
Toward an Integrated Tool Environment for Static

Analysis of UML Class and Sequence Models

Wuliang Sun1

(Colorado State University, Fort Collins, CO, USA
sunwl@cs.colostate.edu)

Eunjee Song2, Paul C. Grabow
(Baylor University, Waco, TX, USA

{eunjee song, paul grabow}@baylor.edu)

Devon M. Simmonds
(University of North Carolina at Wilmington, Wilmington, NC, USA

simmondsd@uncw.edu)

Abstract: There is a need for more rigorous analysis techniques that developers can
use for verifying the critical properties in UML models. The UML-based Specification
Environment (USE) tool supports verification of invariants, preconditions, and post-
conditions specified in the Object Constraint Language (OCL). Due to its animation
and analysis power, it is useful when checking critical non-functional properties such
as security policies. However, the USE requires one to specify a model using its own
textual language and does not allow one to import any model specification files created
by other UML modeling tools. Hence, you would create a model with OCL constraints
using a modeling tool such as the IBM Rational Software Architect (RSA) and then
use the USE for the model verification. This approach, however, requires a manual
transformation between two different specification formats, which diminishes advan-
tage of using tools for model-level verification. In this paper, we describe our own
implementation of a specification transformation engine based on the Model-Driven
Architecture (MDA) framework. Our approach currently supports automatic tool-level
transformations to USE from UML modeling tools built on the Eclipse-based Modeling
Framework (EMF).
Key Words: Model Transformation, MDA, XMI, OCL, Model Analysis, USE
Category: D.2.1, D.2.2, D.2.4.

1 Introduction

Over past years, modeling itself has evolved to address new challenges such
as model testing, model validation and verification, model transformation, and
metamodel extensions for domain-specific languages (DSLs). Therefore, a tradi-
tional (old-style) way of modeling that was often treated simply as diagramming,
can not properly convey the essential information required for a rigorous system
analysis and design. To achieve the necessary expressiveness and to avoid ambi-
guity, a formal language can be used with the diagrams. However, it is not easy
for one who has no strong background in mathematics to use formal languages.
1 Work done primarily while at Baylor University.
2 Corresponding Author

Journal of Universal Computer Science, vol. 16, no. 17 (2010), 2435-2454
submitted: 15/2/10, accepted: 30/8/10, appeared: 1/9/10 © J.UCS

The Object Constraint Language (OCL) is a textual declarative language
for describing rules applied to models and is an important supplement for the
Unified Modeling Language (UML), providing expressions that have neither the
ambiguities of natural language nor the inherent difficulty of using complex
mathematics [Object Management Group (OMG), 2006]. During software de-
velopment, constraints can be written in OCL to supply complementary infor-
mation at a conceptual level, to achieve higher precision and accuracy within
the model and to improve the expressiveness of certain artifacts in the analysis
and design phases [Toval et al., 2003]. Because of OCL’s importance in model
validation and verification, most of UML tools support the OCL nowadays, but
are typically limited to storing and presenting constraints. For example, IBM’s
Rational Software Architect (RSA) [Leroux et al., 2006] is a powerful UML tool
which integrates comprehensive modeling features with a standard Java/J2EE
development IDE. However, for the OCL, RSA only provides syntax highlight-
ing, content assist, and syntax parsing [Leroux et al., 2006] while many other
OCL tools, such as OCLE [Chiorean, 2001] and the UML-based Specification
Environment (USE) [Gogolla et al., 2007], have been used for analysis. Com-
pared to UML modeling tools such as RSA, these OCL tools are more capable
of validating a UML class model by evaluating its OCL constraints.

One advantage that USE has over other OCL tools, is that USE provides a
facility allowing users to interactively simulate the system behavior by entering
commands that change various system states (configurations or snapshots). USE
checks the system states at the end of a snapshot simulation by checking whether
the operation’s postcondition holds or not. USE has been used in many static
model analysis projects because of its interactive simulation power, but “being
interactive” means “manual” as well. Therefore, the simulation and analysis can
be very time consuming and error-prone. Another drawback of USE is that every
model must be manually translated into a textual specification written in the
USE-specific language before the analysis even if models and constraints have
already been created by an existing UML modeling tool. Therefore, to take ad-
vantage of both tools, we would first use a UML tool such as IBM RSA to create
the model with OCL constraints, and then perform a manual transformation
between the specifications of the two different tools. As commonly observed,
manual transformations are time-consuming and error-prone. To address these
problems, we propose an architecture for an integrated tool environment for
static analysis of UML models and also describe our implementation of an au-
tomated transformation from an EMF-based modeling tool (e.g., RSA) to USE.
Our approach is built based on the Model Driven Architecture (MDA) frame-
work [Kleppe et al., 2005] so that we can easily integrate additional tools into
our current tool environment.

The remainder of this paper is structured as follows: Section 2 summarizes

2436 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

related work in the area of model transformation and modeling/analysis tool
support, Section 3 presents a transformation example and describes an overview
of our XMI-to-USE transformation, Section 4 explains how the USE metamodel
can be generated for our MDA-based transformation, Section 5 defines the trans-
formation by describing the source and target metamodels and the mapping rules
between them, and finally Section 6 draws conclusion and identifies future work.

