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Abstract: Riemann’s theorems on the rearrangement of absolutely convergent and
conditionally convergent series of real numbers are analysed within Bishop-style con-
structive mathematics. The constructive proof that every rearrangement of an abso-
lutely convergent series has the same sum is relatively straightforward; but the proof
that a conditionally convergent series can be rearranged to converge to whatsoever we
please is a good deal more delicate in the constructive framework. The work in the
paper answers affirmatively a question posed many years ago by Beeson.
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1 Introduction

We are interested in the constructive content of Riemann’s two famous theorems
about the rearrangement of series of real numbers:

RST1 If a series
∑∞

n=1 an of real numbers is absolutely convergent, then for
each permutation σ of N+, the series

∑∞
n=1 aσ(n) converges to the same

sum as
∑∞

n=1 an.

RST2 If a series
∑∞

n=1 an of real numbers is conditionally convergent, then for
each real number x there exists a permutation σ of N+ such that

∑∞
n=1 aσ(n)

converges to x.

When we speak of constructive mathematics (BISH), we mean mathematics
in which there exists x with property P is interpreted strictly as we have an algo-
rithm for computing x and one for showing that it has the property P . In practice,
doing mathematics constructively, in our sense, means working only with intu-
itionistic logic, an appropriate set theory—one, such as the Aczel-Rathjen CZF
[Aczel and Rathjen, 2001], that, taken with intuitionistic logic, does not allow
us to derive such nonconstructive principles as the law of excluded middle—and
dependent choice. Background material in constructive analysis can be found in
[Bishop, 1967; Bridges and Vı̂ţă, 2006]. Note that constructive mathematics is
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not characterised by the negative requirement that we exclude the law of ex-
cluded middle: it is characterised positively by its requirement that all proofs of
existence must embody algorithms for constructing/computing the object whose
existence is posited. Note also that intuitionistic logic does not allow proofs of
many weaker, but essentially nonconstructive, forms of the law of excluded mid-
dle. One of these is Markov’s principle,1

MP If (an)n�1 is binary sequence for which it is impossible that all terms equal
0, then there exists n such that an = 1.

We shall return to MP later.
The constructive proof of RST1 is more or less the standard classical one.

What about RST2?2 Before answering that question, we need to clarify the
constructive interpretation of two notions: the series

∑∞
n=1 an of real numbers

– diverges to ∞, if for each c > 0 there exists ν such that
∑N

n=1 an > c for
all N � ν;

– is conditionally convergent if it is convergent and
∑∞

n=1 |an| diverges to
∞.

For a constructive proof of the conditional convergence of a convergent series∑∞
n=1 an it is not enough to allow the impossibility of convergence of

∑∞
n=1 |an|.

This distinction is tied up with Markov’s principle, and will be discussed at the
end of the paper.

¿From a constructive viewpoint, there are several problems with Riemann’s
proof of RST2 as presented in many texts. First, it requires us to be able to
decide, for any given x ∈ R, whether x � 0 or x > 0. In our context, that
decision would require an algorithm which, applied to any x ∈ R, would, for
example, output −1 if x � 0 and 1 if x > 0. Such an algorithm could easily be
adapted to give a constructive proof of the principle

LPO For each binary sequence (an)n�1, either an = 0 for all n or else there
exists n such that an = 1,

which is known to be essentially nonconstructive. (To convince yourself of this,
try interpreting LPO algorithmically.) Secondly, the standard proof of RST2

requires us to be able to identify, and then discard from our consideration, those
1 Some practitioners of recursive constructive mathematics—that is, constructive

mathematics (in our sense) supplemented by the Church-Markov-Turing thesis that
all partial functions from N to N are recursive—admit the use of MP.

2 Our proof of RST2 within BISH answers, affirmatively, a question posed by Michael
Beeson in a talk (heard by Bridges) at Oxford University in the mid-1970s.
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terms of the series which equal 0. In order to do this, we have to be able to prove
yet another statement equivalent to LPO: namely,

∀x∈R (x = 0 ∨ |x| > 0) .

Thirdly, we have to be careful about the meaning of the convergence/divergence
of a series

∑∞
n=1 an of nonnegative terms. Since the monotone convergence the-

orem for sequences is constructively equivalent to LPO (we leave that as an
exercise), in order to establish the convergence of

∑∞
n=1 an it is not enough for

us to prove that the partial sums of the series form a bounded sequence; we must
show that those partial sums form a Cauchy sequence, so that we can invoke
the completeness3 of R. Likewise, to establish the divergence to ∞ of a series
of nonnegative terms, we need to prove that for each c > 0 there exists N such
that

∑N
n=1 an > c (and therefore

∑ν
n=1 an > c for all ν � N).

