
Systematic Unit Testing in a Read-eval-print Loop

Kurt Nørmark
(Department of Computer Science

Aalborg University
Denmark

normark@cs.aau.dk)

Abstract: Lisp programmers constantly carry out experiments in a read-eval-print
loop. The experimental activities convince the Lisp programmers that new or modified
pieces of programs work as expected. But the experiments typically do not represent
systematic and comprehensive unit testing efforts. Rather, the experiments are quick
and dirty one shot validations which do not add lasting value to the software, which is
being developed. In this paper we propose a tool that is able to collect, organize, and
re-validate test cases, which are entered as expressions in a read-eval-print loop. The
process of collecting the expressions and their results imposes only little extra work on
the programmer. The use of the tool provides for creation of test repositories, and it is
intended to catalyze a much more systematic approach to unit testing in a read-eval-
print loop. In the paper we also discuss how to use a test repository for other purposes
than testing. As a concrete contribution we show how to use test cases as examples in
library interface documentation. It is hypothesized—but not yet validated—that the
tool will motivate the Lisp programmer to take the transition from casual testing to
systematic testing.

Key Words: Interactive unit testing, program examples, Emacs, Scheme program-
ming.

Category: D.2.5, D.2.6, D.1.1.

1 Introduction

This paper is about systematic program testing done in a read-eval-print loop.
A read-eval-print loop is also known as an interactive shell or a command inter-
preter. The paper deals with unit testing of Scheme functions [Kelsey 98], but
the results of the paper are valid for any Lisp language, and beyond. Using a
read-eval-print loop it is natural to try out a function immediately after it has
been programmed or modified. It is easy to do so via a few interactions. This
trying out process can be characterized as casual testing, and it stands as a
contrast to systematic unit testing [Beck 94, Beck 98]. In this paper we describe
how to manage and organize the testing activities which are done in a read-eval-
print loop. It is hypothesized that better means for management and utilization
of test cases will encourage programmers to shift from a casual testing mode to
a more systematic testing mode.

In order to understand the context and the overall problem, which is inde-
pendent of Lisp programming, we start with a brief discussion of different ways

Journal of Universal Computer Science, vol. 16, no. 2 (2010), 296-314
submitted: 19/10/09, accepted: 10/12/09, appeared: 28/2/10 © J.UCS

to execute programs. There are, in general and in essence, two different ways to
execute a part of a program:

1. Single entry point execution.
Program execution always starts at a designated place called the main pro-
gram, typically a function or a method called main. The main program is
the only entry point to the program. The only way to execute a given part
P of a program is to arrange that P is called directly or indirectly from the
main program.

2. Multiple entry points execution.
Any top-level abstraction in the program serves as an entry point. Thus, if a
program part is implemented as a top-level abstraction, the abstraction may
be executed (called/instantiated) from a read-eval-print loop.

The work described in this paper relies on environments that support multiple
entry points execution. Almost all Lisp environments belong to this category, and
many environments for languages such as ML, Haskell, F#, Smalltalk, Ruby, and
Python also support multiple entry points execution. The initial observation
behind this work is the following:

Programmers who work in multiple entry points IDEs are privileged be-
cause once a top-level abstraction has been programmed it can be executed
right away in a read-eval-print loop. It is hypothesized that programmers
in such IDEs test non-trivial program parts incrementally and interac-
tively in this manner. A problem is, however, that these test executions
are sporadic and casual, not systematic. Another problem is that the test-
executions are not collected and preserved. Hereby it becomes difficult to
repeat the test executions if/when an underlying program part has been
modified (regression testing). The latter problem probably amplifies the
first problem: What should motivate a programmer to perform systematic
and more comprehensive “one shot testing”—tests which cannot easily
be repeated when a need arises in the future?

One way to approach these problems would be to collect and systematize
the tests in the direction of single entry point execution. Thus, instead of doing
interactive and incremental program testing, the programmer aggregates the in-
dividual tests in test abstractions. Such test abstractions are eventually initiated
from a single entry point, possibly via a “smart test driver” in the realm of
JUnit [JUnit 09] or NUnit [NUnit 09]. In our opinion this is the wrong way to
go, because it will ultimately ruin the interactive, experimental, and exploratory
programming process which is so valuable for creative program development in
Lisp and similar languages.

297Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

As an alternative approach, we will outline support for systematic and in-
teractive testing using a read-eval-print loop. The idea is that the programmer
continues to test-execute—try out and play with— abstractions as soon as it
makes sense. Following each such test execution the programmer should decide
if the test case is worth keeping for future use. If a test case should be pre-
served, the tested fragment and its result(s) are enrolled in a test bookkeeping
system—a test case repository. Test cases enrolled in the system can easily be
re-executed, and they can be conveniently reused for other purposes.

