
SeAAS - A Reference Architecture for Security Services in SOA

Michael Hafner
(University of Innsbruck, Innsbruck, Austria

m.hafner@uibk.ac.at)

Mukhtiar Memon
(University of Innsbruck, Innsbruck, Austria

mukhtiar.memon@uibk.ac.at)

Ruth Breu
(University of Innsbruck, Innsbruck, Austria

ruth.breu@uibk.ac.at)

Abstract: Decentralized security models and distributed infrastructures of scenarios based on
Service Oriented Architectures make the enforcement of security policies a key challenge – all
the more so for business processes spanning over multiple enterprises. The current practice to im-
plement security functionality exclusively at the endpoint places a significant processing burden
on the endpoint, renders maintenance and management of the distributed security infrastructures
cumbersome, and impedes interoperability with external service requesters. To meet these chal-
lenges, we propose a reference security architecture that transposes the model of Software as a
Service to the security domain and thereby realizes Security as a Service (SeAAS). The proposed
architecture goes beyond the mere bundling of security functionality within one security domain.
We illustrate the concepts of SeAAS at work with the requirement of fair non-repudiation. The
architecture complements the SECTET framework for model-driven security engineering. 1

Key Words: Security as a Service, Service Oriented Architecture, Security Requirements
Category: D.2.10, D.2.11

1 Introduction

Inter-organizational workflows spanning multiple domains of business partners involve
the sharing of sensitive resources. The examples are numerous and ever-growing. In
healthcare, a patient’s electronic healthrecord stored with a hospital may be updated
with a radiography produced by an external specialist, complemented with a diagnosis
together with a regular update of the medication prescribed by the patient’s practitioner.
Or a company’s financial statement may be forwarded to auditors before being turned in
as an electronic tax declaration with financial authorities (e.g., [Hafner and Breu 2008,
Hafner et al. 2006]). Those large-scale software systems can be characterized as het-
erogenous, distributed systems spanning across many enterprises under the control of
as many “ownership domains”. Often, they are realized based on the blueprint of Ser-
vice Oriented Architecture (SOA). However, the decentralized security models and dis-

1 This work was partially supported by the SecureChange (ICT-FET-231101) EU project and the
SECTISSIMO (P-20388) FWF project.

Journal of Universal Computer Science, vol. 15, no. 15 (2009), 2916-2936
submitted: 1/2/09, accepted: 29/8/09, appeared: 1/9/09 © J.UCS



tributed infrastructures of SOA turn the enforcement of security requirements into a
major challenge.

Technical interoperability was addressed first and with some success. To make sure
companies were using “compatible” technology for cooperation with their peers, soft-
ware engineers and architects could turn to the paradigm of SOA with its standardized
technical underpinning, the stack of Web services standards and technologies. How-
ever, up until now, the standards only address basic security requirements (the triad of
traditional information security, namely confidentiality, integrity and availability) and
resolve issues at a low, technical level. This makes security engineering incredibly com-
plex and – as a consequence – implementations error-prone.

According to current practice, security infrastructures enforce security exclusively
at the servcie endpoint. They ignore the pecularities of SOA’s decentralized peer-to-peer
architecture, which outmodes traditional security solutions and mechanisms, among
them the concept of perimeter security and centralized security models [Peterson 2005,
Peterson 2009]. Besides placing a significant processing burden on service nodes, end-
point security renders maintenance and management of the distributed security infras-
tructures cumbersome, and impedes interoperability with external service providers
and requesters. To meet these challenges, we propose a reference security architec-
ture that transposes the model of Software as a Service to the security domain and
thereby realizes Security as a Service (SeAAS). The proposed architecture goes be-
yond the mere bundling of security functionality within one security domain as it real-
izes complex security requirements for processes invovling two or more domains. The
solution complements the SECTET framework for model-driven security engineering
[Hafner and Breu 2008].

We structured our work as follows. Section 2 introduces a contemporary example
from the healthcare industry. In Section 3, we develop our line of argument motivating
the need for Security as a Service as a paradigm for SOA security and present related
work. We introduce an architectural blueprint for an infrastructure leveraging security
services in Section 4. In Section 5, we show how the proposed solution solves complex
security requirements illustrated with an example of fair non-repudiation. In Section
6 we have explained various Web services based security standards and technologies,
which we use in the Reference Architecture. We close our paper with a conclusion,
sided by a discussion of the challenges ahead and future work in Section 7.

2 Motivating Example

Our scenario draws the security requirements from use cases of the healthcare industry.
They were elaborated in the context of national initiatives in Europe with the aim to re-
alize the Electronic Health Record (EHR) [Becker and Sewell 2004, Alam et al. 2007,
Hafner and Breu 2008]. We begin with a functional description in Section 2.1 and pro-
ceed to security requirements in Section 2.2.

2917Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



2.1 The Electronic Health Record - A Use Case

Figure 1 shows the various stakeholders modeled as roles and their interactions with
an EHR system modeled as message exchanges in a typical scenario. Security-relevant
communication is indicated in red.

Markus Maier (role Patient) goes to see Dr. David Daum, his family doctor (role
General Practitioner) for his yearly medical check-up. In step 1, Dr. Daum
accesses Markus Maier’s Electronic Health Record over the centralized EHR service
(ELGA2). In its essence, an EHR represents a consolidated virtual medical record as-
sembled from information distributed across various healthcare providers, which pro-
duced clinical information during past consultations and treatments. In Markus Maier’s
case these were the City Hospital and the City Sanatorium as Public- and Private
Healthcare Provider, respectively & City Health Insurance as a 3rd Party

Institution. After a first examination, Dr. Daum decides to refer Markus Maier to
the radiologist Dr. Rudolf (role Specialist). He does so by issuing an electronic
Referral which updates the EHR (step 3). In consultation with his patient, Dr. Rudolf
accesses Markus Maier’s EHR (step 4), and updates his EHR with the produced Radio-
graphy (step 5). Afterwards, Markus Maier may have to submit to a couple of further
checks (not shown here), e.g., have blood samples checked by a medical laboratory,
submit to a stress electrocardiogram with an internal specialist etc., before he pays his
final visit to Dr. Daum for a discussion of the medical statement. On this occasion, Dr.
Daum updates Markus Maier’s EHR with the Medical Statement.

Figure 1: Roles and Message Exchanges in a Distributed Healthcare Scenario.

2 ELGA stands for “Elektronische Gesundheitsakte”, the German acronym for EHR
[Arge ELGA].

2918 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



2.2 Security Requirements

Based on that common scenario, we can identify a broad array of security requirements.
Sections 4, 5 and 6 discuss how our architecture realizes these requirements. Details are
illustrated taking Non-repudiation as an example for a complex security requirement.

