
Investigating a Correlation between Subcellular Localization and
Fold of Proteins

Johannes Aßfalg, Jing Gong, Hans-Peter Kriegel, Alexey Pryakhin, Tiandi Wei,
Arthur Zimek

(Institute for Informatics, Ludwig-Maximilians-Universität München, Germany
www: http://www.dbs.ifi.lmu.de

{assfalg,gongj,kriegel,pryakhin,tiandi,zimek}@dbs.ifi.lmu.de)

Abstract: When considering the prediction of a structural class for a protein as a classification
problem, usually a classifier is based on a feature vector x ∈ R

n, where the features represent
certain attributes of the primary sequence or derived properties (e.g., the predicted secondary
structure) of a given protein. Since the structure of a protein (i.e., its native conformation) is stable
only under specific environmental conditions, it is commonly accepted to assume proteins being
evolutionarily adapted to specific subcellular localizations and according to their physicochem-
ical environment. Our statistical evaluation shows a strong correlation between the subcellular
localization of proteins and their structural class. The correlation is strong enough to allow for
a classification of proteins into their structural class solely based on information regarding the
subcellular localization. We conclude that knowledge regarding the subcellular localization of
proteins can be useful as a feature for the structural classification of proteins.
Key Words: bioinformatics, protein subcellular localization, protein fold prediction
Category: J.3, I.2.6

1 Introduction

It is common opinion that the three-dimensional structure of a protein is already en-
coded in its amino acid sequence [Anfinsen (1973)]. Being denatured, a protein can
regain its enzymatic activity on its own in its normal physiological milieu. These find-
ings have motivated researchers since decades to learn to assign the three-dimensional
structure to a protein given the sequence of amino acids. Many approaches to this prob-
lem are homology-based. For a target protein of unknown structure, a template protein
of known structure governs the assignment of structural properties along the amino acid
sequence. From a machine learning point of view, these methods could be called lazy
learners, since no model is sought to explain the fold but only the similarity to other
objects leads to assigning the same properties. While these approaches are fairly suc-
cessful, deriving a good similarity measure in terms of good sequence alignments only
does not necessarily lead to biologically new insights regarding the folding process.
Since, as Godzik put it, “most proteins fold on their own [...], without checking what
the structure of their homologs is in databases but following physical laws govern-
ing their behavior” [Godzik (2003)], it might be a more revealing approach to eagerly
find a model explaining which properties of a sequence were responsible to fold the
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sequence into a certain structure. For this purpose, the primary sequence is often trans-
formed into a feature vector x ∈ R

n, where xi ∈ R represents the numerical value for
a certain property such as, e.g., the percentage of alanine in the complete sequence of
amino acids.

Considering the fold recognition problem as a classification task is based on the
assumption that the number of (naturally occurring) protein folds is limited (see for
example [Chothia (1992)], [Govindarajan et al. (1999)], or [Wolf et al. (2000)]). Two
forces may have played a role in the limitation of the actual variety of folds: divergent
evolution of protein function (since all folds are derived from a relatively small group of
shared common ancestors) and convergent evolution of protein structure (since certain
folds are physicochemically much more favored and thus may have originated indepen-
dently in many cases) [Govindarajan and Goldstein (1996)]. Thus, the space of protein
structures C is assumed to be finite and discrete, and a classifier should learn a function
R

n → C. Of course, this function, once discovered, is of paramount interest, since it
would be an approximation of the forces of nature guiding the folding process. In the
meantime, however, an appropriate feature space is still to be discovered. This classifi-
cation approach seeking a model to explain the fold may yield findings that are possibly
of interest for the most fundamental approach to the protein-fold problem, the family of
ab initio methods.

In this paper, we are interested in the subcellular localization of a protein (which
is also often predicted based on the amino acid sequence) as an attribute in a feature
space that is related to the fold of a protein. This idea is motivated by the fact that
many proteins are specialized to operate in a certain compartment or region of a cell.
Since each cellular compartment maintained a specific physicochemical environment
throughout evolution, and the native conformation of a protein is only stable in a certain
environment, the localization of a protein might have a considerable impact on its final
three-dimensional structure.