2 Related Work

XMI is an OMG standard for exchanging metadata information via the Exten-
sible Markup Language (XML). It can be used for any model whose meta-model
can be expressed using the Meta-Object Facility (MOF) [Kleppe et al., 2005,Ob-
ject Management Group (OMG), 2005]. The most common use of XMI is as an
interchange format for UML models [Toval et al., 2003]. IBM RSA is the latest
generation Rational modeling tool which provides the important features of the
previous generation of Rational modeling tools, integrates comprehensive model-
ing features, and uses a standard Java/J2EE development IDE. RSA is based on
the Eclipse Modeling Framework (EMF) technology, which provides a generic
customizable XML or XMI resource implementation. More importantly, EMF
provides the foundation for interoperability among EMF-based tools and appli-
cations. RSA diagrams can be used to edit and display models derived from any
EMF-based meta-model. The combination of RSA and EMF provides a powerful
capability for integrating domain-specific languages (DSLs) with UML in a sin-
gle tool set for design and development. RSA supports the XMI format (version
2.0) specification and allows a user to import and export a UML XMI model
specification [Leroux et al., 2006].

There are several OCL tools that support an XMI or XML specification. The
Dresden OCL compiler [Hussmann et al., 2002] supports code generation by al-
lowing the compilation of the OCL into Java code. For this tool, one can load
the UML model from an XMI file (version 1.2) generated by the Argo/UML
tool [Tigris.org, 2009]. The ModelRun tool [Boldsoft, 2002] allows interactive
verification of OCL properties and can load the UML model from the files cre-
ated by other tools such as Rose 2000. The OCLE [Chiorean, 2001] provides
model validation against methodological, profile or target implementation lan-
guage rules expressed in OCL. Also, the OCLE supports UML model exchange
using XMI (version 1.0 or version 1.1). However, these OCL tools cannot eval-
uate whether the object model of the system conforms to the OCL constraints
defined in the class model of the system.

USE [Gogolla et al., 2007] [Database Systems Group, 2007] is an OCL tool
that has been used both in research and in industry for validating models with
constraints thanks to its powerful snapshot generation feature. In USE, a snap-
shot shows a system state of the specified system at a particular point in time.

2437Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

As a system evolves, a sequence of system states is produced. For each snapshot,
the OCL constraints are automatically checked and system state information is
given as graphical views. USE can also be employed to animate the model by
creating the sequence diagram and thus analyze it according to the system’s
requirement expressed using OCL constraints (invariants and pre- and postcon-
ditions). Additional OCL expressions can be entered and evaluated to query
a system state and sequence diagram operations in a model can be visualized
and evaluated as well. Karsten et al. [Sohr et al., 2005], for example, have used
USE to validate authorization constraints in UML models. However, USE uses
its own textual specification as the only input and cannot import or export the
XMI specification for sharing model information (including constraints) with
other UML tools.

The model transformation framework in MDA defines a model transforma-
tion by mapping each metamodel element (i.e., each language construct) of the
source language into a metamodel element of the target language. [Kleppe et al.,
2005]. The source and target model can be written in the same language (e.g., for
refactoring), but this framework can be applied to a transformation between two
different languages as well [Kleppe et al., 2005]. For example, Denis et al. [Den-
nis et al., 2004] use Alloy [Jackson, 2002] to validate the radiation therapy ma-
chine designed by UML using a manual translation from UML to Alloy. Kyr-
iakos [Anastasakis et al., 2007] and Bordbar [Bordbar and Anastasakis, 2005]
propose model-based techniques for the automated transformation of UML class
diagrams with OCL constraints to Alloy code. Motivated by the work in [Anas-
tasakis et al., 2007] and [Bordbar and Anastasakis, 2005], we have used an MDA
technique to implement a transformation from the XMI specification (exported
from RSA) to USE specification.

This paper is an extension of our previous work [Sun et al., 2009] that has
supported the transformation only from RSA to USE, but now we have gener-
alized our transformation mapping so that it can support more tools as long as
they are based on the EMF and supports models that conform to the UML v2.0
(or higher) and the OCL v2.0. So far we have tested the following tools: IBM’s
Rational Software Architect (RSA), Rational Software Modeler (RSM) and Bor-
land’s Together. Our extension includes the support for more model types as well.
Only class models were supported earlier, but now our transformation preserves
the information that specifies object models and sequence models.

