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Abstract: Qualitative Spatial Reasoning can be greatly improved if metric informa-
tion can be represented and reasoning can be performed on it; moreover, modelling
vagueness and uncertainty in both qualitative and metric relations allows reasoning in
a more flexible way about data coming from real world.

In this paper Rectangle Algebra is integrated with a bi-dimensional Point Algebra by
defining a set of 25 Point-Region relations, in this way a Spatial Qualitative Algebra
(SQA) among point and regions is obtained. Besides, SQA is extended to deal with
uncertain data by means of the Fuzzy Sets Theory. Fuzzy metric information is rep-
resented using pyramidal possibility distributions, and transformation functions that
allow passing from qualitative to metric information and vice versa are provided.
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1 Introduction

Spatial Reasoning plays a central role in many Artificial Intelligence applications

such as robot navigation, visual object recognition, intelligent image information

systems, query processing in geographic databases; new challenges have arisen

also in Cell Biology [Pool, 2003]. As in the case of other qualitative reasoning

formalisms, there are basically two approaches to build a model suitable for

spatial reasoning: model physical space and the objects within it or model the

relationships between the objects [Frank, 1992]; a set of qualitative relations

may be incomplete and even inconsistent, and the consistent integration of such

information relies on the algebraic properties of the qualitative relations. Spatial

Reasoning can be formulated using the framework of Constraint Satisfaction

Problems (CSPs), for example TCSPs have been defined for reasoning about

time [Dechter et al., 1991].

Different aspects of space can be considered; here, the more common clas-

sification of spatial relations into topological relations and directional relations

is taken into account. Also distances are considered, but in the usual context of

metrics, not as qualitative relations. Topological spatial relations are those that

are invariant under continuous transformations, such as rotation or scaling. Di-

rectional relations are defined between a reference object and a primary object

with respect to a fixed frame of reference, usually determined by a predefined
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entity such as the North Pole. Topological information is commonly represented

using extended regions as basic entities, while orientation is based on points. In

this paper an algebra dealing with relations between regions, namely the Rect-

angle Algebra [Balbiani et al., 1998] is combined with the algebra of Cardinal

Directions [Frank, 1992]. This allows to obtain a more expressive algebra, which

will be called Spatial Qualitative Algebra (SQA); besides, also metric informa-

tion about distances has been added.

In Temporal Reasoning the most classical model of integration between qual-

itative and quantitative constraints was proposed in [Meiri, 1996] who defined

an extended Temporal CSP able to deal with both types of information using

an unique constraint network. In Spatial Reasoning Condotta [Condotta, 2000]

proposed to manage these two types of information using distinct CSPs. This

paper applies the idea of Meiri to spatial constraints, that is an unique constraint

network for both qualitative and metric information.

Realistic applications usually contain information pervaded by vagueness and

uncertainty. This kind of notions can be dealt in the framework of Fuzzy Con-

straint Satisfaction Problem (FCSP) [Dubois et al., 1996] where constraints are

satisfied to a degree, rather than satisfied or not satisfied, and the acceptability

of a potential solution is a gradual notion. The spatial constraints taken into

account are extended in a fuzzy way by associating a preference degree to each

basic relation of the qualitative relations and a pyramidal preference distribution

to each metric constraint.

In [Section 2] Rectangle Algebra and Cardinal Directions Algebra are ex-

tended to the fuzzy case, in [Section 3] the metric spatial constraints are de-

fined. In [Section 4] the Point-Region relations are introduced allowing to build

the Spatial Qualitative Algebra, then integration of qualitative and metric tem-

poral constraints in a fuzzy framework is presented. Finally, [Section 5] discusses

a first implementation of a constraint solver for the new framework and describes

a simple scenario to show its expressiveness.

2 Qualitative constraints

2.1 The Fuzzy Rectangle Algebra fRA

Balbiani et al. [Balbiani et al., 1998] define the Rectangle Algebra as an ex-

tension of the well-known Allen’s Interval Algebra (IA) [Allen, 1983] to the bi-

dimensional space [see 1]. Interval Algebra models the relative position between

any two intervals using a set of thirteen basic (or atomic) relations I, namely:

before, meets, overlaps, starts, during, finishes (b, m, o, s, d, f) together with

their inverses (bi, mi, oi, si, di, fi) and the basic relation equal (eq). Analo-

gously, the domain considered in the Rectangle Algebra is the set of rectangles

[1] extensions to multiple dimensions are possible [Mitra and Ligozat, 2002]

1391Falda M.: Spatial Reasoning with Integrated Qualitative-Metric ...



