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Abstract: Sensor-line cameras have been designed for space missions in the 1980s,
and are used for various tasks, including panoramic imaging. Laser range-finders are
able to generate dense depth maps (of isolated surface points). Panoramic sensor-line
cameras and laser range-finders may both be implemented as rotating sensors, and we
used them together this way to reconstruct accurately 3D environments (such as, for
example, large buildings).

This article reviews related developments, followed by a detailed description of designed
calibration and pose estimation techniques which have been used for both rotating sen-
sors. Related experiments evaluate the accuracy of calibrated sensor parameters and
of estimated poses.
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1 Introduction

Panoramic images can be generated by various techniques, such as mosaicing or
stitching [Chen 1995], or can also be acquired using specialized sensors such as
catadioptric [Nayar 1997] or rotating cameras [Reulke and Scheele 1998]. Many
applications in computer vision, computer graphics (e.g., image-based render-
ing) or photogrammetry, demand spatial (geometric) or color accuracy, very
high resolution, or minimized radial distortion, which excludes the use of simple
stitching, mosaicing or catadioptric camera. For example, the quality of close-
range photogrammetry (e.g., for static scenes of architecture) depends on image
resolution to support very accurate representations of scene geometry. Computer
animations in a professional context often specify needs for very high resolution,
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photometric correctness, or geometric accuracy. The book [Huang et al. 2008]
deals with panoramic sensors and their applications for the generation of (very)
high resolution 3D models; this paper describes the sensor calibration techniques
as discussed in this book but in more detail, with further experiments and thus
also with more concluding comments.

The scan geometry of rotating laser range-finder (LRF) and rotating sensor-
line camera is very similar, and this supports accurate rendering of 3D surfaces,
generated from range-scans, using color panoramic images, recorded with a ro-
tating sensor-line camera. The fusion problem of panoramic image data and
LRF depth data has also been discussed in [Jiang and Lu 2007], in which an
imaging model was used which combines a regular digital camera with an LRF
on a turntable. See also [Parian and Gruen 2004] for an alternative model of a
rotating sensor-line camera.

In this article, we put special emphasis on “high-resolution” panoramic im-
ages taken by a rotating sensor-line camera. The two sets of data (i.e., panoramic
image and laser scan) used for fusion can be obtained separately without special
spatial constraint. Actually, multiple panoramic images are generally required
to support texture information as some surface patches may only be seen by one
panoramic camera but not another. Thus, extrinsic parameter calibration is of
crucial importance, and we discuss our calibration in detail in this paper. To the
best of our knowledge, no one else has tackled the pose estimation problem from
multiple rotating sensor-line cameras so far.

1.1 Panoramic Sensors

Informally speaking, a panoramic sensor sends rays into the 3D world. A ray
emerges at a projection center and collects information (such as color, range, or
intensity) about the first surface point it hits in 3D space (possibly also involving
recursion as known from ray tracing in computer graphics).

In an abstract geometric sense, measured data are mapped onto a capturing
surface, which may be understood as being a plane in the case of a “normal
camera” (note: a CCD1 or CMOS2 matrix of sensor elements defines basically a
photosensitive rectangle), or a sphere, cube, cylinder, and so forth in the case of
a “non-standard panoramic sensor” (and this defines spheric, cubic, or cylindric
panoramas). With respect to the capturing surface, catadioptric panoramas may
be called hyperboloidal panoramas. See [Daniilides and Klette 2006] for various
architectures of panoramic sensors and image geometries.

Extreme cases of panoramas are defined by a full 360◦ × 360◦ spherical view
or cubic view (see, for example, Google’s street view), a full 360◦ cylindrical view

1 Charged coupled devices.
2 Complementary metal oxide semiconductor.
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Figure 1: Anaglyphic panorama of buildings at Tamaki campus, The University
of Auckland.

(e.g., as used for panoramic X-rays in dentistry), or a translational planar view
(an example of an image mosaic). A panorama can also be defined by a subrange
of one of those listed examples, as long as it still allows a wider view compared
to normal photographs. We may still call it a cylindric or spheric panorama. The
image in Figure 1 is a segment of a cylindric anaglyphic panorama (generated
by the authors) which requires anaglyphic eyeglasses for proper stereo viewing.
High-quality and high-resolution digital cameras and fish-eye lenses are also
increasingly alternative options for generating high-quality panoramic images.

