
Petri Net Controlled Grammars:

the Case of Special Petri Nets

Jürgen Dassow

(Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de)

Sherzod Turaev

(Universiti Putra Malaysia, Serdang, Selangor, Malaysia

sherzod@fsktm.upm.edu.my

and

Universitat Rovira i Virgili, Tarragona, Spain

sherzod.turaev@urv.cat)

Abstract: A Petri net controlled grammar is a context-free grammar equipped with a
Petri net, whose transitions are labeled with rules of the grammar or the empty string,
and the associated language consists of all terminal strings which can be derived in
the grammar and the the sequence of rules in every terminal derivation corresponds to
some occurrence sequence of transitions of the Petri net which is enabled at the initial
marking and finished at a final marking of the net. We present some results on the
generative capacity of such grammars so that the associated Petri nets are restricted
to some known special classes of Petri nets.

Key Words: grammars, Petri nets, grammars with regulated rewriting, Petri net con-
trolled grammars

Category: F.4.2, F.4.3

1 Introduction

It is well-known fact that context-free grammars are not able to cover all phe-

nomena of natural and programming languages, and also with respect to other

applications of sequential grammars they cannot describe all aspects. On the

other hand, context-sensitive grammars are powerful enough but have bad fea-

tures with respect to decidability problems which are undecidable or at least very

hard. Therefore it is a natural idea to introduce grammars which use context-free

rules and have a device which controls the application of the rules in order to

generate languages with larger generative capacity than context-free ones. The

monograph [Dassow and Pǎun 1989] gives a summary of this approach. The reg-

ularly controlled grammars are a well-known class of such grammars, where a

finite automaton is associated with a grammar and the sequence of applied rules

has to be accepted by the automaton.

Control by automata can be generalized if we associate a Petri net with a

context-free grammar and require that the sequence of applied rules corresponds

Journal of Universal Computer Science, vol. 15, no. 14 (2009), 2808-2835
submitted: 26/1/09, accepted: 28/7/09, appeared: 1/8/09 © J.UCS

to an occurrence sequence of transitions of the Petri net; thus, we define a Petri

net controlled grammar. The study of such kind of grammars is interesting as con-

trol by Petri nets makes possible to investigate concurrent control mechanisms

in the theory of regulated rewriting systems. In [Dassow and Turaev 2008] we

investigated grammars controlled by arbitrary (place/transition) Petri nets de-

pending on the type of labeling (a bijection, coding and weak coding) and on

the use of final markings (a finite set of final markings and the set of all reach-

able markings), and showed that Petri net controlled grammars have the same

power as some other regulating mechanisms such as matrices, finite automata.

If we consider these matrices and finite automata in terms of control mecha-

nisms, special types of matrices and special regular languages are widely inves-

tigated in literature, for instance, as control, simple matrices ([Ibarra 1970]) or

some subclasses of regular languages ([Dassow 1988, Dassow and Truthe 2008])

are considered. Thus, it is also natural to investigate grammars controlled by

some special classes of Petri nets. In this paper we consider grammars controlled

by (generalized) state machines, (generalized) marked graphs, causal nets, (ex-

tended) free-choice nets, asymmetric choice nets and ordinary nets. Similarly to

the general case we investigate the effects of labeling policies and the definitions

of final marking sets to the computational power. We prove that the family of

languages generated by (arbitrary) Petri net controlled grammars coincide with

the family of languages generated by grammars controlled by free-choice nets.

The paper is organized as follows. In Section 2 we give some notions and

definitions from the theories of formal languages and Petri nets needed in sequel.

We introduce the concept of a control of derivations in context-free grammars by

Petri nets in Section 3. In Section 4 we investigate the effect of labeling on the

generative power of grammars controlled by special Petri nets. We discuss the

effect of different types of final markings in Petri nets on the generative power

and give some characterizations by other regulated grammars in Section 5.

(This paper is a strongly extended version of the paper presented at the Third

International Conference on Language and Automata Theory and Applications

– LATA 2009, April 2-8, 2009, Tarragona, Spain [Dassow and Turaev 2009].)

2 Definitions

Throughout the paper, we assume that the reader is familiar with the basic

concepts of the theories of formal languages and Petri nets; for details we refer

to [Rozenberg and Salomaa 1997] (formal languages), [Dassow and Pǎun 1989]

(grammars with regulated rewriting), [Desel and Esparsa 1995] (special Petri

nets) and [Baumgarten 1990, Reisig and Rozenberg 1998] (Petri nets).

2809Dassow J., Turaev S.: Petri Net Controlled Grammars ...

2.1 Strings, Grammars and Languages

Let Σ be an alphabet. A string over Σ is a sequence of symbols from the alpha-

bet. A shuffle of strings u = u1u2 · · ·un and v = v1v2 · · · vn for some ui, vi ∈ Σ∗,
1 ≤ i ≤ n, is defined as u1v1u2v2 · · ·unvn. A shuffle of strings u1, u2, . . . , un,

n ≥ 3, is a shuffle of a shuffle of u1, u2, . . . , un−1 and un. A semi-shuffle of

strings u1, u2, . . . , un is a shuffle of strings from
⋃n

i=1 u
∗
i . The length of a string

w is denoted by #(w), and the number of occurrences of a symbol a in a string

w by #a(w). The empty string is denoted by λ which is of length 0. The set of

all strings over the alphabet Σ is denoted by Σ∗. A subset L of Σ∗ is called a

language.

A context-free grammar is a quadruple G = (V,Σ, S,R) where V and Σ are

disjoint finite sets of nonterminal and terminal symbols, respectively, S ∈ V is

the start symbol and a finite set R ⊆ V × (V ∪Σ)∗ is a set of (production) rules.

Usually, a rule (A, x) is written as A→ x. A rule of the form A→ λ is called an

erasing rule. The string x ∈ (V ∪ Σ)+ directly derives y ∈ (V ∪Σ)∗, written as

x ⇒ y, iff there is a rule r = A → α ∈ R such that x = x1Ax2 and y = x1αx2.

The reflexive and transitive closure of ⇒ is denoted by ⇒∗. A derivation using

the sequence of rules π = r1r2 · · · rn is denoted by
π
=⇒ or

r1r2···rn=====⇒. The language

generated by G is defined by L(G) = {w ∈ Σ∗ | S ⇒∗ w}. The family of

context-free languages is denoted by CF.

A regularly controlled grammar is a quintuple G = (V,Σ, S,R,K) where

V,Σ, S,R are specified as in a context-free grammar and K is a regular set over

R. The language generated by G consists of all words w ∈ Σ∗ such that there is

a derivation S
r1r2···rn=====⇒ w where r1r2 · · · rn ∈ K.

A matrix grammar is a quadruple G = (V,Σ, S,M) where V,Σ, S are defined

as for a context-free grammar, M is a finite set of matrices, i.e., finite strings

over a set R of context-free rules. The language generated by the grammar G

consists of all strings w ∈ Σ∗ such that there is a derivation S
r1r2···rn=====⇒ w where

r1r2 · · · rn is a concatenation of some matrices mi1 ,mi2 , . . . ,mik ∈M , k ≥ 1.

A vector grammar is a quadruple G = (V,Σ, S,M) whose components are

defined as for a matrix grammar. The language generated by the grammar G

consists of all strings w ∈ Σ∗ such that there is a derivation S
r1r2···rn=====⇒ w where

r1r2 · · · rn is a shuffle of some matrices mi1 ,mi2 , . . . ,mik ∈M , k ≥ 1.

A semi-matrix grammar is a quadruple G = (V,Σ, S,M) whose components

are defined as for a matrix grammar. The language generated by the grammar G

consists of all strings w ∈ Σ∗ such that there is a derivation S
r1r2···rn=====⇒ w where

r1r2 · · · rn is a semi-shuffle of some matrices mi1 ,mi2 , . . . ,mik ∈M , k ≥ 1.

A matrix (semi-matrix, vector) grammar G is called without repetitions, if

for each rule r ∈ R, |m1m2 · · ·mn|r = 1. For each matrix (semi-matrix, vec-

tor) grammar, by adding chain rules, one can construct an equivalent matrix

grammar without repetitions.

2810 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

The families of languages generated by regularly controlled, matrix, vector

and semi-matrix grammars (with erasing rules) are denoted by rC, MAT, V

and sMAT (rCλ, MATλ, Vλ and sMATλ), respectively. It is known that

CF ⊂ rC = MAT ⊆ V ⊆ rCλ = MATλ = Vλ = sMATλ

(see [Dassow and Pǎun 1989] and [Turaev 2006]).

We use bracket notation X[λ] for a language family X in order to say that a

statement holds in both cases: with and without erasing rules.