Authentication (And Identity Management). The EHR infrastructure facilitates
the identification, registration and authentication of professional users – (be they hu-
mans or services) – based on digital certificates and public key technology. Users access
medical information in the EHR based on role credentials issued by ELGA Certification
Authorities. The credentials are valid across the security domains of involved stakehold-
ers in the overall scenario. Nevertheless, a single health organization is very likely to
manage identities within its own security domain running a “local” certification or reg-
istration authority. The local identities of users and applications which interoperate with
the EHR system are mapped to “global” identities managed by the ELGA Certification
Authorities. For example, although Dr. Daum may have authenticated himself to his
local application, he would have to authenticate himself a second time with his global
credentials to the EHR system to access his patient’s records via ELGA.

Authorization. Role credentials define the permissions to access health records.
Realizing the principle of Least Privilege, users are given those privileges necessary
to perform their job as specified by system roles (e.g., Specialist, Healthcare Provider
etc.). This entails the necessity for a fine grained protection of the resource. For ex-
ample, the role Pharmacist only needs access to those parts of the EHR containing
the prescription of medication. In the EHR System, there is a default Permission-Role
assignment that may be overwritten by the record owner 3. Although a user holding the
role General Practitioner may be given the most comprehensive access to his
patient’s medical records (if he is the primary care physician), a Patientmay confine
his privileges. Markus Maier may not want his father-in-law working as a psychia-
trist in the City Hospital to see medical records about a psychotherapeutic treatment
he had to undergo a couple of years ago due to a mental problem. So he could define a
Negative Access Permission to these records for his father-in-law. Other complex autho-
rization policies that come into play in standard use cases are the Delegation of Rights,
Four-Eyes-Access-Control, Break-Glass-Policy, and Dynamic Access Control. A com-
prehensive treatment on the modeling and enforcement of complex access control poli-
cies in healthcare with the SECTET framework, can be found in [Alam et al. 2007] and
[Hafner and Breu 2008].

Non-repudiation. This requirement aims at preventing parties in a communication
from falsely denying having taken part in that communication. In our context, enforce-
ment of Non-repudiation is typically transparent to users [Agreiter et al. 2008]. It comes
in two flavors. Non-repudiation of Reception requires the addressee to return a proof of
receipt (e.g., a signed message carrying a time-stamp) to the sender to be kept in case

3 As for now the discussion about the actual ownership of records is still not resolved, see
[Donner 2004]

2919Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



dispute resolution is needed. In our scenario, Dr. Daum and Dr. Rudolf will both get a
proof of receipt from the EHR system after having updated Markus Maier’s EHR with
the produced documents and artefacts (Referral, Radiography, and Medical Statement).
Complementarily, Non-repudiation of Origin requires the sender to produce a proof of
submission and make it accessible to the receiver. The EHR system will log the up-
dates to Markus Maier’s EHR. The security infrastructure takes care of producing and
consuming the messages and initiating logging activities.

Security Compliance and Governance. Security compliance aims at the detection
of deviation from allowed behaviour, specified interaction patterns, or message struc-
tures. In the current state of the SECTET framework, we view security compliance in its
narrowest sense. It defines the adherence of messages to predefined structures or inter-
action patterns based on supported security infrastructures and mechanisms (e.g., type
of tokens, encryption, signature algorithms, request-reply, one way etc.). It is enforced
by the security infrastructure and is offered as a service to local applications and users.

3 Security as a Service - Making the Case

In this section, we motivate the need for Security as a Service (SeAAS) as a paradigm
for security architectures and present related work as we pursue our line of argument.

3.1 Limitations of Endpoint Security

According to current best practice, Web service security is mostly enforced at the phys-
ical node providing the service or the component proxying the service (henceforth,
we will call the service and / or its proxy component service endpoint). In a typical
Web services based request, the service endpoint applies basic cryptographic processing
to inbound and outbound messages leveraging XML based standards [Imamura 2002,
Bartel et al. 2002, Atkinson et al. 2002]. It extracts and validates tokens of incoming
messages, decrypts encrypted parts, validates signatures etc. Outbound messages are
processed and their structure extended so to comply with policy requirements as im-
posed by the service endpoint’s communication peer.

Traditional endpoint security falls short on two fundamental issues of large-scale
business solutions. The first issue is related to the complexity of security engineering.
Web services standards and technologies are constantly evolving. New security stan-
dards are added to the stack of Web services standards to cover new requirements and
use cases (cf [InnoQ 2006] for an overview). This fast moving target is a challenge
to security experts and software engineers alike. Traditional methods of software engi-
neering can hardly cope with the plethora of standards combined with the complexity of
security solutions needed for the realization of enterprise-wide and inter-organizational
business solutions. This is often considered to be a major obstacle to the rapid adop-
tion of Web services as a reference platform to large-scale solutions. Another issue is
related to the consistent enforcement of security policies in enterprise-level solutions.

2920 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



These environments are characterized as large-scale distributed architectures with thou-
sands of services deployed on hundreds of endpoints and possibly as many internal and
external consumers. Nevertheless, any access decision has to be attributable to security
policies that meet the obligations imposed by laws and regulations like the Sarbanes-
Oxley Act and complying corporate governance policies. This necessitates policy man-
agement concepts and security mechanisms that guarantee consistent enforcement of
security policies in distributed, heterogenous environments.

3.2 Declarative Security

The concept of declarative security was a first step to cope with the issues exposed in the
preceeding section. It addresses three challenges. 1. Development. Security concerns are
separated out of actual application and service development. The burden of security en-
forcement is shifted from service developers and service requesters to security experts
who codify security requirements into policies based on rules. This eases the realiza-
tion of security-critical use cases. XACML is an example standard for declarative access
control [OASIS 2006]. It proposes a declarative access control policy language imple-
mented in XML and an architectural blueprint for the communication between infras-
tructural components. 2. Interoperability. Security requirements on message structure
and syntax are codified as rules in the machine readable XML standard WS-Security
Policy [Bajaj 2006] and advertised to potential service requesters. This improves inter-
operability of security solutions that cross organizational boundaries. 3. Policy Man-
agement. Security policies expressed in declarative statements can be checked for con-
sistency and – once consolidated – distributed to the application which is meant to
enforce them. This fosters the consistent application of policies across all solutions in
an enterprise.

Even with declarative security, the realization of security-critical inter-organiza-
tional scenarios still faces two major hurdles. For one, with enforcement left to the
endpoint, security solutions are scattered over the service landscape. This means that
in order to keep up to date with evolving technologies and changing security require-
ments that demand new functionality, security engineers have to propagate the changes
to every single endpoint – a very inefficient form of reusability. Secondly, the state of
the art in Web service and SOA security technology indicates that for the moment only
very basic security requirements like those based on the application of cryptographic
operations are realized. This is actually the main criticism advanced by industries that
are primarily concerned about complex security requirements in an inter-organizational
setting like in healthcare and e-government. Here, use cases accommodate security re-
quirements derived from complex industry regulations and laws (cf Section 2.2).