Andrade et al. [Andrade et al. (1998)] have shown the amino acid composition on
the surface of proteins to carry information regarding the subcellular location of the pro-
tein, since the surface of proteins is directly exposed to the environment. Our reasoning
is, vice versa, that the subcellular localization of a protein is a valuable information in
predicting the structure of a protein. For this purpose, we analyze whether there exists a
correlation between the known localization and the known structural class of a protein,
based on a newly compiled, up-to-date data set. If so, a method predicting the structural
class of a protein solely based on its known subcellular localization should perform bet-
ter than a random classifier. Finally, we investigate whether a feature representing the
subcellular localization of a protein is valuable in comparison to other well-established
features and proves useful in combination with a well-known set of features.
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Table 1: Covered subcellular localizations and corresponding keywords in SWISS-
PROT.

ID Subcellular Keywords in SWISS-PROT ID Subcellular Keywords in SWISS-PROT
localization localization

1 Chloroplast Chloroplast 8 Peroxisome Peroxisome, Peroxisomal
2 Cytoplasm Cytoplasm(ic) Microsome, Microsomal
3 ER Endoplasmic reticulum Glyoxysome, Glyoxysomal
4 Golgi apparatus Golgi Glycosome, Glycosomal
5 Lysosome Lysosome, Lysosomal 9 Extracellular Extracellular
6 Mitochondrion Mitochondrion, Mitochondrial Secreted
7 Nucleus Nucleus, Nuclear 10 Vacuole Vacuole, Vacuolar

2 Material and Methods

2.1 Classes of Subcellular Localization and Fold Classes

We restricted our efforts to those subcellular localizations covered by many prediction
methods. Since prediction methods for subcellular localizations have attracted constant
attention in recent years and are probably going to reach reasonable accuracy in the
upcoming years, a connection of localization prediction and structural classification of
proteins may become practicable in the near future.

So far, existing prediction methods for subcellular localization differ widely in cov-
erage of predicted localization as well as in reliability. As a reasonable subset of sub-
cellular localizations, we consider the ten localization classes listed in Table 1. This
selection is based on a broad range of well performing prediction methods using dif-
ferent approaches like amino acid composition (for example [Hua and Sun (2001)],
[Park and Kanehisa (2003)], or [Yu et al. (2004)]), sorting signals [Bannai et al. (2002)],
[Small et al. (2004)], homology search [Lu et al. (2004)], frequent subsequences (see
[Gardy et al. (2005)]), and hybrid methods (i.e., using several of these approaches, see
for example [Nakai and Horton (1999)], [Horton et al. (2006)], [Höglund et al. (2006)],
[Bhasin and Raghava (2004)], or [Garg et al. (2005)]). By these and other methods (see
[Aßfalg et al. (2009)] for a more detailed discussion), the localization classes listed in
Table 1 are mostly covered.

As classification systems for fold classes, we use the hierarchical classification
databases CATH [Orengo et al. (1997)] (release 3.0.0) and SCOP [Murzin et al. (1995)]
(release 1.71).

2.1.1 CATH

The CATH database [Orengo et al. (1997)] is a hierarchical classification of protein
domain structures. The classification is achieved via a semi-automatic procedure. The
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four main levels of classification are protein class (C), architecture (A), topology (T)
and homologous superfamily (H). ‘Class’ is the top level essentially describing the
secondary structure composition of each domain. Four major classes are recognized:
mainly-alpha, mainly-beta, alpha-beta, and few-secondary-structure. In contrast, ‘ar-
chitecture’ summarizes the shape revealed by the orientations of the secondary struc-
ture units but ignores the connectivity between the secondary structures. For example,
barrels and sandwiches are certain architectures. At the topology level, sequential con-
nectivity is considered, such that members of the same architecture might have quite
different topologies. When structures belonging to the same T-level also have suitably
high similarities combined with similar functions, the proteins are assumed to be evolu-
tionarily related and are considered as belonging to the same homologous superfamily.