2.2 Petri Nets

A Petri net (PN) is a construct N = (P, T, F, ϕ) where P and T are disjoint

finite sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the

set of directed arcs, ϕ : (P × T) ∪ (T × P) → {0, 1, 2, . . .} is a weight function,

where ϕ(x, y) = 0 for all (x, y) ∈ ((P × T) ∪ (T × P)) − F . A Petri net can be

represented by a bipartite directed graph with the node set P ∪ T where places

are drawn as circles, transitions as boxes and arcs as arrows with non-negative

integer labels. A Petri net N is called an ordinary net (ON) if ϕ(x, y) = 1 for

all (x, y) ∈ F . We omit ϕ from the definition of an ordinary net. A mapping

μ : P → {0, 1, 2, . . .} is called a marking. For each place p ∈ P , μ(p) gives the

number of tokens in p. •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} are

called the sets of input and output elements of x ∈ P ∪ T , respectively.
A sequence of places and transitions ρ = x1x2 · · ·xn is called a path if and

only if no place or transition except x1 and xn appears more than once, and

xi+1 ∈ x•i for all 1 ≤ i ≤ n − 1. A path ρ = x1x2 · · ·xn is a chain (cycle) if

x1
= xn (x1 = xn). We denote the sets of places, transitions and arcs of a path

ρ by Pρ, Tρ, Fρ, respectively. The sequence of transitions in a path ρ is denoted

by tr(ρ).

A transition t ∈ T is enabled by marking μ iff μ(p) ≥ ϕ(p, t) for all p ∈ P .

In this case the transition t can occur. Its occurrence transforms the marking μ

into the marking μ′ defined for each place p ∈ P by μ′(p) = μ(p) − ϕ(p, t) +

ϕ(t, p). This transformation is denoted by μ
t−→ μ′. A finite sequence t1t2 · · · tk of

transitions is called an occurrence sequence enabled at a marking μ if there are

markings μ1, μ2, . . . , μk such that μ
t1−→ μ1

t2−→ . . .
tk−→ μk. For each 1 ≤ i ≤ k,

marking μi is called reachable from marking μ. R(N,μ) denotes the set of all

reachable markings from a marking μ.

A marked Petri net is a systemN = (P, T, F, ϕ, ι) where (P, T, F, ϕ) is a Petri

net, ι is the initial marking. Let M be a set of markings, which will be called

final markings. An occurrence sequence ν of transitions is called successful for

M if it is enabled at the initial marking ι and finished at a final marking τ of

M .

We consider the following main structural subclasses of Petri nets.

2811Dassow J., Turaev S.: Petri Net Controlled Grammars ...

– A state machine (SM) is an ordinary Petri net such that each transition has

exactly one input place and exactly one output place, i.e., |•t| = |t•| = 1 for

all t ∈ T .

– A generalized state machine (GSM) is an ordinary Petri net such that |•t| ≤ 1

and |t•| ≤ 1 for all t ∈ T .

– A marked graph (MG) is an ordinary Petri net such that each place has

exactly one input transition and exactly one output transition, i.e., |•p| =
|p•| = 1 for all p ∈ P .

– A generalized marked graph (GMG) is an ordinary Petri net such that |•p| ≤
1 and |p•| ≤ 1 for all p ∈ P .

– A casual net (CN) is a generalized marked graph each subnet of which is

not a cycle.

– A free-choice net (FC) is an ordinary Petri net such that every arc is either

the only arc going from the place, or it is the only arc going to a transition,

i.e., if p•1 ∩ p•2
= ∅ then |p•1| = |p•2| = 1 for all p1, p2 ∈ P .

– An extended free-choice net (EFC) is an ordinary Petri net such that if

p•1 ∩ p•2
= ∅ then p•1 = p•2 for all p1, p2 ∈ P .

– An asymmetric choice net (AC) is an ordinary Petri net such that if p•1∩p•2
=
∅ then p•1 ⊆ p•2 or p•1 ⊇ p•2 for all p1, p2 ∈ P .

The hierarchy of the introduced subclasses of Petri nets is shown in Figure

1 where the arrows denote proper inclusions of the left families into the right

families.

SM

MG

CN

GSM

GMG

FC EFC AC ON PN

Figure 1: The hierarchy of subclasses of Petri nets

2812 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

3 Grammars and Their Languages

We introduce the concept of control by Petri nets.

Definition 1. A PN controlled grammar is a tuple G = (V,Σ, S,R,N, γ,M)

where V,Σ, S,R are defined as for a context-free grammar andN = (P, T, F, ϕ, ι)

is a (marked) Petri net, γ : T → R∪ {λ} is a labeling function and M is a set of

final markings.

The grammar G is called a (generalized) state machine, (generalized) marked

graph, causal net, (extended) free-choice net, asymmetric choice net or ordinary

net controlled grammar if the net N is a (generalized) state machine, (general-

ized) marked graph, causal net, (extended) free-choice net, asymmetric choice

net or ordinary net, respectively. We also use the common name of special Petri

net (in short, sPN) when we refer to each special class.

Definition 2. The language generated by a Petri net controlled grammar G,
denoted by L(G), consists of all strings w ∈ Σ∗ such that there is a derivation

S
r1r2···rk======⇒ w ∈ Σ∗ and an occurrence sequence ν = t1t2 · · · ts which is successful

for M such that r1r2 · · · rk = γ(t1t2 · · · ts).

Definition 2 uses the extended form of the labeling function γ : T ∗ → R∗, which
is done in the usual manner. Obviously, if γ maps any transition to a rule, then

k = s.

Different labeling strategies and different definitions of the set of final mark-

ings result various types of Petri net controlled grammars. We use a notation

an (x, y)-Petri net ((generalized) state machine, (generalized) marked graph,

causal net, (extended) free-choice net, asymmetric choice net and ordinary net)

controlled grammar where

– x ∈ {f,−λ, λ} shows the type of a labeling function γ:

• free (abbreviated by f) if a different label is associated to each transition,

and no transition is labeled with the empty string;

• λ-free (abbreviated by −λ) if no transition is labeled with the empty

string;

• extended (abbreviated by λ) if no restriction is posed on the function γ,

– y ∈ {r, t, g} shows the type of a set of final markings:

• r-type if M is the set of all reachable markings from the initial marking

ι, i.e., M = R(N, ι);

• t-type if M ⊆ R(N, ι) is a finite set;

2813Dassow J., Turaev S.: Petri Net Controlled Grammars ...

• g-type if for a given finite set M0 ⊆ R(N, ι), M is the set of all markings

such that for every marking μ ∈ M there is a marking μ′ ∈ M0 such

that μ ≥ μ′.

We denote the families of languages generated by grammars controlled by

state machines, generalized state machines, marked graphs, generalize marked

graphs, causal nets, free-choice nets, extended free-choice nets, asymmetric nets,

ordinary nets and Petri nets, respectively, by

SM[λ](x, y), GSM[λ](x, y), MG[λ](x, y), GMG[λ](x, y), CN[λ](x, y),

FC[λ](x, y), EFC[λ](x, y), AC[λ](x, y), ON[λ](x, y), PN[λ](x, y)

where x ∈ {f,−λ, λ} and y ∈ {r, t, g}.
The inclusion X(x, y) ⊆ Xλ(x, y) immediately follows from the definition

where X ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON}, x ∈ {f,−λ, λ}
and y ∈ {r, t, g}.

•

p′

S → AB

A → aA B → aB

A → bA B → bB

A → λ B → λ

λ

λ

Figure 2: A state machine N1

Example 1. Let G1 = ({S,A,B}, {a, b}, S, R,N1, γ1,M1) be a state machine con-

trolled grammar where R consists of

S → AB,A→ aA,A→ bA,A→ λ,B → aB,B → bB,B → λ,

2814 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

N1 which is illustrated in Figure 2 is a labeled state machine and M1 = {μ}
where μ(p′) = 1 and μ(p) = 0 for all p ∈ P − {p′}, then

L(G1) = {ww | w ∈ {a, b}∗} ∈ SMλ(λ, t).

Example 2. Let G2 = ({S,A,B}, {a, b}, S, R,N2, γ2,M2) be a MG controlled

grammar where R is as for the grammar G1 in Example 1, a labeled marked

graph N2 is illustrated in Figure 3 and M1 = {μ} where μ(p) = 0 for all p ∈ P .

Then

L(G2) = {ww′ | w ∈ {a, b}∗ and w′ ∈ Perm(w)} ∈ MGλ(λ, t).

λ

S → AB

A → aA B → aB

A → bA B → bB

A → λ B → λ

Figure 3: A marked graph N2

4 Results: Labeling Strategies

In this section we investigate the effect of the labeling of transitions on the

generative capacity of the introduced families of languages. From the definition,

the next statement follows immediately.

Lemma3. For X ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON} and

y ∈ {r, t, g},
X[λ](f, y) ⊆ X[λ](−λ, y) ⊆ X[λ](λ, y).

Further, we show that the reverse inclusions also hold.

For each sPN, one can easily construct a net of the same type in which the

transitions have different labels, by “splitting” each transition into two, i.e., by

2815Dassow J., Turaev S.: Petri Net Controlled Grammars ...

replacing a transition t with label A → α by new transitions t′, t′′ with labels

A → A′, A′ → α, respectively, where t′ receives all incoming arcs of t and t′′

receives all outgoing arcs of t, and a new place pt from transition t′ and to

transition t′′.

Lemma4. For X ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON} and

y ∈ {r, t, g},
X[λ](−λ, y) ⊆ X[λ](f, y).