Existing standards and specifications do not address these security requirements at
all. The reason is, that their realization would overstrain the capacities of a single end-
point, either in terms of the complexity of the underlying security concept (e.g., the
protocols of non-repudiation), or in terms of the processing power (e.g., evaluation of

2921Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



log-files for security monitoring), or in terms of functionality (e.g., basically stateless
service endpoints are not supposed to have all information necessary to infer unusual
user behaviour for fraud detection). A very technical account on how to realize declara-
tive security that covers basic security for Web services (authentication, confidentiality,
integrity) in an SOA is given in [Kanneganti and Chodavarapu 2007].

3.3 The Enterprise Service Bus

These practical problems (processing burden, complexity of security) and conceptual
issues (statelessnes of services) suggest the outsourcing of security tasks to an architec-
tural component with the needed capabilities. A very promising approach is put forward
by the paradigm of SOA: the Enterprise Service Bus is the technical backbone of a SOA
landscape. This centralized communication infrastructure is responsible to provide in-
teroperability between heterogenous systems. This means connecting them in a loosely
coupled way (independent of technical protocol details), mapping data-types, trans-
forming formats and guaranteeing transparent routing dealing with technical aspects,
such as load balancing and failover. It is considered to be the ideal candidate to offer
value-added services such as security, monitoring and debugging [Josuttis 2007].

Up until now, security has only been integrated at a very basic level. For example,
[Kanneganti and Chodavarapu 2007] gives a detailed technical account on how to se-
cure SOAs, but only covers authentication, authorization, confidentiality and integrity.
The focus is set on a centralized setting confined to a single security domain (as op-
posed to the decentralized setting of inter-organizational scenarios presented in the next
section). [Hafner et al. 2006, Hafner and Breu 2008] give a detailed account on issues
related to the realization of security-critical decentralized SOA.

[Rademakers and Dirksen 2008] describes how to realize the concept of a central-
ized communication infrastructure – the ESB – with open source software in all details.
Security is only covered at a very basic level. In [Hinton et al. 2005] the authors move a
step further and discuss security as an infrastructure service in the context of an Enter-
prise Service Bus (ESB) and other patterns for the deployment of an an SOA-security
infrastructure. Nevertheless their solution only covers the standards basic security ser-
vices (e.g., authentication, key management etc.).

3.4 The SECTET Framework for Model Driven Security

Model Driven Security is an engineering paradigm that specializes Model Driven Soft-
ware Engineering towards information security. It pursues two objectives: first, the in-
tegration of security aspects at an early stage of the engineering process and second, to
shift the burden of security implementation from the software engineer to the security
engineer. The term Model Driven Security was coined in [Basin et al. 2006]. The paper
describes a software development process that supports the integration of access control
requirements into system models. The models form the input for the generation of .net

2922 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



and J2EE security infrastructures. [Juerjens 2004] presents a framework for the formal
verification of basic security requirements for security protocols based on UML models.
Focusing on Service Oriented Architecures, in [Satoh et al. 2006] the authors propose
a framework for the platform-independent configuration of security infrastructure with
authentication information.

Pursuing a much broader goal, the SECTET [Hafner and Breu 2008] framework sup-
ports business partners during the development and distributed management of decen-
tralized peer-to-peer scenarios. Primarily developed for the realization of decentralized,
security critical collaboration across domain boundaries – so-called inter-organizational
workflows, it realizes a domain architecture aiming at the correct technical implemen-
tation of domain-level security requirements. It consists of three core components:

1. Security Modeling. The modeling component supports the collaborative speci-
fication of a scenario at the abstract level in a platform independent context. The com-
ponent implements an intuitive domain specific language, which is rendered in a visual
language based on UML2 for various modeling tools. The modeling occurs at a level of
abstraction appropriate to bridge the gap between domain experts on one side and engi-
neers on the other side, roles chiefly involved in two different phases of the engineering
process – the requirements engineering and the design phase respectively.

2. Code Generation & Model Transformation. Model information is translated
it into platform independent models (PIM) based on security patterns and protocols
enforcing security requirements. The PIMs are refined into platform specific models of
various granularity until they can be mapped into configuration code for the components
of the target architecture. The layered approach is detailed in [Memon et al. 2008].

3. Web services Based Reference Architecture. The architecure specifies a Web
services based target runtime environment for local executable workflows and back-end
services at the partner node. The workflow and security components implement a set of
workflow and security technologies based on XML- and Web services technology.

The SECTETreference architecture as presented in [Hafner and Breu 2008] enforces
security mostly at the service endpoint. As already exposed, the approach exhibits sig-
nificant limitations, especially when it comes to the realization of the complex security
requirements. In the present contribution we propose an alternative blueprint realizing
Security as a Service.

3.5 Security as a Service

Security as a Service was introduced a couples of years ago in a series of publications.
[Peterson 2005] first advocated the transition from traditional perimeter security to the
concept of Service Oriented Security – a framework for risk analysis and management
focusing on assets of a decentralized (service based) software architecture. Security is
realized through decoupled, composeable services. The contribution focuses on iden-
titiy and risk management, omitting complex security requirements. [Peterson 2009]
discusses how the field information security failed to resolve key challenges of SOA

2923Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



security and arguments very much inline with our strategy that workable solutions have
to move beyond traditional information security which only considers the CIA traid.
Other publications on various aspects of security services in SOA that we discuss in
this paper are [Hinton et al. 2005, Lopez et al. 2005, ORACLE 2008].

We define Security as a Service (SeAAS) as the delivery of security functional-
ity over infrastructure components in a service-oriented manner. For SOA, this means
that security services are accessed through common Web services technologies and
standards. Our definition thus goes beyond the common understanding which con-
fines SeAAS to the practice of delivering traditional security application functional-
ity (e.g., anti-virus software, anti-spyware, etc.) on-demand over the Internet (e.g.,
[McAfee 2008, Microsoft 2006, Symantec 2006]). We identified the following security
services (in order of increasing complexity):

1. Cryptographic and message processing services ensure basic confidentiality
and integrity e.g., en-/ decryption of XML documents, signature validation etc.

2. Security inter-operability services facilitate interoperability of security mech-
anisms with external partners e.g., mapping of a user credentials to a kerberos token.
Services can be provisioned by an internal or an external security token service.

3. Authentication is a basic service necessary to all other requirements. Local or ex-
ternal service requesters are identified and authenticated reyling on local identity stores
and / or external identity providers.

