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Abstract: Efficient response to natural disasters has an increasingly important role in limiting 
the toll on human life and property. The work we have undertaken seeks to improve existing 
models by building a Decision Support System (DSS) of resource allocation and planning for 
natural disaster emergencies in urban areas.  A multi-agent environment is used to simulate 
disaster response activities, taking into account geospatial, temporal and rescue organizational 
information. The problem we address is the acquisition of situated expert knowledge that is 
used to organize rescue missions. We propose an approach based on participatory design and 
interactive learning which incrementally elicits experts’ preferences by online analysis of their 
interventions with rescue simulations. An additive utility functions are used, assuming mutual 
preferential independence between decision criteria, as a preference for the elicitation process. 
The learning algorithm proposed refines the coefficients of the utility function by resolving 
incremental linear programming. For testing our algorithm, we run rescue scenarios of 
ambulances saving victims. This experiment makes use of geographical data for the Ba-Dinh 
district of Hanoi and damage parameters from well-regarded local statistical and geographical 
resources. The preliminary results show that our approach is initially confident in solving this 
problem. 
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1 Introduction  

Disaster response (a phase of disaster management) provides for the immediate 
protection of life and property, re-establishing control and minimizing the effects of a 
disaster. Information technology provides capabilities that can help people grasp the 
dynamic realities of a disaster more clearly and help them formulate better decisions 
more quickly and information technology can help keep better track of the myriad 
details involved in all phases of disaster management (including disaster response) 
[Rao, 07]. 

Agent-based modeling (ABM) can serve as a powerful simulation technique for 
analyzing large-scale urban disasters. An agent-based emergency response model can 
utilize the large amount of information about the possible rules of behavior for 
people, hospitals, on-site responders and ambulances, without depending on the 
scarce knowledge about the efficacy of those rules or the global dynamics [Narzisi, 
06a]. Furthermore, successful response starts with a map; all disasters have a temporal 
and geographic footprint that identifies the duration of impact and its extent on the 
Earth’s surface [CPC, 07].  Many research projects in the literature rely on the 
approach of agent-based simulation with geographical information system (GIS) data 
to build, improve and evaluate rescue planning scenarios of decision support system 
for disaster response problem; we want to describe here two representative works of 
other research teams which use similar techniques of artificial intelligence in 
resolving rescue planning of multi-agent simulation.  

The first one is the Large Scale Emergency Readiness (LaSER) project of New 
York University’s Center for Catastrophe Preparedness and Response (CCPR), has 
explored how ABM can serve as a powerful simulation technique for analyzing large-
scale urban disasters. The team effort in this direction has resulted in a new multi-
agent based disaster simulation framework, able to model and simulate catastrophic 
scenarios [Narzisi, 06b]. 

[Narzisi, 06b] cast the tuning of an ABM for emergency response planning as a 
multi-objective optimization problem (MOOP). Planning can be seen as the problem 
of adjusting the controllable parameters in the interaction between different classes of 
agents (hospitals, persons, on-site responders, ambulances, etc.) and available 
resources, in order to minimize the negative consequences of a catastrophic event (the 
number of casualties (affected people), fatalities (mortalities), the average ill-health of 
the total population, average waiting time at the hospitals, etc.). They then propose the 
use of multi-objective evolutionary algorithms (MOEAs) for searching and selecting 
emergency response plans in the search space of all possible solutions. 

Following this approach, we can see that users can control the static input 
parameters of response planning to attain some global objectives. However, it 
becomes impractical when there are many real-world parameters, a huge search space, 
large number of generic generations and considering the time consumed to find 
optimal solutions. Furthermore, controllable parameters cannot change from a given 
agent to the others in the same rescue group; their values are fixed at the beginning of 
the simulation (response planning is limited for only static solutions). On the other 
hand, good response planning allows for diversity in the decision strategies between 
agents (each agent has his own instance of controllable parameters) and its value 
changes dynamically during the simulation to adapt to unexpected situations. 
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The second one is a research project of Laval University, Canada for the 
international RoboCupRescue competition called Damas-Rescue. In this work, some 
problems of rescue agents are defined with their appropriate solutions.  For instance: 
the development of a learning algorithm to improve the coordination between Fire-
Brigade agents when they are choosing which fire to extinguish [Paquet, 04a], a 
selective perception reinforcement learning algorithm to estimate the number of Fire-
Brigade agents necessary to extinguish a fire [Paquet, 04b], a scheduling algorithm 
for Ambulance agents to maximize the number of civilians that could be saved 
[Paquet, 05a],  K-Nearest-Neighbors (KNN) approach for Ambulance agents to 
estimate the expected death time of civilians, and an algorithm for Police-Force 
agents based on a dynamic representation of the belief states to choose the best road 
to clear [Paquet, 06a].  

[Paquet, 05b] have proposed Real-Time Belief Space Search (RTBSS) for 
Partially Observable Markov Decision Processes (POMDPs) problems wherein-which 
agents search to find the best action to execute at each cycle of simulation. Hence, 
each agent has his own dynamic decision strategy during simulation. [Paquet, 06b] 
have also proposed a pruning strategy, a hybrid algorithm for online search to avoid 
the overwhelming complexity of computing a policy for every possible situation the 
agents could encounter while they execute a reinforcement learning algorithm by 
autonomously evaluating local reward functions. So, this approach is feasible for an 
uncertain real-time multi-agent environment like RoboCupRescue simulation. 