1.2 Rotating Sensor-Line Cameras

Imagine that the sensor matrix of a “normal digital camera”, consisting ofM×N
sensor elements (each recording a single pixel), degenerates in a way that there
is only one column of sensor elements (i.e., N = 1; for example, similar to those
used in a flatbed scanner). The benefit is that current sensor technology allows
to produce such a sensor-line for very large values of M , say M greater than
10,000, but producing sensor-matrices of 10,000 × 10,000 elements at decent
costs is still a challenge today.

A digital camera, with the sensor-matrix “shrunk” into a single sensor-line,
may now be placed on a tripod and rotated, taking many images, “column by
column” during such a rotation. This defines a rotating sensor-line camera, a
panoramic sensor which may record 360◦ panoramic images within a time frame
needed for taking many shots during one full rotation. Such a sensor is not only
more economic (compared to the use of a, say, 10,000 × 10,000 sensor-matrix
camera), it also comes with several benefits for recording panoramic images.

In the 1990s, theoretical studies by various authors (e.g., [Ishiguro et al. 1992])
pointed out that the use of a rotating sensor-line camera, where panoramas are
shot line by line, each line with its own projective center, allows to control condi-
tions for improved stereo analysis and stereo viewing. Basically, this was the start
into a new category of digital panoramas, defined by super-high resolution and
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Figure 2: An experimental rotating sensor-line camera configuration using an
Eyescan M3 and an additional extension slider.

geometric accuracy. Figure 2 shows the experimental rotating sensor-line cam-
era configuration of the authors using an Eyescan M3. Many of our experimental
panoramic images including the stereo panorama in Figure 1 were captured by
using this sensor system.

Sensor-line cameras actually had been designed for digital aerial imaging
(using a push-broom technique) already since the early 1980s. Three or more
of such sensor lines, optics, and a frame grabber together define a sensor-line
camera to be used in todays airborne image sensors (e.g., for creating “3D maps”
of cities or interesting landscapes, see [3D Reality MapsTM ]).

These physically existing sensor-line cameras were positioned and rotated
on tripods, thus generating panoramas. For example, the Wide Angle Airborne
Camera (WAAC) of DLR3 Berlin-Adlershof, see [Reulke and Scheele 1998], was
used in 1995 for taking the first cylindric panoramic image (a view from the
roof of Dornier in Germany) using a rotating sensor-line camera. The panoramic
image is of very high resolution for that time, with each of its columns consisting
of more than 5,000 pixels.

Panoramic images of very high resolution are today required in various appli-
cations, such as inspections of pipelines (as an example of industry applications
in general), scanning of house facades for 3D city maps, or accurate indoor and
outdoor documentation of selected architectural sites. In the latter two cases,
panoramic images are used for texture mapping, and the 3D geometry of the ob-
3 The German Air-and-Space Institute (DLR = Deutsche Luft- und Raumfahrt) has

actually various institutes in Germany, with its head institute near Munich.
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Figure 3: Use of a laser range-finder for generating 3D models of buildings on
Tamaki campus, The University of Auckland.

ject surfaces is typically acquired by a laser range-finder (on a moving platform,
or at multiple locations).

1.3 Laser Range-Finder

An LRF or laser scanner determines distances to opaque objects; it is also
known as LIDAR (Laser Imaging Detection and Ranging). It records distances
(at accurately recorded horizontal and vertical angular increments) between pro-
jection center and surface points which generates a range-scan. The particular
case of returning intensity only (rather than color) forms a gray-level image. A
range-finder typically allows to obtain such a gray-level image in addition to
its range-scan (but not a color image); a pair consisting of a range-scan and a
gray-level image is basically geometrically aligned because sensed by the same
sensor at the same viewpoint.

An LRF determines the distance to an object or surface using laser pulses
(similar to radar technology, which uses radio waves instead of light). Each in-
dividual pulse is directed along one scan ray, and the returned range value iden-
tifies one point in 3D space. Figure 3 illustrates the use of such a device: for
this model of an LRF, the laser pulses radiate through the rectangular win-
dow, and the small circular window covers a sensor-matrix camera for capturing
(relatively low-resolution) color images, sufficient for identifying locations. The
figure shows on the right such a color image and a visualization of a range-scan
in image form. Generated models of buildings allow us, for example, to generate
“ground truth” for the performance evaluation of stereo and motion analysis in
vision-based driver assistance [EISATS].