4. Authorization services provide access control to ressources. Authorization poli-
cies can be very complex. We cover static and dynamic role-based access control, four-
eyes principle, negative access permissions, delegation, and break-glass policies.

5. Security compliance services check inbound messages in inter-domain com-
munication for compliance with stated security requirements, e.g., valid and complete
messages, presence of tokens, format, etc.

6. Protocol based security services are statefull services executed between two or
more partners. A very prominent example is non-repudiation of sending or receiving in
inter-domain communication.

7. Security monitoring & auditing services facilitate business- or application level
security requirements, e.g., fraud and intrusion detection.

To cope with all classes, the proposed architecture goes beyond the mere bundling
of security functionality within one security domain. For example, the execution of
protocol based security (e.g., non-repudiation) realizes complex security requirements
for processes involving two or more domains.

It is noteworthy, that in some cases, especially for the sake of security interoper-
ability and efficient manageability, endpoints already rely on centralized services. We
identified the following cases. 1. Authentication. To authenticate a service requester, an
endpoint commonly relies on a centralized identity store for identity management in
its own security domain. In [Lopez et al. 2005], the author identifies dedicated security
services for advanced authentication and authorization requirements. 2.Interoperabil-

2924 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



ity. In some cases, an endpoint may issue a request for a token mapping with a trusted
3rd party security token service. Here, interoperability seems to make the case for a
“service-ization” of security. It is a way to cope with the heterogeneity of distributed,
inter-organizational processes with different infrastructure owners organized into sep-
arated security domains. 3. Authorization. Within a security domain, authorization is
enforced at the endpoint, but relies on a central policy decision point for decisions on
access requests. The XACML dataflow model [OASIS 2006] defines a reference archi-
tecture for the enforcement of access control in a service based environment whithin a
security domain.

4 Architectural Blueprint for Security As A Service

4.1 SeAAS Architecture

Figure 2 shows the conceptual architecture for the proposed SeAAS approach (EI Pat-
tern names in italics). The upper part shows the ELGA Healthcare Services Architecture.
Service Endpoints provide business functionality. ELGA offers a number of healthcare
services, such as access/update a patient’s EHR, add Radiography to EHR etc. The ser-
vice endpoints are decoupled from the security and messaging components. Inbound
and outbound messages are delivered over the ESB. A business message contains ser-
vice requests and responses whereas a security message contains security protocol data.
An ESB handles internal communication among the various components of a domain

and external communication with business and security components of other domains.
It intercepts inbound requests and forwards them to the SeAAS Engine for security eval-
uation. The SeAAS Engine is the central part of the SeAAS Component. To evaluate
security, it retrieves the applicable security policy from Policy Repository. The security
policy defines the security requirements for a particular request. The SeAAS Engine
parses the policy, retrieves the security requirements and decides which security ser-
vices will be needed to fulfill those requirements. It composes a security process to call
those services in an appropriate order. For simplicity, our prototype currently uses a
static process with a pre-defined order of execution of security services. For example,
Authentication, Authorization and Non-repudiation Services are executed in following
order: Non-repudiation ⇒ Authentication ⇒ Authorization.

The SeAAS Component offers security functionality as a set of Security Services
implemented as Security Components. Primitive Security Services consist of Encryp-
tion, Signature and Time-stamping services. All other services (e.g., Authentication,
Authorization, etc.) are considered Advanced Services. They leverage primitive secu-
rity services. For example, the Non-repudiation service uses them to encrypt, sign and
timestamp evidence. Primitive security services need keys/certificates, which are stored
in the Key Repository. One key feature of the SeAAS architecture is the realization of
security through decoupled components so to attain technology and language indepen-
dence. All components can be implemented in any language and/or technology without

2925Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



Figure 2: SeAAS Conceptual Architecture.

any inter-dependence. Communication is fully message-oriented and is carried out over
an ESB. Our prototype is based on Apache ServiceMix [ServiceMix 2008] – an open
source ESB.

4.2 SeAAS Component

Deployed within a security domain, the SeAAS Component consists of a number of se-
curity services. Depending upon the requirements of the domain, new security services
can be deployed during runtime. The Policy Repository (PR) and the PKI Repository of-
fer supporitng services. The PR holds the policies which specify security requirements,
whereas PKI Repository is a local store for keys and certificates.

1. Authentication. The authentication Service provides intra- and inter-domain au-
thentication. In case of an internal request, the authentication service validates the user’s
local identity and sends the signed authentication decision to the endpoint. For a request
from an outside domain, the authentication service first resolves the identity of the exter-
nal user: it contacts the external identity provider (e.g., a Security Token Service (STS))
using WS Interface. After the STS validates the user, the authentication service creates
a security context. This provides the functionality for Identity Federation.

2. Authorization. The Authorization Service verifies permissions assigned to users.

2926 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



They are defined in the policies stored in Policy Repository. Based on the policy, the
service takes a decision and sends the result to the service endpoint for enforcement.

3. Non-repudiation. This service executes an out-of-band non-repudiation protocol
between requester and the endpoint and stores evidence for dispute resolution (Section
5 is dedicated to a detailed discussion of non-repudiation).

4. Security Compliance. This service verifies the compliance of an inbound message
with the security policy of the target service endpoint. The security policy of service
endpoint defines the supported security mechanisms such as types of tokens, encryp-
tion and signature algorithms, message parts to be protected etc. The authentication
service depends upon the evaluation performed by the compliance service. If a request
is compliant, then the authentication service proceeds with token validation.

5. Security Monitoring. This service monitors significant security events generated
by the security services of the SeAAS Component. For instance, the compliance service
reports a security event, if a message does not meet an endpoint’s security policy. The
Non-repudiation service notifies a protocol failure, when the external endpoint does
not follow the Non-repudiation protocol. The monitoring service of a domain’s SeAAS
component forwards these events to a central service accessible to all domains. The
purpose of monitoring security centrally is to receive the security events from different
domains and notify responsible and affected endpoints.

6. Logging. This service logs notifications sent by endpoints related to various busi-
ness requests, responses, errors and exceptions.

Externalising security functionality as a set of services significantly reduces end-
point complexity. Moreover, the composition of security services as SeAAS compo-
nents facilitates the deployment and the configuration of exisitng and new security com-
ponents at deployment time and even during runtime.

4.3 Enterprise Integration Patterns

Patterns provide sound solutions to commonly known problems. In today’s business
world application integration is more complex, as the systems are loosely-coupled and
use heterogeneous technologies. Message-oriented integration (MOI) aims at achiev-
ing integration among heterogeneous applications based on EI patterns. Figure 2 shows
the EI patterns used by components instead of language-specific modules to realize
message-oriented communication. EI patterns will help the security developer imple-
ment proposed SeAAS architecture, irrespective of what tools, technologies and lan-
guages she is using. A full catalogue of Enterprise Integration patterns is presented in
[Hohpe and Woolf 2004]. As dsicussed nelow, we used some of the ose patterns, which
are appropriate for designing the SeAAS components (EI patterns are circle-numbered
in Figure 2 as well as in the text below).