Proof. Let G = (V,Σ, S,R,N, γ,M) be a (−λ, y)-sPN controlled grammar (with

or without erasing rules) where y ∈ {r, t, g} and N = (P, T, F, ι). We construct

a new sPN N ′ by replacing each transition t ∈ T with label A→ α by two new

transitions lt, l
′
t with labels A→ At, At → α, respectively, and

•lt = •t, (l′t)
• = t•, l•t = {pt} = •l′t,

where At, t ∈ T , is a new nonterminal symbol and pt, t ∈ T , is a new place.

Formally, N ′ = (P ′, T ′, F ′, ι′) where P ′ = P ∪ Pt, T
′ = {lt, l′t | t ∈ T } and

F ′ ={(p, lt) | p ∈ •t, t ∈ T } ∪ {(l′t, p) | p ∈ t•, t ∈ T }
∪ {(lt, pt), (pt, l′t) | t ∈ T }.

The initial marking ι′ is defined by ι′(p) = ι(p) if p ∈ P and ι′(p) = 0 if

p ∈ Pt. We should mention that this kind of replacement of transitions of an

sPN preserve its structural property.

Let G′ = (V ′, Σ, S,R′, N ′, γ′,M ′) be an (f, y)-sPN controlled grammar where

V ′ = V ∪ Vt with Vt = {At | t ∈ T } and

R′ = {A→ At, At → α | A ∈ R and t ∈ T }.

The labeling function γ′ is defined by γ′(lt) = A → At and γ
′(l′t) = At → α

for all lt, l
′
t ∈ T ′ where γ(t) = A→ α ∈ R.

For each τ ′ ∈M ′, τ ′(p) = τ(p) if p ∈ P and τ ′(p) = 0 if p ∈ Pt.

In a derivation S
r1r2···rn======⇒ w ∈ Σ∗ of G, we replace each rule ri : Ai → αi

by the pair rti : Ai → Ati , r
′
ti : Ati → αi, 1 ≤ i ≤ n, and the occurrence

sequence of transitions ν = t1t2 · · · tn where γ(ν) = r1r2 · · · rn by the occur-

rence sequence lt1 l
′
t1 lt2 l

′
t2 · · · ltn l′tn in the grammar G′. It is difficult to see that

S
rt1r

′
t1

rt2r
′
t2

···rtnr′tn
==============⇒ w is a derivation in G′ where lt1 l′t1 lt2 l

′
t2 · · · ltn l′tn with

γ′(lt1 l
′
t1 lt2 l

′
t2 · · · ltn l′tn) = rt1r

′
t1rt2r

′
t2 · · · rtnr′tn

is a successful occurrence sequence in N ′. Thus, w ∈ L(G′).

2816 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

By construction of N ′, if a transition lt for some t ∈ T in a successful oc-

currence sequence of transitions σ then l′t is also in σ, similarly, if A → At

in D : S
π
=⇒ w ∈ Σ∗ then At → α is also in D. Without loss of generality

we can assume that π = · · · (A → At)(At → α) · · · and σ = · · · ltl′t · · · (If

π = · · · (A → At)π
′(At → α) · · · for some π′ ∈ R′∗ and σ = · · · ltσ′l′t · · · for

some σ′ ∈ T ′∗ where γ′(σ′) = π′, then we can change the order of the appli-

cation of rules and the firing of transitions so that D′ : S π′′
==⇒ w ∈ Σ∗ where

π′′ = · · · (A → At)(At → α)π′ · · · with γ′(π′′) = σ′′, σ′′ = · · · ltl′tσ′ · · ·). We

replace each (A→ At)(At → α) by A→ α and ltl
′
t by t. Thus, w ∈ L(G). ��

For each (λ, y)-sPN controlled grammar, if we label each λ-transition with

X → X , start each derivation with S′ → SX and erase X with rule X → λ

at the end of the derivation, then we get the same derivation in a (−λ, y)-sPN
controlled grammar, i.e.,

Lemma5. For X ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON} and

y ∈ {r, t, g},
Xλ(λ, y) ⊆ Xλ(−λ, y).

Proof. Let G = (V,Σ, S,R,N, γ,M) be a (λ, y)-sPN controlled grammar where

y ∈ {r, t, g} and N = (P, T, F, ι). Let Tλ = {t ∈ T | γ(t) = λ}.
A (−λ, y)-sPN controlled grammar G′ = (V ′, Σ, S′, R′, N ′, γ′,M ′) is con-

structed as follows. We set V ′ = V ∪ {S′, X} and

R′ = R ∪ {S′ → SX,X → X,X → λ}
where S′ and X are new nonterminals. N ′ = (P ∪ P ′, T ∪ T ′, F ∪ F ′, ι′) is an

sPN where

– P ′ = {p′, p′′}, T ′ = {t′, t′′}, F ′ = {(p′, t′), (t′, p′), (p′′, t′′), (t′′, p′′)} are the

sets of new places, transitions and arcs, respectively,

– ι′(p) = ι(p) for all p ∈ P and ι′(p′) = ι′(p′′) = 1.

The total function γ′ : T ′ → R′ is defined by

γ′(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(t) if t ∈ T − Tλ

X → X if t ∈ Tλ

S′ → SX if t = t′

X → λ if t = t′′.

For each τ ′ ∈M ′, τ ′(p) = τ(p) for all p ∈ P and τ ′(p′) = τ ′(p′′) = 1.

Let D : S
r1r2···rk======⇒ wk ∈ Σ∗ be a derivation in G where ν = ν1t1 · · · νktk,

γ(ti) = ri and γ(νi) = λ for all 1 ≤ i ≤ k is an occurrence sequence in N enabled

at the initial marking ι and finishing at a marking μ ∈M .

2817Dassow J., Turaev S.: Petri Net Controlled Grammars ...

We construct a derivation D′ in G′ from the derivation D as follows. We

initialize the derivation D with the rule S′ → SX . For any λ-transition t in the

occurrence sequence ν we apply the rule X → X and terminate the derivation

with the rule X → λ:

S′ ⇒ SX

|ν1|︷ ︸︸ ︷
X → X ·r1========⇒ w1X

|ν2|︷ ︸︸ ︷
X → X ·r2========⇒ · · ·

|νk|︷ ︸︸ ︷
X → X ·rk========⇒ wkX

X→λ
====⇒ wk ∈ Σ∗

and t′ν1t1ν2t2 · · · νktkt′′, t′, t′′ ∈ T ′, is a successful occurrence sequence in N ′.
On the other hand, for each derivation

S′ ⇒ SX
r1···rj
====⇒ wjX

X→λ
====⇒ wj

rj+1···rm
======⇒ wm ∈ Σ∗

in G′ by removing the first step, (j + 1)-th step and the nonterminal symbol X

from the derivation, we get a derivation in G where the corresponding occurrence

sequence in N is obtained by removing the transitions t′, t′′ ∈ T ′ and changing

the labels X → X to λ. ��

Lemma6. For y ∈ {r, t, g} and X ∈ {SM,GSM}, X(λ, y) ⊆ X(−λ, y).

Proof. Let G = (V,Σ, S,R,N, γ,M) be a (λ, y)-state machine controlled gram-

mar where y ∈ {r, t, g} and N = (P, T, F, ι). Let Tλ ⊆ T be the set of all

λ-transitions of N and Fλ ⊆ F be the set of all incoming and outgoing arcs of

the λ-transitions, i.e., Fλ = {(p, t), (t, p) | p ∈ P and t ∈ Tλ}.
Before proving the lemma, we introduce some necessary notions. The i-

adjacency set of t ∈ T is defined by

Adji(t) = {t′′ | t′′ ∈ Adj1(t′) and t′ ∈ Adji−1(t) ∩ Tλ} for i ≥ 2

where Adj1(t) = (t•)• and the complete adjacency set by Adj∗(t) =
⋃

i≥1 Adj
i(t).

A transition t′ ∈ Adji(t), i ≥ 1 (t′ ∈ Adj∗(t)) is called an i-adjacent (adjacent)

transition of t. Adj+(t) denotes the set of non λ adjacent transitions of t ∈ T ,

i.e., Adj+(t) = Adj∗(t)− Tλ.

We construct a new state machine N ′ without λ-transitions by removing

each λ-transition tλ ∈ Tλ with the incoming and outgoing arcs, and adding a

new transition t′ for each adjacent transition t ∈ Adj(tλ)
+, and the new arcs

from the input place of tλ to t′ and from t′ to the output place of t.

For each t ∈ Adj+(tλ), tλ ∈ Tλ, we introduce a new “copy” transition lt
which has the same label as t. Let

Tc(tλ) = {lt,tλ | t ∈ Adj+(tλ)} and Tc =
⋃

tλ∈Tλ

Tc(tλ).

2818 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

Let N ′ = (P, T ′, F ′, ι) be a state machine where T ′ = (T − Tλ) ∪ Tc, and

F ′ = (F − Fλ) ∪ {(p, lt,tλ) | p ∈ •tλ and lt,tλ ∈ Tc(tλ), tλ ∈ Tλ}
∪ {(lt,tλ , p) | lt,tλ ∈ Tc(tλ) and p ∈ (Adj+(tλ))

•, tλ ∈ Tλ}.