A produced range-scan actually defines a “cloud” of points in 3D space,
which represents visible surfaces by those (possibly noisy) discrete points. These
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Figure 4: Left: “cloud of points” illustrating multiple laser range-scans of throne
room of Neuschwanstein castle. Right: a view into the reconstructed 3D model
with color texture generated by multiple high-resolution panoramic scans.

isolated points need to be mapped into meshed (e.g., triangulated) surfaces,
and the surfaces may be “smoothly” rendered using gray-levels recorded by
the range-finder. However, color is typically requested for rendering, and color
panoramic images may be used for proper rendering. Figure 4 illustrates on
the left the data obtained by LRF scans, and a view of the high-resolution 3D
reconstruction result on the right, calculated by using multiple LRF scans and
panoramic images.

2 Sensor Geometry

We consider two sensors of very similar architecture and unify their description
by considering both (i.e., also the LRF) as being panoramic sensors.

2.1 Panoramic Sensors

The projection center of the sensor-line is denoted as Ci (for i ∈ N), which
describes the position of the sensor-line camera. As the camera is rotated 360
degrees along a pre-specified axis, the trajectory of the camera projection center
defines a circle called base circle (see Figure 5). Ideally, we assume that the plane
of the base circle is perpendicular to the rotation axis, the camera’s optical axis
remains coplanar to the base circle at all of its positions during the rotation,
and the sensor-cell array is configured parallel to the rotation axis.

Through such a 360◦-rotation, the sensor-cell array of the camera describes
(in some abstract sense) a cylindric surface. The image cylinder describes the
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Figure 5: Basic entities of a rotating sensor-line camera.

mathematic abstract location of those rotating tri-linear sensor-lines. Parameters
M and L are used to describe the size of a panoramic image, captured by a
rotating sensor-line camera, where M denotes the number of pixel sensors in
the line, and L denotes the total number of lines captured for generating this
panoramic image.

The rotation axis is the axis of the image cylinder, and point O on the axis
denotes the center of base circle. The base circle has a radius R, which is called
the off-axis distance. The optical axis of a camera at position Ci forms a principle
angle ω with the ray emitting from O and passing through Ci (see Figure 5).
The angle defined by two adjacent camera positions, i.e., ∠CiOCi+1, is called
angular increment and denoted by γ. Moreover, U defines the point where the
optical axis intersects with the image cylinder. The Euclidean distance between
Ci and U identifies the focal length f of the camera at position Ci. In the ideal
case, the focal length f , the principle angle ω, and the angular increment γ
are assumed to remain constant during a rotation of a sensor-line camera (i.e.,
during the recording of one panoramic image).

This model generalizes various panoramic imaging models [Ishiguro et al. 1992,
Murray 1995, Li et al. 2004]. The four intrinsic sensor parameters, R, f , ω, and
L characterize how a panoramic image is acquired. Consider two panoramas,
EP1 and EP2 . The geometric relationship between both sensor coordinate sys-
tems can be described by a 3 × 3 rotation matrix R and a 3 × 1 translation
vector T. The rotation matrix is given by three row vectors [rT

1 rT
2 rT

3 ]T , and the
translation vector equals (tx, ty, tz)T .

Of course, when dealing with real rotating sensor-line cameras in real-world
applications, we have to understand deviations from those assumptions. Never-
theless, we understand that the sensor (pre-)calibration is very important for
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Figure 6: Sketch of scan geometry defined by two scan directions (vertical and
horizontal): laser range-scanner (left), and a theodolite (right) with two rotation
axes, traditionally called K (German: Kippachse) and Z (German: Zielachse)
for such a device.

this approach, and we explain our method in the next section.
Laser scanners differ with respect to their scan geometry (i.e., how the scan

rays are progressing during a single scan of a 3D scene). Our range-scans were
typically recorded by a panoramic scanner Z+F IMAGER 5003. In this case, the
scan geometry is defined as follows: angular increments between scan rays are
uniformly defined in two dimensions, which are vertically by a rotating deflecting
mirror, and horizontally by rotating the whole measuring system. The vertical

Figure 7: Data of a calibrated LRF image in spherical coordinates.
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scan range of the IMAGER 5003 is 310◦ (which leaves 50◦ uncovered), and
the horizontal scan range is 360◦. This scan geometry is similar to the one
known for theodolites (see right of Figure 6), which are traditional instruments
for measuring (manually) both horizontal and vertical angles.