2.1.2 SCOP

The SCOP database (Structural Classification Of Proteins) [Murzin et al. (1995)] pro-
vides a detailed and comprehensive description of the structural and evolutionary re-
lationships between proteins, but it is quantitatively of smaller coverage than CATH
since SCOP has been constructed manually by visual inspection and comparison of
structures. Like CATH there is also a hierarchy of four main levels of classification:
class, fold, superfamily and family. The top level classification is ‘class’ grouping pro-
teins w.r.t. their secondary structure composition. Proteins are defined as having a com-
mon fold if they have the same major secondary structures in the same arrangement
and with the same topological connections. Different proteins with the same fold often
have peripheral elements of secondary structure and turn regions that differ in size and
conformation. In some cases, these differing peripheral regions may comprise half the
structure. Proteins sharing the same fold category may not have a common evolutionary
origin: the structural similarities could arise just from the physics and chemistry of pro-
teins favoring certain packing arrangements and chain topologies. Superfamilies collect
proteins that have low sequence identities but whose structural and functional features
suggest that a common evolutionary origin is probable. Proteins clustered together into
families are clearly evolutionarily related. Generally, this means that pairwise residue
identities between the proteins are 30% and greater. However, in some cases similar
functions and structures provide some evidence of a possible common descent despite
the absence of high sequence identity.

2.2 Data Sets

Our experiments require a data set unifying localization information as annotated e.g. in
SWISS-PROT [Wu et al. (2006)] and structural classification information as in CATH
and SCOP. We assign localization classes according to SWISS-PROT keywords as
given in Table 1.
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Table 2: Numbers of domains and classes on each level in the different data sets.
Data Set DS 1 DS 2 DS 3 Data Set DS 1 DS 2 DS 3
CATH Domains 37,841 34,178 1,791 SCOP Domains 17,978 13,081 2,662
Class 4 4 4 Class 11 10 6
Architecture 34 27 10 Fold 580 125 28
Topology 545 213 24 Superfamily 849 158 29
Hom. Superfamily 919 309 34 Family 1,274 190 30

We distinguish localization annotations that are experimentally confirmed from those
annotated as “by similarity”, “potential”, or “probable” in SWISS-PROT. The latter can
be assumed to be less reliable. However, in the first steps, we consider the total data
set. For evaluation of a feature-vector-based classification, we return to this distinction.
The total amount of extracted proteins with localization annotation was 125,160. After
filtering for entries with a unique localization annotation, our data set contains 80,668
entries. Both, SWISS-PROT entries, as well as SCOP or CATH entries, may correspond
to entries in the Protein Data Bank (PDB) [Berman et al. (2000)]. Among the 80,668
entries in our data set, the total number of corresponding PDB entries is 12,332. The
number of the distinct PDB entries is 11,013. One PDB entry may correspond to sev-
eral entries in SCOP or CATH, since SCOP and CATH register domains rather than
complete proteins. After all, the join between SWISS-PROT and domains in CATH or
SCOP results in a data set for CATH containing 37,841 entries and a data set for SCOP
containing 17,978 entries (see entries for data set ‘DS 1’ in Table 2).

For assessing the usability of the subcellular localization as a single feature allowing
for fold classification, the data sets are reduced as follows: To ensure generalizability,
each class should be represented by some examples in each fold. Note that, for the same
reason, in a classification scenario it is required to have several similar examples to
allow for learning a generalized concept. Thus, reducing the data set based on sequence
similarity levels, as opposed to alignment-based methods, is not appropriate here. We
therefore pruned all classes with less than 20 entries from the CATH and the SCOP
data set. This results in a data set for CATH containing 34,178 entries, and a data set for
SCOP of 13,081 entries. The number of classes in different levels is shown in the ‘DS
2’ column of Table 2 for CATH and SCOP.

To have classifiers trained on reliable data, we compiled a third data set. Entries with
localization annotation not experimentally confirmed are pruned. Again, CATH classes
with less than 20 members are canceled. This results in a data set for CATH containing
1,791 entries. For SCOP, each remaining class contains at least 40 entries. The data set
finally consists of 2,662 entries. Further details for CATH as well as for SCOP can be
found in the ‘DS 3’ column of Table 2.
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2.3 Correlation Analysis

In a first step to evaluate a possible relationship between the subcellular localization
and the structure of a protein, we consider the conditional (or posterior) probability
P (Ci|Lj) for a protein to belong to structural class Ci, given its subcellular localization
Lj . For a set of structural classes

C = {C1, . . . , Cn}

and the set of ten localization classes

L = {L1, . . . , L10},

the posterior probability of a protein of a given localization for a certain structural class
is defined as

P (Ci|Lj) =
|Ci ∩ Lj |

|Lj | .

