforcement mechanism [GDM07] and it is based on
the idea of responding to a violation such that the system returns to an accept-
able state. However, there are situations where stronger requirements need to be
implemented, for example, where it is never the case that psg enters the train
without a ticket. This is what we call regimentation and in order to implement
it we consider the literal viol⊥(X) by means of regimentation rules. The oper-
ational semantics of the language ensures that viol⊥(X) can never hold during
any run of the system. Intuitively, regimentation can be thought of as placing
gates blocking an agent’s action. Finally, the aim of Sanction rules is to de-
termine the punishments that are imposed as a consequence of violations. In the
example the violation of type viol_ticket(X) causes the sanction fined(X,25)

(e.g., a 25 EUR fine).

Agents:
psg passenger prog 1

Facts:
not at platform(psg), not in train(psg), not ticket(psg)

Effects:
{not at platform(X)} enter(X) {at platform(X)}
{not ticket(X)} buy ticket(X) {ticket(X)}
{at platform(X), not in train(X)}

embark(X) {not at platform(X), in train(X)}
Counts-As rules:

at platform(X), not ticket(X) => viol ticket(X)
Regimentation rules:

in train(X), not ticket(X) => viol | (X)
Sanction rules:

viol ticket(X) => fined(X,25)

Figure 2: An example of a Normative MAS file

2.2 Operational Semantics

The state of a normative multi-agent system consists of the state of the external
environment, the normative state of the organisation, and the states of individ-
ual agents. We recall that we abstract away from the internal configuration of
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individual agents. The language of design is left to the choice of the programmer
as long as it allows reasoning on the observable actions executed by agents.

Definition 1 Normative MAS Configuration. Let Pb and Pn be two dis-
joint sets of first-order atoms denoting brute and normative facts (including
viol⊥), respectively. Let Ai denote the configuration of individual agent i. The
configuration of a normative multi-agent system is defined as 〈A, σb, σn〉 where
A = {A1, . . . , An}, σb is a consistent set of ground literals from Pb denoting
the brute state of the multi-agent system, and σn is a consistent set of ground
literals from Pn denoting the normative state of the multi-agent system.

Before presenting the transition rules for specifying possible changes between
normative multi-agent system configurations, we need to define the ground clo-
sure of a set of literals (e.g., literals representing the environment) under a set
of rules (e.g., counts-as or sanction rules1) and the update of a set of ground
literals (representing the environment) with another set of ground literals based
on the specification of an action’s effect. Let l = (Φ(x) ⇒ Ψ(y)) be a rule, where
Φ and Ψ are two sets of first-order literals in which sets of variables x and y

occur. We assume that y ⊆ x and that all variables are universally quantified
in the widest scope. In the following, condl and consl are used to indicate the
condition Φ and the consequent Ψ of l, respectively. Given a set R of rules and
a set X of ground literals, we define the set of applicable rules in X as:

ApplR(X ) = { ( Φ(x) ⇒ Ψ(y) )θ | Φ(x) ⇒ Ψ(y) ∈ R ∧ X |= Φθ },
where θ is a ground substitution.

The ground closure of X under R, denoted as ClR(X ), is inductively defined
as follows:

Base : ClR
0 (X) = X ∪ (

⋃
l∈ApplR

(X)
consl)

Inductive Step : ClR
n+1(X) = ClR

n (X) ∪ (
⋃

l∈ApplR
(ClR

n (X))
consl).

We note that such a computation does not always reach a fixpoint. The discussion
might be slightly technical and thus we postpone it to Appendix A.

In order to update the environment of a normative multi-agent system with
the effects of an action performed by an agent, we use the specification of the
action effect as implemented in the normative multi-agent system program, unify
this specification with the performed action to bind the variables used in the
specification, and add/remove the resulting ground literals of the post-condition
of the action specification to/from the environment. In the following, we assume
the function unify returns the most general unifier of two first-order formulae.
1 Counts-as and sanctions are usually considered as being context dependent. Our

framework can be extended by considering both rule types in a non-monotonic way
capturing their context dependence.
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Definition 2 Update Operation. Let x, y, and z be sets of variables whose
intersections may not be empty, ϕ(y) α(x) ψ(z) be the specification of the effect
of action α, and α(t) be the actual action performed by an agent, where t consists
of ground terms. Let σ be a ground set of literals, unify(α(x), α(t)) = θ1, and
σ |= ϕ(t)θ1θ2 for some ground substitution θ2. Then, the update operation is
defined as follows:

update(σ, α(t)) = σ \ {Φ | Φ ∈ ψ(z)θ1θ2 ∧ NegLit(Φ)}
∪ {Φ | Φ ∈ ψ(z)θ1θ2 ∧ PosLit(Φ)}

where NegLit(Φ) (resp. PosLit(Φ)) denotes a predicate which is true if and only
if Φ is a negative (resp. positive) literal.

