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Abstract: For the processing of decision making with uncertainty information, this paper 
establishes a decision model based on lattice-valued logic and researches the algorithm for 
extracting the maximum decision rules. Firstly, we further research the lattice-valued fuzzy 
concept lattice by combining the lattice implication algebra and classical concept lattice; 
secondly, we define the lattice-valued decision context as the equivalent form of decision 
information system and establish the single-target decision model and talk about some 
properties of the decision rules; finally, we give the calculating methods of decision rules with 
different decision values and the algorithm for extracting the maximum decision rules. 
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1 Introduction 

In many cases, decision making processes generally consist of some uncertainty 
problems [Iraj, 08; Xu, 08]. The increasing complexity of environment makes it too 
difficult or too ill-defined to be amenable for description in conventional quantitative 
expressions. It is more suitable to provide their decision information by means of 
various expressions rather than numerical ones, such as linguistic values “less”, 
“better” [Delgado, 02; Herrera, 00, 05; Yang, 08a], or symbolic values “++”, “+” [Xu, 
07]. In order to possess a reasonable structure for these different expressions, it has 
been the research hotspot to construct a decision model with a kind of information 
expression at present. 

Up to now, several proposed decision models mainly include: (1) the decision 
model based on rough set [Zhang, 05], which acquires the rules through decision 
matrixes and calculates the minimal decision rules by reduction theory; (2) the 
decision model based on granular computing [Hobbs, 85; Zadeh, 97; Yao, 03, 04; 
Cheng, 07], which decomposes complex information into many simpler sorts 
according to the characteristic and capability of decision information; (3) the decision 
model based on classical concept lattice [Liang, 04; Zhang, 06; Wang, 07], which 
establishes the decision formal context according to the decision information and 
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acquires the rules by constructing the decision concept lattice which consists of the 
antecedent concept lattice and consequent concept lattice. But these models 
constructed in the certainty environment are inappropriate to deal with uncertainty 
information. Especially, for the model (3), the necessary condition for utilizing it to 
extract the decision rules is to establish a surjection between the antecedent concept 
lattice and consequent concept lattice and the model (3) will not function properly if 
the decision formal context is not consistent, i.e., there doesn’t exist a surjection. 
However, in most cases, not all the decision concept lattices can find the relevant 
surjection and the model (3) can’t deal with the uncertainty information. Moreover, 
for the decision making with a kind of uncertainty information --- the fuzzy 
information, the general fuzzy concept lattice based on the fuzzy logic has no 
researches on it to this day. 

Classical concept lattice as a conceptual clustering method was proposed by 
Wille in 1982 [Wille, 82; Ganter, 99], where an object-attribute view of data is 
developed. Due to the fact that the concept lattice can provides a theoretical 
framework for the design and discovery concept hierarchies from relational 
information system, this paper still utilizes a kind of concept lattice to deal with the 
uncertainty problems in decision making. This kind of concept lattice --- the 
lattice-valued fuzzy concept lattice researched in this paper is established based on the 
combination of lattice implication algebra and classical concept lattice [Yang, 08]. 
The introduction of the lattice-valued logic based on the lattice implication algebra 
into classical concept lattice is the important characteristic of the lattice-valued fuzzy 
concept lattice different from the general fuzzy concept lattice. For the non-numerical 
information, the processing ability of the lattice-valued fuzzy concept lattice is better 
than that of other concept lattices. Especially for decision making with uncertainty 
information, the lattice-valued fuzzy concept lattice can be looked as a useful 
mathematical tool.  

About the lattice-valued logic introduced in this paper, Xu established it based 
on the lattice implications algebra [Xu, 93; 99] in 1993, which is an alternative 
approach to treat fuzziness and incomparability, and researched the corresponding 
reasoning theories and methods [Xu, 94; 00; 01]. 

The lattice-valued fuzzy concept lattice is used as the rules base, which is called 
the lattice-valued decision concept lattice, and its characteristics different from the 
general rules bases are mainly as follows: (1) all the decision rules in the same 
lattice-valued decision concept lattice have the same decision value, which is the 
essential difference from general rules bases. Such a rules base not only is beneficial 
to collect information and establish rules but also makes the extraction of potential 
rules simpler; (2) the antecedent of decision rules in the lattice-valued fuzzy concept 
lattice consists of two types of sets, which can depict the question more concretely; (3) 
the new decision rules can have their respective decision values according to the 
calculation of truth values, by which, the rules base can be enlarged into the one with 
different decision values. 

In particularly, the single-target decision model established based on the 
lattice-valued fuzzy concept lattice is entirely different from the one based on 
classical concept lattice: on the one hand, we need only to construct one lattice-valued 
fuzzy concept lattice and don’t need to construct antecedent concept lattice and 
consequent concept lattice on the structure form, which simplifies the decision model 
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and dispenses with establishing the surjection on it; on the other hand, we introduce 
the calculating method of decision values, which provides more reasonable methods 
in decision making. 

Based on these analyses, this paper puts forward the method of decision making 
with uncertainty information based on the lattice-valued fuzzy concept lattice. Section 
2 gives an overview of some basic theories of the concept lattice and the lattice 
implication algebra. In Section 3, we briefly research the related works of the 
lattice-valued fuzzy concept lattice. Successively, we construct the single-target 
decision model in Section 4, where we firstly establish the lattice-valued single-target 
decision concept lattice and give the definition of decision rule; secondly, we present 
the calculating method of decision rules with different decision values and talk about 
the decision rules properties; finally, we discuss the algorithm of extracting the 
maximum decision rules from the lattice-valued decision context and establish the 
decision rules base. Concluding remarks and future researches are presented in 
Section 5. 