Figure 1: similarities between IA and extended RCC.

with sides parallel to the axes of some orthogonal basis in R
2; this domain is

called REC. A basic relation between two rectangles (atomic RA-relation) is

a pair (rx, ry) of basic IA-relations: the x-axis relation and the y-axis relation;

their set is called Arec. In this way, there are 132 = 169 possible basic relations

between any two given rectangles. If a and b are two rectangles in REC then

a (rx, ry) b is a basic RA-constraint which is satisfied if and only if both the

IA-constraints rx and ry are satisfied.

An RA-constraint R =
⋃

i{(rx,i, ry,i)} is satisfiable if and only if there exist

two rectangles a and b satisfying one of the basic RA-relations in R. In Rectan-

gle Algebra the usual operations of inversion, intersection and composition are

defined. All the operations are performed on pairs of unions of basic relations;

recall that the projected basic relations are IA relations, so the usual operations

can be easily defined [Balbiani et al., 1998], for example the inverse of relation

R =
⋃

i{(rx,i, ry,i)} is R−1 =
⋃

i{(r−1
x,i , r

−1
y,i ) : (rx,i, ry,i) ∈ R}.

Composition between atomic IA relations has been defined in [Allen, 1983]

by means of a transitivity table which has an entry for each possible combination

of atomic relations pairs.

An RA-network is a graph G = (V,E) given by a set of variables V which

represents rectangles and a set M of RA-constraints between the variables in

V . An RA-network N with variables V = {v1, . . . vn} is consistent if and only

if there exists a solution given by n rectangles (a1, . . . , an), ai ∈ RECn such

that all RA-constraints are satisfied by the assignment vi = ai, i = 1, . . . , n. The

Rectangle Algebra has the same complexity of the IA, as far as the consistency

problem of an RA-network is concerned.

IA relations are somewhat similar to mono-dimensional Region Connection

Calculus (RCC) relations over regular regions [Randell et al., 1992], and to give

to the spatial constraints a more intuitive meaning a sort of “orientation” in

RCC relations has been introduced in relations DC,EC,O and TPP ; in this

way the analogy is more clear and 13 atomic relations R corresponding to the
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Figure 2: “Portugal is almost West w.r.t. Spain, but also partially South and

partially South-West of it”.

13 Allen’s atomic relations I can be devised, as shown in [Fig. 1]. In the following,

R relations will be used.

Definition 1. the set R is the set of the atomic relations {DC−, DC+, EC−,
EC+, O−, O+, TPP−, TPP+, TPPi−, TPPi+, NTPP , NTPPi, EQ}.

Flexibility and uncertainty can be introduced in Rectangle Algebra in a

way similar to that proposed in [Guesgen et al., 1994]. The definition of RA-

constraints is relaxed, by assigning to every atomic relation ri ∈ R a degree

αi ∈ [0, 1], which tells the preference degree of the corresponding assignment

among the others; in this way a fuzzy Rectangle Algebra fRA can be defined.

Definition 2. Let a and b be two rectangles in REC, then a fRA constraint is

defined as

R =
⋃

i

{(rx,i, ry,i)[αi])}

where rz,i, z ∈ {x, y}, i = {1, . . . , 13} are R relations and αi ∈ [0, 1] are the

preference degrees of rz,i. Each disjunct (rx,i, ry,i)[αi] is an atomic fuzzy RA

relation.

As usual, when the preference degree is zero the correspondingR relations are

not specified, when 1 it is omitted. Using preference degrees the expressiveness

of usual RA-relations can be increased, for example it is possible to denote the

fact that Portugal is West w.r.t Spain but partially also South and South-West.

Example 1. the position of Portugal w.r.t. Spain can be expressed using the fRA

constraint (see [Fig. 2])

P{(EC−, EQ), (EQ,EC−)[0.2], (EC−, EC−)[0.5]}E

The preference degree of the first pair (EC−, EQ) is 1 and it has been omit-

ted, the other two pairs have preference degrees less than 1 but greater than
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zero, so their preference degrees have been written. The remaining combinations

have not been specified at all, since their preference degrees are zero. Notice

that, according to the Fuzzy Set Theory, the preference degrees have not to sum

up to 1 as in the case of the Probability Theory.

With respect to classical RA now preference degrees have to be taken into

account, therefore intersection and union have to combine them, and they will be

called conjunctive and disjunctive combination respectively. Among the different

T-Norms and T-Conorms that can be used [Klement et al., 2000], in the following

min and max will be considered. The operations between fRA constraints are

defined as follows:

Definition 3. given a fRA relationR =
⋃

i{(rx,i, ry,i)[αi])}, the inverse relation
R−1 is defined as

R−1 =
⋃

i

{(r−1
x,i , r

−1
y,i )[αi] : (r

,
x,iry,i)[αi] ∈ R}

where r−1
x,i and r−1

y,i are the inverses of the basic relations as reported in [Fig. 1].