The ESB uses Channels (1) to send/receive business and security protocol mes-
sages. As the integration of components in SeAAS is message-oriented, there should

2927Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



be certain mechanisms to relate the incoming and outgoing messages at any compo-
nent. The CorrelationID (2) is used for matching requests and responses by the busi-
ness and security components. Every message that enters and leaves the boundaries
of a domain or a component in the domain is assigned a unique CorrelationID. The
global correlationID for a domain is assigned by the ESB, whereas the local correla-
tionIDs are assigned by components such as SeAAS Engine and Security Services. The
Message Router (3) pattern is used for routing, so that the ESB sends the messages
to appropriate destinations. A Message Dispatcher (4) consumes messages from Mes-
sage Router and distributes them to their destinations. ESB uses this pattern to dispatch
(business/security) messages to SeAAS Engine, Security Services, Service Endpoints
and external domains. The service endpoints use Message Endpoints (5) pattern to in-
dicate a client of messaging system i.e. ESB to send/receive messages. The Process
Manager (6) pattern is used to model the SeAAS Engine for security process compo-
sition. The Control Bus (7) pattern indicates that the ESB sends logging and security
events to the Logging and Security Monitoring components, which monitor failures,
exceptions and security violations. The order of the messages is important, when the
security services send and receive security protocol messages. The Message Sequence
(8) pattern is used by security services to maintain the required order of security pro-
tocol messages. The ESB uses a separate Channel to store a copy of the messages into
Message Store (9) to analyze the message before it delivers it to the target destination.
The non-repudiation service uses this pattern to store the signed messages in a local
persistent database. Similarly, Logging and Security Monitoring services store event
notifications associated to certain message for security analysis.

5 Realizing Complex security Requirements with SeAAS

Complex security requirements are realized through advanced security services. Here,
we illustrate the working of one of those services taking Non-repudiation as an example.

There is much research related to the non-repudiation protocols [Zhou et al. 1999,
Markowitch et al. 1999, Kremer et al. 2002]. Most is focused to the achievement de-
sired properties like Fairness and Timeliness. Another issue extensively covered in re-
search is concerned with the design of protocols with or without a Trusted Third Party
(TTP) [Markowitch et al. 2001]. The protocols achieve non-repudiation among two or
more protocol participants. A non-repudiation protocol is a cryptographic protocol that
provides irrefutable evidence to its participants. A protocol is called Fair, if it provides
the originator and the recipient of the message, with some evidence after completion of
the protocol, without giving a participant an advantage over the other at any stage. Our
design of NR protocol is based on ZG’s protocol to achieve non-repudiation properties
of fairness and timeliness [Zhou et al. 1999].

The basic assumption is that a service endpoint handles both the business messages
and protocol messages (i.e. keys, evidences etc). As already mentioned, our prime ob-
jective is to free the service endpoints from performing security related tasks. Here,

2928 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



we will apply the same principle to design and implement a fair non-repudiation pro-
tocol. Although in [Agreiter et al. 2008] a first step has been achieved by integrating
non-repudiation communication into Web service communication, there exists only a
logical separation between non-repudiation messages and business messages. In this
section we explain how these messages can be separated from business messages, by
executing an out-of-band non-repudiation protocol. The proposed protocol does not
only separate the business and security messages, but also maintains the desired proper-
ties of non-repudiation i.e. fairness and timeliness. In the next section, we will illustrate,
how we design the non-repudiation protocol in the SeAAS architecture.

5.1 Designing Fair Non-repudiation protocol in SeAAS architecture

There are two different approaches to execute a NR protocol. The protocol is either
enforced by the service endpoint [Zimmermann 2005] – in which case the service end-
point has to handle the security protocol messages in addition to business messages – or
the service endpoint delegates the responsibility of executing the protocol to a dedicated
non-repudiation service. The SeAAS architecture leverages the second approach.

In this approach, the protocol executes out-of-band between two dedicated non-
repudiation services. The result is then communicated to the service endpoints, as
shown in Figure 3. The NR services in domains 1 and 2 execute the protocol on be-
half of the GP’s Client Application (used by GP) and the ELGA service endpoint. Both
delegate the security task to NR services through their respective SeAAS Engines. The
detailed message communication to achieve fair non-repudiation in SeAAS architecture
is shown as a UML Sequence Diagram in Figure 3. It shows the inter-domain commu-
nication between two non-repudiation services of the domains 1 and 2 and intra-domain
communication among various components of each domain. The protocol is based on
the ZG’s protocol, which ensures Fairness and Timeliness.

The request to access the medical service is sent by a GP, through a Client Applica-
tion. The ESB in domain1 intercepts the request and forwards it to the service endpoint
of domain 2. The ESB in domain2 receives the request and routes it to the SeAAS En-
gine for security evaluation. The SeAAS Engine retrieves the policy that applies to the
request from the Policy Repository and assigns the task to NR Service. Further secu-
rity communication will take place among the non-repudiation services of two domains
based on the detailed non-repudiation policy (an example is given in Section 6).

Non-repudiation is achieved by exchanging the evidences of messages sent and re-
ceived: NRService@Domain2 requests NRService@Domain1 for the evidence of the
service request sent by GP (Mess. 5). NRService@Domain1 retrieves the request details
from ESB through SeAAS Engine (Mess. 6-9), signs the message and sends the signed
message NRO1 to NRService@Domain2 as evidence. This message (Mess. 10) consists
of a URI’s of NRServices@Domain1 & 2 (represented by letters A & B respectively),
timestamp (i.e. T), Label for any other information (i.e. L) and NRO1(i.e. evidence).
Note, unlike ZG’s fair Non-repudiation Protocol, we don’t send the service request in

2929Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



D
o
m
a
i
n
 
1
:
 
G
e
n
e
r
a
l
 
P
r
a
c
t
i
t
i
o
n
e
r
'
s
 
D
o
m
a
i
n

D
o
m
a
i
n
 
2
:
 
E
L
G
A
'
s
 
H
e
a
l
t
h
c
a
r
e
 
S
e
r
v
i
c
e
s
 
D
o
m
a
i
n

C
l
i
e
n
t
 

A
p
p
l
i
c
a
t
i
o
n

N
R
 
S
e
r
v
i
c
e

N
R
 
S
e
r
v
i
c
e

E
S
B

E
S
B

T
T
P

(
O
n
l
i
n
e
)