We define a (−λ, y)-SM controlled grammar G′ = (V,Σ, S,R,N ′, γ′,M)

where V,Σ, S,R are as for the grammar G, and γ′(t) = γ(t) if t ∈ T and

γ′(lt,tλ) = γ(t) if lt,tλ ∈ Tc is the copy of t ∈ Adj+(tλ), tλ ∈ Tλ.

Let S
π
=⇒ w ∈ Σ∗, π = r1r2 · · · rn, be a derivation in G. Then there is an

occurrence sequence σ = σλ
1 t1σ

λ
2 t2 · · ·σλ

ntnσ
λ
n+1, γ(σ) = π, which is successful

for M where σλ
i = tλ,i,1tλ,i,2 · · · tλ,i,k(i) ∈ T ∗, 1 ≤ j ≤ k(i), and γ(σλ

i) = λ,

1 ≤ i ≤ n+1.Without loss of generality we can assume that ti ∈ Adj+(tλ,i,j), 1 ≤
j ≤ k(i), for each σλ

i ∈ T+, 1 ≤ i ≤ n. Then each sequence tλ,i,1tλ,i,2 · · · tλ,i,k(i)ti,
k(i) ≥ 1, is replaced by lti,tλ ∈ Tc(tλ,i,1) where ti ∈ Adjk(i)(tλ,i,1), and we get

the occurrence sequence σ′ in N ′ and r1r2 · · · rn = γ′(σ′) since the transitions

lti,tλ and ti have the same label. Therefore, L(G) ⊆ L(G′). The inverse case can

be shown by backtracking the arguments in this paragraph. ��

Lemma7. For x ∈ {f,−λ, λ} and y ∈ {r, t, g},

GMG[λ](x, y) ⊆ MG[λ](x, y).

Proof. Let G = (V,Σ, S,R,N, γ,M) be an (x, y)-GMG controlled grammar

(with or without erasing rules) where N = (P, T, F, ι) is a generalized marked

graph. Let

P−
∅ = {p ∈ P | •p = ∅} and P+

∅ = {p ∈ P | p• = ∅}.

Without loss of generality we can assume that P−
∅ ∩ P+

∅ = ∅ (if place p ∈ P is

isolated, i.e., |•p| = |p•| = 0, it can be eliminated since isolated places do not

effect any derivation of the grammar).

Let

Q− = {qp | p ∈ P−
∅ } and Q+ = {qp | p ∈ P+

∅ }
be the sets of new places,

T− = {tp | p ∈ P−
∅ } and T+ = {tp | p ∈ P+

∅ }

be the sets of new transitions and

F− = {(tp, qp), (qp, tp), (tp, p) | p ∈ P−
∅ }

and

F+ = {(p, tp), (tp, qp), (qp, tp) | p ∈ P+
∅ }

2819Dassow J., Turaev S.: Petri Net Controlled Grammars ...

be the sets of new arcs.

We construct a marked graph

N ′ = (P ∪Q− ∪Q+, T ∪ T− ∪ T+, F ∪ F− ∪ F+, ι′)

where ι′(p) = ι(p) if p ∈ P and ι′(p) = 0 if p ∈ Q− ∪Q+.

We set V ′ = V ∪ {B} and R′ = R∪ {B → B} where B is a new nonterminal

symbol, and define a MG controlled grammar G′ = (V ′, Σ, S,R′, N ′, γ′,M ′)
where the labeling function γ′ is defined by γ′(t) = γ(t) if t ∈ T and γ′(t) =

B → B if t ∈ T− ∪ T+. For each τ ′ ∈M ′, τ ′(p) = τ(p) if p ∈ P and τ ′(p) = 0 if

p ∈ Q− ∪Q+.

By construction of N ′, any transition t ∈ T− ∪ T+ never occurs and the

production rule B → B is never applied in any derivation of G′. Thus it is not

difficult to see that L(G) = L(G′). ��
Lemma8. For y ∈ {r, t, g} and X ∈ {MG,CN}, X(λ, y) ⊆ X(−λ, y).
Proof. Let G = (V,Σ, S,R,N, γ,M) be a (λ, y)-MG controlled grammar where

N = (P, T, F, ι) is a marked graph. Let Tλ = {t | γ(t) = λ} and

Adj+(Tλ) = {t | t ∈ Adj+(tλ) for some tλ ∈ Tλ}.
We assume that for each t ∈ Tλ, t is not a transition of some cycle ρ where

ι(p) = 0 for all p ∈ Pρ or (t•)• = ∅ (in the former case, the transition t and

its incoming and outgoing arcs can be removed without effecting any firing of

transitions since t never occurs; in the latter case, the transition t, its outgoing

arcs and the places of t• can be removed as the firing of t does not effect any

derivation of the grammar G).
Before proving the lemma, we introduce some necessary notions. Transitions

tλ, t
′
λ ∈ Tλ are called neighbors if tλ ∈ Adj∗(t′λ) or t′λ ∈ Adj∗(tλ). A subset

T ′
λ ⊆ Tλ is called a neighborhood set if all transitions of T ′

λ are pairwise neighbors.

A neighborhood set T ′
λ ⊆ Tλ is maximal if for any tλ ∈ Tλ − T ′

λ there is a

transition t′λ ∈ T ′
λ such that tλ and t′λ are not neighbors. Let Nbr(Tλ) be the

set of all maximal neighborhood subsets of Tλ. Let Tλ(t) denote a maximal

neighborhood subset of Tλ such that t ∈ Adj+(tλ) for all tλ ∈ Tλ(t).

We construct a generalized marked graph N ′ without λ-transitions by

– removing

• all transitions of Tλ,

• all places of •tλ for each tλ ∈ Tλ,

• all incoming and outgoing arcs of each place p ∈• tλ, tλ ∈ Tλ, let

Fλ = {(p, t), (t, p) | p ∈ •Tλ},

2820 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

• all incoming arcs of each place p ∈ •t ∩ T •
λ where t ∈ Adj+(Tλ), let

FA = {(t, p) | p ∈ •(Adj+(Tλ)) ∩ T •
λ},

– adding

• a new transition [t]λ for each tλ ∈ Tλ(t), Tλ(t) ∈ Nbr(Tλ), t ∈ T , let

[T]λ =
⋃
t∈T

⋃
Tλ(t)∈Nbr(Tλ)

{[t]λ | tλ ∈ Tλ(t)},

• a new place p[t]λ for each p ∈ •tλ, tλ ∈ Tλ(t), Tλ(t) ∈ Nbr(Tλ), t ∈ T ,

let

[P]λ =
⋃
t∈T

⋃
Tλ(t)∈Nbr(Tλ)

⋃
tλ∈Tλ

{p[t]λ | p ∈ •tλ},

• for each p ∈ •tλ, tλ ∈ Tλ(t), Tλ(t) ∈ Nbr(Tλ), t ∈ T , add new arcs

(t′, p[t]λ) where t′ ∈ •p and t′
∈ Tλ, ([t
′]λ, p[t]λ) where t′λ ∈ Tλ ∩ •p,

(p[t]λ, [t]λ), let

[F]λ =
⋃
t∈T

⋃
Tλ(t)∈Nbr(Tλ)

⋃
tλ∈Tλ

({(t′, p[t]λ) | t′ ∈ •p, t′
∈ Tλ, p ∈ •tλ}

∪{([t′]λ, p[t]λ) | t′λ ∈ Tλ ∩ •p, p ∈ •tλ}
∪{(p[t]λ, [t]λ) | p ∈ •tλ}),

and for each p ∈ •t, t ∈ Adj+(Tλ), add a new arc ([t]λ, p) where tλ ∈
•p ∩ Tλ, let

[F]A =
⋃

t∈Adj+(Tλ)

{([t]λ, p) | p ∈ •t, tλ ∈ •p ∩ Tλ}.

Formally, N ′ = (P ′, T ′, F ′, ι′) is a generalized marked graph where

P ′ =(P −• Tλ) ∪ [P]λ,

T ′ =(T − Tλ) ∪ [T]λ,

F ′ =(F − (Fλ ∪ FA)) ∪ [F]λ ∪ [F]A,

and the initial marking ι′ is defined by ι′(p) = ι(p) for all p ∈ P −• Tλ and

ι′(p[t]λ) = ι(p) for all p[t]λ ∈ [P]λ where p ∈ •tλ.

We define a generalized marked graph G′ = (V,Σ, S,R′, N ′, γ′,M ′) where

– V,Σ, S are defined as for G, R′ = R ∪ {A → A | A → α ∈ R} and N ′ is
constructed above;

2821Dassow J., Turaev S.: Petri Net Controlled Grammars ...

– the labeling function γ′ is defined by γ′(t) = γ(t) if t ∈ T −Tλ and γ′([t]λ) =
A→ A if [t]λ ∈ Tλ(t

′) where t′ = γ−1(A→ α) ∈ Adj+(tλ);

– for each final marking τ ′ ∈ M ′ (if M ′ is a finite set of final markings),

τ ′(p) = τ(p) if p ∈ P and τ ′(p[t]λ) = τ(p) for all p[t]λ ∈ [P]λ where p ∈ •tλ.