Figure 7 shows a raw data set without redundancy (i.e., 310◦ times 180◦)
captured by using the described panoramic scan geometry. This is the degenerate
case of our sensor model that it has R = 0, and hence ω becomes meaningless
in this case.

2.2 Coordinate Systems for Sensors

In case of a camera with a single sensor-line, we use index j to identify different
pixel locations. An image vector vj points from the (current) camera’s projection
center C to the image point (sensor element, pixel) of index j. We have

vj =

⎛
⎝ 0
jτ − y0
f

⎞
⎠

where τ is the height of the pixel (assuming squared pixel), and y0 denotes the
image center (intersection point of sensor-line with the camera’s optical axis).

A local 3D sensor coordinate system (with origin at O) is used to describe
the orientation and position of the sensor system in relation to a defined world
coordinate system (with origin at W). The Yo-axis of the sensor coordinate
system coincides with the rotation axis (pointing downward; see Figure 8). Let
R denote the rotation matrix, and t0 denotes the translation vector between
sensor and world coordinates systems.

Rotation angle ϕ is defined to be the angle between the Zo-axis and line
segment OC. A rotation matrix Rϕ(i) is used to describe the camera’s orientation
at Ci with respect to the local sensor coordinate system.

A 3D point with respect to the world coordinate system Pw can be expressed
by its corresponding image vector vj as follows:

Pw = t0 + RRϕ(i)

⎡
⎣λRω

⎛
⎝ 0
jτ − y0
f

⎞
⎠ +R

⎛
⎝0

0
1

⎞
⎠

⎤
⎦

where matrix Rω specifies the additional rotation of the sensor-line when ω �= 0.
Figure 9 illustrates the general case of a rotating red-green-blue sensor-line

camera. In applications we also have to model the following deviations:4

4 Optic distortions are dealt-with for a given camera in a pre-calibration process which
is not part of the geometric correction process.
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– At any discrete moment i of time, the sensor-line is tilted (within the local
coordinate system) by three angles which define a time-dependent rotation
matrix Ri(α, β, δ); this defines the inner pose of a sensor-line about all three
axes with respect to the central point x0, y0.

– The red and blue “sub-lines” have an offset Δ with respect to the central
point on the green line.

– The optical axis is rotated by ξ about the Xo-axis.

– The optical axis is rotated by the fixed principle angle ω about the Yo-axis.

– The sensor-line is rotating with (an eccentricity, or a desired) off-axis distance
R > 0.

The inner pose Ri(α, β, δ), the central point (x0, y0), and the off-set Δ allows
now to decide the positioning of the sensor line in any case. The image vector
vj is split into two terms as follows:

vj = vj,Δ + vf = (Δx − x0, jτ +Δy − y0, 0)T + (0, 0, f)T

Altogether, the coordinate transform is now the following:

Pw = t0 + RRϕ(i)

⎡
⎣λRξRω

⎡
⎣Ri

⎛
⎝ Δx − x0

jτ +Δy − y0
Δz

⎞
⎠ +

⎛
⎝ 0

0
f

⎞
⎠

⎤
⎦ +

⎛
⎝ 0

0
R

⎞
⎠

⎤
⎦ (1)

This equation is used for sensor calibration.

Pw

C
Xo

Yo

Zo

Yc

Zc

Xc
O

Xw

Zw

W
Yw

R , t0

vj

Figure 8: Local sensor coordinate system (with origin at O) and camera coordi-
nate system (with origin at C).
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Ri

R
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RGB
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Figure 9: The sensor coordinate system of the rotating line camera: the optical
axis identifies the central point x0, y0 and is tilted by Rξ and Rω ; each red-
green-blue line has a constant distance Δ between central point (on green line)
and red or blue line. The tilt of the sensor-line with respect to the optical axis
is specified by Ri(α, β, δ).