Example 2. if R = ((DC−, EQ)[0.3]) then is R−1 = ((DC+, EQ)[0.3]).

Definition 4. given two fRA relations R =
⋃

i{(rx,i, ry,i)[αi])} and

S =
⋃

j{(sx,j, sy,j)[βj ])} the disjunctive combination between R and S is defined

as

R⊕ S =
⋃

i{ (rx,i, ry,i)[γi] : (rx,i, ry,i)[αi] ∈ R ∧
(sx,j , sy,j)[βj ] ∈ S ∧ rx,i = sx,j ∧
ry,i = sy,j , γi = max(αi, βj)}

Example 3. the disjunctive combination of the fRA relations

R = {(DC−, EQ)[0.3], (NTPPi,EQ)[0.7]} and

S = {(DC−, EQ)[0.5], (NTPPi,DC+)[0.7]} is

T = { (DC−, EQ)[0.5], )(NTPPi,EQ)[0.7],

(NTPPi,DC+)[0.7]}
.

Definition 5. given two fRA relations R =
⋃

i{(rx,i, ry,i)[αi])} and

S =
⋃

j{(sx,j, sy,j)[αj ])} the conjunctive combination betweenR and S is defined

as

R⊗ S =
⋃

i{ (rx,i, ry,i)[γi] : (rx,i, ry,i)[αi] ∈ R ∧
(sx,j , sy,j)[βj ] ∈ S ∧ rx,i = sx,j ∧
ry,i = sy,i, γi = min(αi, βj)}
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Example 4. the conjunctive combination of the fRA relations

R = {(DC−, EQ)[0.3], (NTPPi,EQ)[0.7]} and S = {(DC−, EQ)[0.5],

(NTPPi,DC+)[0.7]} is

T = {(DC−, EQ)[0.3]}
Definition 6. given two fRA relations R =

⋃
i{(rx,i, ry,i)[αi])} and

S =
⋃

j{sx,j, sy,j)[βj ])} the composition between R and S is defined as

R ◦ S =
⋃

{(tx,i, ty,i)[min(αh, βk)]

h, k : (rx,h, ry,h) ◦ (sx,k, sy,k) = (tx,i, ty,i)}

composition between atomic relations is performed as in the case of classical

Rectangle Algebra taking into account the correspondences between I and R.

Example 5. the composition of R = {(DC−, EQ)[0.3]} and

S = {(NTPPi,DC+)[0.7]}

T = {(DC−, DC+)[0.3]

The fRA is an algebra, that is a set of relations closed under certain operations.

It is easy to see that inversion is closed, since every atomic relation in fRA has an

inverse. Also combinations give relations belonging to fRA, in fact the resulting

relations are formed by atoms in R coming from both or either operands. In

composition the disjunction of relations coming from the classical composition

of atomic relations is used, while preference degrees are computed by means of

max and min functions. Since classical RA is closed under composition also fRA

is closed.

2.2 The Fuzzy Cardinal Directions Algebra

When qualitative spatial positions between two points have to be described, a

natural way is to model them using cardinal directions. Frank suggested methods

for describing the cardinal direction of a point with respect to a reference point in

a geographic space, i.e., directions are in the form of “North”, “East”, “South”,

and “West” depending on the granularity [Frank, 1992]. He distinguishes between

two different methods for determining the different sectors corresponding to the

single directions: the cone-based method and the projection-based method. The

projection-based system consists of nine acceptance areas, one for each of the

directions plus a neutral zone EQ: C = {E,NE,N,NW,W, SW,S, SE,EQ}.
The projection-based approach describes these relations in terms of the Point

Algebra (PA) [Vilain et al., 1989] by specifying a point algebraic relation for each

of the two axes separately. This provides the projection-based approach with a

formal semantics and allows to define the Cardinal Directions Algebra, or CDA.
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Pair Name Pair Name

inverses

(>,=) E (<,=) W

(>,>) NE (<,<) SW

(=, >) N (=, <) S

(<,>) NW (>,<) SE

(=,=) EQ (=,=) EQ

Figure 3: Point-point spatial relations and their graphical representation.

Flexibility and uncertainty can be introduced also in CDA by assigning to

every atomic relation ri ∈ C a degree αi ∈ [0, 1], which tells the preference degree

of the corresponding assignment among the others, obtaining in this way a fuzzy

Cardinal Directions Algebra, or fCDA.

Definition 7. Let a and b be two points, then a fCDA constraint is defined as

R =
⋃

i

{(rx,i, ry,i)[αi])}

where rz,i, z ∈ {x, y}, i = {1, 2, 3} are basic Point Algebra relations {<,>,=}
and αi ∈ [0, 1] are the preference degrees of rz,i. Each disjunct (rx,i, ry,i)[αi] is

an atomic fCDA relation.