2 Preliminaries 

In this section, we review briefly the classical concept lattice and the lattice 
implication algebra and they are the foundations of constructing the lattice-valued 
fuzzy concept lattice.  
Definition 2.1 [Birkhoff, 67] A partial ordered set is a set in which a binary relation 
≤  is defined, which satisfies the following conditions: for any , ,x y z ,  
(1) x x≤ , for any x  (Reflexive); 
(2) x y≤  and y x≤  implies x y=  (Antisymmetry); 
(3) x y≤  and y z≤  implies x z≤  (Transitivity). 
Definition 2.2 [Birkhoff, 67] Let L  be an arbitrary set, and let there be given two 
binary operations on L , denoted by ∧  and ∨ . Then the structure ( , , )L ∧ ∨  is an 
algebraic structure with two binary operations. We call the structure ( , , )L ∧ ∨  a 
lattice provided that it satisfies the following properties: 
(1) For any , ,x y z L∈ , ( ) ( )x y z x y z∧ ∧ = ∧ ∧  and ( ) ( )x y z x y z∨ ∨ = ∨ ∨ ; 
(2) For any ,x y L∈ , x y y x∧ = ∧  and x y y x∨ = ∨ ; 
(3) For any x L∈ , x x x∧ =  and x x x∨ = ; 
(4) For any ,x y L∈ , ( )x x y x∧ ∨ =  and ( )x x y x∨ ∧ = . 
Definition 2.3 [Xu, 03] If a lattice has a smallest element, denoted by O , and a 
greatest element, denoted by I , then it is called a bounded lattice.  
Definition 2.4 [Xu, 93; 03] Let ( , , , , )L O I∧ ∨  be a bounded lattice with an 
order-reversing involution ' , I  and O  the greatest and the smallest element of L , 
respectively, and : L L L→ × →  a mapping. ( , , , , , , )L O I′∧ ∨ →  is called a lattice 
implication algebra, if the following conditions hold for any , ,x y z L∈ : 
(1) ( ) ( )x y z y x z→ → = → → ; 
(2) x x I→ = ; 
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(3) x y y x′ ′→ = → ; 
(4) x y y x I→ = → =  implies x y= ; 
(5) ( ) ( )x y y y x x→ → = → → ; 
(6) ( ) ( ) ( )x y z x z y z∨ → = → ∧ → ; 
(7) ( ) ( ) ( )x y z x z y z∧ → = → ∨ → . 
Definition 2.5 [Xu, 03] A Wajsberg algebra is an algebra ( ), , ,1L → ∗  of type (2,1,0) 
such that 
(1) 1 x x→ = ; 
(2) ( ) (( ) ( )) 1x y y z x z→ → → → → = ; 
(3) ( ) ( )x y y y x x→ → = → → ; 
(4) ( ) ( ) 1x y y x∗ ∗→ → → = . 

There is a one-to-one corresponding between Wajsberg algebras and 
MV-algebras [Höhle, 95; 95a]. 
Theorem 2.1 Let ( , , , , , , )L O I′∧ ∨ →  be a lattice implication algebra, define ' = ∗ , 

1I = , then ( , , , , ,1)L ∧ ∨ ∗ →  is a Wajsberg algebra. 
Proof.            ( ) ( )x x I I x x I→ = ⇒ → → =  

( )x I x I⇒ → → =  
x I x⇒ = →  

1x x⇒ = → ; 
( ) (( ) ( ))x y y z x z→ → → → → ( ) ( (( ) ))x y x y z z= → → → → →  

( ) ( (( ) ))x y x z y y= → → → → →  
( ) (( ) ( ))x y z y x y= → → → → →  
( ) (( ) ( ))z y x y x y= → → → → →  
( )z y I= → →  
1= ; 

x y y x′ ′→ = → ( ) ( )y x x y I′ ′⇒ → → → =  
( ) ( )x y y x I′ ′⇒ → → → =  
( ) ( ) 1x y y x∗ ∗⇒ → → → = .  □ 

Example 2.1 [Xu, 03] (Boolean Algebra) Let ( ), , , 'L ∧ ∨  be a Boolean lattice, for 
any ,x y L∈ , define  

x y x y′→ = ∨ , 
then ( ), , , '  , ,0,1L ∧ ∨ →  is a lattice implication algebra. 
Example 2.2 [Xu, 03] (Lukasiewicz implication algebra on [0,1]) If the operations 
on [0,1] are defined respectively as follows:  

{ }max , ,x y x y∨ =  

{ }min , ,x y x y∧ =  
1 ,x x′ = −  
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{ }min 1,1 ,x y x y→ = − +  

then ( )[0,1], , , , ,0,1′∨ ∧ →  is a lattice implication algebra. 
Definition 2.6 [Ganter, 99] A formal context in classical concept lattice is defined as a 
set structure ( , , )G M I  consisting of the finite sets G  and M and a binary relation 
I G M⊆ × . The elements of G  and M  are called objects and attributes, 
respectively, and the relationship gIm  is read: the object g has the attribute m. For a 
set of objects A G⊆ , and a set of attributes B M⊆ , A* is defined as the set of 
features shared by all the objects in A, B* is defined as the set of objects that posses 
all the features in B, that is,  

{ }A m M gIm g A∗ = ∈ ∀ ∈ ， { }B g G gIm m B∗ = ∈ ∀ ∈ . 

Definition 2.7 [Ganter, 99] A formal concept of the context ( , , )G M I  is defined as a 
pair ( , )A B  with A G⊆ , B M⊆  and A* = B, B* = A. The set A is called the 
extent and B the intent of the concept ( , )A B . 

