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Abstract: Recent work on social networks has tackled the measurement and optimization of 
these networks’ robustness and resilience to both failures and attacks. Different metrics have 
been used to quantitatively measure the robustness of a social network. In this work, we design 
and apply a Genetic Algorithm that maximizes the cyclic entropy of a social network model, 
hence optimizing its robustness to failures. Our social network model is a scale-free network 
created using Barabási and Albert's generative model, since it has been demonstrated recently 
that many large complex networks display a scale-free structure. We compare the cycles 
distribution of the optimally robust network generated by our algorithm to that belonging to a 
fully connected network. Moreover, we optimize the robustness of a scale-free network based 
on the links-degree entropy, and compare the outcomes to that which is based on cycles-
entropy. We show that both cyclic and degree entropy optimization are equivalent and provide 
the same final optimal distribution. Hence, cyclic entropy optimization is justified in the search 
for the optimal network distribution. 
 
Keywords: Social Networks, Entropy, Evolutionary Algorithm, Genetic Algorithm 
Categories: L.6.0, L.6.1, L.6.2, K.4.2, J.4, G.1.6 

1 Introduction  

The current growth of information and communication technology has played an 
important role in changing the way people interact with each other [Shtykh, 08]. New 
forms of social interactions among people have emerged [Izumi, 09], including e-mail 
messages, online messages, bulletin boards and more recently, friendship networks 
(e.g. Facebook, hi5, myspace, etc). Such networks could be described as “Social 
Networks”. Social networks consist mainly of groups of inter-connected people, 
where nodes represent individuals and edges represent the relationships between 
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them. Social Networks analysis is mainly focused on studying the patterns of 
communication and exchange of information between people. These patterns are 
believed to have great influence not only on the individuals who adopt them, but also 
on the societies and organizations that enclose them. The spread of diseases, news, 
rumors, even beliefs and convictions, has proven to become strongly dependent on the 
inherent structure of the social network. Moreover, the increasing number of people 
that adopt new technologies and interact via modern communication platforms has 
paved the way for Social Networks analysis. The availability of databases that store a 
variety of data about these networks, including the underlying topology, has 
facilitated the modeling and analysis of social networks to a great extent. Researchers 
have found great interest in utilizing this data to form a deeper understanding of how 
human-ties are created, and to compare them with online ties – also referred to as 
“tech-ties” [Green et al. 2007]. Consequently, applications on Social Networks were 
found in several domains including the study of epidemiology, sociology, biology, 
psychology and even politics. 

An essential characteristic of any network is its resilience to failures or attacks, or 
what is known as the robustness of a network. The definition of a robust network is 
rather debatable. One interpretation of a robust network is that which assumes that 
social links connecting people together can experience dynamic changes, as is the 
case with many friendship networks such as Facebook, Hi5, etc. Individuals can 
easily delete a friend or add a new one, with and without constraints. Other networks, 
however, have rigid links that are not allowed to experience changes with time such in 
strong family network. Entropy of a network is proven to be a quantitative measure of 
its robustness. Therefore, the maximization of a network’s entropy is equivalent to the 
optimization of its robustness.  

Entropy is a very important characteristic that has been used to determine the 
degree of robustness in social networks [Mahdi et al. 2008] [Safar et al. 2008] 
[Sorkhoh et al. 2008] [Wang et al. 2005]. Entropy of a network is related to the 
probability of finding the network in a given state. For a system of moving molecules, 
the state is obviously the positions and the momentum of each molecule at a given 
instant. For a system of magnets, the state is defined through the magnets directed 
north or south. The entropy of a specific network shape was inverstigated before in 
[Simovici 2007], where the entropy of a Lattice network was studied. While this 
Lattice was a theoritcal one, our work studies the entropy of actual social networks 
with different network shapes.   