In the rest of the paper we will describe a concrete tool, through which we
have gained experience with systematic unit testing of Scheme programs in a
read-eval-print loop. This will show how it is possible to manage the interactive
test-execution in a systematic way.

The contributions of our work are twofold. The first contribution is the idea
of systematic testing via a read-eval-print loop, the necessary support behind
such a facility, and additional derived benefits from the approach. The second is
the actual testing tools for Scheme, as implemented in Emacs Lisp and hosted
in the Emacs text editor.

The rest of the paper is structured as follows. First, in Section 2, we discuss
the idea of collecting test cases in a read-eval-print loop. Next, in Section 3 we
introduce support for test case management. In Section 4 we describe how to use
accumulated test cases as examples in library interface documentation. Section
5 describes the implemented tools behind our work. Related work is discussed
in Section 6, and the conclusions are drawn in Section 7.

2 Collecting Tests in a Read-eval-print Loop

The slogan of test driven development [Beck 98], which is an important part of
extreme programming [Beck 04], is “test a little, code a little”. Following this
approach the test cases are written before the actual programming takes place.
In a less radical variant, “code a little, test a little”, test cases are written after
a piece of code has been completed.

For Lisp programmers, who work incrementally in a read-eval-print loop,
the slogan has always been “code a little, experiment a little”. We do not want
to change that, because this way of working represents the spirit of dynamic,
exploratory, interactive programming. It is also consistent with Paul Graham’s
notion of bottom-up programming in Lisp [Graham 93]. We will, however, pro-
pose that a subset of the experiments are turned into a more systematic and
consolidated testing effort. In addition we will propose that the result of this
effort is organized and preserved such that regression testing becomes possi-
ble. With appropriate support from the read-eval-print loop this only requires a
minimum of extra work from the programmer.

298 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

Figure 1: A Scheme read-eval-print loop (bottom) and part of Scheme source

program (top). The menu entry Unit Testing in the top-bar pertains

to systematic unit testing.

As a typical and simple setup, a programmer who uses a read-eval-print loop
works in a two-paned window, see Figure 1. In one pane a program source file is
edited, and in the other pane the read-eval-print loop is running. (Variations with
multiple editor panes, multiple read-eval-print loops, or combined editor pane
and read-eval-print loop pane are supported in more advanced environments).
Whenever an abstraction, typically a function, is completed in the upper pane
of Figure 1, it is loaded and tried out in the lower pane.

In order to be concrete, we will assume that we have just programmed the
Scheme function string-of-char-list?, as shown in the upper pane of Figure
1. The function string-of-char-list? examines if the string str consists ex-
clusively of characters from the list char-list. We load this function into the
read-eval-print loop, and we assure ourselves that it works correctly. This can,
for instance, be done via the following interactions.

> (string-of-char-list? "abba" (list #\a #\b))
#t
> OK

> (string-of-char-list? "abbac" (list #\a #\b))
#f

299Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

> (string-of-char-list? "aaaa" (list #\a))
#t
> OK

> (string-of-char-list? "1 2 3" (list #\1 #\2))
#f
> OK

> (string-of-char-list? "1 2 3" (list #\1 #\2 #\3))
#f
> OK

> (string-of-char-list? "1 2 3" (list #\1 #\2 #\3 #\space))
#t
> OK

> (string-of-char-list? "cde" (list #\a #\b))
#f
> OK

The OK commands, issued after most of the interactions, are test case acceptance
commands which signify that the latest evaluation is as expected, and that the
expression and its value should be preserved. The command can be issued in a
number of different ways depending on the style of the tool and the preferences of
the programmer. In our concrete, Emacs-based tool we support test case accep-
tance commands both via a menu entry and via a terse control sequence (such as
C-t C-t). Issuing the test acceptance command asserts that the returned value
is equal to the value of the evaluated expression, using the default assertion (the
equal? Scheme function in our setup).

Working in a testing context, we will turn experimentation into a more sys-
tematic testing effort. Continuing the example, it will make good sense to con-
solidate the test with test cases that care about extreme values of the text string
and the character list:

> (string-of-char-list? "" ’())
#t
> OK

> (string-of-char-list? "" (list #\a #\b))
#t
> OK

> (string-of-char-list? "ab" ’())
#f
> OK

As it can be seen, the programmer accepts all these interactions as test cases.
It is also possible to accept an error test case. As an example, the read-eval-

print loop interaction

> (string-of-char-list? #\a (list #\a))

300 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

string-length: expects argument of type <string>; given #\a
> ERROR

is categorized as an error, because string-of-char-list? only accepts a string
as its first parameter. The ERROR command signals that an error must occur
when the expression from above is evaluated.