Thus, we have to count the number of protein domains for each location and in each
location for each structural class separately. This correlation analysis is performed on
the full data set ‘DS 1’.

One may suspect the correlation analysis to be biased by predominant structural
classes in the PDB. However, if there are predominant structural classes but the poste-
rior probabilities are not biased to these classes, the results appear even stronger. Thus,
we allow for predominant structural classes in this data set. Furthermore, this data set
has already been demonstrated to be challenging for localization prediction methods
(see [Aßfalg et al. (2008)]).

2.4 Posterior-Probability-Based Classification

Based on the posterior probability, we can evaluate a simple classifier predicting the
structural class of a protein of known localization class. Let C and L be defined as
above. The structural class of a protein located in L j is then given by

arg max
Ci∈C

{P (Ci|Lj)} .

This means, the localization yields ways to tell the fold of a protein. Although this
assumption is by far too simple, this is nevertheless a working classifier with surprising
results.

Since a reasonable generalization is required in a classification task, this classifier
is evaluated by 10-fold cross-validation on data set ‘DS 2’.
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Table 3: Amino acid attributes and the mapping of amino acids onto sets of three groups
[Dubchak et al. (1999)].

Property Group 1 Group 2 Group 3
Hydrophobicity Polar: Neutral: Hydrophobic:

{R,K,E,D,Q,N} {G,A,S,T,P,H,Y} {C,V,L,I,M,F,W}
Normalized 0–2.78: 2.95–4.0: 4.43–8.08:
van der Waals {G,A,S,C,T,P,D} {N,V,E,Q,I,L} {M,H,K,F,R,Y,W}
volume
Polarity 4.9–6.2: 8.0–9.2: 10.4–13.0:

{L,I,F,W,C,M,V,Y} {P,A,T,G,S} {H,Q,R,K,N,E,D}
Polarizability 0–0.108: 0.128–0.186: 0.219–0.409:

{G,A,S,D,T} {C,P,N,V,E,Q,I,L} {K,M,H,F,R,Y,W}

2.5 Subcellular Localization as a Feature in Structural Classification

2.5.1 Established feature space

The by far best known set of features for protein fold recognition was proposed by
Dubchak et al. [Dubchak et al. (1995)] and used by many other machine learning ap-
proaches to the problem (e.g. [Ding and Dubchak (2001)], [Shen and Chou (2006)]).
This feature set describes the properties of a sequence with three different descrip-
tors called composition, distribution, and transition, based on different partitionings of
amino acids into different sets of groups. Therefore, the set of amino acids is mapped
onto a set of groups. The groups used by [Ding and Dubchak (2001)] were hydropho-
bicity, normalized van der Waals volume, polarity, and polarizability. The mapping for
these sets of groups is defined by Table 3. The set of amino acids is also a set of groups
(of size 20) as well as the predicted states of secondary structure (helix, sheet, and coil).

The descriptors can be applied to each of the sets of groups. The composition de-
scribes the percentage of amino acids of the sequence per group. This results in a num-
ber between 0 and 1 for each group, where the sum is 1. The distribution consists of
five numbers for each group: the fractions of the entire sequence where the first residue
of the corresponding group occurred, and where 25%, 50%, 75%, and 100% of those
are contained. For each pair of groups, transition counts the number of transitions from
one group to the other or vice versa within a given sequence. For the sets of groups
of three members like secondary structural states or the groups described above, the
composition descriptor and the transition descriptor each provide three numbers, the
distribution descriptor five times three. Thus, for each of these groups a feature vector
of dimensionality 21 is provided using the descriptors. For the single amino acids, only
the composition is computed which in combination with the length of a sequence also
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results in a feature vector of dimensionality 21. Distribution and transition for the single
amino acids would result in very high dimensional feature spaces. The combination of
the feature vectors results in a feature space of 6 × 21 = 126 dimensions.

2.5.2 Feature evaluation

Since we propose to utilize the localization information as a new feature, the next step
is to show that the new feature is important for classification. As a quality baseline, we
compare the localization feature with the 126 features of Dubchak et al., using three
feature evaluation techniques.