In social networks, there are several choices that define the state of the network; 
one is the number of social links associated with a social actor, known as degree. This 
definition is commonly used by almost all researchers. In [Boella et al. 2009] they 
introduced an approach to iteratively design small social networks with methods 
analyzing the cooperation in the system using the relations between its nodes (based 
on degree distributions). However, we focused more on large networks with 
investigating their cycles and not degree distribution. Characterization of social 
network through the degree leads to different non-universal forms of distribution. For 
instance, random network has a Poisson distribution of the degree. Small-World 
network has generalized binomial distribution. Scale-Free network has a power law 
distribution form. There is no universality class reported.  
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In this work, we maximize the entropy of a scale-free network using an 
evolutionary algorithm, hence finding the topology of the optimal scale-free network 
that is robust to random failures. We calculated the network's entropy throughout our 
evolutionary approach as a function of cycles (cyclic-entropy). Hence, we find the 
optimal probability distribution function of the number of cycles that exist in the 
network and consequently the most probable cycle size. The originality of this work 
resides in the application of evolutionary algorithms to optimize networks' cyclic 
entropy. The scale-free network is created using Barabási and Albert's generative 
model.  

2  Related Work 

The study in [Albert et al. 2000] describe the effect of a network’s heterogeneity on 
its degree of tolerance against either random node failures or intentional attacks. The 
three models of social networks are analyzed and compared: Scale-free (SF), Random 
Networks (RN) and Small-World (SW). Scale-free networks, which include social 
networks, were found to display a high degree of robustness against random failures 
but great vulnerability against targeted attacks. The study and analysis of resilience in 
complex networks was further investigated by many researchers, who mostly used 
percolation theory to study the resilience of different complex network topologies. 

Methods based on Percolation Theory focus on analyzing the threshold value pc, 
which represents the number of nodes that must be removed from a network before it 
disconnects into smaller, separate networks. Conversely, [Wang et al. 2005] studied 
the robustness of scale-free networks to random failures using entropy of the degree 
distribution in the network, hence the level of its heterogeneity. An optimal design of 
a robust network was achieved through the maximization of its entropy, following a 
nonlinear mixed integer programming approach.  

The authors in [Mahdi et al. 2008] propose a universal distribution function form 
based the degree of loops or cycles existing in the network instead of the degree of 
links in the network. The network configuration state was thus defined as the degree 
of cycles within the network rather than the common definition of the network state as 
the degree of links associated with the actors in the social network. This new 
distribution form was found applicable to all types of social networks (scale-free, 
small world, and random networks). The same definition of the system state was used 
in [Safar et al. 2008] on a fully connected social network for the purpose of finding 
the maximum entropy value, hence identifying the equilibrium state of the social 
network, the state of maximum entropy. In other words, finding the point where the 
system is most stable. The maximum value of the cyclic entropy was found to be 1.42 
in the fully connected network when the number of vertices in the network was 7. The 
classification of social networks was achieved by calculating different social network 
parameters (average vertex degree, clustering coefficient and average path) for a 
virtual friendship network [Bhatnagar, 09] [Luo, 09] [Sorkhoh et al. 2008] [Nikulin, 
08]. The results implied that the general model network considered was closest to 
being a small world network rather than a scale-free network, as what other studies 
predicted. Also, the calculation of the number of triads (smallest cycle size in the 
network) was done to both directed and undirected networks, with a varying number 
of nodes (1000 to 15000). The increase in the number of triads as the nodes increased 
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in an undirected network was found to be one magnitude of order higher than that of a 
directed network. 

3 Cyclic Entropy of Networks 

Loops were one of the major concerns in social network field. In [Scott 2000], they 
mentioned that the loops (cycles) can be considered as the major aspect that can 
separate the graph to sub-graphs or components. A cyclic component is a group of 
intersecting cycles. They intersect with each other by lines or points. Other researches 
proved that there is a strong relation between the structural balance of a social 
network and the loops in the network. Balancing in social network is the collection of 
rules [Ashrafi, 04] [Ashrafi, 07] [Taniar, 08] [Tjioe, 05] that defines the normal 
relations between the clients. In [Batagelj 2005] and [Wasserman and Faust 1994] 
they modeled some social networks as a signed directed graphs (graphs with a sign 
associated with each arc) and they claimed that a network is balanced if it contains 
only semi-cycles (a cycle that contained arcs in different directions) even number of 
negative arcs. Also they found that the cycle or semi-cycle is cluster able if it does not 
contain exactly one negative link [Kwok, 02]. Some networks must be acyclic. That 
is, it does not contain any cycles. Such a network is called a hierarchy. So, some 
researches were interested in detecting the invalid relation by counting the cycles in 
the graph as in [Batagelj 2005]. This process, gives each level in the hierarchy a 
number, a ranking process. 