In the spirit of test-driven development it is also possible—in a read-eval-
print loop—to write test cases before the function under test is implemented.
Using this variant, it is necessary to provide the expected value of an expression,
which cannot yet be successfully evaluated. Here follows a possible interaction
in case the function string-of-char-list? has not yet been implemented:

> (string-of-char-list? "abba" (list #\a #\b))
reference to undefined identifier: string-of-char-list?
> VALUE: #t

> (string-of-char-list? "abbac" (list #\a #\b))
reference to undefined identifier: string-of-char-list?
> VALUE: #f

The VALUE: commands are issued with the purpose of providing the intended
value of the expressions which fail.

The approach described above will be called interactive unit testing. Inter-
active unit testing works well for testing of pure functions. The reason is that a
test of a function f can be fully described by (1) an expression e that invokes f
and (2) the value of the e.

The interactive unit testing approach is less useful for testing of procedures or
functions with side effects. A test of a procedure p involves, besides step 1 from
above, (0) establishment of the initial state, and (3) possible cleaning up after
p has been called. Non-interactive unit testing frameworks typically prepare for
step 0 and 3 via setup and teardown actions for each individual test case. It is not
easy, nor natural, to collect these four pieces in a read-eval-print loop. Therefore
we recommend that test cases for imperative abstractions are captured at the
level of more conventional, non-interactive unit testing. This may harmonize
better than expected with interactive unit testing, because a traditional unit
testing tool is in fact part of the tool-chain of the proposed implementation, see
Section 5.

3 Test Case Management

In the previous section we have described the basic idea of turning selected
expressions and values, as they appear in a read-eval-print loop, into test cases.
We will now describe how our tool keeps track of these test cases, and how
the program developer can deal with the accumulated test cases. We start with

301Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

an explanation of test case management that involves pure functions. At the
end of this section we will touch on management of test cases in imperative
programming.

3.1 Basic test case management

A test case of a pure function is composed of the following information:

1. The expression which serves as the calling form.

2. The expected value of the expression.

3. The predicate that is used to verify that the expected value is equal to the
outcome of executing the expression.

4. A unique id, which contains a time stamp.

5. Additional information which, for instance, pertains to the use of the test
case as an example in interface documentation (see Section 4).

In case the expression is supposed to give rise to an error, the test case reflects
this as a special case.

The existence—and acceptance—of a test case reflects the fact that the test
case represents correct behavior of the involved abstractions. The acceptance
of the test case is made by the programmer by issuing a test case acceptance
command in the read-eval-print loop, just after the evaluation of the expression
(see Section 2).

The basic test management idea is simple. A given session with a read-eval-
print loop can be carried out relative to a designated test case repository. At
an arbitrary point in time the programmer can connect to an existing test case
repository, or the programmer can ask for a new one. Subsequent test case ac-
ceptance commands add test cases to the designated repository. If a programmer
accepts a test case without being connected to a repository, the programmer is
prompted for a repository for this particular test case. It is possible, at any point
in time, to switch from one test case repository to another.

Each test case repository—corresponding to a test-suite—can associate a
setup file and a tear down file. The setup file may contain a common context of
all test cases, and as such the context is shared between all the test cases in the
repository. The setup file typically also contains some instructions for loading of
appropriate source files. The tear down file is typically empty.

It is up to the programmer to decide the relationship between the program
source files and test case repositories. It is our experience that it is natural to
have one test case repository per library source file, and one per application
source file. It is possible to register one or more source files in association with a

302 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

test case repository. This registration makes it possible to locate a given function
in a source file, e.g. in case it is necessary to correct an error.

When the programmer asks for a new test case repository, he or she is
prompted for a hosting directory hd and a name n of the repository. This will,
behind the scene, create a directory called n-test in the directory hd. In the
vicinity of the interactive unit testing software we keep a list (in a file) that holds
information about all registered test case repositories. A new test case repository
directory contains a file with all the test cases together with the setup and tear-
down files. In addition a number of temporary files for various purposes are kept
in the directory. The programmer does not need to be aware of the test-related
directories.