3 Lattice-Valued Fuzzy Concept Lattice 

In order to provide a mathematical tool for incomparability fuzzy information 
processing, we further research the lattice-valued fuzzy concept lattice, which is the 
combination of classical concept lattice and lattice implication algebra and totally 
different from the general fuzzy concept lattice. Its ideological core is constructing the 
lattice-valued fuzzy relation between objects and attributes. In this section, we study 
the definitions and properties of the lattice-valued fuzzy concept lattice and give an 
example to illustrate it. 
Definition 3.1 [Yang, 08] A 4-tuple ( , , , )K G M L I= �  is called lattice-valued fuzzy 
context, where 1 2{ , , , }pG g g g= "  is the non-empty finite objects set, 

1 2{ , , , }qM m m m= "  is the non-empty finite attributes set, ( , , , , , , )L O I′∧ ∨ →  is a 

lattice implication algebra, I�  is a fuzzy relation between G  and M , i.e., 
:I G M L× →� . 

Let G  be a non-empty finite objects set and ( , , , , , , )L O I′∧ ∨ →  be a lattice 

implication algebra. Denote the set of all the fuzzy subsets on G  as GL , for any 

1 2, GA A L∈� �  and g G∈ , 1 2 1 2( ) ( )A A A g A g⊆ ⇔ ≤� � � � , then ( , )GL ⊆  is a partial 
ordered set. 

Let M  be a non-empty finite attributes set and ( , , , , , , )L O I′∧ ∨ →  be a lattice 

implication algebra. Denote the set of all the fuzzy subsets on M  as ML , for any 

1 2, MB B L∈� �  and m M∈ , 1 2 1 2( ) ( )B B B m B m⊆ ⇔ ≤� � � � , then ( , )ML ⊆  is a partial 
ordered set. 

Theorem 3.1 [Yang, 08] Let ( , , , )K G M L I= �  be a lattice-valued fuzzy context and 

L  a lattice implication algebra, define mappings f , h  between GL  and ML , 
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( ) ( )
( ) ( )

: ,  ( ) ( ) ( , )

: ,  ( ) ( ) ( , )

G M
g G

M G

m M

f L L f A m A g I g m

h L L h B g B m I g m

∈

∈

⎧ → = ∧ →
⎪
⎨

→ = ∧ →⎪
⎩

� � �

� � �
, 

then for any GA L∈� , MB L∈� , ( , )f h  is a Galois connection. 

Definition 3.2 [Yang, 08] A lattice-valued fuzzy concept of ( , , , )K G M L I= �  is 

defined as a pair ( , )A B� �  with GA L∈� , MB L∈�  and ( )f A B=� � , ( )h B A= �� . For 

any lattice-valued fuzzy concepts 1 1( , )A B� �  and 2 2( , )A B� � , define 

1 1 2 2 1 2 2 1( , ) ( , ) (  )A B A B A A or B B≤ ⇔ ⊆ ⊆� � � �� � � �  and denote the set 

{ }( ) ( , ) ( ) , ( )K A B f A B h B A= = =C � � �� � �  be the lattice-valued fuzzy concept lattice. 

Theorem 3.2 [Yang, 08] Let ( , , , )K G M L I= �  be a lattice-valued fuzzy context, and 

( , )f h  the Galois connection on it, for any 1 2, , GA A A L∈� � � , 1 2, , MB B B L∈� � � , there are 
following properties: 
(1) 1 2 2 1( ) ( )A A f A f A⊆ ⇒ ⊆� � � � , 1 2 2 1( ) ( )B B h B h B⊆ ⇒ ⊆� � � � ; 

(2) ( )A hf A⊆� � , ( )B fh B⊆� � ; 

(3) ( ) ( )f A fhf A=� � , ( ) ( )h B hfh B=� � ; 

(4) 1 2 1 2( ) ( ) ( )f A A f A f A=� � � �∪ ∩ , 1 2 1 2( ) ( ) ( )h B B h B h B=� � � �∪ ∩ . 

Example 3.1 Let us consider a lattice-valued fuzzy context ( , , , )K G M L I= �  
depicted in Table 1, where { }1 2,G g g= , { }1 2 3 4, , ,M m m m m= , ( , , , , , , )L O I′∧ ∨ →  
is a lattice implication algebra and its Hasse diagram is shown as Figure 1 and 
implication operator as Table 2: 
 

I�                m1              m2              m3               m4 

1g                a               b               c                I  

2g               d                c              O                 b 

Table 1: Lattice-valued fuzzy context ( , , , )G M L I�  

I

a

b
c

d

O
 

Figure 1: Hasse diagram of { }6 , , , , ,L O a b c d I=  
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→

b c

O

I II

I

I

I

I

I

aa

a

a a

a

a

a

b b

b

b

c

c c

c

c

c

c

d

d

d

d

O

O

III I I

II

I

II

I

I

 

Table 2: Implication Operator of { }6 , , , , ,L O a b c d I=  

For Table 1, we can calculate its lattice-valued fuzzy concepts according to the 
Definition 3.2 and Theorem 3.1 as follows:  