For our work presented in this paper, we resolve the same problem of emergency 
planning after urban disasters; the aim for building a reliable DSS is to simulate the 
relief effort and to learn human strategies from various disaster scenarios. The 
devastated infrastructures and human casualties are input GIS data for the rescue 
simulation. Rescue teams, such as ambulances, fire-fighters or policemen are 
modelled and simulated by agents along with their behaviours. The DSS in this case 
have to address two issues (figure 1): the first is the ability to simulate different 
disaster scenarios integrating all available information, coming from either GIS 
(Geographical Information System) data or other sources; the second is the ability to 
propose rescue solutions that are really realistic with respect to the experts’ criteria. 

Concerning the first issue, i.e. building a simulator for rescue teams acting in 
large urban disasters, the RobocupRescue community is proposing a multi-agent 
simulation environment for urban earthquakes. The goal of the agents (representing 
fire-fighters, policemen and ambulance teams) consists in minimizing the damages 
caused by the earthquake. Damages include buried civilians, buildings on fire and 
blocked roads. The RoboCupRescue simulation environment is a useful test-bed for 
evaluating cooperative multi-agent systems. However, a major problem with 
RoboCupRescue is its lack of support for standard GIS description, which prevents it 
from being compatible with existing GIS city descriptions. This paper will be mainly 
devoted to the presentation of our solution regarding the second issue. In order to 
capture the experts’ experience and knowledge, we propose using an original 
combination of participatory design and interactive learning. In this approach, the 
experts are invited to interact with the simulation, thanks to a participatory design 
method, by trying out different rescue scenarios and representing their decision 
criteria or modifying the agents’ behaviours in order to improve, as well as validate, 
the realism of the whole simulation; besides, the interactive learning method 
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implemented allows rescue agents eliciting the informal preferences of experts in 
experimented scenarios and adapting agents’ decision to experts’ one in latter 
scenarios. 

 
Figure 1: The rescue simulation and the decision support systems are the results of 

solving the first and second problems respectively. 

For the next, we will present, in the second session, the participatory design 
applied in our rescue simulation. Because, we focus on the rescue activities of 
ambulances to illustrate our approach; so in the third section, we will present the 
decision-making problem of ambulances in rescue simulation. Afterwards, fourth 
section is our approach in elicitation of expert’s preference with interactive learning 
algorithm for ambulances. Next, the experimental protocol and some preliminary 
results of our solution will be presented respectively in the fourth and fifth sections. 
Finally, in two last sections, we arrive at conclusions, discuss about perspectives and 
our future work to improve the solution. 

2 Participatory Design 

If we want to use rescue simulations as supports in decision-making processes, we not 
only need to make them as realistic as possible, but also to reflect, as much as 
possible, the decisions that would be taken by an expert in real situations. Most of 
these decisions are a compromise between existing regulations, written rules and, 
perhaps more importantly, the experience of the expert in similar situations. 
Designing a process by which this latter aspect can be, with the help of learning 
techniques, incorporated in the behaviour of the agents will not only help in building 
more realistic simulations, but also increase the confidence of the expert in the 
support eventually provided by the simulation. 

However, in order for this process to be successful, it has to be designed very 
carefully. [Nguyen-Duc, 07] has proposed, in a similar context, to apply 
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methodological advices derived from those employed in practices like participatory 
design or user-centered design in order to control the experimental process by which 
agents can acquire knowledge from the experts. 

Basically and similarly to [Nguyen-Duc, 07], our experiments will then rely on 
four major components: (1) the design of a flexible and ergonomic user-interface that 
would allow for real-time interactions between the expert and agents in the simulator; 
(2) the design of well-thought scenarios based on realistic conditions and 
corresponding to specific learning tasks and objectives; (3) the design of an 
experimental protocol composed of sessions organized around a goal, a set of 
experimental tasks and a set of support scenarios; (4) the design of a machine learning 
method for eliciting expert’s knowledge. 

2.1 User interface 

Implementation of the interface between ambulances and users is necessary to ensure 
that ambulances can acquire expert knowledge during the learning process.  This 
provides an excellent support for both situational awareness and user action during 
the course of the simulation. 

For example, in figure 2, at any time, the objectives of the ambulance can be 
either victims or hospitals. The red arrow links the ambulance to its best objective. 
The user can pause upon the simulation and change the arrow to modify the objective 
of each ambulance. 

 

Figure 2: A prototype of the user interface that might be used during the learning 
sessions. This prototype has been designed in GAMA [Amouroux, 07] 
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Many of the lessons learned during these tests will serve for the implementation 
of the actual interface that will be used throughout the experiments with experts. The 
control buttons, not very surprising in this context, are that the interface should adapt, 
as much as possible, to the rhythm and needs of the user: giving him or her the 
possibility to change the speed of the simulation, to zoom in and out on the situations, 
to dynamically change the colours and shapes of the information displayed, to hide or 
reveal any pieces of information, to come back in time, etc. appears to be a cognitive 
(and not simply cosmetic) necessity for the user to get familiarized with the tool. 

However, if we want to capture the knowledge mobilized in situation, we also 
need the interface to be as pressing and demanding as a critical real context could be. 
Once the user is familiarized with the manipulation of the simulator, all experiments 
should then take place in real-time. Since we cannot, of course, ask an expert to play 
his/her role during 12 or 24 hours (like in reality), the learning sessions will be cut 
into time-bounded, incremental episodes with their own goal, learning task, and time 
limit, which are presented below. 