3.2 Unit testing functionality

The test enabled read-eval-print loop supports a rich collection of functionality.
The functionality is organized in the ‘Unit Testing’ menu of the read-eval-print
pane, see Figure 1. The menu appears automatically when the supported read-
eval-print loop runs together with our interactive unit testing tool. The ‘Unit
Testing’ menu itself is shown in Figure 2. We will now describe the most impor-
tant unit testing functionality of the read-eval-print loop. The description will
be structured relative to the grouping of the menu entries in Figure 2.

The first group of functionality pertains to ‘connecting to’ and ‘disconnecting
from’ a test suite, as described in Section 3.1. A test suite is contained in a
test case repository. In the next group there are commands for registration and
deregistration of test suites. In addition to registering and deregistering of a
single test suite, it is possible to deregister all test suites. The tool is also able
to search through a directory tree for all test case repository directories, and to
register these. This is useful if test cases are brought in from external sources,
such as another development machine.

As another category of functionality, it is possible to execute all test cases in
the current test case repository from the read-eval-print loop. It is also possible
to execute all test cases in all registered repositories. In these ways, execution of
all test cases can easily take place on a regular basis.

The current test case repository can be opened for examination and editing.
It is, in addition, possible to inspect and edit the setup file, the teardown file,
and a selected source file under test. In also possible to inspect the Scheme file
that holds all the low-level unit tests (aggregated automatically by the tool), as
well as a test report in which test errors and test failures are reported.

The next two groups of commands add test acceptance commands. These
commands correspond to the OK, ERROR, and VALUE: commands described in
Section 2. The two source file info commands in the following group make it
possible connect a test suite to a set of Scheme source files. With this connection

303Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

Figure 2: The unit testing menu entries of the read-eval-print loop illustrated in

Figure 1.

it is possible to provide for smooth navigation from a test case to the function
under test.

Our tool preserves all entered input to the read-eval-print loop, independent
of the built-in history list, and independent of the test cases in the repositories.
The two comint history command are related to this functionality. With this fa-

304 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

cility, it is relatively easy to reproduce the interactions “from yesterday” or from
“last week”, in case these interactions contain contributions that we “today”
want to organize in test case repositories. The command ‘Document current test
suite’ pretty prints an aggregate consisting of the setup file, all test cases, and
the teardown file to a web page. The command ‘Default windows setup’ normal-
izes the panes to show the read-eval-print loop and the Scheme source file that
contains the functions under test.

The commands in the last group are related to information and help.

3.3 Maintenance of unit tests

During maintenance of the software under test, regression testing may sooner or
later reveal failures or errors. A failure occurs if a function under test becomes
inconsistent with a test case. An error occurs if, for instance, a tested function
is deleted or renamed. Test case failures and errors are revealed in reports of the
following form:

...
Error:

17395-10319
an error of type exn:variable occurred with message:
"reference to undefined identifier: blank-string?"

Error:

17395-10394
an error of type exn:variable occurred with message:
"reference to undefined identifier: blank-string?"

Failure:

19240-61944
/lib/general-test/testsuite.scm:1140:4

name: "assert"
location: ("/lib/general-test/testsuite.scm" 1140 4 59367 107 #f)
expression: (assert equal?

(string-of-char-list? "1 2 3" (list #\1 #\2 #\3))
(quote #t))

params: (#<primitive:equal?> #f #t)
...

The reported problems may be caused by a renaming of the function blank-

string? and by a change of string-of-char-list?. The numerical tokens fol-
lowing the six dashes are the unique test case ids. Forward and backward nav-
igation between test case ids are provided. It is also possible to access the test
case from this id, including the tested expression and the expected value. In ad-
dition, it is possible to delete the test case via a test case id. As a special twist, a
test case can be automatically transferred to the read-eval-print loop just before
deleting it. In that way erroneous test cases can be corrected and re-accepted.

305Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

R
ead

-eval-p
rin

t
L

oop

T
est R

ep
ort

T
est S

uite
S

ou
rce

F
ile

A
P

I D
ocum

entation

Run test
suite

Execute
test case via
test case id

Access to
test case
via test cas
id

Inspect
test suite

Find
selected
function

Find function
under test

M
ake

API
D

ocum
entation

w
ith

exam
ples

Evaluate
current
test case

F
igure

3:
T

h
e

rea
d
-eva

l-p
rin

t
lo

o
p

a
n
d

o
th

er
test-rela

ted
p
a
n
es,

to
g
eth

er
w

ith

th
e

in
tera

ctiv
e

rela
tio

n
s

(co
m

m
a
n
d
s)

th
a
t

tie
th

em
to

g
eth

er.