S
e
r
v
i
c
e

E
n
p
o
i
n
t

S
e
A
A
S

E
n
g
i
n
e

S
e
A
A
S

E
n
g
i
n
e

S
e
n
d
 
R
e
q
u
e
s
t

1
:
 

R
e
t
r
i
e
v
e
 
N
R
O
R
2
 
a
f
t
e
r
 
T

1
4
:
 

S
e
n
d
 
S
e
s
s
i
o
n
 
K
e
y
 
{
 
E
(
t
t
p
)
 
{
A
,
 
B
,
 
T
,
 
K
,
 
S
I
G
(
A
,
 
B
,
 
T
,
 
L
,
 
K
)
}

1
2
:
 

S
e
n
d
 
E
v
i
d
e
n
c
e
 
{
 
A
,
 
T
,
 
L
,
 
 
N
R
O
1
=
 
S
I
G
(
a
)
 
{
A
,
 
B
,
 
h
(
C
)
,
 
T
,
 
L
}
}

1
0
:
 

R
e
c
i
e
v
e
 
R
e
q
u
e
s
t
 
M
e
s
s
a
g
e

6
:
 

S
e
n
d
 
A
c
k
n
o
w
l
e
d
g
e
m
e
n
t
 
{
B
,
 
N
R
R
1
 
=
 
S
I
G
(
b
)
 
{
A
,
 
B
,
 
T
,
 
L
}
}

1
1
:
 

R
e
t
r
i
e
v
e
 
N
R
O
R
2
 
a
n
d
 
K
 
a
f
t
e
r
 
T

1
5
:
 

C
o
n
f
i
r
m
 
N
R
O

1
6
:
 

R
e
q
u
e
s
t
 
f
o
r
 
E
v
i
d
e
n
c
e

5
:
 

I
n
i
t
i
a
t
e
 
N
R

3
:
 

F
o
r
w
a
r
d
 
S
e
r
v
i
c
e
 
R
e
q
u
e
s
t

1
8
:
 

S
e
n
d
 
R
e
q
e
u
s
t
 
M
e
s
s
a
g
e
 
C

2
:
 

S
e
n
d
 
R
e
q
.
 
M
e
s
s
a
g
e

8
:
 

P
u
b
l
i
s
h
 
{
A
,
 
B
,
 
T
,
 
K
,
 
L
}
,
 

N
R
O
R
2
 
=
 
S
I
G
(
t
t
p
)
 
{
A
,
 
B
,
 
T
,
 
K
,
 
L
}

1
3
:
 

S
e
n
d
 
S
e
r
v
i
c
e
 
R
e
s
p
o
n
s
e

1
9
:
 

F
o
r
w
a
r
e
d
 
R
e
q
u
e
s
t
 
M
e
s
s
a
g
e

9
:
 

F
o
r
w
a
r
d
 
R
e
q
u
e
s
t

7
:
 

I
n
i
t
i
a
t
e
 
N
R

4
:
 

F
o
r
w
a
r
d
 
C
o
n
f
i
r
m
.
.

1
7
:
 

F
ig

ur
e

3:
In

te
r-

an
d

In
tr

a-
do

m
ai

n
co

m
m

un
ic

at
io

n
fo

r
Fa

ir
N

R
P

ro
to

co
li

n
Se

A
A

S
A

rc
hi

te
ct

ur
e.

2930 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



this message. Because, a service request is a business message, which has already been
sent to service endpoint before beginning the NR protocol (Mess. 2). However, the en-
crypted message C requires a key i.e. K, and so far, the NRService@Domain1 has not
sent that key to NRService@Domain2 for decrypting the request message.

To continue the protocol, NRService@Domain2 stores the evidence and sends a
signed acknowledgment to NRService@Domain1. This is shown in Message 11 as
Non- repudiation of Receipt (NRR1). At this moment, both NR services have the first
part of evidence. The second part of the evidence will be signed by the TTP. There-
fore, in Message 12, NRService@Domain1 sends the key K to TTP. TTP publishes the
key and the second piece of evidence i.e. NROR2. Both the NR services retrieve this
piece of evidence after time T. This completes the fair non-repudiation protocol between
the NR services. After successful completion, the NRService@Domain2 sends the de-
crypted message and protocol completion notification to the service endpoint through
SeAAS Engine (Messages 16-18). The service endpoint then sends the response to the
client application. Thus, the protocol has executed out-of-band and the service end-
points were never involved. With this, we have not only separated the security from
the business components in the architecture, but also the security communication from
business communication.

6 Reference Architecture

The Reference Architecture (RA) is shown in Figure 4 as an UML deployment dia-
gram. It shows components deployed, their relationships and Web services standards
used. A service requester uses a Client Application to access the healthcare services
offered by ELGA. The healthcare services are deployed at Healthcare Systems Appli-
cation Server. The ESB Server provides a message-oriented middleware, which uses a
Dispatcher component for inter- and intra-domain communication. The SeAAS Server
hosts a SeAAS Engine component, which evaluates security based on the policy re-
trieved from the Policy Repository. The SeAAS Engine delegates the security task to
security components4, which are deployed at the Security Server. The Security Server
deploys a number of security components i.e. Authentication, Non-repudiation, Au-
thorization etc. The security components are configured at deployment time based on
Service Component Architecture (discussed below) and the configurations are stored
in a SCA deployment Configurations file. The security components use different Web
services security standards for performing security tasks.

Policy assertions for functional and non-functional requirements are defined with
WS-Policy [WS-Policy 2006]. For example, the Non-repudiation component specifies
the specific policy describes supported protocols, types and contents of the evidence
and cryptographic methods required for message protection. Figure 5 shows an exam-
ple non-repudiation policy. It describes policy requirements as WS-Policy Assertions.
4 We use the terms Services in the Conceptual Architecture (Fig. 2) and Components in the

Reference Architecture (Fig. 4): a service is an abstract concept implemented by a component.

2931Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



ELGA's SeAAS Deployment Architecture

Security Server

<<deployment spec>>

SCA Deployment Configurations

SeAAS Server

<<artifact>>

PKI 
Repository

<<artifact>>

Policy 
Repository

Healthcare System 
Application 

Server

 : WS-SecurityPolicy

Client 
Application

ESB Server

 : WS-Notification

Trusted Third
 Party
(TTP)

 : XACML

Security 
Token Service

(STS)

 : WS-Policy

<<component>>

Logging

<<component>>

Security 
Monitoring

<<component>>

Non 
Repudiation

<<component>>

Security 
Compliance

<<component>>

Authentication

<<component>>

SeAAS Engine
<<component>>

Dispatcher

<<component>>

Authorization

General 
Practitioner

 SAML Request
/Response 
Protocols

NR Protocol 
Messages.