( )1 ,C II dOOb= , ( )2 ,C aI ddOb= , ( )3 ,C Ia dOda= , ( )4 ,C Ic abOb= , 

( )5 ,C bI dcOb= , ( )6 ,C aa cdda= , ( )7 ,C Ib dOcI= , ( )8 ,C Id abda= , 

( )9 ,C ac aaOb= , ( )10 ,C cc abbb= , ( )11 ,C ba ccda= , ( )12 ,C ab cdcI= ,  

( )13 ,C ad Iada= , ( )14 ,C bc aIOb= , ( )15 ,C IO abcI= , ( )16 ,C cd abaa= , 

( )17 ,C dc aabb= , ( )18 ,C bb cccI= , ( )19 ,C aO IacI= , ( )20 ,C bd IIda= , 

( )21 ,C cO abII= , ( )22 ,C dd Iaaa= , ( )23 ,C Oc aIbb= , ( )24 ,C bO IIcI= , 

( )25 ,C dO IaII= , ( )26 ,C Od IIaa= , ( )27 ,C OO IIII= . 
In the above lattice-valued fuzzy concepts, we illustrate the calculation method 

by the fuzzy concept ( )2 ,C aI ddOb=  as follows: 

When { , }A a I=� , we will firstly calculate 

1 2 3 4( ) { ( )( ), ( )( ), ( )( ), ( )( )}f A f A m f A m f A m f A m=� � � � �  by Theorem 3.1, in which, 

1 1( )( ) ( ( ) ( , ))
g G

f A m A g I g m
∈

= ∧ →� � � ( ) ( )a a I d= → ∧ → I d= ∧ d= , 

2 2( )( ) ( ( ) ( , ))
g G

f A m A g I g m
∈

= ∧ →� � � ( ) ( )a b I c= → ∧ → a c= ∧ d= , 

3 3( )( ) ( ( ) ( , ))
g G

f A m A g I g m
∈

= ∧ →� � � ( ) ( )a c I O= → ∧ → c O= ∧ O= , 

4 4( )( ) ( ( ) ( , ))
g G

f A m A g I g m
∈

= ∧ →� � � ( ) ( )a I I b= → ∧ → I b= ∧ b= , 

i.e., ( ) { , , , }f A d d O b=�  denoted by { , , , }B d d O b=� ;  
We will secondly calculate 

1 2( ) { ( )( ), ( )( )}h B h B g h B g=� � �  by Theorem 3.1, in which, 

1 1( )( ) ( ( ) ( , ))
m M

h B g B m I g m
∈

= ∧ →� � � ( ) ( ) ( ) ( )d a d b O c b I= → ∧ → ∧ → ∧ → a= , 
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2 2( )( ) ( ( ) ( , ))
m M

h B g B m I g m
∈

= ∧ →� � � ( ) ( ) ( ) ( )d d d c O O b b= → ∧ → ∧ → ∧ → I= , 

i.e., ( ) { , }h B a I=� A= � , so ( )2 ,C aI ddOb=  is a lattice-valued fuzzy concept. 
 

All the above lattice-valued fuzzy concepts can be constructed into a concept 
lattice by Definition 3.2 and its Hasse diagram as Figure 2: 

 

C2

C5

C4C3

C10

C7C6

C11

C18

C12

C15

C1

C19

C24

C8

C13

C20

C9

C14

C22

C17

C21

C25
C26

C27

C23

C16

 
Figure 2: Hasse diagram of ( )KC  

4 Decision Making Based on Lattice-Valued Fuzzy Concept 
Lattice 

4.1 Decision Making with Uncertainty Information 

In this section, we mainly define the lattice-valued decision context according to the 
concrete decision information system and establish the lattice-valued decision concept 
lattice as the single-target decision model. 
Definition 4.1 A 4-tuple { }( ), , ,K G M d L I= �∪  is called a lattice-valued 
single-target decision context, where G  is the non-empty finite objects set, M  is 
the non-empty finite attributes set and d  is a decision attribute, ( , , , , , , )L O I′∧ ∨ →  
is a lattice implication algebra, I�  is a relation between G  and { }M d∪ , i.e., 

: { }I G M d L× →� ∪ . 

Definition 4.2 Let ( ), { }, ,K G M d L I= �∪  be a lattice-valued single-target decision 

context, a 4-tuple { }( , , , )K G M d L Iα α α= �∪  is called a lattice-valued single-target 

decision context with decision value α , where { } ,G g gI d L Gα α α α= = ∈ ⊆� , 
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:I G M Lα α × →� , accordingly, ( )K αC  is called a lattice-valued single-target 
decision concept lattice with decision value α . 
Definition 4.3 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α , for any GA L α∈�  and MB L∈� , define the 
Galois connection ( , )f hα α  between GL α  and ML  as follows: 

( ) ( )
( ) ( )

: ,  ( ) ( ) ( , )

: ,  ( ) ( ) ( , )

G M

g G

GM

m M

f L L f A m A g I g m

h L L h B g B m I g m

α

α

α

α α α

α α α

∈

∈

⎧ → = ∧ →
⎪
⎨

→ = ∧ →⎪
⎩

�

�
. 

Let be a lattice-valued single-target decision context with decision value α , 
denote: 

{ }( ) ( ) ( )G K A  A,B K
α α α= ∈C� � �C , { }( ) ( ) ( )M K B  A,B Kα α= ∈ C�� �C . 

In the following, “//” is expressed as the incomparability. 
Definition 4.4 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α , and ( )K αC  the lattice-valued 
single-target decision concept lattice with decision value α , and ( , )f hα α  the 

Galois connection, the decision rule is defined as “ { }( , ) ( , )A B d A B α→ =� �� � ”, i.e., “ if 

A�  and B� , then the decision value of ( , )A B� �  is α ”, if A�  and B�  satisfy at least 
one of the conditions as follows: 
(1) ( )B f Aα= ��  or // ( )B f Aα

�� , for any ( )GA K
α α∈� C , MB L∈� ; 

(2) ( )A h Bα=� �  or // ( )A h Bα
� � , for any ( )MB K α∈� C , GA L α∈� . 