In
F
igure

3
w

e
show

a
diagram

that
illustrates

the
read-eval-print

loop
to-

gether
w

ith
test

report
and

other
im

portant
test-related

editor
panes.T

he
con-

nections
betw

een
boxes

in
the

figure
illustrate

test-related
interactions.

3.4
Im

p
erative

test
cases

E
ach

test
case

repository
also

contains
test

cases
for

procedures
(or

functions
w

ith
side-effects).

T
est

cases
that

involve
im

perative
program

m
ing

are
handled

at
the

level
of

the
underlying

unit-testing
tool.

It
is

possible
to

add
a

low
-level

test
case

to
the

test
case

repository,
and

it
is

possible
to

edit
the

collection
of

such
low

-leveltest
case.In

addition,it
is

possible—
in

a
flexible

w
ay—

to
execute

a
low

-level
test

case
in

order
to

elim
inate

potential
errors

in
the

test
case

at
an

early
point

in
tim

e.
D

ue
to

the
sim

ple
nature

of
test

cases
that

involve
pure

functions
it

is
unlikely

that
there

w
ill

be
errors

in
such

test
cases.

T
est

cases
that

involve
procedures

and
im

perative
program

m
ing

are
m

ore
com

plex,
and

therefore
it

is
valuable

to
try

them
out

in
isolation,as

early
as

possible.

306
N

oerm
ark K

.: System
atic U

nit T
esting in a R

ead-eval-print L
oop

Figure 4: Use of the string-of-char-list? test cases as examples in the inter-

face documentation of the function.

4 Test and Documentation

The primary benefit of an interactive unit testing tool in a read-eval-print-loop,
as described in Section 2 and 3, is easy and natural collection and preservation
of test cases. In addition, an interactive unit testing tool allows for convenient
management and execution of the collected test cases.

A clean representation of test cases in repositories allows for additional ap-
plications of the test cases. One such application is use of selected test cases
as examples in documentation of libraries. The documentation we have in mind
is interface documentation, as produced by tools such as Javadoc [Friendly 95],
Doxygen [van Heesch 04] and SchemeDoc [Nørmark 04].

As the name suggests, interface documentation describes the application pro-
grammer’s interface (API) of program libraries. Interface documentation is typi-

307Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

cally extracted from function headers/signatures and from the text in designated
documentation comments. Examples of usages of the documented abstractions
(functions, for instance) are very useful for library client programmers, because
such examples are close to the actual needs of the programmer. Unfortunately,
it is time consuming and error prone to write examples that cover the use of a
large collection of functions in a program library.

Test cases in test case repositories can be used directly as examples within
interface documentation. Given some function f in the library, which we are
about to document, there should be means to select a number of test cases which
can serve as examples of using f. It is a natural and necessary requirement that
f should be represented in the expression of such test cases. The test case with
an expression such as

(string-of-char-list? "123" ’(#\1 #\2 #\3))

is probably a worthwhile example of the function string-of-char-list? in its
documentation, whereas the test case with the expression

(string-of-char-list? "123" (map as-char ’("1" "2" "3")))

is less likely to add to the documentation of the functions map and as-char. For
each test case tc it is possible (but not necessary) to enumerate the functions
for which tc should act as an example. Without the support of such a selective
mechanism it is our experience that some test cases show up at unexpected
places in the interface documentation.

The quality of examples derived from test case repositories can be expected
to be higher than the quality of examples produced by most other means. The
examples extracted from test case repositories are executed on a regular basis,
as part of regression testing. Therefore we can be confident that the expressions
are lexically and syntactically correct, and that the results displayed are correct
relative to the current implementation of the underlying software.

In order to make use of test cases as examples in interface documentation,
it is necessary to provide an interface between the test case repository and the
interface documentation tool. The interface documentation tool must be able to
read selected test case repositories, it must understand the actual representation
of test cases, and it must be able to select and extract test cases which are
relevant for a given entry in the documentation.

5 The Implemented Tool

The implemented unit testing tool supports interactive unit testing of Scheme
libraries and Scheme programs. More specifically, the tool works with MzSche-
me [Flatt 00] (R5RS) which is part of PLT Scheme and DrScheme [Findler 02].

308 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

The interactive unit testing tool interfaces to SchemeUnit [Welsh 02], which is
a conventional unit testing framework for PLT Scheme. It means that the tool
generates test expressions in the format prescribed by SchemeUnit, such that
the actual test executions can be done by SchemeUnit.