Due to the limited number of basic relations involved, each pair of relations

can be interpreted in a more natural way, as shown in [Fig. 3].

The operations on fCDA constraints are defined in a way analogous to what

is done for fuzzy RA, with the only difference that now the atomic relations

belong to PA2 and no more to R2.

3 Fuzzy Spatial Metric constraints

In [Condotta, 2000] metric spatial knowledge is represented by means of two

constraint networks 〈V,C〉, one for each coordinate, which limit the possible

distances between the variables in V . In this paper the constraints still limit the

distances between the variables, but there is an unique constraint network for

both coordinates. The variables therefore take values on R
2. Besides, a fuzzy

relation RP (Cij) : R × R → [0, 1] is associated to each constraint Cij between

variables vi and vj in V . [RP (Cij)](dx, dy) indicates to what extent an assignment

(vj |x − vi|x, vj |y − vi|y) = (dx, dy) satisfies the constraint Cij .
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Trapezoidal possibility distributions usually adopted in Fuzzy Temporal Net-

works [Maŕın et al., 1997] are extended here to two orthogonal dimensions. In

the following they will be called pyramidal distributions.

Definition 8. a pyramidal distribution is a pair of trapezoidal distributions plus

an associated preference degree: 〈Tx, Ty〉[α], α ∈ [0, 1]

In particular the normalized [see 2] version of possibility distributions proposed

in [Badaloni et al., 2004] is adopted; according to these authors, each Tz is de-

scribed by a 4-tuple of values, each describing four characteristic points of the

two orthogonal trapezoids in x and y.

Definition 9. a well-formed trapezoid T is a 4-ple �a, b, c, d� where a, b ∈
R∪{−∞}, c, d ∈ R∪{+∞},� is either ( or [ and� is either ) or ]. A trapezoidal

distribution T is allowed if and only if it satisfies the following conditions:

– a ≤ b ≤ c ≤ d

– if a = −∞ then b = −∞ ∧ � is (

– if a < b then � is (

– if a = d then � is [ ∧ � is ]

– if d = +∞ then c = +∞ ∧ � is )

– if c < d then � is )

Definition 10. the set of well-formed pyramidal distributions is denoted by P .

A metric constraint Cij , is a disjunction of pyramidal distributions:

Definition 11. A metric constraint Cij is a set of pyramidal distributions

Cij = {P1 · · ·Pn}

where Pk = 〈Tx,k, Ty,k〉[αk].

The semantics of a constraint Cij is identified by the possibility distribution

[RP (Cij)](x, y) = max
k=1···n

[RP (Pk)](x, y)

corresponding to the disjunction of pyramidal distributions RP (Pk) : R×R →
R and

[RPk
(Cij)](x, y) = min{[RTx,k

(Cij)](x), [RTy,k
(Cij)](y)}

[2] in the Fuzzy Set Theory a normalized possibility distribution is a distribution which
contains at least a preference degree equal to 1, that is fully plausible.
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Figure 4: Example of spatial metric constraint.

where

[RTz,k (Cij)](z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z < az,k ∨
(z = az,k ∧ � is () ∨
(z = dz,k ∧ � is )) ∨
z > dz,k

z−az,k

bz,k−az,k
if az,k < z < bz,k

z−dz,k
cz,k−dz,k

if cz,k < z < dz,k

1 otherwise

Example 6. as an example of metric constraint, on the right of [Fig. 4] a region
with an undefined boundary is represented and, on the left, a possible corre-
sponding fuzzy constraint. The fuzzy constraint could be expressed, in relative
coordinates, as

{〈(0, 5, 10, 15), (0, 3, 8, 11)〉[0.7], 〈(7, 10, 13, 16), (5, 8, 11, 14)〉[1.0]}

The height of the pyramidal distribution is not necessarily normalized to 1,

and this allows reasoning about preferences, truth of imprecise events, priorities

and so on [Dubois et al., 1996]. For instance, the user can set the possibility

degrees according to his own preferences using non-normalized distributions to

indicate partial inconsistency of constraints coming from unreliable information

sources.

3.1 Operations between metric constraints

For metric constraints the usual operations are provided:

Definition 12. given a metric constraint Cij = {P1, · · · , Pm} between variables

vi and vj , each disjunct of the inverse constraint C−1
ij is defined as

P−1
k = 〈�x − dx,k,−cx,k,−bx,k,−ax,k�x,

�y − dy,k,−cy,k,−by,k,−ay,k�y〉[αk]

Definition 13. given two metric constraints Cij = {P1, · · · , Pm} between vari-

ables vi and vj and C′
jw = {P ′

1, · · · , P ′
n} between variables vj and vw, the con-

straint Cij ◦C′
jw =

⋃
h P

′′
h is such that for any two disjuncts Pk = 〈Tx,k, Ty,k〉[αk]

∈ Cij and P ′
l = 〈T ′

x,l, T
′
y,l〉[αl] ∈ C′

jw

P ′′
h = 〈Tx,k ◦ T ′

x,l, Ty,k ◦ T ′
y,l〉[min{αk, αl}]
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where composition between trapezoidal distributions is defined as in

[Badaloni et al., 2004].