2.2 Scenario design 

Even when the actors are already at ease with the user interface of the simulator, the 
quality of the knowledge that might be captured will strongly depend on: (a) The 
commitment and motivation of the user (which is known to decrease over time); (b) 
The realism of the scenarios provided and their understanding by the user; (c) The 
focusing (in term of task, or goal) of the sessions during which the users will play 
their role; 

Therefore, a complete learning session will be organized as a succession of 
“episodes”, each of them being structured in the following way: (1) The task to be 
fulfilled by the agents and the timeframe within which they can accomplish it (for 
instance, save a maximum of victims in the minimum of time, save the most critical 
victims and communicate about the others, etc.) is communicated to the user and we 
make sure it is perfectly understood. Some episodes will of course share the same 
task. (2) For each task, a sequence of scenarios (see below) is then chosen, ranging 
from simple to complex ones. Each scenario will serve as a support for an “episode” 
of the session, and its results (in terms of machine learning) reused for the next 
episode in the sequence. (3) The set of criteria susceptible to be learnt (or ranked) 
during an episode depends on the complexity provided by the scenario. For instance, 
in basic scenarios, it may only contain the geographical location of the agents, while 
more advanced ones might want to take their communication (information received, 
etc.) into account. 

There are many ways into which short-term focused scenarios could have been 
designed. Yet, we wanted a method that would allow for the learning episodes to act 
as different “layers” of increasing complexity, each of them focusing on the ranking 
of its own set of criteria and using the previous ones as starting points. As the criteria 
represent bits of information perceived, collected or received by the agents, we chose 
to base the progression of the scenarios on that of the “informational context” that the 
agents (and, therefore, the user) are facing. For instance, for a task like “locating and 
carrying a maximum of victims”, in a situation where only one ambulance and one 
hospital are being simulated (see figure 3), the decision of the agent will be based on a 
subset of the criteria used in a situation where several ambulances (or hospitals, or 
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both) are present. And the criteria used in the latter situation will be themselves a 
subset of those necessary to take into account if all these agents are communicating or 
coordinating themselves. 

 
Figure 3: Description of multiple scenarios as incremental representations of 
informational contexts of increasing complexity; In the bottom-left corner, the context 
only implies one ambulance and one hospital and therefore few information on which 
to base a decision; in the top-right corner, n* indicates n agents able to communicate 
(for sharing information or coordinating their task), which represents the most 
complex situation agents can face if we only take hospitals and ambulances into 
account. 

Of course, the scenarios space can grow as needed to account for other agents 
(firemen, civilians, victims themselves, etc.) or criteria (communication of orders, 
change in priorities, etc.). But we have to keep in mind that (1) not all of them are 
realistic; (2) no expert will be able to play them all. The path they will eventually 
follow, in their session, from one episode to the other, will be different from one 
expert to the other, and decided after each run through an interview with the 
modellers and an evaluation of their previous interactions with the agents. 

2.3 Experimental Protocol 

As we discussed in the session 2.2, we organize the experiments following the series 
of learning sessions and each of them contains a series of episodes (see figure 4) to 
ensure that the sequence of scenario is ranged from simple to complex ones. Each 
learning session contains a task to fulfil and a set of properties. We change from one 
session to another by changing the task and/or the properties. The scenarios of the 
episodes in the same learning session contain common session properties and some 
individual episode properties. We illustrate our experimental protocol in figure 5. The 
meaning of scenario properties is explicated in table 1. We use only one task “control 
ambulances” for all learning sessions in this example; other possible tasks of users are 
listed in table 2. 
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Figure 4: Experiment protocol 

Properties of scenario Description 
Ambulance capacity Maximum number of victims can be taken 
Number of ambulances  
Number of hospitals  
Unlimited hospital capacity Hospital capacity to take victims is unlimited 
Limited hospital capacity Hospital capacity to take victims is limited 
Perfect situational awareness Ambulances have list of all victims in the map 
Partial situation awareness Ambulances have only partial victim list 
Decentralized 
communication 

Ambulances inform directly to other ambulances 
for each time they choose one victim to take 

Centralized communication Ambulances inform to other ambulances via centre 
for each time they choose one victim to take 

Unlimited energy Ambulances have unlimited energy 
Limited energy Ambulances must refill energy 
Explorer Centre use explorer to search victims on the map 

Table 1: List of possible properties of one scenario 
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Figure 5: Example of sequence of scenarios in the experiment protocol. 
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Task of users Objective 

Control ambulances to save all victim Minimize number of fatalities 
Control hospitals to distribute victims to 
ambulances 

Minimize overloaded ambulances 

Control centre to distribute victims to 
hospitals 

Minimize overloaded hospitals 

Control firefighters to extinguish all fires  Minimize time to extinguish fires 
Control firestations to distribute fires to 
firefighters 

Minimize time to extinguish fires 

Control centre to distribute fires to firestations Minimize overloaded firestations 
Control explorer to explore the map and send 
information about victims to centre 

Maximize explored region of map 

Table 2: List of possible users’ task of one learning session 

2.4 Eliciting experts’ knowledge 

Eliciting expert’s knowledge is in fact a process of capturing and modelling 
preferences of human beings from informal experiences, essential in the context of 
decision-making. The experts’ preferences are usually not elicitable or difficultly 
elicitable because following reasons: it depends on the experience of the expert in the 
domain, and are therefore highly subjective; it depends on situational awareness of 
experts (the completeness, accuracy and precision of the information they receives for 
decision situation); there are large number of parameters, criteria must be synthesized 
and these criteria are extremely variable and difficultly to be formalized in the 
understandable, reusable ways by artificial agents. For example, ambulances don’t 
know always how imitate experts to calculate criteria such as “time-to-dead-of-
victim”, “distance-to-nearest-available-hospital”, etc. Besides, another important 
thing of ambulance is how imitate experts to combine all criteria in a utility function 
for evaluating the value of a decision. 