In this definition, the variables occurring in the post-condition of the action
specification are first bound and the resulted ground literals are then used to
update the environment. We note that negative literals from the post-condition
(i.e., NegLit(φ)) are removed from the environment and positive literals (i.e.,
PosLit(φ)) are added to it. This is in order to have that the update operation
preserves the consistency of the set of brute facts.

We do not make any assumptions about the internals of individual agents.
Therefore, for the operational semantics of normative multi-agent system we

assume Ai
α(t)−→ A′

i as being the transition of configurations for individual agent
i. Given this transition, we can define a new transition rule to derive transitions
between normative multi-agent system configurations.

Definition 3 Transition Rule. Let 〈A, σb, σn〉 be a configuration of a norma-
tive multi-agent system. Let Rc be the set of counts-as rules, Rr

2 be the set
of regimentation rules, Rs be the set of sanction rules, and α be an external
action. The transition rule for the derivation of normative multi-agent system
transitions is defined as follows:

Ai
α(t)−→ A′

i σ′
b = update(σb, α(t)) ApplRr (σ′

b) = ∅
σ′

n = ClRc(σ′
b) \ σ′

b S = ClRs(σ′
n) \ σ′

n σ′
b ∪ S �|= ⊥

〈A, σb, σn〉 → 〈A′, σ′
b ∪ S, σ′

n〉
(ACS)

where Ai ∈ A, A′ = (A \ {Ai}) ∪ {A′
i}.

The transition rule (ACS) captures the effects of performing an external
action by an individual agent on both external environments and the normative
state of the multi-agent system. First, the effect of α(t) on the environment σb

is computed. Then, the updated environment is used, on the one hand, to check
whether no forbidden state (viol⊥ -state) is reached, and on the other hand, to
determine the new normative state of the system by applying all counts-as rules
2 We consider Rc and Rr as separate sets in order to model regimentation more easily.
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to the new state of the environment. Finally, possible sanctions are added to
the environment state by applying sanction rules to the new normative state of
the system. Note that the external action of an agent can be executed only if it
does not result in a state containing viol⊥ (which is equivalent to the fact that
ApplRr (σ′

b) is empty). This captures exactly the regimentation of norms. Thus,
once assumed that the initial normative state does not include viol⊥, it is easy
to see that the system will never be in a viol⊥ -state.

2.3 Normative Properties

We would like to make sure that our language definitions fulfil some properties.
Namely, we would be interested in whether the semantics of the language models
the enforcement and the regimentation of norms. We recall that enforcing a norm
means that if a violation occurs then a corresponding sanction is applied while
regimenting a norm means that the associated violation can never occur.

We can express such concepts as LTL properties, enforcement(c, s) = condc∧
(consc → conds) → ♦conss and regimentation(r) = �¬condr. On the one hand,
the definition of enforcement says that for an arbitrary counts-as rule c with a
valid antecedent (condc is true) and for a sanction rule s with the antecedent
being implied by the consequence of c (consc → conds) it is the case that the
sanctioning will eventually be applied (♦conss). On the other hand, the definition
of regimentation says that for an arbitrary rule r from Rr (consr = viol⊥) it is
never the case that the antecedent condr holds.

It is not difficult to see that the transition (ACS) models regimentation.
This is because the execution of an action is performed only when the set of
applicable regimentation rules is empty (ApplRr(σ′

b) = ∅), which means that
no regimentation rule r has a true antecedent (¬condr). However, this is not
the case for enforcement and the reason is that the application of a sanction can
enable the application of a previously not enabled counts-as rule. This is possible
since the antecedents of counts-as are defined on both brute and normative facts.
Thus though there is no change in the set of normative facts, the change in brute
facts (due to the application of sanctions) might have as a follow-up the enabling
of new counts-as rules. We note however, that such scenarios are more peculiar,
even hard to implement, and that in general, the semantics models for most
scenarios not only regimentation but also enforcement. How we can change the
transition (ACS) such that it always models enforcement and other possible
variations on the semantics are discussed in the next section.

3 From Totalism to Liberalism in Operational Semantics

The transition rule (ACS) gives an operational semantics which characterises
agent societies implementing almost Orwell’s like “1984” societies, where each
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single step is being supervised and faults are being handled accordingly. We say
“almost” since there might arise cases when mistakes are being left unpunished,
thus the societies are not “completely” vigilant. Consider a traffic scenario where
an actor drives through the red light, thus violating the traffic law. Consequently,
a fine is applied. Assume that this is done automatically by withdrawing a certain
amount of money from the actor’s account. It is then the case that not enough
money in the account results in a new violation. This is under the supposition
that the bank has a regulation specifying that the client must not go below a
certain debt level, otherwise the client is added to the bank’s black list and has to
pay an additional fee. We note that this latter sanction rule can never be applied
when the system runs with respect to the transition (ACS). What happens is
that after computing the closure of normative facts under counts-as rules and
respectively the closure of brute facts under sanctions, the system changes state
with no further check for new counts-as rules which are enabled by the update
of brute facts. In the new state, by the definition of the semantics, previous
normative facts play no role (this makes sense in most cases).