Let

S
π
=⇒ w ∈ Σ∗, π = r1r2 · · · rn (1)

be a derivation in G. Then there is a successful occurrence sequence of transitions

σ = t1t2 · · · tm, m ≥ n ≥ 1, such that γ(σ) = π. Let

ι
t1−→ μ1

t2−→ μ2
t3−→ · · · tm−−→ μm (2)

We construct a successful occurrence sequence σ′ of transitions of N ′ on the

base of (2) as follows: all transitions in (2) which are from T −Tλ also remain in

σ′. If in order to fire a transition t ∈ Adj+(Tλ) which is in (2), some transitions

tλ,i1 , tλ,i2 , . . . , tλ,il ∈ Tλ(t), l ≥ 1, where tλ,ij+1 ∈ Adj1(tλ,ij), 2 ≤ j ≤ l − 1, and

t ∈ Adj1(tλ,il) are to be fired then tλ,i1 , tλ,i2 , . . . , tλ,il are replaced by transitions

[t]λ,i1 , [t]λ,i2 , . . . , [t]λ,il , otherwise, i.e., if the firing of a transition tλ ∈ Tλ does

not effect the firing of t ∈ Adj+(tλ), it is removed. Correspondingly, a derivation

in the grammar G′ is constructed from (1) by adding a rule A → A for each

[t′]λ where γ(t) = A → α and t ∈ Adj+(t′λ). It is clear that the result of the

derivation does not change. Therefore, L(G) ⊆ L(G′).

The inverse case can be easily shown: each [t′]λ with γ(t) = A → α and

t ∈ Adj+(t′λ), is replaced by tλ and its label A→ A is removed in the derivation

and the same string is generated. ��

Lemma9. For X ∈ {EFC,AC,ON} and y ∈ {r, t, g},

X(λ, y) ⊆ X(−λ, y).

Proof. Let G = (V,Σ, S,R,N, γ,M) be a (λ, y)-extended free-choice (asymmet-

ric choice, ordinary) net controlled grammar with N = (P, T, F, ι). Let

Tλ = {t ∈ T | γ(t) = λ} and Fλ = {(p, tλ), (tλ, p) | p ∈ P and tλ ∈ Tλ}.

For each tλ ∈ Tλ, we define the set of new transitions

T (tλ) = {[t] | t ∈ Adj+(tλ)}.

We introduce the set R(tλ) of new rules with respect to each tλ ∈ Tλ

R(tλ) = {A→ A | A→ α = γ(t) ∈ R and t ∈ Adj+(tλ)}.

2822 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

We define a (−λ, y)-extended free-choice (asymmetric-choice, ordinary) net

controlled grammar G′ = (V,Σ, S,R′, N ′, γ′,M ′) where

R′ = R ∪
⋃
t∈Tλ

R(t)

and N ′ = (P, T ′, F ′, ι) where

T ′ = (T − Tλ)∪
⋃

tλ∈Tλ

T (tλ),

F ′ = (F − Fλ)∪
⋃

tλ∈Tλ

{(p, [t]) | p ∈ •tλ and [t] ∈ T (tλ)}

∪
⋃

tλ∈Tλ

{([t], p) | [t] ∈ T (tλ) and p ∈ t•λ}.

This method of the addition of new arcs preserves the structural properties

of an extended free-choice, asymmetric choice and ordinary nets.

The function γ′ : T ′ → R′ is defined by γ′(t) = γ(t) for all t ∈ T and γ′([t]) =
A→ A ∈ R(tλ) where [t] ∈ T (tλ) and t ∈ Adj+(tλ) where γ(t) = A→ α ∈ R.

Let S
r1r2···rn======⇒ wn ∈ Σ∗ be a derivation in G. Then

t′1,1 · · · t′1,k(1)t1t′2,1 · · · t′2,k(2)t2 · · · tnt′n+1,1 · · · t′n+1,k(n+1) (3)

is a successful occurrence sequence in N where γ(ti) = ri, 1 ≤ i ≤ n and t′i,j ∈ Tλ
for all 1 ≤ i ≤ n + 1, 1 ≤ j ≤ k(i) such that ti ∈ Adj+(t′i,j) for all 1 ≤ i ≤ n,

1 ≤ j ≤ k(i).

Each λ-transition t′i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i) in (3) can be replaced by the

transition t′′i,j in N ′, 1 ≤ i ≤ n, 1 ≤ j ≤ k(i) with the label Ai → Ai where Ai

is the left side of the rule ri = γ(ti), 1 ≤ i ≤ n. Then

t′′1,1 · · · t′′1,k(1)t1t′′2,1 · · · t′′2,k(2)t2 · · · t′′n,1 · · · t′′n,k(n)tn (4)

is a successful occurrence sequence in N ′ and correspondingly

S
σ1r1σ2r2···σnrn==========⇒ wn ∈ Σ∗

is a derivation in G′ where

σi = r′′i,1r
′′
i,2 · · · r′′i,k(i), r′′i,j = γ′(t′′i,j), 1 ≤ i ≤ n, 1 ≤ j ≤ k(i).

Using the same idea, we can show the inverse inclusion. ��

Lemma10. For y ∈ {r, t, g}, PN[λ](λ, y) ⊆ FC[λ](λ, y).

2823Dassow J., Turaev S.: Petri Net Controlled Grammars ...

Proof. Let G = (V,Σ, S,R,N, γ,M) be a Petri net controlled grammar (with

or without erasing rules) where N = (P, T, F, ϕ, ι). For each arc (p, t) ∈ F ,

we introduce new places pi[p, t], new transitions ti[p, t] and new arcs (p, ti[p, t]),

(ti[p, t], pi[p, t]), (pi[p, t], t) whose weights are 1’s, 1 ≤ i ≤ ϕ(p, t), and for each arc

(t, p) ∈ F , we introduce new places pj [t, p], new transitions tj [t, p] and new arcs

(t, pj [t, p]), (pj [t, p], tj[t, p]), (tj [t, p], p) whose weights are 1’s, 1 ≤ j ≤ ϕ(t, p).

Let

PF ={pi[p, t] | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)}
∪ {pj[t, p] | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)},

TF ={ti[p, t] | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)}
∪ {tj[t, p] | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)},

F ′ ={(p, ti[p, t]), (ti[p, t], pi[p, t]) | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)}
∪ {(pi[p, t], t) | (p, t) ∈ F, 1 ≤ i ≤ ϕ(p, t)}
∪ {(t, pj[t, p]), (pj [t, p], tj [t, p]) | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)}
∪ {(tj [t, p], p) | (t, p) ∈ F, 1 ≤ j ≤ ϕ(t, p)}.

We construct a net N ′ = (P ∪PF , T ∪TF , F ′, ι′) where the initial marking ι′

is defined by ι′(p) = ι(p) for all p ∈ P and ι′(p) = 0 for all p ∈ PF .

Let •t = {p1, p2, . . . , pk} for a transition t ∈ T in N . Then for this transition

in N ′ we have •t =
⋃k

i=1{pj[pi, t] | 1 ≤ j ≤ ϕ(pi, t)} and (pj [pi, t])
• = {t} for all

1 ≤ i ≤ k and 1 ≤ j ≤ ϕ(pi, t). It follows that N
′ is a free-choice net.

We define an FC controlled grammar G′ = (V,Σ, S,R,N ′, γ′,M ′) where the

components V,Σ, S,R are defined as for the grammar G, the free-choice net N ′

is constructed above. We set γ′(t) = γ(t) if t ∈ T and γ′(t) = λ if t ∈ TF ; for

each τ ′ ∈ M ′, τ ′(p) = τ(p) if p ∈ P , and for p ∈ PF , τ
′(p) = 0 if y ∈ {g, t},

otherwise 0 ≤ τ ′(p) ≤ τ ′(p′) where p′ ∈ •(•p).

Let D : S
r1r2···rm======⇒ w ∈ Σ∗ be a derivation in G. Then there is a successful

occurrence sequence of transitions ν = t1t2 · · · tn for M in N such that γ(ν) =

r1r2 · · · rm. We replace ν by ν′ = ν1t1ν2 · · · νntn in N ′ where for all 1 ≤ i ≤ n,

νi ∈ Perm(•(•ti)) where

•(•ti) = {tj [pil , ti] | 1 ≤ j ≤ ϕ(pil , ti), 1 ≤ i ≤ n, 1 ≤ l ≤ s}.

In order to fire each ti, 1 ≤ i ≤ n, in N ′, we need to fire all transitions of
•(•ti) at least once, therefore, ν′ is successful for M ′ and r1r2 · · · rm = γ′(ν′),
i.e., D is a derivation in G′.

Let t1t2 · · · tn be a successful occurrence sequence for M ′. By construction,

each occurrence of ti, 1 ≤ i ≤ n, needs at least one occurrence of all transitions of
•(•ti). Without loss of generality we can assume that ν = νλ1 σ

λ
1 t1ν

λ
2 · · ·σλ

ntnν
λ
n+1

2824 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

where

σλ
i =

s∏
l=1

ϕ(pil
,ti)∏

j=1

tj [pil , ti], 1 ≤ i ≤ n,

and νλi ∈ T ∗
F , 1 ≤ i ≤ n+ 1.