Based on the conclusion made by the work in [Safar et al. 2008], it is evident that 
degree-based classification parameters are questionable and should be used with 
caution. The authors in [Albert and Barabasi 2002] as well as others, tabulated social 
networks based on node’s degrees calculation due to their simplicity, direct 
connection to societal behavior and ease of calculation in addition to the distinguished 
distribution functional form that helps recognize the type of social networks. 
Although the later is seen as an advantage in classification, we believe it is a 
disadvantage. There is a built-in commonality of all social networks that degree-based 
parameters and classification ignore. This property is the connectedness of the 
network and the return of the information to the source, as represented by a cycle. 

 The cycle-based approach although computationally intensive provided us with 
useful information about social behavior and how well the network is connected. A 
social network can store information in form of periodic orbits (cycles) existing in the 
network. A node in the network belongs to many cycles of different size; such a node 
is recognized as a knowledgeable node that has access to all information stored in all 
the intersected cycles. If we compared it with node’s degree, all we can conclude is 
that the node has relations and not necessary access to information transferred within 
the links.  

The authors hypothesize that understanding the cycles patterns and distribution in 
the network will lead to characteristic finding on the nature of social network.  Social 
networks in most works are treated like any complex network with minimal 
sociological features modeled. The social actor is a simple node and the relationships 
are simple links connecting the nodes with specific and non-specific directions. 
Nothing said on the information accessible to the nodes as they are irrelevant to the 
network topology. If links show basic relationships only, cycles represent both the 
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relationships and information storage within the network. In other words, the more 
cycles in the network implies intrinsic property of information storage within the 
network. Hence, the cycle distribution will suggest the true capacity of this social 
network to store information. Furthermore, the calculation of statistical entropy 
associated with the cycle distribution becomes necessary to quantify the capacity of 
information storage and the maximum entropy represent the state of network useful 
information equilibrium [Safar et al. 2008]. 

Cyclic entropy was first applied in [Mahdi et al. 2009] - a study related to the 
dynamic change of social network during chatting [Pirrone, 08]. Interestingly, the 
study showed discrepancy of the values of cyclic entropy greatly related to the social 
behavior of the social actors when Kuwaitis and Saudis chatting rooms are compared. 
This conclusion is no way can be obtained looking at the nodes degrees distribution 
where the degree entropy of both social compared social networks is the same. 

 In previous work [Sorkhoh et al. 2008], extended here, we found the fully 
connected network will have maximum cyclic entropy when the size of the network is 
seven. This interesting finding, clearly suggests the economy of social network. A 
fully connected network of seven nodes should be sufficient to act as an information 
storage social network better than a network of bigger size connected as well. Such 
result motivated the authors to further explore and investigate cycle-based 
calculations. 

The advantages of Cycles-based social networks versus degree-based calculation 
can be summarized in the following points: 

 
• Information flow and storage is included as a major component 
• Cyclic entropy distinguishes different social networks behavior 
• Universal mathematical functional form of distribution 
 
The biggest disadvantage of the cycle approach is cycles’ computations, however, 

the existence of a universal distribution representing social networks may be used to 
facilitate courting the cycles in the network. 

From statistical mechanics, the entropy can be calculated from a given probability 
distribution P(k) of the system in state k: 

 

    (1) 
 

where P(k) is the probability of finding a cycle of length k in the network. Based on 
the definition of entropy in Eq 1, we need to generate an initial distribution to start the 
optimization and let the evolutionary algorithm search for the optimal distribution that 
maximizes the total entropy of the network.  

4 Cyclic Entropy Optimization 

Optimization algorithms are algorithms designed to find an optimal value of a 
variable x for a given function f(x), such that f(x) is either maximized or minimized, 
under a possible set of constraints. They are applied in solving optimization problems, 
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which are mainly defined as problems of finding an optimal (best) solution through 
searching within the set of all feasible solutions – also known as the solution space. 
Optimization problems are categorized as NP-hard (nondeterministic polynomial-time 
hard), where an exact solution for the problem is difficult to find. Alternatively, 
heuristics are used to find a good solution that is reasonably close to the optimal 
solution of the problem, within a reasonable amount of time.  