The read-eval-print loop of our tool is Olin Shivers’ and Simon Marshall’s
command interpreter—comint—which is part of GNU Emacs. Our interactive
unit testing tool is implemented in Emacs Lisp, as an extension to comint. As
shown in Figure 1 and Figure 2 the tool manifests itself via an extra ’Unit Test-
ing’ menu of the Emacs command interpreter, and via a number of interactive
Emacs commands and associated key bindings.

The comint command interpreter has been augmented with a number of
command, as discussed in Section 3.2. The test case reports, as generated by
SchemeUnit, have been associated with an Emacs mode. Via this mode, a number
of commands have been implemented on test case ids, see Figure 3. Similarly, the
presentations of test suites have been associated with another Emacs mode that
defines a number of useful commands on individual test cases. These commands,
taken together, bind the facilities of the interactive testing tool together, and
they catalyze a smooth test-related workflow from within Emacs.

The test cases produced by our tool can be referred and applied by LAML
SchemeDoc [Nørmark 04], which is an interface documentation tool we have
created for the Scheme programming language. The screen shot in Figure 4 shows
an excerpt of some SchemeDoc interface documentation produced on the basis of
test cases similar to those discussed in Section 2. In the LAML software package
[Nørmark 09] it is possible to consult examples of real-life API documentation,
such as the “General LAML library”, that contain many examples. Far the
majority of these examples stem from interactive unit testing.

6 Related Work

An early paper about unit testing [Beck 94] is written in the context of Smalltalk.
In the introduction to this paper Kent Beck states that he dislikes user interface-
based testing. (In this context, user interface-based testing is understood as
testing through the textual or graphical user interface of a program). The ob-
servation of user interface-based testing motivated a testing approach based on
a library in the programming language. This is the testing approach now known
as unit testing, and supported by xUnit tools for various languages x. The work
described in this paper makes use of one such unit testing tool, SchemeUnit
[Welsh 02], for the programming language Scheme.

JUnit [JUnit 09] and NUnit [NUnit 09] represent well-known and widely used
unit testing tools for the Java and .Net platforms respectively. In the context of
this paper, JUnit and NUnit are classified as non-interactive unit testing tools.

309Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

The individual test cases supported by JUnit and NUnit are written as parame-
terless test methods in separate classes. The primary contribution of JUnit and
NUnit is to activate these test methods. This is done by single entry point ex-

ecution, as described in Section 1, via an aggregated Main method generated
implicitly by JUnit and NUnit.

RT is an early regression testing tool for Common Lisp, programmed by
Richard C. Waters, and described in a Lisp Pointers paper [Waters 91]. Along
the same lines as RT, Gary King describes a Common Lisp framework for unit
testing called LIFT [King 01]. LIFT is based on a CLOS representation of test
cases and test suites. A number of other unit testing tools exists for Common
Lisp. Among these, CLUnit [Adrian 01] was designed to remedy some identified
weaknesses in RT. Stefil [Stefil 09] is a Common Lisp testing framework, which
can be used interactively from a read-eval-print loop. Stefil provides a number
of macros, such as deftest and defsuite, which act as instrumented function
definitions. Test cases defined in Stefil must to embedded in the test abstractions
defined by these macros. In our work no such test abstractions are necessary.
Instead, special commands supported by the read-eval-print loop are responsible
for the management of the test cases.

The Python library called doctest [Doctest 09] makes it possible to represent
test cases in the documentation string of definitions. The test cases can be copied
and pasted directly from an interactive console session, corresponding to a read-
eval-print loop. The Python doctest facility is able to identify the test cases
within the documentation string, to execute the test cases, and to compare the
actual result with the original result. In the documentation of the Python doctest
facility, the approach is incisively described as “literate testing” or “executable
documentation”. The Python doctest facility stores the test cases inside the
documentation strings, and therefore the documentation-benefit of the approach
is trivially obtained. Following the Python approach, pieces of interactions must
be copied from the interactive console to the documentation string. No such
copying is necessary in our interactive unit testing tool. Our representation of
the test cases is more versatile than the proposed Python approach. In our
approach it is straightforward to use a single test case as an example in the
documentation of several function definitions.

Some work similar to the Python doctest library has also been brought up in
the context of Common Lisp. Juan M. Bello Rivas [Rivas 09] describes a doctest
facility in which test cases, harvested from a read-evel-print loop, is represented
in the documentation string of a function. A function called doctest is able to
carry out regression testing based on this information.