Serivce 
Request
/Response

<<use>>

RST (WS-Trust)

<<delegate>>

<<use>><<use>> <<use>>

<<use>><<use>>

Figure 4: The Reference Architecture.

The Evidence Type assertion defines that DigitalSignature on the message is required
as an evidence. Elements of Evidence assertion defines that what should be the contents
of a non-repudiation evidence. This implies that an evidence should contain the Mes-
sageWithToken, MessageTimeStamp, URI’s of EvidenceOriginator/ EvidenceRecipient
and EvidenceExpiry. The ProtocolType assertion defines that a Fair Non-repudiation
Protocol is required which involves an Online TTP, defined in the TTPRole assertion.

Security requirements of a service endpoint are defined as security assertions em-
bedded into WS-Policy assertions WS-SecurityPolicy[WS-SecurityPolicy 2007]. We
use this standard to write the security policy of an endpoint, which defines supported
type of bindings, tokens, encryption/signature algorithms. Two of the security com-
ponents (security compliance and authentication) deployed at the Security Server use
the WS-SecurityPolicy standard. The security compliance service checks the service
request’s compliance with the security policy. After the check, the authentication ser-
vice proceeds for token validation for which it sends the requester’s credentials to the
Security Token Service (STS).

The Security Assertion Markup Language (SAML) is used to exchange security

2932 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



Figure 5: Example Non-Repudiation policy written in WS-Policy standard.

information between security domains [SAML 2005]. In the RA, two components of
Security Server i.e. Authentication and Authorization components, use SAML standard.
The authentication component creates authentication request/response based on SAML
protocols. Using these protocols, the Security Token Service (STS) validates the tokens
and sends a signed authentication SAML assertion to the authentication service, which
forwards them to the service endpoint through SeAAS Engine. The Authorization com-
ponent uses SAML in a similar manner. It makes authorization decision according to
service requester’s authorization policy and sends the decision as SAML authorization
assertions to the service endpoint for enforcement.

The Extensible Access Control Markup Language (XACML) is a standard for
authorization policies [OASIS 2006]. We use it to define permissions of a service re-
quester. The Policy Decision Point (PDP) of the authorization service, makes decisions
based on the permissions assigned to the roles (e.g. practitioner), defined as XACML
rules.

WS-Trust provides interfaces for token issuance and validation [WS-Trust 2005].
A service consumer can get security tokens from an STS. The authentication component
uses the WS-trust interface to get token validation decision by STS.

We use WS-Notification to send event notifications to Logging and Security Mon-
itoring components [WS-Notification 2006]. Logging notifications carry information
pertaining to the service requests and responses, whereas security alerts are notifica-
tions for security monitoring.

The Service Component Architecture (SCA) model is used for composition of
security services performed by SeAAS Engine [SCA 2007]. Security components are
integrated to a Security Composite, which realizes a set of security requirements. SCA
composite is written in the XML-based Service Composition Definition Language. The
component-based architecture facilitates independence from language and technology,

2933Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



reusability, and improves extensibility and maintainability. We use SCA properties for
configuration during deployment of security components based on security policy of a
domain. These configurations are stored in Deployment Specifications as an SCA De-
ployment Configurations file, as shown in Figure 4.

The Lightweight Directory Access Protocol (LDAP) is used for directory access
to retrieve certificates, policies and related information [IETF 2006]. The policy repos-
itory is used for storage and retrieval of security policies, Authorization policies, and
component policies like e.g. Non-repudiation used by SeAAS Engine and the Security
services. The PKI Repository holds certificates and keys of service endpoints.

7 Conclusion and Future Work

In this paper, we presented an architecture that realizes Security as a Service. We mo-
tivated our approach with a discussion of the many limitations of endpoint security, the
current practice in SOA security to enforce security with the endpoints. By default, the
engineering intuition seems to impose a turning away from the concept of centralization
entailing the threat of a single-point-of-failure or unbearable communication overhead.
But we showed how concepts of SOA, like declarative security, the Enterprise Ser-
vice Bus and Model Driven Security, an advanced method of software engineering can
open a new venue to the efficient realization of security critical, inter-organizational
processes. The reference architecture is able to cope with the complex security require-
ments imposed by use cases from industries that have to deal with security-critical pro-
cesses spanning multiple security domains.

The objection that SeAAS creates a single point of failure or a bottleneck can be
countered by balancing the workload over replicated service components – an inherent
advantage of SOA-style architectures. Taking communication overhead into account it
does not always make sense to outsource all security functionality to a SeAAS provider.
Tasks like basic XML processing can be left with the endpoint. It is up to the architect to
decide upon the degree of service centralization. A hybrid approach distributes the tasks
between endpoints and the SeAAS according to specific need. We currently envisage
the extension of our architecture to support the flexible, run-time adjustment of the
degree of centralization. Security services are registered with the SeAAS engine and
advertised to potential consumers. Authorized requesters would access them as needed.

In this paper, we used Non-repudiation as an example for Protocol Based Security.
We are currently adding service components to cover all requirements as introduced in
Section 2.2. The integration of functionality enforcing Auditing Policies for compliance
to regulatory and corporate requirements necessitates more conceptual work as deviant
behavior and harmful incidents (e.g., fraud) can only be detected in context of applica-
tion and process level semantics. We are also actively working on the systematic and
comprehensive definition of extensions to WS-Policy and WS-SecurityPolicy in order
to support the declarative specification of complex security requirements configuring
the SeAAS engines distributed over the various security domains.

2934 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



References

[Agreiter et al. 2008] Agreiter, B. Hafner, M. Breu, R.: “A Fair Non-repudiation Service in
a Web services Peer-to-peer Environment”; Computer Standards and Interfaces, 30(6),
372–378, 2008.

[Alam et al. 2007] Alam, M. Hafner, M. Memon, M. Hung, P.: “Modeling and Enforcing Ad-
vanced Access Control Policies in Healthcare Systems with SECTET”; In MOTHIS ’07:
MODELS 2007, Nashville, USA, 2007.

[Arge ELGA] Arge ELGA: Arbeitsgemeinschaft Elektronische Gesundheitsakte; http://
www.arge-elga.at/

[Atkinson et al. 2002] Atkinson, B. et al.: “Web Services Security (WS-security) - version 1.0.
Specification; IBM Corp., Mircosoft Corp., VeriSign, Inc., 2002.

[Bajaj 2006] Bajaj, S.: “Web Services Policy 1.2 - Framework (WS-Policy)”, W3C Member
Submission; 25 April 2006, Technical Report, W3C, 2006.

[Bartel et al. 2002] Bartel, M. Boyer, J. Fox, B.: “XML-Signature Syntax and Processing”; W3C
Recommendation, 12 February 2002, Technical Report, W3C, 2002.