First, we chose an approach which utilizes the Support Vector Machine method
(SVM) [Guyon et al. (2002)]. Features are ranked by the square of the weight assigned
by the SVM. Feature evaluation for multiclass problems is handled by ranking attributes
for each class separately using a one-versus-all method and then using the top of each
pile to give a final ranking. [Guyon et al. (2002)] demonstrated experimentally on can-
cer data that the features selected by this method yield better classification performance.
This method eliminates feature redundancy automatically and yields better and more
compact feature subsets.

Second, we chose the RELIEF-method discussed in [Kira and Rendell (1992)] and
[Kononenko (1994)]. The key idea of this approach is to estimate features based on their
values among objects that are near to each other.

Finally, we employ the gain ratio method [Quinlan (1986)] which evaluates the sig-
nificance of the feature f by measuring the gain ratio with respect to the class label
c. The gain ratio is based on the notion of the entropy impurity value H and can be
calculated as follows:

GainRatio(c, f) =
H(c) − H(c|f)

H(f)
.

We use the WEKA [Witten and Frank (2005)] implementation of the feature evaluation
methods mentioned above. For all methods, we perform a 10-fold cross-validation.

2.5.3 Working in Concert

Finally, we evaluate the localization class as a feature in addition to the feature space as
described above [Dubchak et al. (1995)]. As we are not interested in tuning a specific
classifier, we use three well-known classification approaches, namely the k-nearest-
neighbor classifier (k = 10), decision trees (J48 [Quinlan (1993)]) and support vector
machines (SMO [Platt (1998)]) using a linear kernel, as implemented in WEKA. Since
the addition of a new feature may per se facilitate a better classification accuracy, we
compare three feature spaces for each structural class level of SCOP and CATH: first,
the feature space ‘D’ as proposed by Dubchak et al. [Dubchak et al. (1995)] (126 di-
mensions), second, the feature space ‘D’ with an additional random feature: ‘D+R’

611Assfalg J., Gong J., Kriegel H.-P., Pryakhin A., Wei T., Zimek A.: Investigating ...



(127 dimensions), and third, the feature space ‘D’ with the localization class as an ad-
ditional feature: ‘D+L’ (127 dimensions). This way, we can assess the contribution of
the localization-based feature to a general feature-based classification approach. Again,
all classifiers are evaluated by 10-fold cross-validation.

While we assumed the location alone to be of value for the prediction of the struc-
tural class of a protein in an earlier step (cf. Section 2.4), the location of a protein is now
(perhaps more realistically) assumed to guide to the correct fold along with information
that is directly based on the sequence of amino acids. For both, feature evaluation (cf.
Section 2.5.2) and feature-vector-based classification, we rely only on experimentally
confirmed localization annotations. Thus, these experiments are based on data set ‘DS
3’.

3 Results and Discussion

3.1 Strong Correlation between Localization and the Structural Class of
Proteins

For both classification systems, CATH as well as SCOP, we found a distinct correlation
between most localization classes and the structural class of a protein. Generally, the
correlation is stronger on higher levels in the hierarchies of CATH and SCOP.

3.1.1 CATH

The results for the class level of CATH are depicted in Figure 1(a). For localization 1,
the posterior probability of the CATH class “Mixed Alpha-Beta” is well above 80%.
For other localizations, the dominant class is not always that eminent. However, for
several localizations, the posterior probability of the dominant class is around 50% or
above. As could be expected, on deeper CATH levels, the correlations are not equally
pronounced, but nevertheless strong in many cases — see the supplementary material at
http://www.dbs.ifi.lmu.de/research/locfold/dataset/download.html.

Exemplarily, the posterior probabilities for structural classes on the Architecture
level of CATH are given in Table 4. The winner of the structural classes C i in terms
of posterior probability for each localization L j (the index j reflecting the localization
ID as defined in Table 1) is underlined in the table. The last column shows the prior
probability for a given architecture, i.e., the percentage of entries of a certain class w.r.t.
all entries. Here, the three highest entries are underlined.

Inspecting the values presented in this table is interesting, since one may suspect
that the posterior probability

P (Ci|Lj) =
|Ci ∩ Lj|

|Lj |
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(a) Results for the three most likely CATH classes (classification level ‘Class’).
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(b) Results for the three most likely SCOP classes (classification level ‘Class’).
Only 6 of the 11 SCOP classes can be found among the three most likely classes
for each localization.