The disjunctive and the conjunctive combinations correspond to the usual set-

theoretic operations and can be obtained by reasoning about the orthogonal

projections, which are both trapezoids.

All operations between pyramidal possibility distributions involve pairs of

trapezoids and are applied independently on the orthogonal projections.

Definition 14. given two metric constraints Cij = {P1, · · · , Pm} and C′
ij =

{P ′
1, · · · , P ′

n} between vi and vj , the constraint Cij ⊕ C′
ij =

⋃
h P

′′
h is such that

for any two disjuncts Pk = 〈Tx,k, Ty,k〉[αk] ∈ Cij and P ′
l = 〈T ′

x,l, T
′
y,l〉[αl] ∈ C′

ij

P ′′
h = 〈Tx,k ⊕ T ′

x,l, Ty,k ⊕ T ′
y,l〉[max{αk, αl}]

Definition 15. given two metric constraints Cij = {P1, · · · , Pm} and C′
ij =

{P ′
1, · · · , P ′

n} between vi and vj , the constraint Cij ⊗ C′
ij =

⋃
h P

′′
h is such that

for any two disjuncts Pk = 〈Tx,k, Ty,k〉[αk] ∈ Cij and P ′
l = 〈T ′

x,l, T
′
y,l〉[αl] ∈ C′

ij

P ′′
h = 〈Tx,k ⊗ T ′

x,l, Ty,k ⊗ T ′
y,l〉[min{αk, αl}]

4 Qualitative and metric constraints

In [Condotta, 2000] Condotta proposed to build two constraint networks, one

for qualitative constraints and the other for metric constraints. In this paper the

idea used by Meiri to integrate temporal constraints [Meiri, 1996] is adopted: a

single network for both types of constraints.

4.1 Relations between Points and Regions

The first step to integrate metric and qualitative information is to define an

algebra that includes all the combinations that can occur between a point and a

(rectangular) region. There is therefore the need to find relations that link points

with regions. An intuitive way to do this is to extend in two dimensions the

Point-Interval relations coming from the temporal context. Being 5 the atomic

mono-dimensional relations between a point and an interval ([Fig. 5]), in the

spatial case there will be 52 = 25 atomic relations. In this paper the mono-

dimensional relations corresponding to the projections of a spatial relation on

an orthogonal axis will be named in a different way w.r.t. Meiri’s Point-Interval

relations:

Definition 16. the set of atomic Point Region relations is defined on the set

PR = {E−, T−, I, T+, E+}.
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Figure 5: Point-Region spatial relations.

Flexibility and uncertainty can be introduced in PR relations by assigning to

every atomic relation ri ∈ PR a degree αi ∈ [0, 1], which tells the preference

degree of the corresponding assignment among the others, and obtaining in this

way a set of fuzzy Point-Region relations, or fPR.

Definition 17. Let a be a point and b ∈ REC, then a fPR constraint is defined

as

R =
⋃

i

{(rx,i, ry,i)[αi])}

where rz,i, z ∈ {x, y}, i = {1, 2, 3} are PR relations and αi ∈ [0, 1] are the

preference degrees of rz,i. Each disjunct (rx,i, ry,i)[αi] is an atomic fPR relation.

Also fPR relations can be interpreted in a more natural way; besides the

atomic relations in C, with their 9 standard names, 16 additional relations have

been added; they have been named as in [Tab. 1].

4.2 The Fuzzy Spatial Qualitative Algebra (fSQA)

Once the fuzzy Point-Region relations have been defined, an algebra that encloses

all the fuzzy relations between Points and Regions can be defined; it will be called

Fuzzy Spatial Qualitative Algebra or fSQA.

Definition 18. the Fuzzy Spatial Qualitative Algebra fSQA is given by

fRA ∪ fCDA ∪ fPR

wherefRA is the fuzzy Rectangle Algebra, fCDA the fuzzy Cardinal Direc-

tions Algebra and fPR is the fuzzy Point Region set.

The fSQA algebra is closed under the inversion, intersection and composition

operations; inversion and intersection for Arec and fCDA relations concern

operands coming from the same algebra, and these have already been defined
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before. As far as fPR relations are involved, inverse fPR relations are denoted

by adding a suffix “i” to the corresponding relations in PR (for example, given

a region a and a point b if a tNE b then b tNEi a), while disjunctive and

conjunctive combination operations are defined as follows.