From the above scenario it follows that in certain circumstances the appli-
cation of a sanction enables the execution of a new counts-as rule which should
be taken into consideration. In order to implement such a requirement, we need
to consider, with respect to the applicable norms and sanctions, the sequences
defined on σn, σb satisfying the following recurrent relations:

σni = σni−1 ∪
⋃

l∈ApplRc (σbi
)
consl

σbi = σbi−1 ∪
⋃

l∈ApplRs (σni−1 )
consl,

where i ≥ 1, σn0 = σn∪
⋃

l∈ApplRc (σb)
consl and σb0 = σb. We denote by σ∗

n (resp.
σ∗

b ) the limit of the sequence σni (resp. σbi). We note that simply considering
the closure ClRc∪Rs is not enough since we cannot distinguish anymore between
brute and normative facts. It is now the case that the transition (ACS) becomes:

Ai
α(t)−→ A′

i σ′
b = update(σb, α(t)) ApplRr (σ′

b) = ∅ σ∗
b �|= ⊥

〈A, σb, σn〉 → 〈A′, σ∗
b , σ∗

n〉
(A(CS)∗)

which always models enforcement. However, there is also a price to pay since,
as we have already mentioned, when computing fixpoints, limits of recurrent
sequences in this case, one might run into the problem of non-termination. From
the same technicality reasons, further details can be found in Appendix A.

What is distinctive to both (ACS) and (A(CS)∗) is that the application of
normative rules is performed in the same step with the execution of actions. We
might wonder what would have happened if this had been performed separately.
It would have been then the case that we obtained new variations on the op-
erational semantics of normative multi-agent systems. A key concept is, thus,
the scheduling of the monitoring mechanism, i.e., the application of normative
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rules. To further illustrate this, we need to think of traces. We understand traces
as sequences of observables with respect to the executions of a system. By ob-
servables we mean actions and normative rules. Let us consider the symbols α,
γ ∈ 2Rc and ς ∈ 2Rs , denoting an arbitrary action, the set of counts-as rules
which are applicable after the execution of α, and correspondingly the set of
sanctions which are applicable after the execution of the counts-as rules from
γ. We can now consider that the traces of normative multi-agent systems are
regular expressions defined on α, γ, ς. For example, the regular expression which
characterises the traces of normative multi-agent systems running with respect
to the transition (ACS) is (αγς)∗, after one action, apply all valid counts-as rules
and then all valid sanction rules. On the other hand, when running with respect
to (A(CS)∗) the traces are of the form (α(γς)∗)∗.

Scheduling strategies give us the freedom to think of more relaxing societies.
We show that such societies can be not only imagined but also implemented.
For example, it suffices to consider a strategy where the application of sanctions
is performed in a transition distinct from the one corresponding to the execu-
tion of actions and counts-as rules. This implies that the sanctioning mechanism
runs independently, as a separate thread. We would then implement a more lib-
eral society characterised by the scheduling strategy ((αγ)∗ς)∗. The illustrative
situation is that of a video camera monitoring in a supermarket, or of a radar
measuring the velocity of the passing vehicles. In such cases, sanctions do not
necessarily follow immediately after the recording of an infraction. To make this
transparent from the semantics means that the rule (ACS) splits into two rules:

Ai
α(t)−→ A′

i σ′
b = update(σb, α(t)) ApplRr (σ′

b) = ∅
σ′

n = ClRc(σ′
b) \ σ′

b γ = ApplRc(ClRc(σ′
b))

〈A, σb, σn〉 αγ−→ 〈A′, σ′
b, σn ∪ σ′

n〉
(AC)

S = ClRs(σn) \ σn σb ∪ S �|= ⊥ ς = ApplRs(ClRs(σn))

〈A, σb, σn〉 ς→ 〈A, σb ∪ S, σn〉
(S)

where γ = ApplRc(ClRc(σ′
b)) (resp. ς = ApplRs(ClRs(σn))) represents the set

of all counts-as (resp. sanctions) that have been applied during the computation
of the closure set ClRc(σ′

b) (resp. ClRs(σn)).
Even closer to human societies, we could imagine a scheduling strategy

(α∗γ∗ς∗)∗. The corresponding transition rules are as follows:

Ai
α(t)−→ A′

i σ′
b = update(σb, α(t)) ApplRr(σ′

b) = ∅
〈A, σb, σn〉 α→ 〈A′, σ′

b, σn〉
(A)

N = ClRc(σb) \ σb γ = ApplRc(ClRc(σb))

〈A, σb, σn〉 γ→ 〈A, σb, σn ∪ N〉
(C)
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S = ClRs(σn) \ σn σb ∪ S �|= ⊥ ς = ApplRs(ClRs(σn))

〈A, σb, σn〉 ς→ 〈A, σb ∪ S, ∅〉
(S)

We shortly note that, as it has been pointed out in the case of the transition
rule (ACS), regimentation is modelled in both transitions (AC) and (A) by means
of checking for the emptyness of the set of applicable regimentation rules.