Figure 1: Posterior probabilities for different localizations (localization identifiers as in
Table 1).

would reflect the prior probability for the same class C i, given by

|Ci|
∑34

j=1 |Cj |
.

Hence, one may assume prima facie a dominant class Ci to dominate in posterior prob-
ability, too. However, the comparison clearly shows that this is not the case. The most
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Table 5: Comparison between a random classifier and a Bayes classifier using localiza-
tion information for different CATH and SCOP classification levels.

CATH level Class Architecture Topology Hom. Superfamily
Classifier Bayes Random Bayes Random Bayes Random Bayes Random
Recall 0.602 0.252 0.425 0.049 0.729 0.004 0.786 0.007
Precision 0.576 0.252 0.376 0.039 0.277 0.004 0.246 0.007
Total Accuracy 0.580 0.251 0.306 0.039 0.177 0.004 0.128 0.004
SCOP level Class Fold Superfamily Family
Classifier Bayes Random Bayes Random Bayes Random Bayes Random
Recall 0.515 0.247 0.787 0.008 0.749 0.006 0.826 0.006
Precision 0.531 0.247 0.397 0.008 0.330 0.007 0.340 0.006
Total Accuracy 0.464 0.243 0.202 0.008 0.120 0.006 0.118 0.005

dominant structural CATH architectural class is 1.10 (Orthogonal Bundle) comprising
16% of all proteins. The second and third largest architectural classes are 3.30 (2-Layer
Sandwich) and 3.40 (3-Layer(aba) Sandwich). The remaining architectures are far less
dominant. However, even the most predominant architectures do not conspicuously bias
the posterior probability.

3.1.2 SCOP

The results for the SCOP class level are depicted in Figure 1(b). Similarly as for CATH,
for most localizations one of the structural classes of SCOP is dominant. The most
prominent example is localization 3, where the dominant class “Alpha and Beta (a/b)”
has almost 65% posterior probability. Again, on deeper SCOP levels the correlations are
less pronounced, but still strong in some localizations. Overall, the correlation between
subcellular localization and structural classes seems weaker in the SCOP classification
than in the CATH classification. Nevertheless, we again find the correlation not being
dominated by the prior probability.

Additional tables for classifications on all hierarchical class-levels of both hierar-
chies, CATH and SCOP, are available online (see
http://www.dbs.ifi.lmu.de/research/locfold/dataset/cath_sta.txt

or
http://www.dbs.ifi.lmu.de/research/locfold/dataset/scop_sta.txt,
respectively). We observe the same tendency in all these remaining hierarchical class
levels in SCOP and CATH there.

3.2 Well Performing Classifier Based on Posterior Probability Given the
Subcellular Localization

The structural classification based on the posterior probability performs surprisingly
well, considering the relatively simple assumption it is based on. We would not expect
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Figure 2: Comparison between a random classifier and a Bayes classifier using local-
ization information. The results are averaged over the 4 CATH and SCOP classification
levels.

the localization of a protein to completely determine its structural class. Otherwise, in a
given cellular compartment, only proteins of a specific structure would occur. Clearly,
this is not the case for most localizations. Although the absolute values for recall, pre-
cision, and accuracy on CATH structural classification based on the localization of a
protein may seem not too impressive, the comparison to the expected value (given as
random classification) shows a valuable contribution of the localization information to
classification behavior. In Figure 2, the results for posterior probability classification
and random classification are depicted averaged over all CATH levels. In Table 5, the
values are given for each CATH level separately. The classification on SCOP structural
classes shows a behavior similar to the classification according to CATH. In average
over all SCOP levels, recall and precision are marginally weaker than for CATH, while
the accuracy is better. In any case, the behavior is obviously superior to a random clas-
sification (see Figure 2). Table 5 presents recall, precision, and accuracy values for each
SCOP level separately.

Classifiers for both classification systems, CATH and SCOP, are available online
(see http://www.dbs.ifi.lmu.de/research/locfold/).