For the decision rules mined from the lattice-valued single-target decision 
context, it is necessary for us to find out the redundant rules and the matrix rules 
existed in this model.  
Definition 4.5 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α , and ( )K αC  the lattice-valued 
single-target decision concept lattice with decision value α , and ( , )f hα α  the 

Galois connection, the decision rule “ { }( , ) ( , )A B d A B α→ =� �� � ” is called as the 

redundant rule, if A�  and B�  satisfy at least one of the conditions as follows: 
(1) // ( )B f Aα

�� , for any ( )GA K
α α∈� C , MB L∈� ; 

(2) // ( )A h Bα
� � , for any ( )MB K α∈� C , GA L α∈� . 

Definition 4.6 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α , and ( )K αC  the lattice-valued 

single-target decision concept lattice with decision valueα , for any GA L α∈�  and 
MB L∈� , the decision rule “ { }( , ) ( , )A B d A B α→ =� �� � ” is called as the maximum rule, if 
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( , ) ( )A B K α∈� � C . 
In this decision model, we can get not only the decision rules with decision value 

α  but also the decision rules with decision values different from α  according to 
the following two definitions. 

Let ( , , , , , , )L O I′∨ ∧ →  be a lattice implication algebra, we denote: 

{ },  L Lα β β α β= > ∈>  

{ },  L Lα β β α β= < ∈<  

Definition 4.7 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α , and ( )K αC  the lattice-valued 
single-target decision concept lattice with decision value α , and ( , )f hα α  the 

Galois connection, for any GA L α∈�  and MB L∈� , the decision rule is defined as 
“ { }( , ) ( , )A B d A B L α→ ∈� �� � > ”, i.e., “ if A�  and B� , then the decision value of ( , )A B� �  

is more than α ”, if A�  and B�  satisfy at least one of the conditions as follows: 
(1) ( )GA K

α α∈� C  and ( )B f Aα⊃ �� ;  

(2) ( )MB K α∈� C  and ( )A h Bα⊃� � . 
Definition 4.8 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α , and ( )K αC  the lattice-valued 
single-target decision concept lattice with decision value α , and ( , )f hα α  the 

Galois connection, for any GA L α∈�  and MB L∈� , the decision rule is defined as 
“ { }( , ) ( , )A B d A B L α→ ∈� �� � < ”, i.e., “ if A�  and B� , then the decision value of ( , )A B� �  

is less than α ”, if A�  and B�  satisfy at least one of the conditions as follows: 
(1) ( )GA K

α α∈� C  and ( )B f Aα⊂ �� ;  

(2) ( )MB K α∈� C  and ( )A h Bα⊂� � . 
For the decision rules with decision values different from α , their concrete 

decision values can be calculated by the following definitions and theorems. 
Definition 4.9 Let ( , , , )G M L I�  be a lattice-valued fuzzy context, 1 2, GA A L α∀ ∈� �  

and 2 1A A⊆� � , define the degree to which 1A�  is more than 2A�  as: 

( )1 2 1 2( ) ( ) ( )
g G

S A A A g A g
∈

′− = ∨ →� � � � ; 

1 2, MB B L∀ ∈� �  and 2 1B B⊆� � , define the degree to which 1B�  is more than 2B�  as: 

                    ( )1 2 1 2( ) ( ) ( )
m M

S B B B m B m
∈

′− = ∨ →� � � � . 

Theorem 4.1 Let ( , , , )G M L I�  be a lattice-valued fuzzy context, then  

(1) 2 3 1 3( ) ( )S A A S A A− ≤ −� � � � , if 3 2 1A A A⊆ ⊆� � � , for any 1 2 3, , GA A A L∈� � � ; 
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(2) 2 3 1 3( ) ( )S B B S B B− ≤ −� � � � , if 3 2 1B B B⊆ ⊆� � � , for any 1 2 3, , MB B B L∈� � � . 

Proof. (1) 1 2 3, , GA A A L∀ ∈� � �  and 3 2 1A A A⊆ ⊆� � � , for any g G∈ , we can get 

1 3 2 3( ) ( ) ( ) ( )A g A g A g A g→ ≤ →� � � � , 

( )1 3 1 3( ) ( ) ( )
g G

S A A A g A g
∈

′− = ∨ →� � � � ( )2 3( ) ( )
g G

A g A g
∈

′≥ ∨ →� �
2 3( )S A A= −� � . 

(2) can be proved similarly.  □ 
Definition 4.10 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 
decision context with decision value α , and ( , )f hα α  the Galois connection, for 

any decision rule “ { }( , ) ( , )A B d A B L α→ ∈� �� � > ” satisfying ( )GA K
α α∈� C  and 

( )B f Aα⊃ �� , then ( , )d A B� �  can be calculated as:  

( )( , ) ( )d A B S B f Aαα= ⊕ −� �� � . 

Definition 4.11 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 
decision context with decision value α , and ( , )f hα α  the Galois connection, for 

any decision rule “ { }( , ) ( , )A B d A B L α→ ∈� �� � > ” satisfying ( )MB K α∈� C  and 

( )A h Bα⊃� � , then ( , )d A B� �  can be calculated as:  

( )( , ) ( )d A B S A h Bαα= ⊕ −� �� � . 