We make the remark that ((αγ)∗ς)∗ cannot be subsumed by (α∗γ∗ς∗)∗. This
is because in the latter case a scenario like taking without paying a product from
a supermarket with no camera supervision and bringing it back is possible, while
in the first case it is not.

We note that when the systems run with respect to (ACS) we know, by defi-
nition, that faults are being handled. This is no longer the case when considering
the scheduling policies for liberal infinite behaviours. In order to guarantee such
requirements (faults are being handled) we need an auxiliary notion of fairness.
One way to approach the problem of fairness is as introduced in [MP92]:

Definition 4 Fairness [MP92]. A trace is fair with respect to a transition a if
it is not the case that a is continually enabled beyond some position, but taken
only a finite number of times.

Such a fairness condition can be easily expressed as an LTL property. This
makes it simple to verify (by means of model-checking), for example, that en-
forcement is modelled by the fair traces of a normative multi-agent system.

In our case, fairness means that an active (enabled) normative rule is even-
tually applied, or equivalently, the transitions (C), (S) are eventually taken. In
order to define it, we basically need only two future LTL operators, ♦ (eventu-
ally) and � (always):

fairness =
∧

l∈R

(♦� enabled(l) → �♦ taken(l))

where R is the set of normative rules. The predicates enabled and taken are
defined on normative multi-agent system configurations as:

〈A, σb, σn〉 |= enabled(l) iff l ∈ ApplR(σ)

〈A, σb, σn〉 |= taken(l) iff 〈A, σb, σn〉 ls→ 〈A, σ′
b, σ

′
n〉 ∧ l ∈ ls ∧ ls = ApplR(σ)

where σ = σ′
b = σb and ls is the set of applicable counts-as when l is a counts-as

rule (a (C) transition has been applied), resp. σ = σ′
n = σn and ls is the set of

applicable sanctions when l is a sanction (a (S) transition has been applied).
One might wonder why not, instead of having four possible operational se-

mantics, defining a most general one (the latter, in our case, corresponding to
the strategy (α∗γ∗ς∗)∗) and only mention the other three (((αγ)∗ς∗)∗, (αγς)∗,
(α(γς)∗)∗) as more restrictive, particular cases. This is because we want to im-
plement the strategies directly into the semantics. Transition rules by themselves
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say nothing about the order in which they should be executed. When more of
them are active, one is chosen among them in a non deterministic way. Indeed,
when it comes to building an interpreter for a given language a decision needs
to be taken with respect to the choice of the scheduling algorithm (for exam-
ple a Round-robin one) which would implement a given strategy (like (αγς)∗).
However, we avoid such choices by incorporating the strategies in the semantics.
Being more accurate and precise when defining the semantics has the advantage
of avoiding possible future errors in the implementations.

4 Prototyping Normative Multi-Agent Systems in Maude

In this section we describe a rewrite-based framework for prototyping the lan-
guage3 for normative multi-agent systems. The main purpose and justification
of our effort is verification. We want to be able to reason, on the one hand,
about concrete normative multi-agent systems, and on the other hand, about
the general semantics of the language. However, in this paper, we will deal only
with properties of concrete normative multi-agent systems.

Rewriting logic is a logic of becoming and change, in the sense that it reasons
about the evolution of concurrent systems. This follows from the fact that rewrite
theories (the specifications of the rewriting logic) are defined as tuples 〈Σ, E, R〉,
where Σ is a signature consisting of types and function symbols, E is a set of
equations and R is a set of rewrite rules. The signature describes the states of the
system, while the rewrite rules are executions of the transitions which model the
dynamic of the system. Furthermore, the rules are intrinsically non-deterministic
and this makes rewriting a good candidate for modelling concurrency.

We choose Maude as a rewriting logic language implementation since it is
well-suited for prototyping operational semantics and since it comes with an LTL
model-checker, on which we heavily rely in verification.

In what follows, we briefly present the basic syntactic constructions which are
needed for understanding the remain of this section. Please refer to [CDE+07] for
complete information. Maude programs are called modules. A module consists of
syntax declaration and statements. The syntax declaration is called signature and
it consists of declarations for sorts, subsorts and operators. The statements are
either equations, which identify data, or rewrite rules, which describe transitions
between states. The modules where the statements are given only by equations
are called functional modules, and they define equational theories 〈Σ, E〉. The
modules which contain also rules are called system modules and they define
rewrite theories 〈Σ, E, R〉. Modules are declared using the keywords fmod (mod)
<ModuleName> is <DeclarationsAndStatements> endfm (endm). Modules can
import other modules using the keywords protecting, extending, including
3 For the sake of simplicity, we restrict to the definitions introduced in Section 2
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followed by <ModuleName>. Module importation helps in building up modular
applications from short modules, making it easy to debug, maintain or extend.