3.3 Subcellular Localization as a Feature Improves a Feature Space for
Structural Classification

Finally, we report the experimental results to evaluate the subcellular localization as a
feature in comparison to the established feature space as described above.
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Table 6: Ranking of the localization feature by different feature evaluation methods
(best ranking is 1, worst ranking is 127).

CATH level SCOP level
Method Class Arch. Topol. Hom. Class Fold Superfam. Family
RELIEF 1 1 1 1 4 1 1 1
GainRatio 12 3 1 1 8 1 1 1
SVM-Rank 31 2 9 2 41 39 48 2

3.3.1 Competitive evaluation

RELIEF and GainRatio assign a very high rank on all levels of CATH and SCOP to
the localization feature compared to the 126 established features (Table 6). At most
levels, RELIEF and GainRatio both assign the top rank 1 to the localization feature.
This means, if both methods were used to select just one feature out of all 127 features,
the localization feature would have been chosen in all these cases before any other
feature out of the already well-established feature space. The SVM-Rank, too, yields a
position in the upper third of all features in all cases. This shows that a feature based on
the subcellular localization of a protein is valuable even compared to a well-established
feature space.

3.3.2 Performance in a combined feature space

Since the established feature space ‘D’ already allows for a good classification per-
formance of well above 90% for our data sets, using the localization as an additional
feature is not of great impact anymore. The results are reported in Table 7. However, we
observe rather a slight increase in recall, precision, and accuracy than a deterioration.
Generally, while the results seem rather inconclusive in the SCOP data set, in the CATH
data set the positive impact of the localization feature is more conspicuous. Note that
a difference of 0.001 in accuracy corresponds to approximately 1.8 or 2.7 differently
classified proteins for CATH and SCOP, respectively.

On the class level, we would not expect any impact of a new feature, since the
classes on class level, both in CATH and SCOP, represent the secondary structure com-
position only. Secondary structure information is equally included in all three feature
sets. The localization feature improves the classification behavior more distinctly on
deeper levels. Furthermore, the observed effect is more striking for the k-NN-classifier
than for the decision tree and, in turn, than for the SVM classifier. On the one hand,
SVM classifiers reach higher values for recall, precision, and accuracy anyway. So it is
harder to increase values that already nearly reach 100%. But, on the other hand, the
observation regarding the positive impact on the performance of the classifiers corre-
sponds to the observations stated above (Section 3.3.1) for the feature evaluation meth-
ods. The RELIEF feature evaluation is related to the k-NN-approach, the GainRatio
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Table 7: Comparison of classification results for different feature vectors.

Features D D+R D+L D D+R D+L D D+R D+L D D+R D+L
CATH level Class Architecture Topology Hom. Superfamily

k
-N

N Recall 0.922 0.923 0.933 0.914 0.912 0.919 0.876 0.871 0.887 0.855 0.854 0.868
Precision 0.981 0.983 0.982 0.926 0.923 0.930 0.920 0.918 0.930 0.876 0.878 0.892
Accuracy 0.968 0.970 0.975 0.916 0.913 0.922 0.906 0.903 0.913 0.891 0.889 0.901

J4
8 Recall 0.957 0.957 0.957 0.933 0.929 0.945 0.913 0.911 0.929 0.906 0.906 0.925

Precision 0.939 0.939 0.939 0.933 0.930 0.946 0.916 0.915 0.932 0.907 0.907 0.929
Accuracy 0.976 0.976 0.976 0.927 0.928 0.943 0.939 0.938 0.944 0.931 0.931 0.943

SV
M Recall 0.956 0.956 0.956 0.946 0.946 0.954 0.958 0.958 0.959 0.947 0.946 0.954

Precision 0.989 0.989 0.988 0.962 0.962 0.968 0.972 0.971 0.975 0.959 0.956 0.964
Accuracy 0.984 0.984 0.984 0.955 0.955 0.962 0.967 0.966 0.970 0.962 0.960 0.967
SCOP level Class Fold Superfamily Family

k
-N

N Recall 0.968 0.967 0.964 0.948 0.949 0.950 0.948 0.944 0.951 0.946 0.948 0.951
Precision 0.972 0.977 0.973 0.960 0.9621 0.961 0.958 0.956 0.957 0.953 0.955 0.957
Accuracy 0.981 0.980 0.982 0.965 0.967 0.968 0.965 0.963 0.968 0.963 0.965 0.967