Definition 19. given two fPR relations R =
⋃

i{(rx,i, ry,i)[αi])} and S =⋃
j{(sx,j, sy,j)[βj ])} the disjunctive combination between R and S is defined

as

R⊕ S =
⋃

i

{(rx,i, ry,i)[γi] : (rx,i, ry,i)[αi] ∈ R ∧

(sx,j , sy,j)[βj ] ∈ S ∧ rx,i = sx,j ∧
ry,i = sy,j, γ = max(α, β)}

Definition 20. given two fPR relations R =
⋃

i{(rx,i, ry,i)[αi])} and S =⋃
j{(sx,j, sy,j)[βj ])} the conjunctive combination between R and S is defined

as

R⊗ S =
⋃

i

{(rx,i, ry,i)[γi] : (rx,i, ry,i)[αi] ∈ R ∧

(sx,j , sy,j)[βj ] ∈ S ∧ rx,i = sx,j ∧
ry,i = sy,j, γ = min(α, β)}

The composition operation may involve operands belonging to different algebras,

and therefore it is defined in terms of a combined composition table which takes

into account all possible combinations between a point and a region; preference

degrees are again obtained by means of a “max-min” weighting. [Tab. 2] shows

all these combinations; the symbol “∅” denotes illegal combinations.

Definition 21. given two fSQA relations R =
⋃

i{(rx,i, ry,i)[αi])} and S =⋃
j{sx,j, sy,j)[βj ])} the composition between R and S is defined as

R ◦ S =
⊕

(tx,i, ty,i)[min(αh, βk)]

h, k : (rx,h, ry,h) ◦ (sx,k, sy,k) = (tx,i, ty,i)

where the composition between atomic relations (rx,j , ry,j) and (sx,k, sy,k) is

given by [Tab. 2].

Table TCDA is the transitivity table of CDA Algebra [Frank, 1992]. TRA the

transitivity table of the Rectangle Algebra [Balbiani et al., 1998], which can be

replaced by a double look-up in the IA transitivity table [Allen, 1983], one for

each of the two orthogonal components of an RA relation.

The remaining tables are analogous to those proposed in [Meiri, 1996] con-

sidering the correspondences between temporal and spatial relations discussed

before ([Fig. 1] and [Fig. 5]) but have not been reported here for space limits.
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Table 1: relations for fPR interpretation.

Pair Name Pair Name Pair Name

(E+, I) E (E+, T−) ESE (T+, I) tE

(E+, E+) NE (E+, T+) ENE (T+, T+) tNE

(I, E+) N (T+, E+) NNE (I, T+) tN

(E−, E+) NW (T−, E+) NNW (T−, T+) tNW

(E−, I) W (E−, T+) WNW (T−, I) tW

(E−, E−) SW (E−, T−) WSW (T−, T−) tSW

(I, E−) S (T−, E−) SSW (I, T−) tS

(E+, E−) SE (T+, E−) SSE (T+, T−) tSE

(I, I) In

4.3 Transformation functions

Having defined the possibility distributions of the metric constraints as a combi-

nation of two trapezoidal distributions along two orthogonal axes and having said

that (fuzzy) CDA relations are formed by PA relations along orthogonal axes,

the transformation functions introduced originally in [Meiri, 1996] and extended

then in [Badaloni et al., 2004] in order to be applied to trapezoidal distributions

can be easily defined.

More specifically a (qualitative) fCDA constraint can be transformed in a

metric constraint by applying the QUANfuz to both its components (which are

PAfuz relations)

Definition 22. given a fCDA constraint R =
⋃

i{(rx,i, ry,i)[αi])} the function

fQUAN2(R) : fCDA → P is defined as

⋃

i

{〈QUANfuz(rx,i),QUANfuz(ry,i)〉[αi]}

Example 7. The fCDA constraint R = {(<,<)[0.5], (<,=)[0.3]} becomes a

pyramidal distribution fQUAN2(R) = {〈(0, 0,+∞,+∞), (0, 0,+∞,+∞)〉[0.5],
〈(0, 0,+∞,+∞), [0, 0, 0, 0]〉[0.3]}.

Table 2: transitivity table of SQA

CDA PR RP RA

CDA TCDA TCDA◦PR ∅ ∅
PR ∅ ∅ TPR◦RP (T

RP (TCDA◦PR)
T TRP◦PR ∅ ∅

RA ∅ ∅ (TPR◦RA)
T TRA
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On the other hand, if C =
⋃

i〈Ti,x, Ti,y〉[αi] is a metric constraint then it can

be transformed in a qualitative constraint by applying the QUALfuz to both

components Ti,x and Ti,y of each disjunct (which are trapezoids).