2 Proofs of the main results

Now let us turn to details of constructive proofs of Riemann’s series theorems.
These proofs are quite elementary, but, unlike their classical counterparts, re-
quire careful handling of estimates. For completeness, we first remind ourselves
of a natural (constructive) proof of RST1.

Proof. Supposing that
∑∞

n=1 an converges absolutely to the sum s, let σ be any
permutation of N+. Given ε > 0, choose N such that

∑∞
n=N+1 |an| < ε and∣∣∣s −∑N

n=1 an

∣∣∣ < ε. There exists K such that

{1, . . . , N} ⊂ {σ(1), . . . , σ(K)} .

For each k � K,

k∑
i=1

aσ(i) =
N∑

n=1

an +
∑{

aσ(i) : σ(i) > N and i � k
}

,

so ∣∣∣∣∣s −
k∑

i=1

aσ(i)

∣∣∣∣∣ �
∣∣∣∣∣s −

N∑
n=1

an

∣∣∣∣∣+
∑{∣∣aσ(i)

∣∣ : σ(i) > N and i � k
}

< ε +
∞∑

n=N+1

|an| < 2ε.

Hence
∑∞

n=1 aσ(n) converges to s.

3 Despite a common disbelief in the constructive completeness of R, that completeness
is relatively easy to establish; see [Bridges and Vı̂ţă, 2006]. (Chapter 2).
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For our first lemma we make two observations. First, playing with rational
approximations to the numbers in question, we can prove that if x1, . . . , xn are
real numbers such that x1 + · · · + xn > 0, then there exists k such that xk > 0
[Bridges and Vı̂ţă, 2006] (Chapter 2). Second, we call a real number x nonzero,
and write x �= 0, if |x| > 0 (equivalently, if either x > 0 or x < 0). Note that
this is a stronger property, constructively, than the impossibility that x = 0: the
statement

∀x∈R (¬ (x = 0) ⇒ x �= 0)

is equivalent to MP.

Lemma1. Let
∑∞

n=1 an be a convergent series of nonzero real numbers such
that

∑∞
n=1 |an| diverges to ∞. Then for each n there exist j, k � n such that

aj > 0 and ak < 0.

Proof. Replacing the original sequence by (an, an+1, . . .), we reduce the proof to
the case n = 1. Without loss of generality, we may take a1 > 0; so it suffices
to find k with ak < 0. Pick N > 1 such that

∣∣∣∑k
n=N an

∣∣∣ < 1 for all k � N .

Since
∑∞

n=N |an| diverges to ∞, there exists k > N such that
∑k

n=N |an| > 1
and therefore

k∑
n=N

(|an| − an) �
k∑

n=N

|an| −
∣∣∣∣∣

k∑
n=N

an

∣∣∣∣∣ > 0.

It follows that there exists n such that N � n � k and |an| − an > 0. For this n

we have an < 0.

Note that the algorithm in the proof of Lemma 1 produces a bound for the
number of terms beyond the nth we have to inspect in order to guarantee finding
one with sign opposite to that of an.

Lemma 1 has a simple nonconstructive proof: if, for example, there were some
n such that ak < 0 for all k � n, then the series

∑∞
k=n |ak| = −∑∞

k=n ak would
converge, which is absurd. But this proof does not show us how to compute the
desired k � n with ak > 0.

Lemma2. Let
∑∞

n=1 an be a convergent series of nonzero real numbers such
that

∑∞
n=1 |an| diverges to ∞. Then there exist an enumeration f(1) < f(2) <

· · · of the indices of the positive terms of the series and an enumeration g(1) <

g(2) < · · · of all the negative terms of the series. Moreover, the series
∑∞

n=1 af(n)

and
∑∞

n=1

(−ag(n)

)
both diverge to ∞.

Proof. In view of Lemma 1, we readily construct the functions f, g inductively.
For the last part of the lemma, pick N such that

∣∣∣∑k
n=N an

∣∣∣ < 1 for each
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k � N . Fix c > 0. Since
∑∞

n=N |an| diverges to ∞, there exists k > N such that∑k
n=N |an| > 2c + 1. Let

F ≡ {n : N � f(n) � k} ,

G ≡ {n : N � g(n) � k} .