Following [Boutilier, 05], preference elicitation is generally required when 
making or recommending decisions on behalf of users whose utility function is not 
known with certainty. Although one can engage in elicitation until a utility function is 
perfectly known, in practice, this is infeasible. Because user preferences are always 
incomplete initially, and tend to change in different context, in addition to user’s 
cognitive and emotional limitations of information processing, preference elicitation 
methods must also be able to avoid preference reversals, discover hidden preferences, 
and assist users making tradeoffs when confronting with competing objectives [Li 
Chen and Pearl Pu, 04]. 

The theoretical basis of user preference models can be found in decision and 
utility theory. Multi-attribute utility theory focuses on evaluation of choices, 
outcomes (or alternatives) for a decision problem. For example: an ambulance needs 
to decide, for a given moment, saving firstly one among many victims of the 
simulation in regarding the distance from him to each victim, injured level of each 
victim, etc. The value function reflects the decision maker’s preferences on a 
particular outcome. In case of uncertain decision scenarios, where the outcomes are 
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characterized by probabilities, a more complex function, utility function, is need to 
evaluate the “utility” of a decision [Li Chen and Pearl Pu, 04]. 

Many decision support systems have made various assumptions concerning 
preferences structures. The normally applied assumption is additive independence 
[Keeney and Raiffa, 76], where the value (or utility) of any given outcome can be 
broken down to the sum of individual attributes. The assumption of independence 
allows for the reduction of the number of outcomes for consideration and the 
construction of less complicated and more manageable value functions. 

In many cases, attributes are preferentially dependent and thus assumptions of 
decomposability are incorrect. In order to elicit full utility function as well as save 
user’s effort as much as possible, some research works have proposed to elicit the 
preferences of a user using the closest existing preference structures as potential 
default. They don’t make any restrictive assumptions on the form of the underlying 
value functions, but make assumptions about the existence of complete or incomplete 
preference structures elicited from a population of users [Li Chen and Pearl Pu, 04].  

Utility independence leads to less convenient decompositions, such as multi-
linear [Keeney and Raiffa, 76] or hierarchical [Von Stengel, 88], [Wellman, 92]. Most 
previous efforts in the artificial intelligence community to adapt modern graphical 
modelling to utility functions employ the generalized additive decomposition 
[Bacchus and Grove, 95], [Boutilier, 01], [Gonzales and Perny, 04]. In contrast, our 
work continues the other thread, based on the weaker utility independence 
assumption. We assume that criteria are preferentially independent for multi-criteria 
decision making problem of rescue agents.  

Therefore, we propose an interactive learning method which allows rescue agents 
adapting their preferences to expert’s intervention. Each agent’s preference is 
formulated as an additive utility function, collecting decision criteria. The learning 
algorithm adjusts, for each time expert intervene to agent’s decision, the coefficients 
of the agent’s function by resolving an incremental linear programming problem. The 
details of this method will be presented in the next sections. 

3 Decision-Making Problem of Ambulances 

3.1 Decision situation of ambulances by example 

The ambulance’s task is to take care of victims in its defined area. Their goal is to 
provide assistance to a maximum of injured victims thusly assuring as few deaths as 
possible. They must urgently perform on-the-fly first-aid, and/or transporting, with 
the least delay, injured victims to hospitals. An ambulance can normally carry several 
injured at the same time. 

Figure 6 shows an example of an emergency situation. In this example, we 
assume that the ambulance A1 (in the centre of figure) has access to all of the 
information inherent in the situation. If A1 carries no victim, it must decide to which 
victim it will provide first-aid and to take the victim to the hospital if necessary. For 
example, A1 may decide to go to the nearest victim V5, and then take him to hospital 
H2. But if A1 knows that the victim V6 is more seriously injured than V5, it could also 
decide to go first to V6. It is also possible that the victims V1, V2, V3 are seriously 
injured and because they are all three near one-another, the ambulance A1 may decide 
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to go to this group, and then to take them to hospital H2, this choice will probably 
save three victims V1, V2, V3 instead of one victim V6. Another possibility can 
happen: if the ambulance A1 knows that the ambulance A3 will take care of the group 
of victims V1, V2, V3 and that the group of victims V9, V10, V11 are seriously injured, 
the ambulance A1 may decide go to the group V9, V10, V11 and then take them to 
hospital H3. In this case, the solution will probably save six victims V1, V2, V3 and V9, 
V10, V11 instead of three victims V1, V2, V3. 

 

Figure 6: Example of a possible emergency situation. Ax represents ambulances, Vx 
represents victims awaiting rescue and Hx are hospitals in the neighbourhood. 

3.2 Decision criteria of ambulance 

The ambulance’s decision may depend on a lot of information, so decisions must 
follow certain criteria to improve their relief activities. For example, after 
experiencing the above situations, the ambulance may acquire preference as follows: 
the ambulance prefers going to “hot” positions on the map, where there are more 
victims who require assistance. The ambulance must take the victims’ injury severity 
level into account: the more seriously injured victims should be tended to earlier. The 
places, where other ambulances will eventually arrive, will be not preferred by 
ambulance. All of these decision criteria of ambulances will be combined as decision 
strategy and used in later situations. 

Normally an ambulance does not have access to all the information related to its 
situation. Some possible choice can thus occur at the same time. Let us consider a 
situation where the ambulance is in the process of taking one or more seriously 
injured victims to the nearest hospital but is informed (by the information centre or 
the other ambulance via some communication channels) that a group of victims in 
need of rescue was spotted right along the road he is travelling. The decision is 
currently: either go to the hospital, or go to the group of outside victims to practice 
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first-aid. Example of several criteria might be involved in this decision, as shown in 
Table 3.  