3 Transformation Overview

Fig. 1 shows a UML Model Company with its OCL constraints (borrowed from
[Database Systems Group, 2007]) that we created using an EMF-based modeling
tool, RSA. This example includes three classes, i.e., Project, Employee and
Department. To achieve greater precision and accuracy with the model, we add
OCL constraints that are defined as the following four invariants:

2438 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Figure 1: Company Model

– // The number of employees working in a department must be greater or
// equal to the number of projects controlled by the department.
context Department inv MoreEmployeesThanProjects:
self.employee->size() >= self.project->size()

– // Employees get a higher salary when they work on more projects.
context Employee inv MoreProjectHigherSalary:
Employee.allInstances()->forAll(e1, e2: Employee |
e1.project->size() > e2.project->size() implies e1.salary > e2.salary)

– // The budget of a project must not exceed the budget of the controlling
// department.
context Project inv BudgetWithinDepartmentBudget:
self.budget <= self.department.budget

– // The employees working on a project must also work in the controlling
// department.
context Project inv EmployeesInControllingDepartment:
self.department.employee->includesAll(self.employee)

Using RSA, we have exported the model in Fig. 1 as an XMI specification.
Fig. 2 shows a portion of the generated XMI specification that includes the
model information exported by RSA and is the source for our transformation.
A portion of the XMI specification given in Fig. 2 defines the class Employee of
the Company model in Fig. 1, as exported from RSA. Line 1 indicates that the
class element has an attribute xmi:type with value uml:Class, which specifies the
class element as a UML class. Also, the class element has an attribute name with
value Employee. Lines 2–7 specify a constraint element that belongs to the outer
class element. With an attribute xmi:type and the value uml:Constraint, line 2
specifies this element as a UML constraint. Line 4 specifies the language of the
constraint and line 5 preserves the content of the constraint. Lines 8–15 specify
two association end elements, one with the name project (class Project) and the
other with the name department (class Department). Lines 16–21 specify two
class attributes, name and salary, with type String and Integer, respectively.

Fig. 3 is the resulting USE specification of the Company model shown ear-
lier in Fig. 1. A USE specification contains a textual description (classes, asso-

2439Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

<packageElement xmi:type="uml:Class"xmi:id="_cM−2XhbyEd2PjtdFhWRrAg" name="Employee">
<ownedRule xmi:type="uml:Constraint" xmi:id="_cM−2XxbyEd2PjtdFhWRrAg" name="MoreProjectsHigherSalary"

<ownedAttribute xmi:type="uml:Property" xmi:id="_cM−2YRbyEd2PjtdFhWRrAg" name="project"

<ownedAttribute xmi:type="uml:Property" xmi:id="_cM−2ZBbyEd2PjtdFhWRrAg" name="department"

<lowerValue xmi:type="uml:LiteralInteger" xmi:id="_cM−2ZhbyEd2PjtdFhWRrAg" value="1"/>

<ownedAttribute xmi:type="uml:Property" xmi:id="_cM−2ZxbyEd2PjtdFhWRrAg" name="name" visibility="private">

value="*"/><upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_cM−2ZRbyEd2PjtdFhWRrAg"

name="salary"<ownedAttribute xmi:type="uml:Property" xmi:id="_cM−2aBbyEd2PjtdFhWRrAg" visibility="private">

value="*"/><upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_cM−2YhbyEd2PjtdFhWRrAg"

constraintElement="_cM−2XhbyEd2PjtdFhWRrAg">

implies e1.salary > e2.salary)</body>

</ownedRule>

<specification xmi:type="uml:OpaqueExpression" xmi:id="_cM−2YBbyEd2PjtdFhWRrAg">

</specification>

<language>OCL</language>
<body>Employee.allInstances()−>forAll(e1, e2:Employee|e1.project−>size() > e2.project−>size()

visibility="private" type="_cM−2aRbyEd2PjtdFhWRrAg" association="_cM−2ghbyEd2PjtdFhWRrAg">

<lowerValue xmi:type="uml:LiteralInteger" xmi:id="_cM−2YxbyEd2PjtdFhWRrAg"/>
</ownedAttribute>

visibility="private" type="_cM−2dhbyEd2PjtdFhWRrAg" association="_cM−2gxbyEd2PjtdFhWRrAg">

</ownedAttribute>

<type xmi:type="uml:PrimitiveType" href="http://schema.omg.org/spec/UML/2.1.1/uml.xmi#String"/>
</ownedAttribute>

</ownedAttribute>
<type xmi:type="uml:PrimitiveType" href="http://schema.omg.org/spec/UML/2.1.1/uml.xmi#Integer"/>

</packagedElement>

Figure 2: A Portion of the XMI Specification Exported from RSA

between

end

Department[1]
Project[*]

association Controls

class Department
attributes

name : String
location : String
budget : Integer

end

association WorksOn
between

Employee[*]
Project[*]

association WorksIn
between

Employee[*]
Department[1..*]

end

class Employee
attributes

name : String
salary : Integer

end

model Company

class Project
attributes

name : String
budget : Integer

end

end context Project inv EmployeesInControllingDepartment:
self.department.employee−>includesAll(self.employee)

context Department inv MoreEmployeesThanProjects:

context Project inv BudgetWithinDepartmentBudget:

constraints

self.employee−>size >= self.project−>size

Employee.allInstances−>forAll(e1,e2|
e1.project−>size > e2.project−>size

implies e1.salary > e2.salary)

self.budget <= self.department.budget

context Employee inv MoreProjectsHigherSalary:

Figure 3: USE Specification of Company Model

ciations, attributes, operations and constraint) of a UML model. The textual
description of the model is readable only by the USE tool and does not conform
to any other exchangeable specification standard [Toval et al., 2003]. Importing
a specification into the USE tool allows us to verify a given source model against
the OCL constraints that we specified using RSA.