J4
8 Recall 0.966 0.966 0.966 0.959 0.959 0.958 0.956 0.956 0.960 0.957 0.955 0.958

Precision 0.970 0.970 0.970 0.961 0.961 0.961 0.955 0.955 0.961 0.960 0.959 0.964
Accuracy 0.984 0.984 0.984 0.968 0.968 0.968 0.965 0.965 0.969 0.968 0.967 0.968

SV
M Recall 0.982 0.985 0.982 0.988 0.989 0.987 0.989 0.989 0.986 0.990 0.990 0.987

Precision 0.993 0.990 0.990 0.991 0.991 0.990 0.988 0.988 0.987 0.990 0.989 0.988
Accuracy 0.992 0.992 0.991 0.991 0.992 0.991 0.991 0.992 0.991 0.993 0.993 0.991

Table 8: CATH: Depth of decision trees and usage of the localization feature.

CATH depth depth usage
level of tree of localization of localization

feature feature
Class 10 – 0%
Architecture 13 3–12 8%
Topology 16 3–6 8.5%
Homol. Superfamily 12 3–7 6.2%

feature evaluation is related to the decision tree (and is, in fact, the method used in J48
to select a feature for a certain decision node), and the SVM-Rank is, obviously, related
to SVM classification. Inspection of the constructed decision trees allows to conclude
that the random feature contributed nothing to the classification, i.e., the random fea-
ture appears scarcely ever in a decision tree. In contrast, the localization feature appears
almost always very early in the decision path (again corresponding to the high rank in
GainRatio). To illustrate this observation, note the summary of decision trees for the
CATH classification in Table 8. The value “usage of loc.” is the frequency of the usage
of the localization feature as split-attribute in all decision nodes in the corresponding
tree.
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4 Conclusion

Our line of reasoning was guided by the observation that many proteins are specialized
to a certain compartment of a cell. Thus, a first, rather naive hypothesis to subsume our
results may be stated as follows:

Assumption 1
The subcellular localization of a protein is sufficient to conclude the structural class of
a protein.

This assumption can explain the observed correlation between both properties of
a protein (Section 3.1). If this hypothesis were true, it could serve as a foundation
for a classifier predicting the structural class solely based on the posterior probabil-
ity given the subcellular localization of a protein (Section 3.2). This hypothesis may be
true in some cases. For example, for the localization “nucleus”, the most probable fold
in SCOP is the “Histone-fold”. The most likely family is “Nucleosome core histones”.
This makes perfect sense, since histones are typical proteins in the nucleus. However,
the naive hypothesis is unlikely to hold in all cases, since this would mean that in a
given cellular compartment only specific structural classes of proteins would occur. In
fact, the absolute values of posterior probabilities suggest the opposite, since a proba-
bility of, e.g., 30% for a specific structural class (based on statistical evaluation) means
that about 70% of all proteins in the very same localization exhibit a different structure.

These observations lead to a second, more refined hypothesis, according to our rea-
soning outlined in the introduction:

Assumption 2
In addition to the amino acid sequence of a protein, its subcellular localization consid-
erably contributes to its finally adopted fold.

As the growing prosperity of localization prediction methods based on the amino
acid composition or signal peptides suggests, the localization of a protein is itself coded
in the amino acid sequence in many cases. In other cases, it may be encoded in the
mRNA sequence, but it is then not present in the translated sequence anymore. How-
ever, the assumption is, that the localization of a protein may be an information of in-
terest in assigning a structural class to an amino acid sequence. The refined hypothesis
is backed by our results in Section 3.3.1 and biologically makes sense. All evaluation
methods rank the localization feature in the upper third in a set of well-established,
sequence-based features. Two of three methods even assign the first rank for several
levels of structural classification. The next logical step is to use the localization feature
indeed as one dimension among others in a feature space for classification. Here, our
results remain somewhat inconclusive. While on the CATH data set, we note in many
cases an improvement for classification performance, the results on the SCOP data set
are not equally validating our hypothesis. However, the strong results of the statistical
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evaluation and the high ranking of the feature based on localization information may
trigger further studies. Biologically, these findings make perfect sense since most pro-
teins can be expected to be well adapted to the physicochemical properties of a specific
localization.
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