We now detail syntax declaration. The first thing to declare in a module is
sorts (which give names for data types) and subsorts (which impose orderings
on sorts). Take, for example, the declaration of a sort Agent as a subsort of
AgentSet:

sorts Agent AgentSet . subsort Agent < AgentSet .

We can further declare operators (functions) defined on sorts (types) using
the construction:

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort> [<OperatorAttributes>] .

where k is the arity of the operator. Take, for instance, the following operator
declarations:

ops a1 a2 : -> Agent . op _*_ : AgentSet AgentSet -> AgentSet
[comm assoc] .

where the operators a1, a2 are constants (their arity is 0) of sort Agent and the
associative and commutative operator * is a binary function in mixfix form (using
underscores) with the meaning of a “union” operator. Variables are declared
using the keyword var, for example var A : Agent represents the declaration
of a variable A of sort Agent. Terms are either variables, or constants, or the
result of the application of an operator to a list of argument terms which must
coincide in size with the arity of the operator.

Equations are declared using one of the following constructions, depending
on whether they are meant to be conditional:

eq [<Label>] : <Term-1> = <Term-2> .
ceq [<Label>] : <Term-1> = <Term-2> if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i is a condition which can be in turn either an ordinary equa-
tion t = t’, a matching equation t := t’ (which is true only if the two terms
match), or a Boolean equation (which contain, e.g., the built-in (in)equality =/=,
==, and/or logical combinators such as not, and, or). As an illustration the
conditional equation labeled init defines the constant agS as a set with two
elements a1, a2 in the case the elements are distinct:

op agS : -> AgentSet . ceq [init] : agS = a1 * a2 if a1 =/= a2 .

Rewrite rules can also be conditional. Their declaration follows one of the
patterns:

rl [<Label>] : <Term-1> => <Term-2> .
crl [<Label>] : <Term-1> => <Term-2> if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i can involve equations, memberships (which specify terms as having
a given sort) and other rewrites. Take, for instance, the rule step:
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crl [step] : agS => a’ * a2 if a1 => a’ .

which states that agS changes if a1 is rewritten to a’, where we consider a’ as
a constant of sort Agent.

4.1 Executable Normative Multi-Agent Systems

We prototype the language for normative multi-agent systems in two modules:
the first one, which we call SYNTAX, is a functional module where we define the
syntax of the language, and the latter, which we call SEMANTICS, is a system
module where we implement the semantics, namely the transition rule (ACS).

We recall that the state of a normative multi-agent system is constituted
by the states of the agents together with the set of brute facts (representing
the environment) and normative facts. The following lines, extracted from the
module SYNTAX, represent the declaration of a normative multi-agent system and
the types on which it depends:

sorts BruteFacts NormFacts NMasState .
op <_,_,_> : AgentSet BruteFacts NormFacts -> NMasState .

The brute (normative) facts are sets of ground literals. The effects are imple-
mented by means of two projection functions, pre and post which return the
enabling condition and the effect of a given action executed by a given agent:

op pre : Action Qid -> Query .
op post : Action Qid -> LitSet .

Norms or sanctions are implemented similarly. Both have two parameters, an
element of type Query representing the conditions, and an element of type LitSet
representing the consequent. Take, for example, the declaration of norm(s):

sorts Norm Norms . subsorts Norm < Norms .
op norm : Query LitSet -> Norm .
op _*_ : Norms Norms -> Norms [assoc comm] .

The effect of a norm is to update the collection of normative facts whenever its
condition matches either the set of brute facts or the set of normative facts:

op applyNorms : Norms Norms BruteFacts NormFacts NormFacts
-> NormFacts .

ceq applyNorms(NS, norm(Q, E) * NS’, BF, NF, OldNF) =
applyNorms(NS, NS’, BF, update(NF, E), NF)
if matches(Q, BF ; NF) =/= noMatch .

where NS is an auxiliary variable which we need in order to compute the transitive
closure of the normative set:

ceq applyNorms(NS, empty, BF, NF, OldNF) =
applyNorms(NS, NS, BF, NF, NF) if NF =/= OldNF .

eq applyNorms(NS, empty, BF, NF, NF) = NF [owise] .
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meaning that we apply the norms until no normative fact can be added anymore.
The application of norms entails the application of sanctions which, in a

similar manner, update the brute facts when their conditions match the set of
normative facts:

ceq applySanctions(SS, sanction(Q, E) * SS’, NF, BF, OldBF) =
applySanctions(SS, SS’, NF, update(BF, E), BF)
if matches(Q, NF) =/= noMatch .