 
Decision criteria of the ambulance to choose a victim Min/Max Ab. 
Time-from-ambulance-to-victim (-) C1 
Time-to-death-of-victim (-) C2 
Time-from-victim-to-nearest-other-victim (-) C3 
Time-from-victim-to-nearest-other-available-ambulance (+) C4 
Time-from-victim-to-nearest-available-hospital (-) C5 

Table 3:  Example of decision criteria of the ambulance to choose a victim: the minus 
sign (-) indicates a criteria to minimize while the plus (+) sign indicates a criteria to 

maximize 

We have two types of criteria: criteria to maximize (+) which show that the 
victim having greater values for these criteria will have higher priority in the 
ambulance’s decision process; and criteria to minimize (-) which show that the victim 
or the hospital having lesser values for these criteria will have higher priority in the 
ambulance’s decision process. 

3.3 Expert’s intervention in the ambulance’s decision 

Making appropriate decisions for the ambulances raises difficulties for two reasons. 
Firstly, there are too many criteria involved in this decision. Secondly, each 
ambulance only has partial knowledge about the situation (local view) at the moment 
of decision-making; thus, the ambulances lack both necessary information and the 
strategies to take good decisions. Many approach in literature of DSS use searching 
algorithm in uncertainty (like in DamasRescue and LaSER reseach project) to find 
good decision strategies for agents. However, these approaches have high complexity 
in both memory and time consumed (the reinforcement learning of DamasRescue 
needs not only many space to keep large number of states in Makov Decision Process 
but also great quantity of examples for training agents; besides, the genetic algorithm 
of LaSER project have to collect so many parameters and execute so many 
generations to obtain optimal solutions for only initial response planning). 

Taking into account human aspects help ambulances to make use of experts’ 
capacity; human experts can provide not only supplementary information about the 
situation but also their useful knowledge and experience to aid in the ambulances’ 
decision, and/or they may force the ambulance to take a particular decision with or 
without explanation. 

For example, we assume that ambulance agents are constrained by an initial 
decision strategy. As long as the user considers the decision taken by the ambulances 
is optimal, s/he need not interact. On the other hand, if the user identifies a “better” 
solution, s/he may interact, by specifying or not upon which criteria he is basing his 
interaction (for instance: user can show that s/he chooses to go to hospital because 
one victim transported by ambulance can die immediately in short time). Thus, the 
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user can “play the role” of the ambulance by forcing a decision (to continue to the 
hospital or to stop and treat roadside victims). The objective is for the ambulance 
agents to gradually acquire, by collecting enough of these couples “criteria to 
combine-–decision to perform” and generalizing these cases (through adapted 
machine learning algorithms), a decision strategy that can be reused independently in 
close or similar circumstances. The building of decision strategy of ambulances to 
imitate experts’ decision is elicitation process of human preferences. 

4 Learning to capture experts’ experiences 
To elicit experts’ preference, we propose an interactive learning algorithm which 
combines, at the same time, two methods: decision tree and utility function for 
representing agent’s behaviour. In fact, we distinguish the behaviour of agents at two 
decision levels: the first one is “what” level which is used to identify what type of 
action that will be done by agent, for example: an ambulance have to choose one  
between following actions to execute “goto_victim”, “goto_hospital”, “goto_fuel”, 
etc. We use a decision tree to represent the agent behaviour at this level; the second 
level is “which” level is used to identify the detail parameter for each action type, for 
example: if the ambulance has decided to execute “goto_victim”, then which victim 
between several victims the ambulance should go to? To respond to this type of 
question, we use a utility function to represent agent decisions at this level. 

4.1 Representation of  “what” level by decision tree 

The knowledge and experience used by the human experts is usually expressed as 
rules, with priorities between them and some exception cases; or that humans have 
some generic (or prototypical) situations with associated actions in their mind. The 
decision tree as well as rule-based representation is appropriate ways for the human 
actor and the agent can understand each other. We show, in figure 7, an example of 
ambulance’s behaviour in form of a decision tree. Thus, the ambulance can identify 
the action corresponding to its current situation based on this tree. For instance, the 
ambulance always verifies its energy level. According to its estimation if energy will 
be soon empty, then it decide “goto_fuel” to fill the energy, else it continues check 
the inside victim number and serious victim number to choose one action between 
two ones: “goto_hospital”, “goto_victim”. Moreover, we can obtain easily a rule set 
from decision tree, for instance: 

• IF (emptyEnergy) THEN (goto_fuel) 
• IF (Not(emptyEnergy) and (haveSeriousVictims or fullVictims)) THEN 

(goto_hospital) 
• IF (Not(emptyEnergy) and Not(haveSeriousVictims) and Not(fullVictims)) 

THEN (goto_victim) 
The type of decision tree that we use in our approach is the binary tree; each non-

leaf node expresses a Boolean function, the left sub-tree of this node corresponds to 
“true” value of this function and the right sub-tree of this node corresponds to “false” 
value of the function; each leaf node expresses a decision to make (or an action to 
execute) of agent. 
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Figure 7: The behaviour of an ambulance is represented by a decision tree 

 

Figure 8: Learning algorithm modifies the structure of the decision tree based on 
user’s decision and explanation 
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4.2 Learning decision tree with user interaction 

The idea behind the learning algorithm, at this level, is the incremental construction of 
a decision tree for agent through expert’s intervention. During the experiments of 
simulation, if the human expert does not agree with the agent’s decision he will make 
his own decision and express his explanation in the form of a Boolean function. The 
learning algorithm based on this decision and this explanation to change the structure 
of decision tree. Figure 8 illustrates an example of a change in learning agent’s 
decision tree with user’s decision and explanation.  