3 Sensor Calibration

The common (and straightforward) camera or sensor parameter calibration ap-
proach is point-based approach. It is to minimize the difference between ideal
and actual projections of known 3D points, such as calibration marks on a cal-
ibration object, or localized points in the 3D scene. By taking many images of
calibration marks, we are able to apply a least-square error (LSE) optimization
procedure.

3.1 Parameters and Objective Functions

In the sequel we describe a least-square approach, as known from photogram-
metry, but adapted by us to a panoramic sensor. This approach determines
unknown extrinsic parameters of the sensor, which are matrices R, Rξ, t0, and
off-axis distance R and principle angle ω.

It also determines the intrinsic parameters, which are matrix Ri(α, β, δ),
describing the tilt of the sensor, the “focal length” f + z0, and the sensor’s
central point x0, y0; the latter one also written as vector Δ.
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The rotation angle ϕ of the rotating sensor (sensor-line camera or laser range-
finder) may be measured using an internal measuring system of the turntable.
Modern technology allows that the angle (for each vertical scan line of the sensor)
is determined with an accuracy of 1/1000 degree at least.

Note that the frequently needed recalculation of a “focal length” (i.e., of the
camera constant) aims at an exact determination of the (typically unknown)
virtual projection center of a pinhole-type model, namely the distance between
the entrance pupil to a virtual sensor plane which fulfills the linear imaging
assumption.

An observation is a recorded calibration mark (with physically measured
coordinates, identified with a point (X,Y, Z) such as, e.g., the centroid of the
mark) at corresponding image coordinates i and j (i.e., pixel (i, j) for the rotating
sensor-line camera, when projecting point (X,Y, Z) into the cylindric panorama).
Note that two observations are derivable for one calibration mark because of
using two collinearity equations (i.e., one observation is given by two collinearity
equation and its corresponding residues).

We have a linear system of n equations with m unknown; the sth observation
is given by ls. The sum of all equations can be written in this form:

n∑
s=0

ls = a11 · x1 + a12 · x2 + . . .+ asm · xm

Figure 10: Calibration courtyard at the Institute for Photogrammetry at TFH
Berlin. Calibration marks are distributed within the scene.
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Observations are considered to be the residues of an iterative Taylor approxima-
tion of kth order (which defines a Newton method):

l = F (u) −∇F k(û)Δu

For the determination of extrinsic parameters and the calibration of intrinsic
parameters of a sensor, we place various calibration marks “around the sensor”
in the scene (see example in Figure 10). Some of them are projected into image
data (depending on visibility), and we assume that all projected calibration
marks can be uniquely identified in resulting image data (e.g., in the panoramic
image).

Assume that we havem unknowns in total (i.e., elements in matrices, vectors,
and parameters), and given are n observations, with n ≥ m.

3.2 General Error Criterion

We use Equation (1) to model the geometric mapping of 3D points into the sensor
coordinate system. By substituting A = RRϕ(i), B = RξRω, and C = BRi

(with matrix elements A = a11, ..., a33, B = b11, ..., b33 and so forth), where vj,Δ

is the image vector:

vj,Δ =

⎛
⎝ Δx − x0

jτ +Δy − y0
Δz

⎞
⎠

This vector is also written in vectorial components as vj,Δ = (vx,vy,vz)T .
After those substitutions, the general mapping equation is now given as fol-

lows:

Pw = t0 + A(λB(Rivj,Δ + fz◦) +Rz◦)

A−1(Pw − t0) −Rz◦ = λCvj,Δ + Bfz◦

We rewrite this for all three components of this equation, using P̃ = Pw − t0:

a11P̃x + a21P̃y + a31P̃z = λ(c11vx + c12vy + c13vz + b13f)

a12P̃x + a22P̃y + a32P̃z = λ(c23vx + c22vy + c23vz + b23f)

a13P̃x + a23P̃y + a33P̃z −R = λ(c31vx + c32vy + c33vz + b33f)

The matrix of coefficients a11, ..., a33 is finally transposed because of the inversion
of the matrix A. (For a rotation matrix we have that E = R · RT is the unit
matrix, and, consequently, R−1 = RT .)