We replace
∏s

l=1

∏ϕ(pil
,ti)

j=1 tj [pil , ti]ti by ti, 1 ≤ i ≤ n, and erase νλi , 1 ≤ i ≤
n + 1. The obtained occurrence sequence ν′ = t1t2 · · · tn is successful for M in

N . Then a derivation S
r1r2···rn======⇒ w ∈ Σ∗ in G′ where r1r2 · · · rn = γ′(ν) is also

a derivation in G and r1r2 · · · rn = γ′(ν′). ��

The immediate consequence of this lemma is

Corollary 11. For X ∈ {EFC,AC,ON} and y ∈ {r, g, t},

X[λ](λ, y) ⊆ FC[λ](λ, y).

Lemma12. For y ∈ {r, t, g}, FC(λ, y) ⊆ FC(−λ, y).

Proof. The proof is based on the following idea: for a FC controlled gram-

mar G, L(G) ∈ FC(λ, y), we construct an equivalent EFC controlled gram-

mar G′, L(G′) ∈ EFC(−λ, y) (with an extended free-choice net N ′ without

λ-transitions), according to Lemma 6, next we again transform the grammar

G′ into an equivalent FC controlled grammar G′′, L(G′′ ∈ FC(−λ, y), which is

equivalent to G.
Let G = (V,Σ, S,R,N, γ,M) be a free-choice net controlled grammar with

N = (P, T, F, ι). Let

Tλ = {t ∈ T | γ′(t) = λ} and T (tλ) = {[t] | t ∈ Adj+(tλ)},

tλ ∈ Tλ, be the set of new transitions. By Lemma 6, we define an EFC net

controlled grammar G′ = (V,Σ, S,R′, N ′, γ′,M ′) (with the notions of the proof

of the lemma), which is equivalent to the grammar G, where N ′ = (P, T ′, F ′, ι).
By construction of N ′, for all t ∈ T − Tλ, p

•
1 ∩ p•2 ∩ · · · ∩ p•k = {t} where

•t = {p1, p2, . . . , pk} (the property of “free-choiceness”). On the other hand, for

each transition tλ ∈ Tλ, all transitions of T (tλ) have the same set of input places,

i.e., for all t1, t2 ∈ T (tλ),
•t1 = •t2 (the property of “extended free-choiceness”).

Let

F−
λ =

⋃
tλ∈Tλ

{(p, t) ∈ F ′ | t ∈ T (tλ)}.

For each t ∈ T (tλ), tλ ∈ Tλ, we replace each incoming arc (p, t) by a new place

p[p, t], a new transition t[p, t] and new arcs (p, t[p, t]), (t[p, t], p[p, t]), (p[p, t], t).

2825Dassow J., Turaev S.: Petri Net Controlled Grammars ...

Let

PP×T =
⋃

tλ∈Tλ

⋃
t∈T (tλ)

{p[p, t] | (p, t) ∈ F ′},

TP×T =
⋃

tλ∈Tλ

⋃
t∈T (tλ)

{t[p, t] | (p, t) ∈ F ′},

FP×T =
⋃

tλ∈Tλ

⋃
t∈T (tλ)

{(p, t[p, t]), (t[p, t], p[p, t]), (p[p, t], t) | (p, t) ∈ F ′}.

We construct a net N ′′ = (P ′′, T ′′, F ′′, ι′′) where

P ′′ = P ∪ PP×T , T
′′ = T ′ ∪ TP×T , F

′′ = (F − F−
λ) ∪ FP×T ,

and the initial marking is defined by ι′′(p) = ι(p) for all p ∈ P and ι′′(p) = 0 for

all p ∈ PP×T .

If •t = {p1, p2, . . . , pk} for a transition t ∈ T (tλ) in N
′ then for this transition

in N ′′ we get •t = {p[p1, t], p[p2, t], . . . , p[pk, t]} and

(p[p1, t])
• ∩ (p[p2, t])

• ∩ · · · ∩ (p[pk, t])
• = {t}.

It follows that N ′′ is a free-choice net.

We define a FC controlled grammar G′′ = (V,Σ, S,R′, N ′′, γ′′,M ′′) where

V,Σ, S,R′ are defined as for G′ and the net N ′′ is constructed above.

The labeling function γ′′ is defined by γ′′(t) = γ′(t) for all t ∈ T ′ and for

t[p, t] ∈ TP×T , γ
′′(t[p, t]) = γ′(t), t ∈ T (tλ) (the label of each t ∈ T (tλ) is a chain

rule of he form A→ A, see the proof of Lemma 6).

For each τ ′′ ∈M ′′, τ ′′(p) = τ ′(p) if p ∈ P and for p[p, t] ∈ PP×T , τ
′′(p[p, t]) =

0 if y ∈ {g, t}, and if y = r then 0 ≤ τ ′′(p[p, t]) ≤ τ ′′(p) where p ∈ •(•p[p, t]).

Further we can repeat the arguments of the proof of Lemma 6. ��
From the presented lemmas above, we can conclude that the labeling strate-

gies of transitions of special Petri nets do not effect on the generative powers of

the families of languages generated by grammars controlled by these nets.

Theorem 13. For X ∈ {SM,GSM,MG,GMG,CN,FC,EFC,AC,ON},
and y ∈ {r, t, g},

X[λ](f, y) = X[λ](−λ, y) = X[λ](λ, y).

5 Results: Final Markings

In this section, we give some characterizations of the classes of languages gener-

ated by sPN controlled grammars by other classes of regulated languages.

From the structural properties of special Petri nets and Lemmas 7, 10, the

next statement follows immediately

2826 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

Theorem 14. For X ∈ {FC,EFC,AC,ON} and x ∈ {f,−λ, λ}, y ∈ {r, g, t},

SM(x, y) ⊆ GSM(x, y) ⊆ X(x, y) ⊆ Xλ(x, y),

CN(x, y) ⊆ MG(x, y) = GMG(x, y) ⊆ X(x, y) ⊆ Xλ(x, y).

Lemma15. SM[λ](λ, r) ⊆ SM[λ](λ, t).

Proof. Let G = (V,Σ, S,R,N, γ,M) be a state machine controlled grammar

(with or without erasing rules) where N = (P, T, F, ι).

Since the firing of a transition in a state machine moves one token from the

input place to the output place, the number of tokens in the net remains the

same in any firing of a transition. It follows that the set M of all reachable

markings is finite, i.e.,

|M | ≤
(
n+ k − 1

k − 1

)

where n =
∑

p∈P ι(p) and k = |P | ((n+k−1
k−1

)
is the number of solutions in non-

negative integers to the equation x1+x2+· · ·+xk = n, see [Graham et al. 1996]).

��

From Lemma 15 the next statements follow

Corollary 16. SM[λ](λ, r) ⊆ SM[λ](λ, g) and SM[λ](λ, g) ⊆ SM[λ](λ, t).

Proof. 1. If a finite set of final marking is defined as the set of all reachable

markings, Lemma 15 also holds for “g”-case.

2. Let G = (V,Σ, S,R,N, γ,M) be a state machine controlled grammar (with

or without erasing rules) where N = (P, T, F, ι).

Let M = {τ | τ(p) ≥ τ ′(p) for all p ∈ P and for some τ ′ ∈ M ′} where

M ′ = {τ ′1, τ ′2, . . . , τ ′k} is a finite set of final markings.

Since ∑
p∈P

τ(p) =
∑
p∈P

ι(p)

for each marking τ ∈M , τ(p) ≤ ∑
p∈P ι(p) for all p ∈ P . We define a set of final

markings as

M ′′ = {τ | τ ′(p) ≤ τ(p) ≤ K for all p ∈ P and for some τ ′ ∈M ′}

where K =
∑

p∈P ι(p). ��

Lemma17. SM[λ](λ, t) ⊆ SM[λ](λ, r).

2827Dassow J., Turaev S.: Petri Net Controlled Grammars ...

Proof. Let G = (V,Σ, S,R,N, γ,M) be a state machine controlled grammar

where N = (P, T, F, ι) andM = {τ1, τ2, . . . , τk}. The proof of the lemma consists

of the following steps.

Step I. First, we construct |M | “copies” of the grammar G.
For each τi ∈ M , 1 ≤ i ≤ k, we define a state machine controlled grammar

Gi = (Vi, Σ, Si, Ri, Ni, γi,Mi) where

– the context-free components Vi and Ri are defined by

Vi = {ψi(A) | A ∈ V } and Ri = {ψi(A) → ψ(α) | A→ α ∈ R}
where ψi : V ∪ Σ → Vi ∪ Σ, 1 ≤ i ≤ k, are bijections and ψ(a) = a for all

a ∈ Σ;

– the sets of places, transitions and arcs ofNi = (Pi, Ti, Fi, ιi) are, respectively,

defined by

Pi ={φi(p) | p ∈ P},
Ti ={φi(t) | t ∈ T },
Fi ={(φi(x), φi(y)) | (x, y) ∈ F}

where φi : P ∪ T → Pi ∪ Ti, 1 ≤ i ≤ k, are bijections;

– the initial marking ιi is defined by ιi(φi(p) = ι(p) for all p ∈ P ;

– the labeling function γi is defined by γi(φi(t)) = ψi(A) → α ∈ Ri if γ(t) =

A→ α ∈ R and γi(φi(t)) = λ if γ(t) = λ;

– the set of final markings Mi = {μi} where μi(φi(p)) = τi(p), τi ∈M .