Then ∣∣∣∣∣
∑
n∈F

af(n) −
∑
n∈G

(−ag(n)

)∣∣∣∣∣ =
∣∣∣∣∣

k∑
n=N

an

∣∣∣∣∣ < 1

and ∑
n∈F

af(n) +
∑
n∈G

(−ag(n)

)
=

k∑
n=N

|an| > 2c + 1,

from which it follows that both
∑

n∈F af(n) > c and
∑

n∈G

(−ag(n)

)
> c. Since

c > 0 is arbitrary, we conclude that the series
∑∞

n=1 af(n) and
∑∞

n=1(−ag(n))
diverge to ∞.

We now proceed to the constructive proof of RST2. That proof is based
on the standard classical one, but requires additional refinements. One of these
arises from the undecidability of equality on R, which forces us to consider only
rational numbers to begin with; some trickery is then needed to remove the
requirement of rationality. Here, then, is our proof of RST2.

Proof. Let
∑∞

n=1 an converge to the sum s, but
∑∞

n=1 |an| diverge to ∞. Fixing
x ∈ R, we seek a permutation σ of N+ such that

∑∞
n=1 aσ(n) converges to x.

We first assume that each an is nonzero and rational, and that x is rational.
Without loss of generality, we may also assume that f(1) = 1. Let the mappings
f, g be as in Lemma 2. In the following, we repeatedly use the fact that the
equality on the set Q of rational numbers is decidable. Since, by Lemma 2, the
series

∑∞
n=1 af(n) diverges to ∞, we can find, in turn,

p1 = min

{
p :

p∑
n=1

af(n) > x

}
,

q1 = min

{
q :

q∑
n=1

(−ag(n)

)
>

p1∑
n=1

af(n) − x

}
.

We begin the inductive construction of the permutation σ of N+ by setting

σ(n) ≡
⎧⎨
⎩

f(n) if 1 � n � p1

g(n − p1) if p1 < n � p1 + q1.
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Note that σ(i) �= σ(j) if 1 � i < j � p1 + q1; also, σ(1) = f(1) = 1, and
σ(p1 + 1) = g(1). Next, having found certain positive integers pk and qk, we set

pk+1 = min

{
p :

p∑
n=pk+1

af(n) > x −
(

pk∑
n=1

af(n) +
qk∑

n=1

ag(n)

)}
,

qk+1 = min

{
q :

q∑
n=qk

(−ag(n)

)
>

(pk+1∑
n=1

af(n) +
qk∑

n=1

ag(n)

)
− x

}
.

Suppose also that we have defined σ(n) for 1 � n � pk + qk, and that for each
j � k there exists n with 1 � n � pk +qk and j = σ(n). We extend the definition
of σ by setting

σ(n) ≡
⎧⎨
⎩

f(n − qk) if pk + qk < n � pk+1 + qk

g(n − pk+1) if pk+1 + qk < n � pk+1 + qk+1.

Then σ(i) �= σ(j) whenever 1 � i < j � pk+1 + qk+1. Moreover, since pk+1 > pk

and qk+1 > qk, either k+1 = σ(n) for some n � pk+qk, or else there exists n such
that pk + qk < n � pk+1 + qk+1 and k + 1 = σ(n). This completes the inductive
construction of pk+1, qk+1, and the values σ(n) for pk + qk < n � pk+1 + qk+1.

Next, observe that for pk + 1 � j < pk+1 we have

x + ag(qk) <

pk∑
n=1

af(n) +
qk−1∑
n=1

ag(n) + ag(qk)

�
j∑

n=1

af(n) +
qk∑

n=1

ag(n)

�
pk+1−1∑

n=1

af(n) +
qk∑

n=1

ag(n) � x

and therefore ∣∣∣∣∣x −
(

j∑
n=1

af(n) +
qk∑

n=1

ag(n)

)∣∣∣∣∣ <
∣∣ag(qk)

∣∣ .
It follows from this and the last part of Lemma 2 that for pk < j � pk+1,∣∣∣∣∣x −

(
j∑

n=1

af(n) +
qk∑

n=1

ag(n)

)∣∣∣∣∣ < max
{
af(pk+1),

∣∣ag(qk)

∣∣} . (1)
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Likewise, for qk + 1 � j < qk+1, since ag(j) < 0, we have

x �
pk+1∑
n=1

af(n) +
qk+1−1∑

n=1

ag(n)

�
pk+1∑
n=1

af(n) +
j∑

n=1

ag(n)