By dividing these equations we may eliminate the scaling factor λ, and we
obtain, from the left-hand sides of those three equations, the following two equa-
tions:
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Fx/z :=
a11(P̃x) + a21(P̃y) + a31(P̃z)

a13(P̃x) + a23(P̃y) + a33(P̃z) −R

and

Fy/z :=
a12(P̃x) + a22(P̃y) + a32(P̃z)

a13(P̃x) + a23(P̃y) + a33(P̃z) −R

For the right-hand sides we obtain that

Gx/z :=
c11vx + c12vy + c13vz + b13f

c31vx + c32vy + c33vz + b33f

and

Gy/z :=
c23vx + c22vy + c23vz + b23f

c31vx + c32vy + c33vz + b33f

These are the general collinearities, and we also express them by Fx/z = Gx/z

and Fy/z = Gy/z in short form.
By linearization of these equations it is now possible to estimate iteratively

the unknown parameters

u = (tx0, ty0, tz0, ψ, φ, κ,R)

for the left-hand sides Fx/z and Fy/z, and

u = (ξ, α, β, δ, ω, f, y0, x0)

for the right-hand sides Gx/z and Gy/z, respectively. The three unknown angle
ψ, φ, κ specify the rotation angles about the x-, y-, and z-axis, respectively. (Note
that R = Rx(ψ)·Ry(φ)·Rz(κ).) The upper index k is the number of the iteration
step. The linearization is given as follows:

∇(Gx/z − Fx/z) =
(
∂Gx/z

∂u1
− ∂Fx/z

∂u1
,
∂Gx/z

∂u2
− ∂Fx/z

∂u2
, ...,

∂Gx/z

∂um
− ∂Fx/z

∂um

)

F k
x,z −Gk

x,z = ∇(Gx,z − Fx,z)k ·Δu

l = M ·Δu

For n = m, the solution is uniquely given by

Δu = M−1 · l

assuming linear independence between equations.
For n > m observations (i.e., a typical adjustment problem), we apply now

the method of least-square error minimization. The error is given as follows:

v = M ·Δû − l
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The error function (which needs to be minimized) is defined as follows:

min = vT v

= (M ·Δû − l)T (M ·Δû − l)

= ΔûT MTM ·Δû − 2lTM ·Δû + lT l

For identifying the minimum, we differentiate and have the resulting function
equal to zero:

∂
(
vT v

)
∂Δû

= 2ΔûTMTM − 2lTM = 0

This leads to the following solution:

Δû =
(
MTM

)−1

MT l

The Jacobian matrix M contains all first-order partial derivatives, and l are the
residues as defined above. This is solved by means of iterations; the vector Δu
contains the corrections of of each unknown. A minimum is found if the unknowns
do not change significantly anymore (e.g.,

m∑
s=0

|Δus| < ε , with ε = 10−9).

3.3 Calibration Experiments

Some kind of human intervention is in general required for this calibration ap-
proach for identifying the projections of those 3D points in a real scene (e.g.,
the projected points) used as calibration marks, possibly supported by some
SIFT feature detector or moment-based sub-pixel accuracy point locator. If a
specially designed calibration object is used, this process can be supported by an
automatic calibration mark detection algorithm, where marks are located with
sub-pixel accuracy (using, e.g., centroid calculation within a mark’s region, or
intersection points of approximated straight lines when using a checkerboard).

The described least-square approach was used in many applications of panora-
mic sensors, and is so far our recommended way for calibrating all the mentioned
parameters, possibly also including a tilt of the rotation axis of the sensor.

We report about calibration experiments (for performance evaluation) at the
calibration courtyard at the Institute for Photogrammetry of the University of
Applied Sciences Berlin (known as TFH Berlin); see Figure 10. The locations of
the control points along the buildings can be measured with a theodolite and
are photogrammetrically balanced. The deviation of our calculated points to the
given control points is shown in Table 1. Further experiments confirmed that the
estimation of the parameters of the intrinsic pose is stable what means that it
does not change significantly by changing the parameters of the extrinsic pose,
and therefore these parameters are properly separated from each other.
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Control point Error in pixel coordinate i Error in pixel coordinate j
7 0.38 0.03
9 0.09 -0.44
10 0.09 0.08
11 -0.23 0.54
12 -0.17 0.28
14 -0.16 0.05
15 -0.14 -0.37
16 -0.27 -0.35
17 0.26 -0.01
19 0.22 0.30
50 0.01 -0.12
51 -0.09 0.11

Table 1: Example of a typical panoramic adjustment, here for calibration marks
of the calibration courtyard at TFH Berlin: The table lists deviations between
calculated image coordinates and their actual reference coordinates. All listed
values are in subpixel scale.