Step II. In order to control not to generate strings of the language of a grammar

Gi, 1 ≤ i ≤ k, before reaching the final marking μi, we change each terminal

symbol a ∈ Σ to new nonterminal symbols a, and add new places, transitions

and arcs to Ni such a way that if and only if the final marking is reached, the

nonterminal symbols a are changed back to a.

Let {p1, p2, . . . , pn} ⊆ Pi where μi(pl) > 0, 1 ≤ l ≤ n and let kl = μi(pl),

1 ≤ l ≤ n. We introduce the following sets of new places, transitions and arcs:

P i ={ql,j | 1 ≤ l ≤ n, 1 ≤ j ≤ kl},
T i ={t′l,j | 1 ≤ l ≤ n, 1 ≤ j ≤ kl}

∪
⋃
a∈Σ

{tl,j,a | 1 ≤ l ≤ n, 1 ≤ j ≤ kl, a ∈ Σ},

F i ={(pl, t′l,j), (t′l,j , ql,j) | 1 ≤ l ≤ n, 1 ≤ j ≤ kl}
∪

⋃
a∈Σ

{(ql,j , tl,j,a), (tl,j,a, ql,j) | 1 ≤ l ≤ n, 1 ≤ j ≤ kl}.

2828 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

We construct a free-choice net N ′
i = (P ′

i , T
′
i , F

′
i , ι

′
i) where

P ′
i = Pi ∪ P i, T

′
i = Ti ∪ T i, F

′
i = Fi ∪ F i

and ι′i(p) = ιi(p) for all p ∈ Pi and ι
′
i(p) = 0 for all p ∈ P i.

A free-choice net controlled grammar G′
i = (V ′

i , Σ, Si, R
′
i, N

′
i , γ

′
i,M

′
i) is de-

fined as follows:

– V ′
i = Vi ∪

⋃
a∈Σ Vl,j,a where Vl,j,a = {al,j | 1 ≤ l ≤ n, 1 ≤ j ≤ kl} is the set

of new nonterminal symbols;

– Let Ri = {A→ ϕi(α) | A→ α ∈ Ri} where the weght function ϕi : Vi∪Σ →
Vi∪{a1,1 | a ∈ Σ} is bijection, defined by ϕ(x) = x if x ∈ Vi and ϕ(x) = x1,1
if x ∈ Σ. We set for each a ∈ Σ,

Ri,a ={al,j → al,j+1 | 1 ≤ l ≤ n, 1 ≤ j ≤ kl − 1}
∪ {al,kl

→ al+1,1 | 1 ≤ l ≤ n− 2}
∪ {an,kn → a}

and define R′
i = Ri ∪

⋃
a∈Σ Ri,a;

– the labeling function γ′ is defined by

• γ′i(t) = A→ ϕi(α) ∈ Ri if t ∈ Ti and γi(t) = A→ α ∈ Ri,

• γ′i(t
′
l,j) = λ for 1 ≤ l ≤ n, 1 ≤ j ≤ kl,

• γ′i(tl,j,a) = al,j → al,j+1 for 1 ≤ l ≤ n, 1 ≤ j ≤ kl − 1,

• γ′i(tl,kl,a) = al,kl
→ al+1,1 for 1 ≤ l ≤ n− 2,

• γ′i(tn,kn,a) = an,kn → a;

– the set of final markings M ′
i = {μ′

i} where μ′
i(p) = 0 for all p ∈ Pi and

μ′
i(p) = 1 for all p ∈ P i.

One can generate strings of the form w1,1 ∈ {a1,1 | a ∈ Σ}∗ under control of

“Ni-part” of the netN
′
i . In order to change nonterminal symbols of {a1,1 | a ∈ Σ}

to terminal symbols of Σ,
∑

p∈Pi
μ′
i(p) =

∑
p∈Pi

ι′i(p) number of tokens, i.e., all

tokens have to been moved from the places of Pi to the places of P i.

Step III. We define such a free-choice net controlled grammar G′′ that the

language generated by this grammar is the union of languages generated by the

grammars G′
i, 1 ≤ i ≤ k, constructed in Step II.

We define a FC controlled grammar G′′ = (V ′′, Σ, S′′, R′′, N ′′, γ′′,M ′′) where

2829Dassow J., Turaev S.: Petri Net Controlled Grammars ...

– the context-free components V ′′ and R′′ are defined by

V ′′ =
k⋃

i=1

V ′
i ∪ {S′′}

where S′′ is a new nonterminal symbol and

R′′ =
k⋃

i=1

R′
i ∪ {S′′ → Si | 1 ≤ i ≤ k};

– the free-choice net N ′′ = (P ′′, T ′′, F ′′, ι′′) is defined by

P ′′ =
k⋃

i=1

P ′
i ∪ {p′} ∪ {p′i | 1 ≤ i ≤ k},

T ′′ =
k⋃

i=1

T ′
i ∪ {t′i | 1 ≤ i ≤ k},

F ′′ =
k⋃

i=1

F ′
i ∪ {(p′, t′i), (t′i, p′i) | 1 ≤ i ≤ k},

and the initial marking ι′′(p) = ι′i(p) if p ∈ P ′
i and ι′′(p′) = 1, ι′′(p′i) = 0,

1 ≤ i ≤ k;

– the labeling function γ′′ is defined by γ′′(t) = γ′i(t) if t ∈ T ′
i and γ′′(t′i) =

S′′ → Si, 1 ≤ i ≤ k;

– for each final marking τ ′′ ∈ M ′′, τ ′′(p) = τ ′i(p) if p ∈ P ′
i , ι

′′(p′) = 0, and

ι′′(p′j) = 1 for some 1 ≤ j ≤ k and ι′′(p′i) = 0 for all 1 ≤ i
= j ≤ k;

It is not difficult to see that after one of the rules of {S′′ → Si | 1 ≤ i ≤ k}
is applied, rules of only one of the grammars G′

i, 1 ≤ i ≤ k, can be used in

a derivation of G′′, i.e., a string w is in L(G′′) iff there is a derivation S′′ ⇒
Si ⇒∗ w ∈ L(G′

i), 1 ≤ i ≤ k. On the other hand, we can initialize any derivation

Si ⇒∗ w ∈ L(G′
i) with the rule S′′ → Si, 1 ≤ i ≤ k, i.e., w ∈ L(G′′). ��

Lemma18. MAT[λ] ⊆ SM[λ](f, t).

Proof. Let G = (V,Σ, S,M) be a matrix grammar (with or without erasing

rules) and

M = {m1,m2, . . . ,mn} where mi = ri,1ri,2 · · · ri,k(i), 1 ≤ i ≤ n.

Without loss of generality we can assume that G is without repetitions. Let

R = {ri,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)}. We define an (f, t)-SM controlled grammar

2830 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

G = (V,Σ, S,R,N, γ, {μ}) where the sets of places, transitions and arcs of the a

SM N = (P, T, F, ι) are defined by

P ={p0} ∪ {pi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)− 1},
T ={ti,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)},
F ={(p0, ti,1), (ti,k(i), p0) | 1 ≤ i ≤ n} ∪ {(pi,k(i)−1, ti,k(i)) | 1 ≤ i ≤ n}

∪ {(ti,j , pi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)− 1}.

The initial marking is defined by ι(p0) = 1, and ι(p) = 0 for all P − {p0}.
The bijection γ : T → R is defined by

γ(ti,j) = ri,j , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)

and the final marking μ is the same as the initial marking ι.

Let

S = w0

mi1===⇒ w1

mi2===⇒ · · · mil==⇒ wl = w ∈ Σ∗

be a derivation in G, where mij ∈M , 1 ≤ j ≤ l, and

wj−1

mij
===⇒ wj : wj−1

rij ,1rij ,2···rij ,k(ij)

============⇒ wj .

By the definition of γ, γ(σj) = mij where σj = tij ,1tij ,2 · · · tij ,k(ij) for all 1 ≤
j ≤ l. Then the occurrence sequence of transitions ι

σ1σ2···σl−−−−−−→ ι is a successful

for {μ}. Therefore, S mi1mi2 ···mil=========⇒ wl ∈ Σ∗ is a derivation in G.
The inverse inclusion can also be shown using the same arguments. ��

Lemma19. For y ∈ {r, g, t}, SM[λ](λ, y) ⊆ rC[λ].

Proof. Let G = (V,Σ, S,R,N, γ,M) be a SM controlled grammar (with or with-

out erasing rules) where N = (P, T, F, ι). We construct a (deterministic) finite

automaton A whose states are the markings of the net N (since the set of all

reachable markings of a state machine is finite, it can be considered as a set of

states) and there is an arc from state μ to state μ′ with label t iff marking μ′ is
obtained from marking μ by firing transition t. The initial marking is considered

as the initial state and the set of final markings M as a set of final states.