Genetic Algorithms (GAs), one type of Optimization Algorithms, are adaptive 
heuristic search algorithms, which are based on mimicking the powerful process of 
natural evolution. GAs are used in solving optimization problems to produce an 
optimal or near-optimal solution. The basic techniques of the GAs are designed such 
that the solution search process is directed into the region of better performance. This 
is accomplished by imitating the “survival of the fittest” principle, during the 
selection stage of the GA. Several generic selection algorithms exist, such as 
tournament selection, fitness proportionate selection and stochastic universal 
sampling.  

In this work, we use a different, evolutionary approach to optimize the entropy of 
the cyclic distribution in social networks: Genetic Algorithms (GA). We follow a 
comprehensive set of guidelines regarding the usage and design of a genetic algorithm 
for various problems, in [Baeck et al. 2000]. Aspects such as fitness evaluation, 
constraint handling issues [Pardede, 05], population sizing and structuring, mutation 
parameters and parameter control are explained within the scope of conducted 
research in evolutionary algorithms. Moreover, the authors in [Baeck et al. 2000] 
discuss the efficient implementation of evolutionary algorithms for different sets of 
problems, using different parameters. [Tan et al. 2005] presents another 
comprehensive treatment on designing multi-objective evolutionary algorithms and 
their applications in various areas, such as control systems and evolutionary 
scheduling. 

In order to apply genetic algorithms effectively on scale-free networks, the 
structure of this type of networks should be examined first.  Scale-free networks are 
networks that follow a power law degree distribution. In other words, the number of 
links “k” originating from a given node in a scale-free network exhibits a power law 
distribution: p(k) ~ kγ, such that 2<γ<3. The power law distribution of scale-free 
networks affects its topology, where the nodes with highest degrees (hubs) are 
followed by the smaller ones, and so on. Due to the fact that the majority of nodes are 
small ones, scale-free networks are robust to random failures because the probability 
of a hub failure is very small. Examples of networks that are categorized as scale-free 
networks are the World Wide Web (where the web pages are considered nodes and 
the links connecting them are the hyper-links), protein interaction networks, the 
network of Hollywood actors and various Social Networks. Scale-free networks can 
be generated using Barabási and Albert's generative model [Albert and Barabasi 
2000]. We begin with an initial network that consists of m0 nodes, where m0 ≥ 2. 
Next, new nodes are progressively added to the existing network using preferential 
attachment mechanism. The probability pi of linking a new node to an existing node i 
is proportional to the number of links k already attached to this (existing) node, as 
follows: 
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     (2) 
where ki is the degree of node i.  

 
The optimization starts with an initial distribution derived from Barabási and 

Albert’s scale-free generative model that randomly produces the initial population of 
scale-free social networks, which is given as an input to our genetic algorithm. Each 
chromosome in the list of chromosomes formulating the population represents the 
directed graph that corresponds to a generated scale-free network. The nodes in the 
graph represent individuals and the links represent relationships among them. For 
instance, (A  B) implies that A is a friend of B. The objective function of our 
genetic algorithm is to maximize the cyclic entropy of the scale-free network, where 
entropy is defined using eq. 1. The objective function is expressed as [Tan, 06], [Tan, 
07]: 

 

    (3) 
 
Accordingly, the fitness function that quantifies the value of the each 

chromosome in our solution space is simply equal to the value of the cyclic entropy of 
its corresponding graph. Our objective function is constrained with the restriction that 
all graphs in the population remain connected during the optimization loop. That is, to 
ensure that the different mutation operators we implemented would never cause the 
graph selected for mutation to disintegrate into disconnected sub-graphs throughout 
all the GA generations. This constraint is important due to the nature of the mutation 
operators we implemented in the genetic algorithm: 1) Adding an edge between two 
randomly chosen vertices in the graph, and 2) Removing a random edge that connects 
two vertices in the graph. These mutation operations were chosen such that they 
ensure the evolvement of the cyclic structure of each graph, thus evolving the 
chromosome holding it to reproduce better generations. Naturally, adding and 
removing edges randomly in the graph will modify the number and lengths of cycles 
existing in it, therefore altering its cyclic entropy value. 