<

pk+1∑
n=1

af(n) +
qk∑

n=1

ag(n)

< x + af(pk+1)

and therefore ∣∣∣∣∣x −
pk+1∑
n=1

af(n) +
j∑

n=1

ag(n)

∣∣∣∣∣ < af(pk+1)

It follows from this and Lemma 2 that for qk < j � qk+1,∣∣∣∣∣x −
(

pk+1∑
n=1

af(n) +
j∑

n=1

ag(n)

)∣∣∣∣∣ < max
{
af(pk+1),

∣∣ag(qk+1)

∣∣} . (2)

Now, since the functions f, g are strictly increasing and the series
∑∞

n=1 an con-
verges, max

{
af(n),

∣∣ag(n)

∣∣}→ 0 as n → ∞. Thus, given ε > 0, we can compute
K such that max

{
af(k),

∣∣ag(k)

∣∣} < ε for all k � K. Given j > pK + qK , pick
k � K such that pk + qk < j � pk+1 + qk+1. In view of (1), (2), and our
construction of the function σ, we see that∣∣∣∣∣x −

j∑
n=1

aσ(n)

∣∣∣∣∣ < max
{
af(pk+1),

∣∣ag(qk)

∣∣ , ∣∣ag(qk+1)

∣∣} < ε.

Since ε > 0 is arbitrary, we conclude that the series
∑∞

n=1 aσ(n) converges to x.
It remains to remove the hypotheses that each an is nonzero and rational,

and that x is rational. Construct a sequence (bn)n�1 of positive rational numbers
such that for each n, an + bn is nonzero and rational, and

∑∞
n=1 bn converges.

Then pick, in turn, a rational number q > x +
∑∞

n=1 bn and a sequence (cn)n�1

of positive rational numbers such that

∞∑
n=1

cn = q − x −
∞∑

n=1

bn.

By the first part of the proof, there exists a permutation σ of N+ such that

∞∑
n=1

(
aσ(n) + bσ(n) + cσ(n)

)
= q.
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But, by RST1, that the series
∑∞

n=1

(
aσ(n) + bσ(n)

)
,
∑∞

n=1 cσ(n) converge to∑∞
n=1 (an + bn) ,

∑∞
n=1 cn respectively. Elementary convergence theorems now

yield

q =
∞∑

n=1

(
aσ(n) + bσ(n)

)
+

∞∑
n=1

cσ(n)

=
∞∑

n=1

an +
∞∑

n=1

bn +
∞∑

n=1

cn

and therefore ∞∑
n=1

an =

(
q −

∞∑
n=1

bn

)
−

∞∑
n=1

cn = x,

as we required.

We emphasise two aspects of our constructive proofs of RST2 and the lem-
mas used therein: first, those proofs yield a priori bounds for the searches in-
volved in our choices of the numbers pk, qk; and second, the proof of RST2 is a
fortiori one that the (implementable) algorithms it contains, for constructing the
permutation σ and showing that

∑∞
n=1 aσ(n) converges to x, are correct—that

is (in computer science terms), meet their specifications.

3 A concluding Brouwerian example

We end by showing that RST2 cannot be proved constructively if we weaken the
divergence of

∑∞
n=1 |an| to the impossibility that its partial sums be bounded.

Let (λn)n�1 be an increasing binary sequence for which we can prove that it is
impossible for all the terms to be 0. It is routine to show that the partial sums of
the series

∑∞
n=1 (−1)n λn/n form a Cauchy sequence. Suppose that the partial

sums of the series
∑∞

n=1 λn/n are bounded above by some positive number. If
there were N such that λN = 1−λN−1, then the series

∑∞
n=1 λn/n would diverge

to infinity, which is impossible. Hence λn = 0 for all n, a contradiction from which
we conclude that the partial sums of the series

∑∞
n=1 λn/n are not bounded above

by any positive number. Now suppose that there exists a permutation σ of N
such that ∞∑

n=1

(−1)σ(n) λσ(n)

σ(n)
= 1.

Picking N such that
N∑

n=1

(−1)σ(n) λσ(n)

σ(n)
>

1
2
,

we see that λσ(n) = 1 for some n � N . Thus the statement

3167Berger J., Bridges D.: Rearranging Series Constructively



If a series
∑∞

n=1 an of real numbers converges, and the partial sums
of
∑∞

n=1 |an| are not bounded above, then for each real number x there
exists a permutation σ of N+ such that

∑∞
n=1 aσ(n) converges to x

implies Markov’s principle.4
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