Similarly, for the decision rules with the decision values less than α , the 
following Definition 4.12 and Definition 4.13 also show that the size degree of the 
two L-fuzzy attribute subsets and the size degree of the two L-fuzzy object subsets 
can be looked as the decrease degree of α .  
Definition 4.12 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 
decision context with decision value α , and ( , )f hα α  the Galois connection, for 

any decision rule “ { }( , ) ( , )A B d A B L α→ ∈� �� � < ” satisfying ( )GA K
α α∈� C  and 

( )B f Aα⊂ �� , then ( , )d A B� �  can be calculated as:  

( )( , ) ( )d A B S f A Bαα ′= ⊗ −� �� � . 

Definition 4.13 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 
decision context with decision value α , and ( , )f hα α  the Galois connection, for 

any decision rule “ { }( , ) ( , )A B d A B L α→ ∈� �� � < ” satisfying ( )MB K α∈� C  and 

( )A h Bα⊂� � , then ( , )d A B� �  can be calculated as: 

( )( , ) ( )d A B S h B Aαα ′= ⊗ −� �� � . 

In the following, we will talk about the properties of the formulas, such as 
coherent, isotone [Zhang, 05]. 
Theorem 4.2 The formulas defined by Definition 4.10 and 4.11 are coherent. 
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Proof. We need only to prove that 1 2, GA A L α∀ ∈� � , 1 2, MB B L∈� � , 2 2( , )d A B α=� � , 

when 2 1A A=� �  and 2 1B B=� � , it is obviously that 2 1 2 1( ) ( )S A A S B B O− = − =� � � � , so 

2 2( , )d A B α=� � .  □ 
Theorem 4.3 The formulas defined by Definition 4.12 and 4.13 are coherent. 
Proof. The proof is similar to the one of Theorem 4.2.  □ 
Theorem 4.4 The formulas defined by Definition 4.10 and 4.11 are isotone. 
Proof. We firstly prove that the formula defined by Definition 4.10 is isotone, i.e., 

1 2, , GA A A L α∀ ∈� � � , 1 2, , MB B B L∈� � � , { }( , ) ( , )A B d A B α→ =� �� �  and 2 1B B B= =� � � , 

1 2A A A⊆ ⊆� � � , it follows that 

2 2 2( , ) ( )d A B S A Aα= ⊕ −� � ��  

2( )S A Aα′= → −� �  

1( )S A Aα′≥ → −� �  

1( )S A Aα= ⊕ −� �  

1 1( , )d A B= � � ; 
The isotone of the fomular defined by Definition 4.11 can be proved similarly. 
So, the formulas defined by Definition 4.10 and 4.11 are isotone.  □ 
Theorem 4.5 The formulas defined by Definition 4.12 and 4.13 are isotone. 
Proof. We firstly prove that the formula defined by Definition 4.12 is isotone, i.e., 

1 2, , GA A A L α∀ ∈� � � ,  1 2, , MB B B L∈� � � , ( , ) ( , )A B d A B α→ =� �� �  and 2 1B B B= =� � � , 

2 1A A A⊆ ⊆� � � , it follows that 

2 2 2( , ) ( )d A B S A Aα ′= ⊗ −� � ��  

( )2( )S A Aα ′= → −� �  

( )1( )S A Aα ′≤ → −� �  

1π ( )A Aα ′= ⊗ ⊆� �  

1 1( , )d A B= � � ; 
The isotone of the formula defined by Definition 4.13 can be proved similarly. 
So, the formulas defined by Definition 4.12 and 4.13 are isotone.  □ 

4.2 Properties of decision rules 

The properties of decision rules will play a certain extent role on mining all the 
decision rules, so we talk about them in the following.  
Theorem 4.6 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α . If 1 2, , GA A A L α∀ ∈� � � , MB L∃ ∈� , s.t., 

“ { }( , ) ( , )A B d A B α→ =� �� � ” is a maximum decision rule and 1( , )d A B L α∈� � > , 

2( , )d A B L α∈� � > , then  
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(1) 1 2 1 2( , ) ( , ) ( , )d A A B d A B d A B= ∨� � � �� � �∪ ; 

(2) 1 2 1 2( , ) ( , ) ( , )d A A B d A B d A B≤ ∧� � � �� � �∩ . 

Proof. (1) 1 2, , GA A A L α∀ ∈� � � , 2
MB L∈� , 

1 2 1 2( , ) ( )d A A B S A A Aα= ⊕ −� � � � ��∪ ∪  

1 2( )S A A Aα′= → −� � �∪  

( )1 2( )( ) ( )
g G

A A g A gα
∈

′′= → ∨ ∨ →� � �  

( ) ( )1 2( ) ( ) ( ) ( )
g G g G

A g A g A g A gα
∈ ∈

′⎛ ⎞′= → ∧ → ∧ ∧ →⎜ ⎟
⎝ ⎠

� � � �  

( ) ( )1 2( ) ( ) ( ) ( )
g G g G

A g A g A g A gα α
∈ ∈

⎛ ⎞ ⎛ ⎞′ ′′ ′= → ∨ → ∨ → ∨ →⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� � � �  

( ) ( )1 2( ) ( )S A A S A Aα α= ⊕ − ∨ ⊕ −� � � �  

1 2( , ) ( , )d A B d A B= ∨� �� � ; 

(2) 1 2( , )d A A B� � �∩  
1 2( )S A A Aα= ⊕ −� � �∩  

1 2( )S A A Aα′= → −� � �∩  

( )1 2( )( ) ( )
g G

A A g A g
α

α
∈

′′= → ∨ →� � �∩  

( ) ( )( )1 2( ) ( ) ( ) ( )
g G

A g A g A g A g
α

α
∈

′′= → ∨ → ∨ →� � � �  

( ) ( )1 2( ) ( ) ( ) ( )
g G g G

A g A g A g A g
α α

α
∈ ∈

′⎛ ⎞′≤ → ∧ → ∨ ∧ →⎜ ⎟
⎝ ⎠

� � � �   

( ) ( )1 2( ) ( ) ( ) ( )
g G g G

A g A g A g A g
α α

α α
∈ ∈

⎛ ⎞ ⎛ ⎞′ ′′ ′= → ∨ → ∧ → ∨ →⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