The change happens when the ambulance’s energy level is not empty and the 
ambulance is not full of victims. The ambulance decides “goto_victim” but the expert 
does not agree with this choice because he prefers that the ambulance 
“goto_hospital”. The explanation represented by the Boolean function called “have 
serious victims”. So, the algorithm replaces the leaf node “goto_victim” by a binary 
sub-tree beginning with non-leaf node of Boolean function “have serious victims”, 
left leaf node “goto_hospital” (corresponding to the expert’s choice when the Boolean 
function of expert satisfies) and right leaf node “goto_victim” (corresponding to the 
previous agent’s choice when the Boolean function was not satisfied). 

4.3 Representation of “which” level  by an utility function 

For each type of action that will be executed (for example: “goto_victim” of 
ambulance), the agent has to identify the parameters for this action (which victim in 
current situation the ambulance needs to go for rescuing). For that reason, an agent 
uses a utility function for each type of action. The general form of the utility function 
that we have decided to consider is a weighted linear combination of criteria 
represented as follows: 

F(Vk) = ∑ wi * Ck
i (1) 

Where Vk
 is the kth victim; wi : the weight of the ith criteria and  

Ck
i: the value of the ith criteria for the kth victim 

 

The victim Vmin will be selected if: 

F(Vmin) = Mink{F(Vk)} = Min(∑ wi * Ck
i) (2) 

Vmin = ArgMin{F(Vk)} (3) 

To calculate the minimum value of the utility function, the value signs of the 
criteria to maximize are reversed or the weights of these criteria are negative. For 
example: this is the case for the criteria: Time-from-victim-to-nearest-other-available-
ambulance in the table 3. 

4.4 Learning utility function by incremental linear programming 

Decision model for each action type of ambulance is formulated by a utility function; 
all history of decision situations is stored in set of constraints called “inequalities 
system” of ambulance. For each time ambulance has a new situation to decide, the 
constraints number of inequalities system is increased, taking into account new 
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constraints generated from new situation. If the decision on the new situation between 
expert and ambulance are not the same (we called “conflict decision”), then the new 
utility function is obtained by resolving updated inequalities system. In fact, set of all 
coefficients of the utility function is a feasible solution of the inequalities system; we 
have applied the “Phase I” of simplex method to find this solution. Figure 9 shows the 
diagram of learning algorithm. 

Figure 9: Block diagram of learning algorithm 

We illustrate more details of this algorithm in following example: to make 
decision, an ambulance regards to the current situation of the rescue simulation. A 
situation contains a set of vectors and each vector represents the criteria set of a 
victim as follows in table 4. 

  
 Victim1 Victim2 Victim3 Victim4 Victim5 Victim6 

C1 18.8 23.77 21.28 20.72 6.45 18.52 
C2 330.0 259.0 51.0 16.0 189.0 125.0 
C3 9.36 15.96 9.36 4.66 12.74 4.66 
C4 0.0 0.0 0.0 0.0 0.0 0.0 
C5 3.19 4.97 0.83 8.04 1.62 4.66 

Table 4:  Example of a situation for ambulance’s decision making; the meaning of 
decision criteria C1, C2, C3, C4, C5 are explicit in table 3 
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An expert chooses always the victim who optimizes his objective. For example, 
the situation in table 4, the expert has chosen the Victim4 as his objective. Thus, the 
ambulance’s utility function, at this time, has to satisfy the following condition: 

F(V4) = Mink{F(Vk)}  

 F(Vk) ≥ F(V4)  for all k = 1, 2, 3, 4, 5, 6  

 F’(Vk) = F(Vk) - F(V4) ≥ 0  for all k = 1, 2, 3, 4, 5, 6  

F’(Vk) = ∑ wi * (Ck
i – C4

i) ≥ 0  for all k = 1, 2, 3, 4, 5, 6 (4) 

Where i = 1, 2, 3, 4, 5  

We can represent the ambulance’s function at time t by a vector Ft with 5 
elements Ft = (wt

1, wt
2, wt

3, wt
4, wt

5). The initial values may be chosen arbitrary, for 
example, F0 = (1, 0, 0, 0, 0). 

F0(Vk) = 1*Ck
i (5) 

F0’(Vk) = 1*(Ck
i – Ck

4) = 1*(C’k
i) (6) 

If the victim V4 does not minimize its utility function, then the condition (4) is not 
satisfied for all k as illustration in table 5, because all values of F0’(Vk) are normally 
positives for all victims. 
 

 Victim1 Victim2 Victim3 Victim4 Victim5 Victim6 
C’1= C1–C4 -1.91 3.05 0.55 0.0 -14.27 -2.2 
C’2= C2–C4 314.0 243.0 35.0 0.0 173.0 109.0 
C’3= C3–C4 4.69 11.3 4.69 0.0 8.08 0.0 
C’4= C4–C4 0.0 0.0 0.0 0.0 0.0 0.0 
C’5= C5–C4 -4.85 -3.07 -7.21 0.0 -6.42 -3.38 

F0’(Vk) -1.91 3.05 0.55 0.0 -14.27 -2.2 

Table 5:  Let C’i= Ci–C4, we have the normalized situation in regarding the expert’s 
decision. Victim4 is choice of expert but it has not optimized utility. 