Definition 23. the function fQUAL2(R) : P → fSQA is defined as

fQUAL2(R) = 〈
⋃

i

{QUALfuz(Ti,x[αi])},
⋃

i

{QUALfuz(Ti,y[αi])〉

Example 8. The metric constraint C = {〈(−5, 5, 10, 15), (0, 3, 6, 9)〉[0.5]}becomes

the fCDA constraint fQUAL2(C) = 〈(< [0.5],= [0.25], > [0.25]), (< [0.5])〉.

It can be noticed that the explicit representation of different kinds of extremes,

open, closed or unbounded, is essential to define such transformation functions,

since they require generalized trapezoids.

By means of the concepts introduced above, spatial networks whose variables

can represent both points and rectangular regions, and whose edges are accord-

ingly labelled by qualitative and quantitative fuzzy spatial constraints can be

modelled.

In particular, as in [Badaloni et al., 2004], Point-Point metric constraints are

maintained in a numerical form as long as possible, while Region-Region and

Point-Region constraints are necessarily qualitative, that is they are modelled

as fRA and fPR relations, respectively.

On the basis of these considerations it is possible to define the operations

involving all kinds of constraints introduced so far. Since metric constraints

can be defined only between points, the definitions of the operations between

qualitative and metric constraints can be limited, without loss of generality, to

the following cases:

Definition 24. given a metric constraint Cij and a qualitative constraint C′
ij

between variables vi and vj their disjunctive combination is

Cij ⊕ C′
ij = Cij ⊗ fQUAN2(C′

ij)

Definition 25. given a metric constraint Cij and a qualitative constraint C′
ij

between variables vi and vj their conjunctive combination is

Cij ⊗ C′
ij = Cij ⊗ fQUAN2(C′

ij)
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Definition 26. given a metric constraint Cij between variables vi and vj and

a qualitative constraint C′
jk /∈ fPR between variables vj and vk their metric

composition is

Cij ◦ C′
jk = Cij ◦ fQUAN2(C′

jk)

Definition 27. given a metric constraint Cij between variables vi and vj and a

qualitative constraint C′
jk ∈ fPR between variables vj and vk their qualitative

composition is

Cij ◦ C′
jk = fQUAL2(Cij) ◦ C′

jk

In this last case since only fCDA relations can be transformed in metric

constraints the operation must be performed in a qualitative way. By means

of these operations, an integrated qualitative-metric Fuzzy Spatial Constraint

Network N = (V,E) can be defined: V is a set of points and regions and E is a

set of qualitative and metric fuzzy spatial constraints between them.

5 Reasoning about space

5.1 Algorithms and complexity

Given a qualitative-metric Fuzzy Spatial Constraint Network (FSCN), the most

interesting reasoning tasks are finding an optimal solution, determining the de-

gree of consistency and finding the minimal network. The network can be mod-

elled as an instance of the Constraint Satisfaction Problem (CSP) and solved

using “generate and test” and backtracking algorithms which, however, are very

inefficient (these algorithms are exponential). To improve efficiency of the back-

tracking algorithm it is possible to use a forward checking step to eliminate

inconsistent or redundant relations. Moreover, it is possible to prune sub-trees

of the search space that cannot lead to a satisfaction degree better than the

current optimal one, thus obtaining eventually a Branch & Bound algorithm.

An algorithm that can be applied in the forward checking phase is Path-

Consistency (PC) [Dechter et al., 1991], which is polynomial. This method is

complete if the set of relations is closed under the operations of inversion, inter-

section and composition, as in the case of fSQA, and that the composition is

not weak ; the last requirement is satisfied by singleton labelled networks or by

strongly convex relations [Balbiani et al., 1999].

Given a constraints networkN = (V,C), PC method consists in replacing, for

every triple of variables vi, vj , vk, the constraints Cij with the relation obtained

by applying the relaxation

Cij ⊗ (Cik ◦ Ckj) (1)
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until a fix point is reached; if the empty relation is found the network is not

consistent.

A prototype of a constraint solver for FSCNs has been implemented in Pro-

log using Constraint Handling Rules (CHRs) [Frühwirth, 1998], an extension of

the Constraint Logic Programming (CLP) which facilitate the definition of con-

straint theories and algorithms to solve them. CHRs have been developed for

many of the major Prolog distributions.

Relations and composition tables have been implemented as Prolog facts,

which are automatically indexed by the language, while for Path Consistency

CHR rules have been exploited. The intersection part of Formula (1) corresponds

to the following simplification rule in CHR:

ctr(I, J,Rel1), ctr(I, J,Rel2) ⇔
inters(Rel1, Rel2, Rel3)

| ctr(I, J,Rel3)

which means that if two relations Rel1 and Rel2 between the variables I

and J match the head of the rule on the left of the symbol “⇔” and the guard

predicate between the symbols “⇔” and “|” is satisfied, then the new relation

R3 replaces the matched relations between the same variables.