The mutation rate parameter in our genetic algorithm is a dynamic rate that varies 
according to a deterministic time-dependent function pm(t) suggested by Back and 
Schlutz [Thomas and Martin 1996]: 

 

  (4) 
 

where t is the generation number, T is the maximum number of generations and L is 
the length of the chromosome (in our case, the size of the graph). This rule changes 
the probability of mutation as the number of generations increase, such that pm(0) = 
0.5 and pm(T) = 1/L. Previous studies [Elben et al. 1999] [Hinterding et al. 1997] 
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[Thomas and Martin 1996] proved that using a dynamic deterministic mutation rate 
instead of a fixed mutation rate improves the evolution process, and avoids over-
mutating mature chromosomes as it reduces the mutation rate with the increase of 
time. The pseudo code of our cyclic-entropy optimization algorithm for the design of 
a robust social network is shown in fig. 1. 

 
 

1 Initialize a population of 30 scale-free network graphs: 

1.1  m0 = 3 , m = 3 ;     //parameters of Barabasi and 
Albert’s algorithm 

1.2  n = 30 ;           //size of population 

1.3  Population_List = create_empty_list() ; 

1.4  for( 1  n ) 

1.4.1 new chromosome = Barabasi and Albert’s 
generative model(m0 , m, n); 

1.4.2 Population_List.add( chromosome); 
 

2 Evaluate_generation( Population_List , n): 

2.1 for( i = 1  n ) 

2.2 Population_List( i ).Calculate_Cyclic_Entropy(); 

 

3 For ( i = 1  number_of_generations ) 

3.1  Sort( Population_List) 

3.2  int k = Random( n – 1 );        //the index of 
the chromosome to be mutated 

3.3  mutation_operation = Random( add , remove );    
//choose mutation operation randomly 

3.4  if( mutation_operation = add ) 

3.4.1 Population_List(k).add_random_edge(); 
3.5  Else 

3.5.1 Population_List(k).remove_random_edge(); 
3.6  Evaluate current generation: 

3.6.1 for( i  = 1  n ) 

3.6.2 Population_List( i 
).Calculate_Cyclic_Entropy(); 

4 End_for_loop  //end of Genetic Algorithm’s Optimization 
Loop 

 

Figure 1: Genetic Algorithm’s Optimization Loop Pseudocode 

To implement the constraint of ensuring graph connectivity in the genetic 
algorithm, we utilized the Floyd Warshall algorithm [Weisstein], which follows a 
dynamic programming approach to calculate the shortest paths between all vertices of 
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a graph. The pseudo code of Floyd Warshall algorithm, which assumes an input graph 
of N vertices is shown in figure 2 below. 

 
 

for i = 1 to N 

    for j = 1 to N  

       if there is an edge from i to j  

       dist[0][i][j] = the length of the edge from i to j 

        else 

         dist[0][i][j] = INFINITY 

 

 for k = 1 to N 

  for i = 1 to N 

    for j = 1 to N 

       dist[k][i][j] = min(dist[k-1][i][j], dist[k-1][i][k] +  

                           dist[k-1][k][j]) 

 
 

Figure 2: Floyd Warshall Algorithm’s Pseudocode 

One of the applications of Floyd Warshall algorithm in graph analysis is finding 
the transitive closure of a directed graph: a data structure that enables determining in 
O(1) time possible reachability questions, such as: Can we reach node “b” from “a” in 
one or more hops? The data structure is stored as a matrix where each entry, 
matrix[i][j], answers whether node i can reach node j in one or more hops. Using this 
approach, we can check by examining the elements of the constructed matrix if the 
graph has any disconnected parts; i.e., if there are at least two nodes in the graph that 
are not able to reach each other. If this case occurs, then we must undo the mutation 
operation and randomly apply another operation, and so on.  