Fig. 4 gives an architectural overview of our integrated tool environment for
the static analysis of UML models. Our current work only supports class, object
and sequence models. UML class models with OCL constraints, object models
and sequence models are specified using an EMF-based modeling tool (e.g., RSA)
and exported as an XMI specification that contains the model information of

2440 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Figure 4: Integrated Tool Environment Architecture for the Static Analysis of
UML Class/Sequence Models

different types of models. Our transformation tool XMI2USE takes an XMI
specification as the source input and produces the following three target artifacts:
a) a USE specification, b) relevant sequence diagram generation commands, and
c) relevant object diagram generation commands. Those two types of diagram
generation commands should be produced by XMI2USE because the generated
USE specification only contains the information and OCL constraints related to
the class model. The object diagram generation commands are used by USE for
generating object models that represent instances of the class model defined in
the USE specification, i.e., states or snapshots of the given class model, while
the sequence diagram generation commands are used for generating sequence
models that are dependent on the operations of the class model in the USE
specification and the object models, respectively. When USE is used without
our integrated tool environment for verifying a UML model over given OCL
constraints, users would manually type a series of commands in the command
line to generate the objects and sequence diagrams interactively. In our approach,
we can build our own object/sequence models using a modeling tool and have
the XMI2USE generate all relevant commands automatically so that USE can
produce the required models. An example of commands generating sequence
models will be described in Section 5.2. As shown in Fig. 4, our transformation
engine, XMI2USE, should be an implementation of the mapping between the
UML and OCL metamodels supported by the EMF-based modeling tool being
used and the UML and OCL metamodels supported by USE. In other words,
from the given XMI specification exported by the EMF-based modeling tool,
XMI2USE generates a corresponding USE specification that the USE tool can

2441Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Figure 5: Grammarware-to-Modelware Framework Overview (from [Wimmer
and Kramler, 2006])

import to create its own UML model with OCL constraints.
In this paper, we use the term mapping as a synonym for correspondence

between the elements of two metamodels. Note that both the source model and
the target model are instances of the UML metamodel. However, as illustrated in
Fig. 4, the source model is an instance of the UML/OCL 2.0 metamodel and the
target model is an instance of the UML/OCL 1.3 metamodel. In addition, the
USE tool only supports class diagrams, object diagrams, and sequence diagrams.
Therefore, it is necessary to find a subset of UML/OCL 1.3 metamodel that is
supported by the USE. We call this process transformation scoping and the
scoped source/target metamodels help us to define transformation mappings to
elements that the USE tool can handle. To guide the transformation scoping,
we borrow the idea of marks described in [Object Management Group (OMG),
2003]. In [Object Management Group (OMG), 2003], a mark indicates how the
element in the PIM (platform-independent model) is to be transformed to the
PSM (platform-specific model) and the relevant platform knowledge typically
guides one to mark models. In our approach, we refer to the USE specification
metamodel (to be described later in Section 4) to find the marks that will help
in defining the transformation mapping between two different metamodels.

4 Generating the USE Specification Metamodel

In the MDA framework, the transformation is defined as a collection of mapping
rules between the language constructs of the source and target metamodels.
However, the USE language is defined in the EBNF grammar [Database Sys-
tems Group, 2007], and is therefore not compatible with the MDA framework.
To solve this problem, we generate the USE metamodel from its EBNF represen-
tation using a generic grammarware-to-modelware bridge approach presented in
[Wimmer and Kramler, 2006]. Fig. 5 presents an overview of the Grammarware-
to-Modelware framework [Wimmer and Kramler, 2006]. The main contribu-
tion of their work is to find correspondences between concepts of EBNF and