The composition part of Formula (1) has been implemented with the follow-

ing propagation rule:

ctr(I, J,Rel1), ctr(J,K,Rel2) ⇒
I < J,K �= I,K �= J, compos(Rel1, Rel2, Rel3)

| ctr(I, J,Rel3)

this means that if two relations Rel1 and Rel2 between the variables I, K

and K, J respectively match the head of the rule on the left of the symbol “⇒”

and the guard predicates between the symbols “⇒” and “|” are satisfied, then

the new relation R3 is added between variables I and J .

The non-determinism implicit in Prolog language has been used to automat-

ically backtrack from inconsistent assignments during computation.

5.2 Application example

As application example, the problem of siting a nuclear power plant will be con-

sidered. In the siting of a nuclear power plant, the aim is to protect the plant

against external threats as well as to minimize any environmental detriments

and threats that might arise from it [AA.VV., 2000]. Other factors to be consid-

ered include: impact on land use, socio-economic impacts, traffic arrangements,
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Figure 6: map for the application example.

reliable electric power transfer to the national grid and specific factors relating

to the security of supply of electric power.

The problem will be simplified in order to show the expressiveness of the

reasoning system without introducing too much complexity, therefore in the

scenario just the following constraints will be considered:

- the plant site must be surrounded by a protective zone extending to about

5km;

- it must be at least 5km far from populated areas;

- it must not be in a seismic area;

- it must not be in an area prone to floods.

The map that will be used is shown in [Fig. 6], where Point 1 is the center

of a populated area whose radius extends for about 15km and Region 10 is a

seismic area. The aim is to find, if possible, two areas 4 and 5 for the plant and

the nuclear waste storage, both located at least 5km away from the boundary of

the populated area and from zones prone to floods; moreover, both areas must

be in non-seismic locations. The total area must be enclosed by a square with

sides each 30-35Km.

Starting from information given, 10 significant entities plus an origin can be

identified and therefore the problem can be modelled in a graph with 11 vertices:

0. the origin for the relative coordinates;
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1. the center of the populated area;

2. the maximal extension of the populated area;

3. the reference point for reasoning about zones prone to flood;

4. the first area, far from population and seismic zones;

5. the second area, far from zones prone to flood;

6-9. the boundaries of areas 4 and 5;

10. the seismic area.

There are 17 constraints that describe the scenario and that can be derived

from the map; in the following the symbol “I” will indicate the disjunction of

all the possible basic relations, that is indeed a constraint that does not limit

anything. Some examples:

1. “the plant site must be surrounded by a protective zone extending to about

5km” (constraint between two points):

6 {〈(8, 10, 10, 12), (−12,−10,−10,−8)〉} 7

2. “Area 5 must not be in a seismic zone” (constraint between a point and a

region):

9 {(I,DC−)} 10

3. “Area 5 must be at least 10km away from zones prone to floods” (semi-

unbounded constraint between two points):

9 {〈(8, 10,+∞,+∞), (8, 10,+∞,+∞)〉} 3

4. “The total area must be enclosed by a square with sides each 30-35Km”

(constraint between two points):

6 〈(28, 30, 35, 37), (18, 20, 25, 27)〉} 9

5.3 Solving the problem

The solutions of the FSCN problem modelled above can be obtained applying

a Branch & Bound algorithm, as said in Subsection 5.1. The inferred absolute

coordinates are:

– 0 {〈(−∞,−∞,−5, 1), (−∞,−∞, 0, 8)〉} 6

– 0 {〈(−∞,−∞, 5, 13), (−∞,−∞,−10, 0)〉} 7
– 0 {〈(−∞,−∞, 15, 21), (−∞,−∞, 10, 24)〉} 8
– 0 {〈(−∞,−∞, 25, 29), (−∞,−∞, 20, 36)〉} 9

A possible solution is represented in [Fig. 7]; dotted rectangles represent the

ranges of the areas extremes (core values).
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Figure 7: a solution of the considered scenario.

6 Conclusions

A general constraints satisfaction framework for Spatial Reasoning able to man-

age fuzzy spatial constraints involving qualitative points qualitative regions and

metric points has been presented.

Rectangle Algebra and Cardinal Direction Algebra have been extended with

the Fuzzy Sets Theory and a new set of 25 Point-Region relations has been

defined in order to build an integrated Spatial Qualitative Algebra (SQA) which

involves points and regions. Metric spatial constraints can be imposed between

points and are modelled using fuzzy pyramidal possibility distributions. Metric

and qualitative constraints are managed within a single constraint network and

are transformed one into another when needed.

As the small application example reported at the end has shown, metric con-

straints allow describing more expressive scenarios while maintaining flexibility

useful to take into account impreciseness and vagueness.
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