5 Experimental Design 

We have implemented the algorithm using JAVA as a programming language. In our 
experiment, we ran the genetic algorithm with an initial population of 30 
chromosomes, where each chromosome represents a scale-free network graph of size 
20 nodes. Each graph was constructed using Barabási and Albert’s scale-free 
generative model. In order to evaluate the chromosomes using entropy as a function 
of cycles, we utilize the following the algorithm stated in [Mahdi et al. 2008] to 
compute the number and lengths of cycles in each graph, hence its cyclic entropy 
according to equation (1). The "cycles counting" algorithm is based on the iterative 
loop counting algorithm (ILCA) from MathWorks®. We modified this algorithm to 
meet our network criteria. ILCA is developed to find all the loops in any connected 
undirected graph by starting from any vertex or a vertex that has the most links and 
then search all the paths from it. This approach will not work with directed graph 
because a vertex that can reach all the edges must be found first. Also the way it 
distinguishes the cycles from reach other is not efficient in a directed graph. That’s 
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because in undirected graph, the cycle A B C is the same as A C B. We solved 
those two problems by making the vertex that we start extracting the network from as 
the start point and changing the algorithm that it uses for cycle distinguishing. 

We ran the genetic algorithm on a machine of 2GB RAM and 2.4 GHz processor, 
for 200 generations. In each generation t a number of chromosomes equal to (pm(t)* 
population size) is selected for mutation, where pm(t) is the mutation rate according to 
the time-varying dynamic formula stated in equation (4). For each selected 
chromosome, the mutation operation to be applied was chosen randomly between 1) 
adding an edge that connects two random vertices in the graph, or 2) removing an 
existing edge that connects two vertices together in the graph. Afterwards, the 
mutated graphs’ new entropy values are calculated as their cyclic structures have been 
altered, reproducing the new generation of scale-free networks, and so on. 

In the second experiment we conducted, the same initial population which 
consisted of 30 scale-free networks was used as an input to the Genetic Algorithm; 
only this time we used Entropy of the links degree distribution to define the fitness 
function, instead of the cyclic-entropy. Therefore, each chromosome was evaluated 
according to the Entropy of the link degree distribution of its corresponding graph. 
We ran the genetic algorithm with the same parameters used in the first experiment, in 
terms of the time-varying mutation rate, number of generations, input population and 
mutation operations. Table 1 shows the parameters setting used within both 
experiments. 

 

Parameter Value 

Initial GA population 30 

Chromosome (graph) size 20 

m0  (BA model) 3 

m (BA model) 3 

Table 1: Parameters settings for the entropy optimization experiments 

6 Experimental Results 

6.1 Cyclic Entropy Optimization Results 

Figure 3 shows the best entropy reached in each generation of the genetic algorithm, 
for the first experiment. The optimum value reached was 2.519 at generation 121, 
where it remained constant until generation 160, followed by a relatively large drop in 
its value. Figure 4 keeps track of the overall best entropy reached in all the 
generations, which is of great significance to us since we are interested in observing 
the behavior of the corresponding network; the overall best chromosome represents 
the optimal robust scale-free network that has the best entropy within all possible 
solutions in the solution space.  
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For this optimal solution, we have plotted its initial cycle length distribution 
before the evolution process and the final cycle length distribution after running the 
genetic algorithm, as shown in figures 5 and 6, respectively. The cyclic entropy that 
corresponds to its initial status was equal to 2.187, where the optimal entropy 
corresponding to its evolved final status is equal to 2.519. Figure 7 compares both 
plots together in order to observe the regions where the major changes took part, i.e. 
the different cycle length regions that the evolution process altered the most, in order 
for this solution to evolve into the optimum solution.   

Figure 8 clarifies, numerically, those regions where changes of different cycle 
length occurrences take place the most. It is obvious that cycles of lengths (7 to 9), 14 
and 15 experienced more alteration than the rest. Cycles of lengths (2 to 5), 11, 12, 
(17 to 19) experienced less alteration. Figure 9 demonstrates the distribution of cycle 
lengths of our optimal solution throughout the different generations in the genetic 
algorithm. Starting from the first generation, we can observe how the cyclic structure 
of our solution evolved through the generations, eventually reaching its optimal 
design, at generation 158. It is noticeable that most of the evolvement to the cyclic 
structure occurs in regions (8 to 10) and (14 to 15). On the other hand, regions (2 to 6) 
and (17 to 19) experienced almost negligible changes. The number of mutation 
operations this chromosome was subject to is 20 operations: 9 random edge removals 
and 11 additions of random edges. The total time taken by this experiment to execute 
is 204640.562 seconds = 56.844 hours. 