Formally, A = (M ′, T, ι, δ,M) where M ′ is the set of all reachable markings

of the net N and the state-transition function δ : M ′ × T → M ′ is defined by

δ(μ, t) = μ′ iff μ t−→ μ′. It is not difficult to see that σ = t1t2 · · · tn ∈ L(A) iff σ is a

successful occurrence sequence of transitions of N . Let K = {γ(σ) | σ ∈ L(A)}.
Therefore, L(G) = L(G) where G = (V,Σ, S,R,K) is a regularly controlled

grammar. ��

From Theorem 13 and Lemmas 18, 19, we have

2831Dassow J., Turaev S.: Petri Net Controlled Grammars ...

Corollary 20. For x ∈ {f,−λ, λ} and y ∈ {r, g, t}, MAT[λ] = SM[λ](x, y).

Lemma21. V[λ] ⊆ MG[λ](f, t) ∩CN[λ](f, t) ∩GSM[λ](f, t).

Proof. Let G = (V,Σ, S,M) be a vector grammar (with or without erasing rules)

where

M = {m1,m2, . . . ,mn} with mi = ri,1ri,2 · · · ri,ki , 1 ≤ i ≤ n.

Without loss of generality we can assume that G is without repetition. Let R be

the set of all rules of M , i.e., R = {ri,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki}.
We define an (f, t)-ON controlled grammar G = (V,Σ, S,R,N, γ,M) with

N = (P, T, F, ι) where

– the sets of places, transitions and arcs are, respectively,

P ={pi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki − 1},
T ={ti,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki},
F ={(ti,j , pi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki − 1}

∪ {(pi,j , ti,j+1) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki − 1};

– the initial marking is defined by ι(p) = 0 for all p ∈ P ;

– the labeling function γ : T → R is a bijection defined by γ(ti,j) = ri,j ,

1 ≤ i ≤ n, 1 ≤ j ≤ ki and the set of final markings M = {μ} where μ = ι.

By construction, N satisfies the structural properties of a marked graph,

a casual net and generalized state machine, which consists of disjoint paths

ρi = ti,1pi,1ti,2pi,2 · · · pi,ki−1ti,ki where γ(tr(ρi)) = mi, 1 ≤ i ≤ n, and the

firing of the transitions of a path ρi simulates the application of the rules of

the matrix mi. Moreover, a derivation S
r1r2···rl=====⇒ w ∈ Σ∗ in the context-free

grammar (V,Σ, S,R) is a derivation in G if r1r2 · · · rl is a shuffle of some matrices

mi1 ,mi2 , . . . ,mik ∈ M , and a derivation in G if t1t2 · · · tl = γ−1(r1r2 · · · rl) is a
shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρik) where γ(tr(ρij)) = mij , 1 ≤ j ≤ k. Thus, it

is easy to see that each derivation in G can be simulated by a derivation in G
and vise versa. ��

Lemma22. sMAT[λ] ⊆ SM[λ](f, t) ∩MG[λ](f, t).

Proof. For each semi-matrix grammar we construct an (f, t)-ordinary net con-

trolled grammar where the net consists of disjoint cycles which correspond to the

matrices of the semi-matrix grammar and the firing of the transitions of a cycle

in the net simulates the application of the rules of the corresponding matrix in

each derivation in the grammar.

2832 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

CF

CN(𝑥, 𝑟)

SM(𝑥, 𝑦) = MAT = sMAT

CN(𝑥, 𝑔)

CN(𝑥, 𝑡)

GSM(𝑥, 𝑟)

GSM(𝑥, 𝑡)

V

GSM(𝑥, 𝑔)

MG(𝑥, 𝑔) = GMG(𝑥, 𝑔)

MG(𝑥, 𝑟) = GMG(𝑥, 𝑟)

MG(𝑥, 𝑡) = GMG(𝑥, 𝑡)

PN(𝑥, 𝑟) = X(𝑥, 𝑟) PN(𝑥, 𝑔) = X(𝑥, 𝑔)

PN(𝑥, 𝑡) = X(𝑥, 𝑡)

MAT𝜆 = PN𝜆(𝑥, 𝑦) = Y𝜆(𝑥, 𝑦) = Z𝜆(𝑥, 𝑡)

Figure 4: The hierarchy of language families generated by Petri net controlled

grammars

Let G = (V,Σ, S,M) be a semi-matrix grammar (with or without erasing

rules) where

M = {m1,m2, . . . ,mn},mi = ri,1ri,2 · · · ri,ki , 1 ≤ i ≤ n.

Without loss of generality we can assume that G is without repetition. Let R be

the set of all rules of M , i.e., R = {ri,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki}.
We define an (f, t)-ON controlled grammar G = (V,Σ, S,R,N, γ,M) with

N = (P, T, F, ι) where

2833Dassow J., Turaev S.: Petri Net Controlled Grammars ...

– the sets of places, transitions and arcs are, respectively,

P ={pi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki},
T ={ti,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki},
F ={(ti,j , pi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∪ {(pi,ki , ti,1) | 1 ≤ i ≤ n};

– the initial marking is ι(pi,ki) = 1, 1 ≤ i ≤ n and ι(p) = 0 for all p ∈
P − {pi,ki | 1 ≤ i ≤ n};

– the labeling function γ : T → R is a bijection where γ(ti,j) = ri,j , 1 ≤ i ≤
n, 1 ≤ j ≤ ki;

– a set of final markings is M = {μ} where μ = ι.

By construction,N is a state machine and also a marked graph which consists

of disjoint cycles ρi = pi,1ti,1pi,2ti,2 · · · pi,kiti,kipi,1 and γ(tr(ρi)) = mi, 1 ≤ i ≤
n. Using the same arguments of the proof of Lemma 21, one can easily show

that L(G) = L(G). ��

Now we summarize our results in the following theorem.

Theorem 23. The relations in Figure 4 hold where x ∈ {f,−λ, λ}, y ∈ {r, g, t},
X ∈ {FC, EFC, AC, ON}, Y ∈ {SM, GSM, FC, EFC, AC, ON} and

Z ∈ {MG,GMG,CN}; the lines (arrow) denote (proper) inclusions of the

lower families into the upper families.

References

[Baumgarten 1990] Baumgarten, B.: “Petri-Netze. Grundlagen und Anwendungen”;
Wissensschaftverlag, Mannheim.

[Dassow 1988] Dassow, J.: “Subregularly Controlled Derivations: Context-Free Case”;
Rostock. Math. Kolloq. 34 (1988) 61–70.

[Dassow and Pǎun 1989] Dassow, J., Pǎun, Gh.: “Regulated rewriting in formal lan-
guage theory”; Springer-Verlag, Berlin.

[Dassow and Truthe 2008] Dassow, J., Truthe, B.: “Subregularly Tree Controlled
Grammars and Languages”; Proc. the 12th International Conference AFL 2008,
E. Csuhaj-Varjú, Z. Esik (eds.), Balatonfured, Hungary (2008) 158–169.

[Dassow and Turaev 2008] Dassow, J., Turaev, S.: “Arbitrary Petri Net Controlled
Grammars”; Proc. the 2nd International Workshop “Non-Classical Formal Lan-
guages in Linguistics”–ForLing 2008, G.Bel-Enguix, M.D. Jiménez-López (eds.),
Tarragona, Spain (2008) 27–39.

[Dassow and Turaev 2009] Dassow, J., Turaev, S.: “Grammars controlled by special
Petri nets”; Language and Automata Theory and Applications. Third International
Conference LATA 2009 Carlos Mart́ın-Vide, Adrian Horia Dediu, Mihai Ionescu
(eds.), LNCS 5457, Springer (2009) 326–337.

[Desel and Esparsa 1995] Desel, J., Esparsa, J.: “Free-Choice Petri Nets”; Cambridge
Tracts in Theoretical Computer Science 10, Cambridge University Press.

2834 Dassow J., Turaev S.: Petri Net Controlled Grammars ...

[Graham et al. 1996] Graham, R.L., Groetschel M., Lovász, L. (eds.): “Handbook of
Combinatorics”; Vol. I–II, Elsevier, North-Holland, Amsterdam and MIT Press,
Cambridge, Mass.

[Rozenberg and Salomaa 1997] Rozenberg, G., Salomaa, A. (eds.): “Handbook of For-
mal Languages”; Vol. I–III, Springer, Berlin.

[Ibarra 1970] Ibarra, O.H.: “Simple matrix grammars”; Inform. Control 17 (1970) 359–
394.

[Reisig and Rozenberg 1998] Reisig, W., Rozenberg, G. (eds.): “Lectures on Petri nets
I: Basic models”; Lect. Notes Comp. Sci. 1491, Springer, Berlin.

[Turaev 2006] Turaev, S.: “Semi-matrix grammars”; Proc. 2nd Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science–MEMICS-2006
(2006) 245–252.

2835Dassow J., Turaev S.: Petri Net Controlled Grammars ...