2442 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

classname:String

Associationend
<<sequence>>

1
1 1

1
1..*

1

1 1

enumerationname:String

classname:String

1

1

modelname:String
Umlmodel

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

11

0..1

1

1

1
1

1
1

1

1

1
1

associationname:String

<<enumeration>>
Classtype
abstract

associationtype:Associationtype rolename:String

attributename:String

<<sequence>>
Operation

<<option>>
Option

classtype:Classtype

association

variablename:String

classname:String<<repetition>>
Repetition

Alternative

Associationdefinition

Multiplicity

<<alternative>> <<sequence>>
Rolename

Associationclassdefinition
classname:String

Enumerationdefinition

<<alternative>>
Pre/Postcondition

Preconditiondefinition

Preconditionname Booleanoclexpression Invariantdefinition

Invariantname

<<repetition>>
Pre/Postcondition

<<repetition>>
Pre/Postcondition

Oclexpression

Operationcontext

T_Classtype

Invariantcontext

Constraintdefinition

<<sequence>>
Variablename

<<enumeration>>
Associationtype

<<alternative>>

Invariantdefinition

Type

Classdefinition

Modelbody

Operationconstraints

Operationdeclaration

Postconditionname

Postconditiondefinition

10..10..*
1

0..*

0..*

0..1

0..*

0..* 1..*

0..1

1

1
1

1
0..1 1 1

1

0..*

0..1

2..*

+{ordered}

0..*

composition
aggregation

0..* +{ordered}

0..1

1

2..* +{ordered}

<<sequence>>
Attribute

attributename:String

1

1

Associationtype

0..1

Figure 6: Metamodel of the USE Specification

MOF [Object Management Group (OMG), 2005] and to utilize the correspon-
dence to define bridges between EBNF and MOF as transformation rules. Be-
cause EBNF is a reflexive language, EBNF can be described in EBNF. Therefore,
their approach constructs a grammar for EBNF, which can be used by a com-
piler as input. The complier generates a parse, Grammar Parser (GP), that
can convert grammars defined in EBNF into Raw Metamodels (RawMMs).
The GP then can be used to generate another parser, Program Parser (PP),
for programmers, as shown in Fig. 5. Using the PP , a program can be trans-
formed into a Raw Model (RawM). Both parsers are automatically generated
from grammars and from the correspondences between EBNF and MOF.

The RawMM from the EBNF grammar can be generated directly based on
seven production rules, described in [Wimmer and Kramler, 2006]. These rules
map the major EBNF expressions, such as non-terminal, terminal, sequence, al-
ternative, repetition and option, into their corresponding metamodel elements.
To map EBNF expressions onto the corresponding metamodel elements, [Wim-
mer and Kramler, 2006] introduces an “anonymous” class which does not have a
meaningful name and could have a stereotype <<sequence>>, <<repetition>>,
<<option>> or <<alternative>>.

Fig. 6 shows the USE metamodel that we generated and used for getting rel-
evant excerpts of the target UML metamodel for USE. Note that the RawMM

can grow very large in terms of number of classes because the introduction of
“anonymous” class unavoidably increases the number of the classes and results
in a complex RawMM that is not convenient for a user to analyze. To ad-
dress this drawback, [Wimmer and Kramler, 2006] introduces four optimization
rules that are applied to the RawMM to reduce the number of classes, the
outcome of which is a Condensation Metamodel (CondMM) and a Change

2443Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Model (ChangeM). The ChangeM is used to simplify the RawMM , creating
CondMM . These four optimization rules can be executed on the RawMM in
depth-first order. We have found that their approach could cause some model
information (i.e., one-to-many association) to be lost when those optimization
rules are applied on the RawMM of the USE specification compactly. Thus, we
have slightly modified their condensation process so that the generated meta-
model can be further simplified without losing model information. For example,
the optimization rule used in the condensation process, Rule 4, allows us to
delete anonymous classes for alternatives, when the anonymous class for an al-
ternative is the only child of the owner class. Also, Rule 4 specifies the result
after deleting the alternative class: the subclasses of the alternative class are
connected to the owner class by inheritance relations. Consequently, the associ-
ation that connects the alternative class and its owner class would be deleted,
which could lead to losing association information and producing an incorrect
metamodel. For example, suppose that there is an alternative class’s owner class
in the raw metamodel that is a repetition class which has a one-to-many associ-
ation connected with the alternative class. If we delete the alternative class and
the one-to-many association directly, then we would lose information of the one-
to-many multiplicity and get an incorrect metamodel. To eliminate this problem,
we apply a more rigid precondition to Rule 4: an alternative class can be deleted
only if the alternative class has only one subclass, or the alternative class is the
only child of the owner class and the type of the owner class is either sequence
or non-terminal. By applying this rule, an alternative class with more than one
subclass cannot be deleted. Thus, the one-to-many association information is
retained in the metamodel.

In the condensation process, we keep the terminals of the USE specification
that can specify the type of a classifier as “abstract”, “class”, “association”,
“composition” or “aggregation” in the metamodel, and delete others such as
“and” and “:”, “,”, “{}” in the metamodel. The reason for this modification is
as follows: the type information of a classifier is an integral part of a metamodel,
but these punctuation marks are not necessary for a metamodel. Deleting punc-
tuation marks can reduce the number of classes in the metamodel without losing
model information. For the non-terminal class in the EBNF representation of
the USE specification, we delete a class with the <<reference>> stereotype and
use the non-terminal class directly to reduce the number of classes. This mod-
ification can reduce the number of classes in the metamodel while preserving
model information. To increase the readability of the metamodel, [Wimmer and
Kramler, 2006] adds annotations with the <<rename>> stereotype to record a
name for the anonymous class in the condensation process, and to assign a new
name to the anonymous class while saving the anonymous class’s original name
in the change model. However, to make the metamodel of the USE specifica-