 

Figure 3: Best Entropy vs. Generations 
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Figure 4: Overall Best Entropy vs. Generations 

 

Figure 5: The initial cycles distribution of the optimal solution 
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Figure 6: The final cycles distribution of the optimal solution 

 

Figure 7: Initial VS Final cycles distribution of the optimal solution 
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Figure 8: Absolute change in occurrences of different cycle lengths 

 

Figure 9: Variation of the cycle length distribution over the genetic algorithm 
generations 
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6.2 Degree Entropy Optimization Results 

In the second experiment which uses the Entropy of the links degree distribution to 
define the fitness function, the optimal degree entropy value reached was 2.207 at 
generation 102. Figure 10 shows the best degree entropy reached in each generation 
of the genetic algorithm. Figure 11 shows the overall best entropy within all 
generations, which reached its highest (optimal) value at generation 102. 

The initial degree distribution of the optimal solution is shown in figure 12. It is 
obvious that the distribution follows a power-law degree distribution, which is a 
property of scale-free networks. The degree entropy corresponding to this distribution 
was found to be 1.69574. After running the genetic algorithm, the optimal degree 
entropy of this chromosome after its evolution is equal to 2.2071079. Figure 13 shows 
the degree distribution that corresponds to this optimal entropy. Figure 14 compares 
both initial and final degree distributions of the best solution. The number of mutation 
operations this chromosome was subject to is 27 operations: 11 random edge 
removals and 16 additions of random edges. The total elapsed time taken to execute 
this experiment is equal to 99.437 seconds only. 

For the optimal solution resulting from the second experiment -which has the 
maximum degree entropy-, we have applied the cycles counting algorithm to find the 
distribution of cycles within it, as shown in figure 15. The most probable cycle size in 
this solution is a cycle of 10 nodes, and the corresponding cyclic entropy was found 
equal to 2.18976. On the other hand, the degree distribution was calculated for the 
optimal cyclic-entropy solution that resulted from the first experiment. The 
distribution, shown in figure 16, indicates a scale-free power law distribution, with a 
degree-entropy value of 1.85136. 

 

 

Figure 10: Best Degree Entropy vs. Generations 
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Figure 11: Overall Best Degree Entropy vs. Generations 

 

Figure 12: Initial degree distribution of the optimal solution 
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Figure 13: Final degree distribution of the optimal solution 

 

Figure 14: Initial vs. Final degrees distribution of the optimal solution 
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Figure 15: Cycles distribution of the optimal degree entropy solution 

 

Figure 16: The degree distribution of the optimal cyclic entropy solution. 
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7 Conclusions and Future Work 

The experiment we conducted in this work demonstrates the use of the genetic 
algorithm in the design of robust, scale-free social networks. The optimization routine 
finds the maximum entropy equals 2.519 corresponding to an optimal network 
distribution found when the initial distribution is subject to 9 random edge removals 
and 11 additions of random edges regardless of the initial distribution. In addition, the 
most probable cycle size in the optimal solution is a cycle of 11 nodes. In a maximum 
fully connected network the optimal cycles distribution has a its most probable cycle 
size at 7 with a maximum entropy equals 1.42 much lower than the scale free network 
studied in this work where a fully connected network of 11 nodes is less than the 
maximum [Mahdi et al. 2008]. According to the definition of entropy, we conclude 
that a scale-free network of 11 nodes has more robustness and will be more resilient 
to failure.  

In the search for a design of most robust network, we intend to extend the work to 
examine other types of social network model such as small world. We propose the use 
of cycle distribution instead of degree distribution for many reasons. Degree 
distribution is one dimensional hence it suggests little information on the nature of the 
network. As for cycles distribution, it is a two dimensional problem that provides 
more elaborate information about the network. In previous work, the authors showed 
that cycle distribution provide solid and unique evidence of the type of actual social 
network through the analysis of its cyclic entropy. In addition, cycles distribution is 
found to have one universal mathematical representation where degree distribution is 
mathematically specific depending on the type of social network. Such uniformity of 
cycles distribution allows better characterization of social networks, the cycle 
distribution is given by the probability function, p(li)=a exp(-(li-b)2/c2) where li is the 
cycle length size, and a, b and c are positive real numbers that have unique values for 
each network. With the result of this work, we proceed in performing optimization of 
the universal cycle distribution function in order to accurately find the most robust 
social network and the most resilient to failure. 
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