Please note that we do not explain here the constructions Action, Query, LitSet,
update, matches. This has already been done in [AdB08] where we need such
constructions for prototyping in Maude a BDI agent language which we call
Belief Update programming Language (BUpL). For a better insight, we provide
a basic web application illustrating the implementation at http://homepages.
cwi.nl/~astefano/agents/bupl-org.php.

In a normative multi-agent system certain actions of the agents are mon-
itored. Actions are defined by their pre- (enabling) and their post-conditions
(effects). We recall the basic mechanism which takes place in the normative
multi-agent system when a given monitored action is executed. First the set of
brute facts is updated with the literals contained in the effect of the action.
Then all possible norms are applied and this operation has as result an update
of the set of normative facts. Finally all possible sanctions are applied and this
results in another update of the brute facts. The configuration of the norma-
tive multi-agent system changes accordingly if and only if it is not the case
that violationReg, the literal we use to ensure regimentation (corresponding
to viol⊥ in Section 2), appears in the brute facts. Consequently, the semantics
of the transition rule (ACS) is implemented by the following rewrite rule:

crl [ACS] : < A * AS, BF, NF > =>
< A’ * AS, BF’; BF’’, NF’ >

if A => [Act] A’
/\ S := matches(pre(Act, Id), BF) /\ S =/= noMatch
/\ BF’ := update(BF, substitute(post(Act, Id), S))
/\ NF’ := setminus(applyNorms(nS, nS, BF’, NF, NF), BF’)
/\ BF’’ := setminus(applySanctions(sS, sS, BF’, NF’, BF’), NF’)
/\ matches(violationReg(Id), NF’) == noMatch .

where nS, sS are constants defined as the sets of instantiated norms, sanctions.
Please note that we implement negation as failure and this implies that our
update function preserves the consistency of the set of facts.

Given the above, we can proceed and describe how we can instantiate a
concrete normative multi-agent system. We do this by creating a system module
PSG-NMAS where we implement the constructions specified in Figure 2:

mod PSG-NMAS is
including SEMANTICS .
including BUPL-SEMANTICS .
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op psg : Qid BpMentalState -> Agent .
eq pre(enter, X) = ~ at-platform(X) .
eq post(enter, X) = at-platform(X) .
eq pre(buy-ticket, X) = ~ has-ticket(X) .
eq post(buy-ticket, X) = has-ticket(X) .
eq pre(embark, X) = at-platform(X) /\ ~ in-train(X) .
eq post(embark, X) = in-train(X) /\ ~ at-platform(X) .
ops n r : Qid -> Norm .
eq [norm] : n(X) = norm(at-platform(X) /\ ~ has-ticket(X),

ticket-violation(X)) .
***( eq [reg] : r(X) = norm(in-train(X) /\ ~ has-ticket(X),

violationReg(X)) . )
op s : Qid -> Sanction .
eq [sanction] : s(X) = sanction(ticket-violation(X),

pay-fee-ticket(X)) .
op nmas-state : Qid -> NMasState .
eq [init] : nmas-state(X) = < psg(X), nil, nil > .

endm

The operator psg associates an identity to a BUpL agent. We stress that us-
ing BUpL agents is only a choice. Any other agent prototyped in Maude can be
used instead. The actions being monitored are enter, buy-ticket, embark, with
obvious pre- and post-condtions. The equation norm defines a norm which intro-
duces a ticket violation and the equation sanction introduces a punishment in
the case of a ticket violation. The equation reg defines the normative enabling
condition for the action enter, making it impossible for psg to be in the train
without a ticket. However, it will not be taken into consideration because it is
in a comment block and the reason will be clear in the next section. We further
consider that psg has a plan which consists of a sequence of only two actions,
enter; embark, meaning he tries to embark without a ticket. This gives rise to
special situations where model-checking turns out to be useful, as we will see in
Section 4.2.

4.2 Model-Checking Normative Multi-Agent Systems

In order to model-check the system defined in the module PSG-NMAS we create a
module PSG-NMAS-PREDS where we implement the predicates regimentation and
enforcement as introduced in Section 2. Creating a new module is justified by
the fact that state predicates are part of the property specification and should
not be included in the system specification. In such a module we need to im-
port two special modules LTL and SATISFACTION. Both are contained in the
file model-checker.maude which must be loaded in the system before model-
checking. We further need to make NMasState a subsort of the sort State which
is declared in SATISFACTION. This enables us to define predicates on the states
of a normative multi-agent system. A state predicate is an operator of sort Prop.
The operator op |= : State Formula -> Bool is used to define the seman-
tics of state predicates.
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mod PSG-NMAS-PREDS is
including PSG-NMAS .
protecting SATISFACTION .
extending LTL .
subsort NMasState < State .
op fact : Lit -> Prop .
ceq < AS, BF, NF > |= fact(L) = true if in(L, BF) = true .
ops enforcement regimentation : Qid -> Prop .
eq [enf] : enforcement(X) =

fact(at-platform(X)) /\ not fact(has-ticket(X))
-> <> fact(pay-fee-ticket(X)) .

eq [reg] : regimentation(X) =
[] (fact(in-train(X)) -> fact(has-ticket(X))) .

endm

The state predicate fact(L) holds if and only if there exists a ground literal
L in the set of brute facts of the normative multi-agent system. We need this
predicate in order to define the properties enforcement and regimentation, which
we are interested in model-checking. The equation enf defines the predicate
enforcement such that it holds if and only if any agent X which is at the platform
and has no ticket (fact(at-platform(X)) /\ not fact(has-ticket(X)) can
be entailed from the brute facts) will eventually pay a fee. On the other hand,
the equation reg defines the predicate regimentation such that it holds if and
only if it is always the case that any agent in the train has a ticket.