2444 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

tion more compact, (instead of using annotation to change model in the final
metamodel), we keep the stereotype of anonymous classes and rename them.
For example, class Repetition in Fig. 6 was an anonymous class with its stereo-
type <<Repetition>>. We renamed it as class Repetition rather than adding
another notation for it. This modification is necessary because avoiding annota-
tions with the <<rename>> stereotype can reduce the number of classes in the
metamodel and using stereotype name as the class name can still preserve the
required model information. The ChangeM can be deleted because we only need
the CondMM of the USE specification for our transformation approach, and we
do not need to rebuild the RawMM from the CondMM . In fact, the RawMM

is too complicated for the transformation framework. This framework also pro-
vides a mechanism for adding semantics that cannot be expressed in EBNF
to the metamodel. These additional semantics are attached to the CondMM

by manual annotations, and the CondMM is transformed into a Customized

Metamodel (CustMM).
Finally, we have generated the USE specification metamodel3 given in Fig. 6.

From the USE specification metamodel, we choose the following elements as
marks for the transformation scoping: Class Definition, Type, Operation, At-
tribute, Association Definition, Association End, Enumeration Definition, and
Association Class Definition.

5 Defining Transformation

To use the MDA transformation framework, we must identify the relevant ele-
ments in the UML metamodel, and compare the source metamodel (UML 2.0)
with the target metamodel (UML 1.3) to construct a mapping between the two
different metamodels (The complete UML 2.0, UML 1.3, and OCL 2.0 meta-
models are described in detail in [Object Management Group (OMG), 2007]
and [Object Management Group (OMG) Taskforce, U.M.L.R., 2001] and [Ob-
ject Management Group (OMG), 2006].) However, the complexity and the size
of the UML metamodels have challenged defining the complete set of mappings.
For example, the UML 2.0 metamodel contains 265 model elements (i.e., meta
classes) and 763 relationships. In our approach, however, we don’t intend to
define the mappings between the entire source/target metamodels because the
USE tool that is to read the transformed model does not support all elements
in the source metamodel.

Rather, we limit the scope of the transformation by finding subsets of source/
target metamodels using marks. Marks in our approach are obtained by re-
3 Note that there is no Generalization in the raw USE metamodel given in Fig. 6

because it was not generated by this approach. However, the generalization relation-
ship does exist in USE. Therefore, we had to manually add it to the elements of the
target metamodel.

2445Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Table 1: Mappings Among the Metamodel Elements of UML 2.0, UML 1.3 and
the USE Specification

(a) UML 2.0 (Source) (b) UML 1.3 (Target) (c) USE (Marks for scoping)
Class Class Class Definition
Type Type Type
Operation Operation Operation
Property Attribute Attribute
Association Association Association Definition
Property Association End Association End
Enumeration Enumeration Enumeration Definition
Association Class Association Class Association Class Definition

ferring to the USE specification metamodel and used as a guide to scope the
source/target metamodels. Table 1 presents a partial list of mappings among
the metamodel elements of UML 2.0, UML 1.3 and the USE specification. Our
transformation requires us to construct mappings of two UML metamodels with
respect to the USE specification metamodel elements that are identified as marks
(shown in the column (c) of Table 1) for the transformation scoping. Transfor-
mation scoping in our approach means finding subsets of the source/target meta-
models that includes only the elements that correspond to marked elements and
their relevant elements. To obtain such a metamodel, we use a UML metamodel
analysis tool, UML Slicer [Bae and Chae, 2008].

UML Slicer helps one to manage the complexity of the UML metamodel
by modularizing the metamodel into a set of small metamodels for each UML
diagram type. For example, if we refer to a set of marks and provide the corre-
sponding metamodel elements (e.g., Class, Association, Operation, Parameter)
as input, UML Slicer generates the UML metamodel elements with associations
for class diagrams. For example, Fig. 7(a) and Fig. 7(b) are excerpts (or slices)
that are generated by UML Slicer for UML 1.3 class models metamodel [Object
Management Group (OMG) Taskforce, U.M.L.R., 2001] and the UML 2.0 class
models metamodel [Object Management Group (OMG), 2007] respectively. Here
is an example how we read the metamodel given in Fig. 7(a): parameters of an
operation can be placeholders for classes because they are associated with Clas-
sifier as parameter types. Similarly, attributes of a class can be placeholders for
classes because Attribute is a Feature and Feature is also associated with Classi-
fier for their types (both are through an association whose end role name is type).
However, parameters cannot be placeholders for attributes because there is no
way to navigate from Parameter to Attribute on the metamodel. All these are
true for any UML class models. For the class diagram, the major change from
UML 1.3 to UML 2.0 is that the metamodel elements Association End and

2446 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Attribute

AssociationEnd

Feature

Enumeration

PrimitiveType

Parameter

DataType

Enumeration

PrimitiveType

Parameter

postCondition bodyCondition

memberEnd

ownedAttribute

association

0..1

2..*

bodyContext

classclass

0..1
*

*

postContext

ownedOperation

preContext

*preCondition
*

1..* endTypetype0..1

type0..1 0..1type

*

*

Property

AssociationClass

AssociationClass

Operation

Classifier

GeneralizationType

Constraint

*

*

operation

(b) UML 2.0

Generalization

*

class

Classifier

0..1

DataType

Association

InterfaceClass

Type
* 0..1

2..*
end

0..1
otherEnd

*
associationEnd

qualifier {ordered}

**
implementedInterface

feature

operation
Operation

AssociationClass

*

association
*

(a) UML 1.3

Figure 7: Relevant Excerpts (or Slices) of UML 1.3 and UML 2.0 Class Models
Metamodels