[Basin et al. 2006] Basin, D. Doser, J. Torsten, L.: “Model Driven Security: From UML Models
to Access Control Infrastructures”; ACM Trans. Softw. Eng. Methodol., 15(1), 39–91, 2006.

[Becker and Sewell 2004] Becker, M. Y. Sewell, P.: “Cassandra: Flexible Trust Management,
Applied to Electronic Health Records”; In Comp. Sec. Foundations Workshop, 2004. Proc.
17th IEEE, 2004.

[Donner 2004] Donner, M.: “From the Editors: Whose Data are These, Anyway?”; IEEE Secu-
rity and Privacy, 2(3), 5–6, 2004.

[Hafner and Breu 2008] Hafner, M. and Breu, R.: “Security Engineering for Service-oriented
Architectures”; Springer, October 2008.

[Hafner et al. 2006] Hafner, M. Breu, R. Agreiter, B. Nowak, A.: “SECTET: An Extensible
Framework for the Realization of Secure Inter-organizational Workflows”; Journal of In-
ternet Research, 16(5), 491-506, Emerald, 2006

[Hinton et al. 2005] Hinton, H. Hondo, M. Hutchison, B.: “Security Patterns within a
Service-oriented Architecture”; Nov. 2005, http://www.ibm.com/websphere/
developer/services.

[Hohpe and Woolf 2004] Hohpe, G. Woolf, B.: “Enterprise Integration Patterns : Designing,
Building, and Deploying Messaging Solutions”; Addison-Wesley Professional, 2003.

[IETF 2006] IETF.: “The LDAP Technical Specification”; 2006, http://tools.ietf.
org/html/rfc4510.

[Imamura 2002] Imamura, T.: “XML Encryption Syntax and Processing”; W3C Recommenda-
tion, 10 December 2002, Technical Report, W3C, 2002.

[InnoQ 2006] InnoQ: “Web services Standards Overview”; Nov. 2006, http://www.
innoq.com/soa/ws-standards

[Josuttis 2007] Josuttis, N. M.: “SOA in Practice: The Art of Distributed System Design”;
O’Reilly Media, Inc., August 2007.

[Juerjens 2004] Juerjens, J.: “Secure Systems Development with UML”; SpringerVerlag, 2004.
[Kanneganti and Chodavarapu 2007] Kanneganti, R. Chodavarapu, P.: “SOA Security in Ac-

tion”; Manning Publications Co., Greenwich, CT, USA, 2007.
[Kremer et al. 2002] Kremer, S. Markowitch, O. Zhou, J.: “An Intensive Survey of Fair Non-

Repudiation Protocols”; Computer Communications, 25, 1606–1621, 2002.
[Lopez et al. 2005] Lopez, J. Montenegroa, J. Vivasa, J. et. al.: “Specification and Design of

Advanced Authentication and Authorization Services”; Computer Standards and Interfaces,
27(5), 467–478, 2005.

[Markowitch et al. 2001] Markowitch, O Kremer, S.: “An Optimistic Non-repudiation Protocol
with Transparent Trusted Third Party”; In ISC ’01: Proc. of the 4th Int. Conf. on Information
Security, London, UK, Springer, 2001.

[Markowitch et al. 1999] Markowitch, O. Roggeman, Y.: “Probabilistic Non-repudiation With-
out Trusted Third Party”; In 2nd Conf. on Security in Communication Network, 1999.

2935Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...



[Memon et al. 2008] Memon, M. Hafner, M. Breu, R.: “SECTISSIMO: A Platform-Independent
Framework for Security Services”; In ModSec ’08: MODELS 2008, Toulouse, France, 2008.

[McAfee 2008] McAfee.: “Security as a Service”; 2008, http://www.mcafee.com/us/
local_content/solution_briefs/sb_saas_0709.pdf

[Microsoft 2006] “Microsoft Windows live onecare”; 2006, http://onecare.live.com/
standard/enus/3/default.htm.

[OASIS 2006] OASIS TC.: “Extensible Access Control Markup Language (XACML)”; 2006.
http://www.oasis-open.org

[ORACLE 2008] Oracle.: “Service-Oriented Security: An Application-Centric Look at Identity
Management”; 2008, http://www.oracle.com.

[Peterson 2009] Peterson, G.: “Service-oriented Security Indications for Use”; IEEE Security
and Privacy, 7(2), 91–93, 2009.

[Peterson 2005] Peterson, G.: “Service-oriented Security Architecture”; 2005, http://www.
arctecgroup.net/ISB1009GP.pdf

[Rademakers and Dirksen 2008] Rademakers, T. Dirksen, J.: “Open-Source ESBs in Action”;
Manning Publications Co., Greenwich, CT, USA, 2008.

[SAML 2005] OASIS TC.: “Security Assertion Markup Language (SAML)”; 2005, http://
www.oasisopen.org.

[Satoh et al. 2006] Satoh, F. Nakamura, Y. Ono, K.: “Adding Authentication to Model Driven
Security”; In ICWS ’06: Proc. of the IEEE Intern. Conf. on Web Services, Washington, DC,
USA, 2006.

[SCA 2007] Chappell, D.: “Introducing SCA”; 2007, http://www.davidchappell.com.
[ServiceMix 2008] “Apache-ServiceMix: An Open Source ESB”; http://servicemix.

apache.org
[Symantec 2006] Symantec. Symantec names Genesis Norton 360; 2006, http://www.

symantec.com/about/news/release/article.jsp?prid=20060531_01.
[WS-Notification 2006] OASIS.: “Web Services Notification (WSN) Specifications”; 2006,

http://docs.oasisopen.org/wsn.
[WS-Policy 2006] W3C.: “Web Services Policy 1.2 - Framework”; 2006, http://www.w3.

org/Submission/WSPolicy.
[WS-SecurityPolicy 2007] OASIS TC.: “WS-SecurityPolicy”; 2007, http://docs.

oasis-open.org.
[WS-Trust 2005] OASIS TC.: “WS-Trust Sepcifications”; 2005, http://docs.

oasis-open.org.
[Zhou et al. 1999] Zhou, J. Deng, R. H. Bao, F.: “Evolution of Fair Non-repudiation with TTP”;

In ACISP ’99: Proc. of the 4th Australasian Conf. on Information Security and Privacy,
London, UK, 1999. Springer.

[Zimmermann 2005] Zimmermann, R.: “Design and Prototypical Implementation of a
Non-Repudiation System for Mobile Grid Services”; http://www.ifi.uzh.ch/
archive/mastertheses.

2936 Hafner M., Memon M., Breu R.: SeAAS - A Reference Architecture ...