If we model-check whether enforcement holds for an agent identified by a1:

Maude> red modelCheck(nmas-state(’a1), enforcement(’a1)) .
reduce in PSG-NMAS-PREDS :

modelCheck(nmas-state(’a1), enforcement(’a1)) .
result Bool : true

we obtain true, thus the normative structure enforces a1 to pay a fee whenever
it enters without a ticket. This is not the case for regimentation, the result of
model-checking is a counter-example illustrating the situation where the agent
enters the train without a ticket. However, if we remove the comment of the
equation labelled reg in PSG-NMAS the application of the regimentation rule
results in the update of the normative facts with violationReg(’a1) and, in
consequence, the rule ACS is not applicable and nmas-state(’a1) is a deadlock
state. The result of the model-checking is the boolean true, since in-train(’a1)
is not in the brute facts. We note that trivially regimentation would hold if the
plan of psg consisted in buying a ticket before embarking.

5 Related Works

As we have tried to point out in the introduction, the design of programming
languages that support the implementation of normative systems is an important
issue. However, it is still conceptually problematic. In this paper we focus on a

2646 Astefanoaei L., Dastani M., Meyer J.-J., de Boer F.S.: On the Semantics...



programming language for normative multi-agent systems based on constitutive
norms, which we basically implement by regimenting and sanctioning. Though
penalties can be imposed by the sanctioning mechanism, rewards are outside
the scope of the current paper. We stress that we do not consider neither regu-
lated norms nor deontic logic aspects. The interested reader is invited to check
[BvdTV07, BvdT08, BBvdT08, GR08a, GR08b] for comprehensive discussions.
For a game-theoretic approach we refer to the works from [BvdT07, GGvdT08].

The heart of our paper is a programming language which was first de-
scribed in [DGMT08]. This work is currently extended in [TDM09]. The work
from [ADMdB08] adds to [DGMT08] the verification support. Here, we extend
[ADMdB08] with the analysis of different scheduling strategies for the appli-
cation of norms. We emphasise that all our effort is justified by the need to
perform verification. We note that the verification of multi-agent systems has al-
ready been considered in [BFVW06, BJvdM+06, RL07]. However, what we aim
at is a general encompassing framework for designing (by prototyping), executing
(by simulating) and verifying (by model-checking, testing) of (normative) multi-
agent systems. As illustrated in the introduction, Maude is a good candidate for
such a framework. Furthermore, Maude has already been used for prototyping
executable semantics, please see, for an extensive survey, the work presented in
[SRM09]. With respect to agent-oriented languages, we mention that the ini-
tiative of modelling agents (a propositional variant of 3APL [HdBvdHM99]) in
Maude is taken in [vRdBDM06]. This work has been extended to BUpL agents
[AdB08], which implicitly provides a verification for BUpL multi-agent systems
where coordination is achieved by means of action synchronisation. In this paper
we focus on the verification of normative multi-agent systems. We consider that
these two directions are orthogonal, in fact, they characterise different levels of
coordination: (channel-based) action coordination is at the low level while the
instrumentation of norms is at a higher level. This, however, does not mean that
both approaches cannot be integrated in the same framework. On the contrary,
we think it is beneficial to have different coordination mechanisms as alternatives
provided in a general framework represented by the rewriting system Maude.

6 Conclusions

We have presented a programming language for implementing normative multi-
agent systems. In such a language one can implement organisational artifacts like
norms and sanctions. These are meant to monitor and control the behaviour of
individual agents. We have further discussed possible semantic variations which
arise when different strategies for scheduling the monitoring and sanctioning
mechanism are taken into consideration. We have then prototyped the opera-
tional semantics of the programming language for normative multi-agent systems
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in Maude, a rewriting logic software. This has the advantage of making it possi-
ble to model-check whether requirements like enforcement or regimentation are
modelled in an implemented normative multi-agent system.

With respect to semantics, as future research, we will study more complex
examples from the literature on temporal deontic logic. We have already exper-
imented at a basic level with contrary-to-duty examples from deontic logic. One
such example is the Chisholm set4. However, our approach is classical. Conse-
quently, the result of applying, for example the scheduling strategy (α(γς)∗)∗5

to an agent doing nothing more than informing the agent-neighbours that she
comes, we obtain that, as one might expect, the agent commits two violations:
one for not going, and another for not going and telling. Different proposals for
dealing with Chisholm paradox like temporal deontic logic [vdTT98] are subject
to future work.