The goal of learning algorithm is to change the current utility function of the 
ambulance to minimize the expert decision. It means that the weights wi will be 
adjusted to adapt to the condition expressed in formula (4). Thus, the algorithm adds 
to each wi a value ∆wi as follows: 

wt+1
i = wt

 i + ∆wi  

Ft+1’(Vk) = ∑(wt
 i + ∆wi) * C’k

i ≥ 0  for all k = 1, 2, 3, 4, 5, 6  

Ft+1’(Vk) = Ft’(Vk) +∑∆wi * C’k
i ≥ 0  for all k = 1, 2, 3, 4, 5, 6 (7) 
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Appling equation (7) for the example in table 5, we obtain the following 
inequality system: 
 
(-1.91)   + (-1.91) *∆w1 + 314.0*∆w2 + 4.69*∆w3 + 0.0*∆w4 + (-4.85)*∆w5 ≥ 0   
(3.05)    + (3.05)   *∆w1 + 243.0*∆w2 + 11.3*∆w3 + 0.0*∆w4 + (-3.07)*∆w5≥ 0   
(0.55)    + (0.55)   *∆w1 + 35.0 *∆w2 + 4.69*∆w3 + 0.0*∆w4 + (-7.21)*∆w5 ≥ 0   
(-14.27) + (-14.27)*∆w1 + 173.0*∆w2 + 8.08*∆w3 + 0.0*∆w4 + (-6.42)*∆w5≥ 0   
(-2.2)    + (-2.2)    *∆w1 + 109.0*∆w2 + 0.0 *∆w3 + 0.0*∆w4 + (-3.38)*∆w5 ≥ 0   

 

  (8) 

Where ∆wi ≥ 0 for all i=1, 2, 3, 4, 5  

We can prove that the condition (4) is satisfied if and only if the inequality 
system (8) has the feasible solution (∆w1, ∆w2, ∆w3, ∆w4, ∆w5) and vice versa. It 
means that if we can find a feasible solution for inequality system (8) then we will 
succeed in correcting the weights of the ambulance’s utility function to adapt to the 
new situation. 
To resolve (8) we can apply the “Phase I” of simplex method which is used to find a 
feasible solution for a linear programming problem [Dantzig and Thapa, 03], 
[Vanderbei, 08]. 

By solving (8), we obtain a solution: (∆w1, ∆w2, ∆w3, ∆w4, ∆w5) = (0, 0.082, 0, 0, 
0). Thus, the updated utility function is (1, 0.082, 0, 0, 0) and we have an updated 
table as follows: 
  

 Victim1 Victim2 Victim3 Victim4 Victim5 Victim6 
C’1= C1–C4 -1.91 3.05 0.55 0.0 -14.27 -2.2 
C’2= C2–C4 314.0 243.0 35.0 0.0 173.0 109.0 
C’3= C3–C4 4.69 11.3 4.69 0.0 8.08 0.0 
C’4= C4–C4 0.0 0.0 0.0 0.0 0.0 0.0 
C’5= C5–C4 -4.85 -3.07 -7.21 0.0 -6.42 -3.38 

F1’(Vk) 23.99 23.1 3.43 0.0 0.0 6.78 

Table 6: After update, the utility F’ of Victim4 is minimized. 

We can see that F1’(Vk) ≥ 0 for all k=1, 2, 3, 4, 5, 6. Currently, the updated 
function is satisfied of the current situation.  

For the following decision situation, the ambulance has to choose one optimal 
victim among m victims. The algorithm will keep all the current constrains and add 
(m – 1) additional constraints to inequality system. By this way, the algorithm allows 
the updated function to be always adapted to all historical decision situations. 

4.5 Resolving user’s contradiction by linear least square method 

The simplex method is only useful in the case where experts have their own utility 
function and they always respect these function when deciding. Nevertheless, it is not 
very realistic because the choice of human experts is usually emotive and intuitive 
and they have no explicit function they rely upon during their decision making. They 
can even contradict themselves from time to time. So, it is quite possible that the 
inequality system (8) has no solution. In this case, we have to find an approximate 
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solution for the maximum number of inequalities instead of finding an exact solution 
for all inequalities. 

This problem is quite similar to the regression problem, curve fitting or least 
square problem which aim at finding the best-fitting equation (function) with a 
minimal deviation from all example data. Unfortunately, we have not yet found an 
efficient algorithm to resolve this problem. 

4.6 Supporting user-defined criteria 

Decision making for complex problem needs take into account many criteria; we 
cannot identify all these criteria at the same time. So, the principle of our approach is 
to discover incrementally the criteria set for agents with the support of human experts. 
In the “what” level, the user’s explications in form of Boolean function are also the 
criteria on which the agents based to make decision; these criteria are defined by users 
following different experiment situations. In the “which” level, the criteria set for 
each utility function is also able to dynamically increase. 

For supporting user-defined criteria, our approach allows users manipulate 
directly with the modelling language of GAMA [Amouroux, 07], called GAML to 
define the Boolean criteria for “what” level as well as numeric criteria for “which” 
level during the experiment scenarios. 

In the “what” level, we return to the example of leaning decision tree of 
ambulance (figure 8); for intervening to ambulance’s decision, user have to choose 
one of many possible actions and for clarifying explication of this choice, user define 
a Boolean function, such as: 

• Full_of_victims = (length contents = capacity): Where “contents” is list of 
victims in the ambulance; “length” is number of victims in the list; 
“capacity” is maximum number of victims that the ambulance is able to 
take. 