� � � �  

( ) ( )1 1( ) ( )S A A S A Aα α′ ′= → − ∧ → −� � � �  

( ) ( )1 2( ) ( )S A A S A Aα α= ⊕ − ∧ ⊕ −� � � �  

1 2( , ) ( , )d A B d A B= ∧� �� � .    □ 

Theorem 4.7 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α . If 1 2, , GA A A L α∀ ∈� � � , MB L∃ ∈� , s.t.,  

“ { }( , ) ( , )A B d A B α→ =� �� � ” is a maximum decision rule and 1( , )d A B L α∈� � < , 

2( , )d A B L α∈� � < , then  

(1) 1 2 1 2( , ) ( , ) ( , )d A A B d A B d A B≥ ∨� � � �� � �∪ ; 

(2) 1 2 1 2( , ) ( , ) ( , )d A A B d A B d A B= ∧� � � �� � �∩ . 
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Proof. (1)   1 2( , )d A A B� � �∪  

1 2( )S A A Aα ′= ⊗ −� � �∪  

( )1 2( )S A A Aα ′= → −� � �∪  

( )1 2( ) ( )( )
g G

A g A A g
α

α
∈

′⎛ ⎞′= → ∨ →⎜ ⎟
⎝ ⎠

� � �∪  

( ) ( )1 2( ) ( ) ( ) ( )
g G g G

A g A g A g A g
α α

α
∈ ∈

′⎛ ⎞⎛ ⎞′ ′≥ → ∨ → ∧ ∨ →⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � � �  

( ) ( )1 2( ) ( )S A A S A Aα α′ ′= → − ∨ → −� � � �  

( ) ( )1 2( ) ( )S A A S A Aα α′ ′= ⊗ − ∨ ⊗ −� � � �  

1 2( , ) ( , )d A B d A B= ∨� �� � . 

(2)   1 2( , )d A A B� � �∩  

1 2( )S A A Aα ′= ⊗ −� � �∩  

( )1 2( )S A A Aα ′= → −� � �∩  

( )1 2( ) ( )( )
g G

A g A A g
α

α
∈

′⎛ ⎞′= → ∨ →⎜ ⎟
⎝ ⎠

� � �∩  

( ) ( )1 2( ) ( ) ( ) ( )
g G g G

A g A g A g A g
α α

α
∈ ∈

′⎛ ⎞⎛ ⎞′ ′= → ∨ → ∨ ∨ →⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � � �  

( ) ( )1 2( ) ( )S A A S A Aα α′ ′= → − ∧ → −� � � �  

( ) ( )1 2( ) ( )S A A S A Aα α′ ′= ⊗ − ∧ ⊗ −� � � �  

1 2( , ) ( , )d A B d A B= ∧� �� � .  □ 
 The following theorems can be immediately obtained from Theorem 4.6 and 
Theorem 4.7. 
Theorem 4.8 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α . If 1 2, , MB B B L∀ ∈� � � , for GA L α∈� , 

“ { }( , ) ( , )A B d A B α→ =� �� � ” is a maximum decision rule and 1( , )d A B L α∈� � > , 

2( , )d A B L α∈� � > , then 

(1) 1 2 1 2( , ) ( , ) ( , )d A B B d A B d A B= ∨� � �� � � �∪ ; 

(2) 1 2 1 2( , ) ( , ) ( , )d A B B d A B d A B≤ ∧� � �� � � �∩ . 

Theorem 4.9 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α . If 1 2, , MB B B L∀ ∈� � � , for GA L α∈� , 
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“ { }( , ) ( , )A B d A B α→ =� �� � ” is a maximum decision rule and 1( , )d A B L α∈� � < , 

2( , )d A B L α∈� � < , then 

(1) 1 2 1 2( , ) ( , ) ( , )d A B B d A B d A B≥ ∨� � �� � � �∪ ; 

(2) 1 2 1 2( , ) ( , ) ( , )d A B B d A B d A B= ∧� � �� � � �∩ . 

Theorem 4.10 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision  context with decision value α , and ( )K αC  the lattice-valued 

single-target decision concept lattice with decision value α , if 1 2, GA A L α∀ ∈� � , 

1 2, MB B L∈� � , “ { }1 1 1 1( , ) ( , )A B d A B α→ =� �� � ” and “ { }2 2 2 2( , ) ( , )A B d A B α→ =� �� � ” are the 

maximum decision rules, then 
(1) 1 2 1 2( , )d A A B B L α∈� � � �∪ ∪ > ; 

(2) 1 2 1 2( , )d A A B B L α∈� � � �∩ ∩ < . 

Proof. (1) By Definition 4.6, 1 1( , ) ( )A B L K α∈� �  and 2 2( , ) ( )A B L K α∈� �  hold for 

any 1 2, GA A L α∈� � , 1 2, MB B L∈� � , then 1 1( )B f A= �� , 2 2( )B f A= �� , 

( )1 2 1 2, ( ) ( )A A f A A K α∈C� � � �∪ ∪ , i.e.,  

“ ( ) ( ){ }1 2 1 2 1 2 1 2, ( ) , ( )A A f A A d A A f A A α→ =� � � � � � � �∪ ∪ ∪ ∪ ” is a maximum decision rule. 