Attribute in UML 1.3 are replaced by the metamodel element Property in UML
2.0. Thus, for the transformation, when there is an instance of the metamodel
element Property in the target model, we must identify whether this instance
is a property of a class or an association. If the instance is a property of a class,
the transformation must generate a corresponding instance of the metamodel el-
ement Attribute for the target; otherwise, an instance of the metamodel element
Association End must be generated. UML metamodel for sequence models will
be described later in Section 5.2.

The MDA provides a formal way to define the transformation mapping. Each
transformation mapping in the MDA framework contains a) the source language
reference, b) the target language reference, c) optional transformation parame-
ters, d) a bidirectional indicator, e) the source language condition, f) the target
language condition and g) a set of mapping rules. Every transformation mapping
starts with the keyword Transformation and a name. The source and target lan-
guages are identified by name between parentheses following the transformation
name. The parameters are written as a list of variable declarations following the
keyword params. The source and target language model elements are written as
variable declarations following the keywords source and target. The directional
indicator is given by the keyword bidirectional or unidirectional. The source
and target language conditions are written as OCL boolean expressions after the
keywords source condition and target condition. All mapping rules come after

2447Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

the keyword mapping. In the notation for mapping rules, one additional symbol
is used: <˜> (refer to [Kleppe et al., 2005] for details). Due to the space limit,
here we only show an example of a mapping rule from XMI to USE for the class
element:

Transformation ClassToClassdefinition (UML, USE) {
params -- none
source s: UML::Class;
target t: USE::Class;
source condition -- none
target condition -- none
undirectional;
mapping s.sourceOperation <~~> t.Operation

s.sourceProperty <~~> t.Attribute }

We consider a transformation mapping to be sufficiently complete if each
element in the set of source language constructs has its correspondence in the
target language constructs. Recall that we intend to define the transformation
from the subset of UML 2.0 metamodel to the subset of UML 1.3 metamodels by
scoping two original metamodels using marks obtained from the USE specifica-
tion metamodel. The consequence of scoping makes the scoped source metamodel
include only UML metamodel elements that can be mapped to the scoped tar-
get metamodel. In other words, our transformation mapping between two scoped
metamodels is sufficiently complete. For example, the class metamodel includes
an element package. However, the set of marks in our approach has no corre-
sponding element to package because USE does not support package. Therefore,
the metamodel element package is out of the mapping scope in our approach.
For each element out of the mapping scope, UML2USE generates a warning
message.

However, a naive and simple scoping could result in some important mappings
being dropped from the transformation scope. For example, UML 2.0 sequence
models can include combined fragments while UML 1.3 sequence models sup-
ported by USE only consist of instances of basic metamodel elements such as
lifeline and message without any combined fragment. However, we have found
that the information represented as combined fragments in a sequence model,
can be useful when USE creates multiple sequence diagrams for simulation and
analysis purposes. Of course, our transformation cannot preserve all the seman-
tic information of the combined fragment, but enough information for the model
verification can be preserved. More details are described in Section 5.2. Like han-
dling combined fragments, there are further issues that should be addressed to
make our transformation mapping sufficiently complete and correct. We discuss
them in the subsections that following.

2448 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Figure 8: Metamodel for OCL Types

5.1 Issues in Defining OCL Transformation

In this subsection, we discuss several issues associated with the transforma-
tion mapping for OCL. Both RSA and USE claim that they support OCL
2.0, however, they support different subsets of OCL 2.0. The difference mainly
exists in the OCL types that RSA and USE support. Fig. 8 presents a sim-
plified metamodel for the Type element that is common to both UML and
OCL metamodels [Object Management Group (OMG), 2006]. We use a different
font to distinguish the OCL types that RSA and USE support. InvalidType,
OrderedSetT ype and UnlimitedInteger are only supported by RSA. RealT ype

is only supported by USE. Neither RSA nor USE supports MessageType. Even
for some OCL type that both tools support (e.g., V oidType), each tool has dif-
ferent formats to represent the type. In the remainder of this section, we discuss
these mapping problems and possible solutions.

Incompatible primitive types: There is a data type compatible prob-
lem between RSA and USE. The former uses UML primitive types (Integer,
Boolean, String and UnlimitedNatural), while the latter only uses three UML
primitive types (Integer, Boolean and String) and one unique type (Real). The
engine checks the type of the model element. If there is an UnlimitedNatural

type in the XMI specification, the engine will produce a warning. Then the user
will redesign the model and avoid using an UnlimitedNatural type for the model
element.