4 Sensor Pose Estimation

When using panoramic sensors, it is actually standard to aim for a set of leveled
panoramas, which means all associated rotation axes have to be parallel (say, all
perpendicular to the sea level). It can be achieved by levelers. Figure 11 sketches
a leveled pair of sensor.

Panoramas captured by leveled sensors are already, for several years, com-
mon tools for virtual navigation [Kang and Desikan 1998] or reconstruction of
large scale environments [Ishiguro et al. 1992, Kang and Szeliski 1997]. Leveled
panoramas allow large “overlapping” fields of views. The larger the common field

O1

O2

(x1,y1)

(x2,y2)

P

Figure 11: A pair of leveled panoramas and a pair of corresponding image points.
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of view, the higher the probability that object surfaces are visible in more than
one panorama. Hence, this supports more reliable 3D reconstruction and smooth
view-transitions between multiple panoramas in a walk-through simulation.

Sensor pose estimation based on multiple-projection model is a new challenge
due to the complexity of their epipolar geometry (i.e., the complex equation of
general epipolar curves can be found in [Huang et al. 2008]). The well known lin-
ear approaches for camera pose estimation problem such as methods described in
[Hartley and Zisserman 2004] are not applicable to our sensor model. The newly
proposed approach here for the leveled panoramas is base on the idea of mini-
mizing the distances between the actual image points and their corresponding
epipolar curves.

Consider a pair of leveled panoramas acquired by two sensors with the same
parameters, and the sensors’ poses are related by a single rotation angle φ with
respect to the rotation axis and a translation vector (tx, ty, tz)T . Given a set of
corresponding points (x1i, y1i) and (x2i, y2i), where i = 1, 2, . . . , n, the values of
φ, tx, ty, and tz can be estimated by minimizing the following sum,

n∑
i=1

(c1iX1+c2iX2+c3iX3+c4iX4+c5iX1X3+c6iX1X4

+c7iX1X5+c6iX2X3−c5iX2X4+c8iX2X5+c9i)
2

subject to the constraints X2
1 +X2

2 = 1, X2
1 ≤ 1, and X2

2 ≤ 1. The five variables
to be recovered are X1 = cosφ, X2 = sinφ, X3 = tx, X4 = tz, and X5 = ty, and
the nine coefficients are as follows:

c1i = y2iR sin(δ1i − α2i) + y1iR sin(δ2i − α1i)
c2i = y1iR cos(δ2i − α1i) − y2iR cos(δ1i − α2i)
c3i = −y2i cos δ1i

c4i = y2i sin δ1i

c5i = y1i cos δ2i

c6i = −y1i sin δ2i

c7i = f sin(α2i − α1i)
c8i = f cos(α2i − α1i)
c9i = −(y1i + y2i)R sinω

where αki = 2πxki

L , δki = (αki + ω), and k = 1 or 2.
Let (x1, y1) and (x2, y2) be a pair of corresponding image points in a pair of

leveled polycentric panorama EP1 and EP2 , respectively. Given x1 and y1, the
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Figure 12: Two symmetric leveled panorama pairs acquired at different locations
(top: right panorama of the first pair, bottom: right panorama of the second
pair), all marked with 40 corresponding points.

corresponding epipolar curve in EP2 can be expressed as follows:

y2R sin(α1 + ω − α2 − φ) − y2R sinω

−y2 cos(α1 + ω)tx + y2 sin(α1 + ω)tz
+f sin(α2 − α1 + φ)ty − y1R sinω

+y1R sin(α2 − α1 + ω + φ) + y1 cos(α2 + ω + φ)tx
−y1 sin(α2 + ω + φ)tz = 0, (2)

The cost function is defined as the row difference between an actual image corre-
sponding point and the point on the same column passing by the epipolar curve.
(By some algebraic rearrangements of Equation (2), we my obtain a second-order
algebraic representation of these epipolar curves.).