Another topic for future research is how rewrite strategies [EMOMV07] can
be used to compare various implementation strategies. Thanks to rewriting logic,
strategies themselves are specified declaratively by means of rewrite rules at the
meta-level. They guide at one level up how the rewrite rules are applied at the
object-level. We can use strategies in order to “instrument” the normative rules.
In this way, we can experiment with different scenarios before commiting to a
particular semantics. For example, by means of rewrite strategies we can analyse
whether two concrete normative systems have the same behaviour with either
((αγ)∗ς)∗ or (α∗γ∗ς∗)∗.

With respect to verification, so far, we have applied model-checking to given
instances of normative multi-agent systems. However, it is also in our concern
to define more generic properties which characterise normative multi-agent sys-
tems at a more abstract (higher) level. Further extensions of the language will
be designed in the same idea which we have promoted in this paper, namely
counter-pointed by verification in the Maude framework. Another direction for
future work focuses on the integration of organisational artifacts in the existing
2APL platform [Das08]. 2APL is an agent-oriented programming language that
provides two distinguished sets of programming constructs to implement both
multi-agent as well as individual agent concepts. It is desirable to enrich it by
incorporating such normative structures as the ones introduced in this paper.
4 The Chisholm set consists of the following four sentences:

1. a ought to be,
2. if a ought to be, then b ought to be,
3. if a has not been, then b ought not to be,
4. a has not been,

where a is read as “a certain agent goes to the assistance of his agent-neighbours”
and b is read as “the agent informs his agent-neighbours he will come”

5 which in Section 3 we referred to as characterising totalitarian agent societies
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A Remarks on the Practicality of Computing Closures

We have mentioned in Section 2.2 that the computation of closures does not
always terminate. This is the case when computing closures under “malformed”
counts-as rules and the main reason lies in the fact that the antecedents of
counts-as are defined on both brute and normative facts. Thus it can be that
the process consisting of applying a counts-as resulting in a new normative fact
which enables the application of a new counts-as can repeat “ad infinitum”.

We take, as an abstract example, σb = {p(x)} and Rc = {p(x) ⇒ q(x), q(x) ⇒
q(q(x))}. It is then the case that ClRc

i (σb) = {p(x), qi(x) | i ∈ N}, thus no m

exists such that ClRc
m = ClRc

m−1. Since we work with sets, one immediate solution
is to restrict facts to terms with depth 1, that is, terms which contain only
one functional symbol. However, if one finds such a restriction as being too
severe, some “healthiness” conditions can be imposed. Namely, we require that
a counts-as c = (condc ⇒ consc) is well-defined in the sense that (1) there is
at least one brute fact in condc and (2) Vars(condc) = Vars(consc), where
Vars denotes the set of variables from a formula. Since we consider that σb is
finite, the conditions (1) and (2) are enough to guarantee that the computation
of the closure always terminates. We take, as an illustration, σb = {p(x), f(x)}
and Rc = {p(x) ⇒ q(x), f(x) ∧ q(x) ⇒ q(q(x))}, where, for convenience, “∧”
denotes “,”, which we interpret as conjunction. It is then the case that ClRc

2 (σb)
= ClRc

1 (σb) = {p(x), f(x), q(x), q(q(x))}, since due to (1) and (2) the only possible
substitution for p(x) ∧ f(x) ∧ q(x) ∧ q(q(x)) |= f(x) ∧ q(x) is [x/x], thus no new
elements can be added to the closure.

Heaving healthiness conditions for counts-as rules is, however, not sufficient
when it comes to computing the limit of the sequence σ∗

b as introduced in Sec-
tion 3. Following the same line of reasoning, it is now the case that the process
of applying a sanction results in adding a new brute fact which enables the
application of a counts-as rule can be iterated “ad infinitum”.

We reconsider the previous example. If we now take Rs as being {s = (q(x) ⇒
f(x))} the computation of σ∗

b can never reach its limit since at each step the
application of s feeds the set of brute facts with a new f i(x) which makes it
possible to apply the counts-as rule c2 with the substitution [x/f i(x)]. This is
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what we call a productive rule. A solution for avoiding productiveness is to impose
a syntactic condition on sanctions. Namely, we require that for any counts-as rule
c = (condc ⇒ consc) and for any sanction s = (conds ⇒ conss) we have that:

(∀f(t) ∈ condc)(∃f(t′) ∈ conss)(| t′ |<| t |)
where t, t′ are arbitrary terms. That is, if there exists a brute fact f(t′) in the
consequence of s (thus heaving the same head as a brute fact from the antecedent
of c) then t′ is shorter in length than t. This guarantees that no new substitution
is generated and this implies that the computation terminates.
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