An important theme in the current paper is convenient capturing of test cases.
We have proposed that test cases are captured when new or modified functions
are tried out in a read-eval-print loop. In the paper Contract Driven Development

310 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

= Test Driven Development - Writing Test-Cases [Leitner 07] it is proposed to
capture test cases when a contract is violated. The work in the paper is carried
out in the context of Eiffel and Design by Contract. In the same way as in our
work, it is assumed that a given abstraction (a method) is explicitly tried out.
In a single entry point program this may require an explicitly programmed test
driver. The contribution of the paper—and the tool behind it—is to collect test
cases (including the necessary context) which leads to violation of the contracts
in programs. The collected test cases can be executed again, even without the
programmed test driver. It is hypothesized that the semi-automatically collected
test cases are useful for future regression testing.

In a couple of papers Hoffman and Strooper discuss the use of test cases
for documentation and specification purposes, [Hoffman 00, Hoffman 03]. Test
cases for Java are written in a particular language, similar to (but different from)
JUnit. The approach of the papers is to use such test cases (examples) together
with informal “prose” as API documentation. In the papers the combination
of informal prose descriptions and concisely formulated test cases is seen as an
alternative to formal specifications (such as contracts in terms of preconditions
and postconditions). In contrast to the current paper, the papers by Hoffman
and Strooper do not propose how to integrate the informal prose descriptions
with presentations of the test cases.

In a paper about Example Centric Programming Edwards discusses some
radical ideas that unify programming editing, debugging, exploring, and testing
[Edwards 04]. The ideas are accompanied by a prototype tool which can be seen
as a forerunner of the more recent Subtext system [Edwards 05]. In the paper
it is discussed how to capture unit tests more easily than in traditional unit
testing tools, such as NUnit and JUnit. The paper states directly that “Unit test
can serve as examples”. In the current paper this is taken to mean examples in
API documentation, whereas in Edwards’ work, examples are more akin to stack
traces known from conventional debuggers. The idea in Edwards’ work is to freeze
a given method activation and its result—as they occur in an example pane—as
an assertion. This is similar to our idea of using and registering an expression
and its result—captured during experiments in a read-eval-print loop—as a test
case.

7 Summary and Conclusions

The observation and starting point of this paper is that most Lisp program-
mers—and programmers who use similar languages—experiment with new or
modified pieces of programs. The languages in the Lisp family allow multiple
entry point execution, and they make use of read-eval-print loops for evaluation
of expressions and commands. The idea, which we have elaborated in the pa-
per, is to consolidate these experiments to systematic test cases, and to allow

311Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

repeated execution of the tests when needed. We have described a facility that
organizes test cases in a repository from which conventional unit tests can be
derived automatically. The feeding of test cases into the repository—in terms of
experimental evaluation of expressions—is done in the read-eval-print loop. The
process of collecting test cases does not impose much extra work on the pro-
grammer. A little extra work is, however, needed to consolidate the test cases
in the direction of systematic testing, to organize the test cases, and to prepare
for execution of the test suites (the common setup and the teardown files). We
hypothesize that programmers are willing to do this amount of extra work in
return for the described benefits.

Conventional test suites, as prepared for unit testing tools such as JUnit,
NUnit, CLUnit, and SchemeUnit, do not allow for easy extraction of examples
that can be used by interface documentation tools. The reason is that test cases
are intermingled with the unit testing vocabulary, such as test abstractions and
various assertions. Following the approach described in the current paper, the
expression and the expected result of a functional test case are represented in a
clean manner, which makes it straightforward to aggregate examples.

The interactive unit testing tool has been used for collecting and organizing
test cases during the development of the LAML software package [Nørmark 05].
The use of test cases as examples in the documentation of the LAML libraries
turns out to be a valuable contribution to the everyday comprehension of the
functions in the library.

As can be seen, the idea and the solution described in this paper are fairly
simple. Nevertheless, the implications and benefits from exploiting the ideas may
be substantial. We conclude that

1. Lisp programmers are already doing substantial work in the read-eval-print
loop, which almost automatically can be turned into test cases.

2. With a little extra organization and support, it is possible to preserve and
repeat the execution of the test cases.

3. Providers of interactive development environments (IDEs) that support read-
eval-print loops should consider an implementation of the solution, which is
similar to the approach described in this paper.

The Emacs Lisp program that implements the interactive unit testing tool is
bundled with LAML, which is available as free software from the LAML home
page [Nørmark 09].

Acknowledgements

I want to thank the anonymous reviewers for valuable feedback to an earlier
version of this paper.

312 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

References

[Adrian 01] Frank A. Adrian. CLUnit - A Unit Test Tool for Common Lisp, 2001.
http://www.ancar.org/CLUnit/docs/CLUnit.html.