5 Sensor Pose Experiments

Several real-world experiments on estimating sensor poses have been carried
out at different places and by using different types of cameras. Camera and
the complete sensor were calibrated separately in advance; thus the camera’s
intrinsic parameters were known and kept unaltered during image acquisition.
Figure 12 illustrate one example of a leveled pair taken by a rotating sensor-line
camera at different locations in the same room. In this particular example, we
used R = 100 mm, f = 21.7 mm, and ω = ±155◦. Each panorama has an image
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Figure 13: Illustration of three epipolar curves calculated based on the pose
estimation results.

resolution of 324 × 1, 343. A total of 40 corresponding points (marked as stars)
were identified for experiments.

The true rotation matrix R and translation vector T of these panorama
pairs were calibrated with less than ±1% error, and we have that φ = 50◦ and
(tx, ty, tz) = (−1, 000,−45,−1, 000) in mm. The estimated sensor pose is denoted
as R̂ and T̂. The error measurement for rotation was defined as

arccos
((
tr(RR̂

T
) − 1

)
/2

)

and the error measurement for translation is defined as

arccos
(
T · T̂/‖T‖‖T̂‖

)

(i.e., the angle between T and T̂, both in degrees).
Due to the nonlinear constraints, the quadratic programming optimization

approach was not directly applicable. Thus, the sequential quadratic program-
ming method was used instead for optimization (i.e., function fmincon in Mat-
Lab). In the described example, we obtained 1.22◦ error in the rotation esti-
mation and 4.65◦ error in the translation. We show in Fig. 13 three particular
epipolar curves calculated based on the erroneous estimations from the leveled
case. The average y-difference between the identified corresponding points and
the calculated epipolar curves is 1.2 pixel. For most points, the pose estimation
errors in this example cause less than three pixel error in vertical direction while
processing stereo matching.

We also conducted an error sensitivity analysis with simulated image data, in
analogy to the real-world experiment, for both estimation approaches. Figure 14
plots how errors in detecting corresponding points impact the estimation result.
The horizontal axis shows various error sizes up to ten pixels. In the analysis, for
example, a five-pixel input error means that each pair of corresponding image

1287Scheibe K., Huang F., Klette R.: Pose Estimation of Rotating Sensors ...



points was corrupted by errors of max/min five pixels in both x- and y-values,
and the errors are modeled as Gaussian-distributed random numbers.

The errors for T̂ are about five times the errors for R̂. From the experiments,
we noticed that the assignment of initial values has significant impact onto the
estimation result. The estimation result was mostly sensitive to the “sign” of
the initial values but not to their quantities nor inter-ratios. In particular, zeros
were not good for an initial guess in our case.

Error analysis on R and ω was carried out as well. We concluded that the
error of R has a very minor impact on the pose estimation results. Moreover, a
k-degree error of ω would cause about a k-degree error in the estimated T̂, for
any real number k, but an error in ω has very little impact on the estimation of
R.

Finally, more synthetic experiments were designed and performed for dif-
ferent panorama configurations (i.e., different poses, different sensor parame-
ter values, and etc.). They lead to conclusions that the resolution of the input
panoramic images, and the distribution of the selected corresponding points are
also two critical factors for pose estimation. The panoramic image resolution,
especially the width, should be as large as possible. The corresponding points
should be distributed uniformly and sparsely on the entire panoramic images.
A larger set of corresponding points, say greater than 100, would not guarantee
a better estimation result. A much better result can be achieved if image reso-
lution of 1, 000 × 10, 000 is used instead, and the nearest scene point is no less
than four meters from both sensors. The estimation errors can be less than 0.5
degrees for both R and T, allowing for both cases even up to ten-pixel input
error.
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Figure 14: Error sensitivity analysis for the symmetric or leveled case (synthetic
images).
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6 Conclusions

The paper described the use of two sensor systems (LRF and rotating sensor-
line camera) for the generation of accurate and high-resolution 3D models from
their originals in the 3D world. Approaches for sensor calibrations and pose
estimation were presented followed by some real experiments. Both technologies
are essential to ensure accuracy of 3D reconstruction results. We have shown
that the proposed approaches are able to achieve high accuracy.

According to our error sensitivity analysis, the sensor calibration results of
R and f have very little impact on pose estimation results, while ω’s error has
a more serious influence on the accuracy of estimated sensors poses. For future
work it is thus of interest to develop an algorithm, or a framework, that takes
care of sensor calibration and pose estimation at once, similar to self-calibration
for the planar image case.
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