By the properties of lattice-valued fuzzy concept lattice, 

( )1 2 1 2 1 2 1 2( , ) , ( ) ( )d A A B B d A A f A f A=� � � � � �� �∪ ∪ ∪ ∪  

( ) ( )1 2 1 1 2 2, ( ) , ( )d A A f A d A A f A= ∨� � � � � �∪ ∪   

α≥ . 
So 1 2 1 2( , )d A A B B L α∈� � � �∪ ∪ > . 

(2) Similarly, ( )1 2 1 2, ( ) ( )A A f A A K α∈C� � � �∩ ∩  holds for any 1 2, GA A L α∈� � , 

1 2, MB B L∈� � , “ ( ) ( ){ }1 2 1 2 1 2 1 2, ( ) , ( )A A f A A d A A f A A α→ =� � � � � � � �∩ ∩ ∩ ∩ ” is a maximum 

decision rule, then 

( )1 2 1 2 1 2 1 2( , ) , ( ) ( )d A A B B d A A f A f A=� � � � � �� �∩ ∩ ∩ ∩  

( ) ( )1 2 1 1 2 2, ( ) , ( )d A A f A d A A f A= ∧� � � � � �∩ ∩  

α≤ . 
So 1 2 1 2( , )d A A B B L α∈� � � �∩ ∩ < .  □ 

Theorem 4.11 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α . If 1 2, , GA A A L α∀ ∈� � � , MB L∃ ∈� ,s.t.,  

“ { }( , ) ( , )A B d A B α→ =� �� � ” is a maximum decision rule, 1( , )d A B L∈� �  and 

2( , )d A B L α∈� � > , then 1 2( , )d A A B L α→ ∈� � � > . 
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Proof. Suppose that ( , )f gα α  is the Galois connection on K α . 2( )A h B Aα= ⊂� ��  

holds for any 1 2, , GA A A L α∈� � �  and MB L∈�  by Definition 4.7, then 1 2A A A⊂ →� � �  

holds by 1 2 1 2( ) ( )A A A A A A I→ → = → → =� � � � � � , so 1 2( , ) ( , )d A A B d A B→ >� � �� � , i.e., 

1 2( , )d A A B L α→ ∈� � � > .  □ 

Theorem 4.12 Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target 

decision context with decision value α . If 1 2, , MB B B L∀ ∈� � � , GA L α∃ ∈� , s.t., 

“ { }( , ) ( , )A B d A B α→ =� �� � ” is a maximum decision rule, 1( , )d A B L∈� �  and 

2( , )d A B L α∈� � > , then 1 2( , )d A B B L α→ ∈� � � > . 

Proof. Suppose that ( , )f gα α  is the Galois connection on K α . 2( )B f A Bα= ⊂�� �  

holds for any 1 2, , MB B B L∈� � � , GA L α∈�  by Definition 4.7, then 1 2B B B⊂ →� � �  holds 

by 1 2 1 2( ) ( )B B B B B B I→ → = → → =� � � � � � , so 1 2( , ) ( , )d A B B d A B→ >� �� � � , i.e., 

1 2( , )d A B B L α→ ∈� � � > .  □ 

4.3 Extracting Algorithm of Maximum Decision Rules 

Let { }( , , , )K G M d L Iα α α= �∪  be a lattice-valued single-target decision context 
with decision value α , where 1 2{ , , , }rG g g gα = " , 1 2{ , , , }sM m m m= " , 

( , , , , , , )nL L O I′= ∨ ∧ →  is a lattice implication algebra, :I G M Lα α × →� , and 
( , )f hα α  is the Galois connection. 

The extracting algorithm of maximum decision rules as follows: 
Input: the lattice-valued single-target decision context { }( , , , )K G M d L Iα α α= �∪  
Output: the maximum decision rules 
 
Begin  

while ( K α ≠ Φ ) do 

   Calculate the fuzzy subsets ( )1 2( ), ( ), , ( )k k k k rA A g A g A g=� � � �" of GL α , 

( , , , ) ( , , , )kO O O A I I I≤ ≤�" " ,1 rk n≤ ≤  
For 1k ←  to rn  do 

for 1j ←  to s  do 
for 1i ←  to r  do 

( , ) : ( ) ( , )i j k i i jf g m A g I g mα α= →� �  

( ) : ( ) ( , )j j i jB m B m f g mα= ∧� �  
endfor; 

endfor; 
for 1i ←  to r  do 
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for 1j ←  to s  do 

( )( ) : ( ) ( , )j j i jh B m B m I g mα α= →� � �  

( )( ) : ( ) ( )i i jC g C g h B mα= ∧� � �  
endfor; 

if ( ) ( )i k iC g A g=� �  then 
endif; 

endfor; 
endfor; 

end; 
This above algorithm for extracting the maximum decision rules depends on the 

lattice-valued single-target decision concept lattice, and the decision rules basis are 
different with the changeable decision values of single-target decision concept lattices 
which provides us a direct and convenient mathematical tool. 

5 Conclusions 

For dealing with uncertainty problems in decision making, this paper proposed a new 
decision model and researched the methods of mining decision rules. Based on the 
lattice-valued logic, we utilized the lattice implication algebra to depict the 
uncertainty information and constructed the lattice-valued single-target decision 
concept lattice as the decision model. Concretely, we gave the definition of decision 
rule and the calculating method of decision rules with different decision values. We 
discussed the properties of decision rules and proposed the algorithm for mining the 
maximum decision rules, which provides a feasible method for decision making. 

In the future work, we will be devoted to software implementation of this 
decision method and apply it into practice. Obviously, other decision models and 
decision methods for dealing with uncertainty information will be also our next 
researches.  
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