• Have_serious_victims = (length (contents where each.isSerious) > 0): 
Where “contents where each.isSerious” is list of serious victims in the 
ambulance. 

In the “which” level, we return to the example of the utility function for action 
“goto_victim”. For intervening to ambulance’s decision, user want sometimes add a 
new criteria on which he based to choose one victim, for example: 

• Number_of_near_victims = length (victims where ((each distance_to target) 
< 50m)) 

• Distance_to_nearest_other_victim = target distance_to (first (victims 
sort_by (each distance_to target))) 

We can see that GAML play, in this context, the role of query a language to help 
users describe their criteria; for experimenting various scenarios, users can find 
sometimes new useful criteria and define them in  GAML;  agents keep its and extend 
the criteria set to use in later situations for decision making. 

5 Preliminary Results 

To experiment with our algorithm, we have used firstly a simple rescue scenario with 
two ambulances rescuing 100 victims and GIS data of the Ba-Dinh district, Hanoi 
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city. The behaviour of the ambulance at “what level” (represented by a decision tree) 
is described before experiment and does not change during the experiment; besides, 
the decision criteria set of ambulances is fixed in this experiment. The goal of our first 
experiment is to test only the change of utility function at “which level”. We replace 
the human expert by an agent “oracle”. This agent has an exact utility function called 
“oracle function”. At each step, the ambulance chooses one on the map to save among 
many victims by using his utility function. The oracle also chooses by himself his 
victim. In the case of conflict of decisions (the choice of ambulance is not the same 
with the oracle’s one), the ambulance has to update its function using the learning 
algorithm; the objective of the learning process is to make ambulance’s decision 
conformed to oracle’s one in as many situations as possible. Therefore, we use two 
parameters to evaluate the algorithm: the first one is the convergence of ambulance’s 
function to oracle function and the second one is decision conflict rate between 
ambulance and oracle. 

5.1 Difference between agent function and oracle function 

The difference between two functions is calculated by comparing two weight series of 
two functions by the following formulate:  

Diff(kmin)= ∑| ai – kmin* wi |   with kmin= ArgMin{Diff(k)} 

Where ai are coefficients of oracle function: Fo(Vk) = ∑ ai * Ck
i 

And wi  are coefficients of ambulance’s function: Fa(Vk) = ∑ wi * Ck
i
  

 

 

Figure 10:  The difference between the function of the ambulance and of the oracle 

In figure 10, each step of the curve corresponds to a time of decision conflict 
when the ambulance function has to be updated and the difference between two 
functions has to be reduced. The reduction of this difference during the simulation 
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show that the ambulance’s function converges slowly to oracle function. For that 
reason, the more the ambulance learns the more its function is similar to the oracle 
function. 

5.2 Conflict between agent decision and oracle decision 

Decision of ambulance and oracle are the same in most situations. However, the 
ambulance’s decision is different from the oracle’s one in some cases. These cases are 
called “conflict” of decision between ambulance and oracle. The rate of conflict is 
calculated by percentage of situations having conflict in total number of decision 
situations. In figure 11, we observe that the rate of conflict of decision reduces during 
the simulation. It means that the more the ambulance learns the more its decision 
converges to the decision of the oracle. Finally, all victims are saved and the number 
of decisions is 100 and the number of conflicts is x. 
 

 

Figure 11:  Rate of conflict decision between ambulance and oracle 

6 Conclusions 

Urban disaster management is an extremely complex problem. In this context, we are 
particularly interested in the use of information technology, GIS and ABM tools to 
address the vital problem of resource allocation for disaster response activities. Our 
research is intended to provide means for building efficient decision support systems 
that would be easily usable by non-computer scientists. 

There are several research projects (e.g. RoboCupRescue Simulation, LaSER 
Project) which attempt to address similar questions relying on multi-agent models to 
optimize the planning of rescue teams, the combination of partial GIS and planning 

2722 Chu T.-Q., Drogoul A., Boucher A., Zucker J.-D.: Interactive Learing ...



methods, and so on. However, there are only a few works that take into account the 
human (and subjective) aspects of decisions made during the disaster response. 

In proposing a method enabling experts to interact directly with the agents of the 
simulation to teach them “good” behaviours, we hope to (1) improving the realism of 
these simulations (and thus improve the strategies that can be learnt/proposed), (2) 
increasing the confidence of decision-makers in the supporting decision tools; (3) 
facilitating the training of the same decision-makers to these tools. 

7 Future Works 

In solving multi-criteria decision making problem, by using additive utility function 
and supervised learning algorithm we support the elicitation human expert’s 
preferences while taking into account their independent decision criteria. This method 
allows decision making of agents conforming to decision strategy of users in decision 
support system. However, we have used some assumptions to reduce the complexity 
of the problem. These assumptions show some limitations which need to be 
overcame. 

Firstly, decision criteria are assumed preferentially independent; this is a 
necessary condition for using additive utility function; but in many cases, decision 
criteria are not preferentially independent. Future work include extending our 
algorithm with some more sophisticated preference models like CP-Nets (Conditional 
Preference Networks) [Boutilier, 04], GAI-Nets (Generalized Additive Independence 
Networks) [Gonzales and Perny, 04], CUI-Nets(Conditional Utility Independence 
Networks) [Engel and Wellman, 06.  

Secondly, in experimenting of our work, we use a simulated expert called oracle 
function to train the agent. So, the preference of oracle is always exact as it is a 
formula. In fact, it is very different from real situations where the emotion and 
intuition of human expert play a role in the decision. A second perspective is to 
identify another learning algorithm that do accommodate for expert’s inconsistencies. 
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