[Beck 94] Kent Beck. Simple Smalltalk Testing: With Patterns. The Smalltalk
Report, vol. 4, no. 2, 1994.

[Beck 98] Kent Beck & Erich Gamma. JUnit Test Infected: Programmers Love
Writing Tests. Java Report, vol. 3, no. 7, pages 51–56, 1998.

[Beck 04] Kent Beck. Extreme programming explained: Embrace change (2nd
edition). Addison-Wesley Professional, 2004.

[Doctest 09] Phyton Doctest. doctest. Test interactive Python examples, 2009.
http://docs.python.org/library/doctest.html.

[Edwards 04] Jonathan Edwards. Example centric programming. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages
124–124, New York, NY, USA, 2004. ACM.

[Edwards 05] Jonathan Edwards. Subtext: uncovering the simplicity of programming.
In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object oriented programming, systems, languages, and ap-
plications, pages 505–518, New York, NY, USA, 2005. ACM.

[Findler 02] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler & Matthias Felleisen.
DrScheme: A Progamming Environment for Scheme. Journal of Func-
tional Programming, vol. 12, no. 2, pages 159–182, March 2002.

[Flatt 00] Matthew Flatt. PLT MzScheme: Language Manual. http://www.cs.-
rice.edu/CS/PLT/packages/pdf/mzscheme.pdf, August 2000.

[Friendly 95] Lisa Friendly. The Design of Distributed Hyperlinked Programming
Documentation. In Sylvain Frass, Franca Garzotto, Toms Isakowitz,
Jocelyne Nanard & Marc Nanard, editors, Proceedings of the Inter-
national Workshop on Hypermedia Design (IWHD’95), Montpellier,
France, 1995.

[Graham 93] Paul Graham. On lisp. Prentice Hall, 1993.
[Hoffman 00] Daniel Hoffman & Paul Strooper. Prose + Test Cases = Specifications.

In TOOLS ’00: Proceedings of the Technology of Object-Oriented Lan-
guages and Systems (TOOLS 34’00), page 239, Washington, DC, USA,
2000. IEEE Computer Society.

[Hoffman 03] Daniel Hoffman & Paul Strooper. API documentation with executable
examples. The Journal of Systems and Software, vol. 66, no. 2, pages
143–156, 2003.

[JUnit 09] JUnit. http://junit.org/, 2009.
[Kelsey 98] Richard Kelsey, William Clinger & Jonathan Rees. Revised5 Report on

the Algorithmic Language Scheme. Higher-Order and Symbolic Com-
putation, vol. 11, no. 1, pages 7–105, August 1998.

[King 01] Gary King. LIFT - the Lisp framework for testing. Technical report,
University of Massachusetts, 2001.

[Leitner 07] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer & Ar-
naud Fiva. Contract Driven Development = Test Driven Development
- Writing Test-Cases. In Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE
2007), September 2007.

[Nørmark 04] Kurt Nørmark. Scheme Program Documentation Tools. In Olin Shiv-
ers & Oscar Waddell, editors, Proceedings of the Fifth Workshop
on Scheme and Functional Programming, pages 1–11. Department of

313Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

Computer Science, Indiana University, September 2004. Technical Re-
port 600.

[Nørmark 05] Kurt Nørmark. Web Programming in Scheme with LAML. Journal of
Functional Programming, vol. 15, no. 1, pages 53–65, January 2005.

[Nørmark 09] Kurt Nørmark. The LAML home page, 2009. http://www.cs.aau.-
dk/∼normark/laml/.

[NUnit 09] NUnit. http://www.nunit.org, 2009.
[Rivas 09] Juan M. Bello Rivas. (incf cl) utilities, November 2009. http://-

superadditive.com/projects/incf-cl/.
[Stefil 09] Stefil. Stefil - Simple test framework in Lisp, 2009. http://-

common-lisp.net/project/stefil/.
[van Heesch 04] Dimitri van Heesch. Doxygen, 2004. http://www.doxygen.org.
[Waters 91] Richard C. Waters. Supporting the regression testing in Lisp programs.

SIGPLAN Lisp Pointers, vol. IV, no. 2, pages 47–53, 1991.
[Welsh 02] Noel Welsh, Francisco Solsona & Ian Glover. SchemeUnit and

SchemeQL: Two Little Languages. In Third Workshop and Scheme
and Functional Programming, October 2002.

314 Noermark K.: Systematic Unit Testing in a Read-eval-print Loop