Empty set representation: RSA uses “null” to specify that a collection
is empty while USE (v. 2.5 and higher) supports the empty collection as defined
in standard OCL. For example, to get the collection of employee with more than
one project, we could write the following standard OCL to perform a query:

Employee.allInstances()->iterate(e: Employee;
resultSet : Set(Employee) = Set{} |

2449Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Constraint

InteractionConstraint

Message

LifelineInteractionFragment

Interaction

InteractionOperand

seq
alt

break
opt

par
strict
loop
critical
neg
assert
ignore

InteractionOperatorKind
<<enumeration>>

consider

0..11..*

0..1

*

1* 1

*

0..1

1

0..1
*

− guard

− lifeline

− operand

− enclosingOperand

− enclosingInteraction

CombinedFragment
interactionOperator:InteractionOperatorKind

− fragment
− fragment

− interaction − interaction− message

Figure 9: UML Metamodel of Sequence Models (from [Object Management
Group (OMG), 2007])

if e.project->size() > 1 then resultSet->including(e)
else resultSet endif)

In the case of RSA, however, an empty set “Set{}” above is represented as
“Set{null}” and it should be transformed into Set{} in USE. The engine will
check the OCL statement to determine whether the statement has “null” when
performing transformation from XMI specification of RSA to USE specification.
If there exists such a keyword, then the engine will remove “null” for USE.

Differences in supported OCL standard operations: Both RSA and
USE support partial OCL standard operations. However, RSA supports sev-
eral operations that USE does not, such as oclIsInvalid() and product(). Also,
they use different names for the same operation. For example, USE has the
isUndefined() operation, while RSA supports oclIsUndefined(). For the same
OCL operations with different names, the engine will translate the name of the
operation to one that the USE tool can recognize. For the operations that USE
does not support, the engine will produce a warning. Then the user will redesign
the model and avoid using these operations.

5.2 Transforming Sequence Diagrams for the USE Tool

The metamodel of UML 2.0 sequence diagram describes the structure of a se-
quence, which can help us determine how XMI2USE parses messages in a se-
quence diagram and transforms a sequence diagram with combined fragments
(i.e., control flows) into multiple sequence diagrams without combined fragments.
Fig. 9 is a partial metamodel of UML 2.0 sequence diagram from [Object Man-
agement Group (OMG), 2007], which is fully supported by RSA. A sequence
diagram is used primarily to show the interactions among objects. Therefore,
a sequence diagram can be regarded as a combination of several interactions.
An interaction is composed of several lifelines. A lifeline represents an object
instance that participates in a sequence. Messages are sent and received between

2450 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

Figure 10: A Sequence Diagram Example with an Alternative Combined Frag-
ment (from [Object Management Group (OMG), 2007])

two lifelines. An interaction can be divided into several messages, interaction
fragments, or a combination of interaction fragments and messages. Each inter-
action fragment can be either a combined fragment or an interaction operand.
A combined fragment is composed of interaction operands. Each operand has
an interaction constraint and can include messages, combined fragments or a
combination of messages and combined fragments. A combined fragment can
be classified as sequential, option, alternative, break, parallel, loop, critical,
negative, assert, ignore or consider.

Fig. 10 (borrowed from [Object Management Group (OMG), 2007]) shows a
sequence diagram example with an alternative combined fragment. In this ex-
ample, there are four lifelines: ob1 with the C1 type, ob2 with the C2 type, ob3
with the C3 type, and ob4 with the C4 type. An alternative combined fragment
follows the message opti and is divided into two interaction operands by an in-
teraction operand separator. The first interaction operand has an interaction
constraint x > 0, and the second one has an else constraint. Note that a se-
quence diagram exactly like Fig. 10 cannot be created using USE because USE
does not support any combined fragments, which is acceptable because UML 1.3
does not include any interaction fragments including combined ones. Moreover,
the main purpose of using the USE tool has been static analysis of UML class
models based upon various snapshots interactively produced by users. Therefore,
the lack of support for sequence diagrams with combined fragments (i.e., control
flows) has not been a critical issue for USE users. Hence, the USE tool currently
does not support the sequence diagram with any simple/combined interaction
fragments while they are allowed in RSA. In our work, if there is any interaction
fragment in a sequence diagram as shown in Fig. 10, XMI2USE interprets the
type of each interaction fragment, and transforms the source sequence diagram
into multiple sequence diagrams that do not include any interaction fragments

2451Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

If the element in the interaction operand is a message, generate the message creation shell commands.

If the element in the interaction operand is a message, generate the message creation shell commands.

Outputs:

For each interation, analyze all the elements sequentially:

1. For each option combined fragment, execute operation 4 and split the fragment into two complete
independent interactions.

2. For each alternative combined fragment, execute operation 4 and split the fragment into n complete
independent interactions, where n is the number of operands that the fragment has.

3. For each loop combined fragment, execute operation 4 and expand the fragment into m repeated
interactions, where m is the maximum number of iterations specified in the condition of the fragment.

USE Commands for generating multiple sequence diagrams

If the element is one of the three combined fragments, perform the above corresponding operation 1, 2, or 3.

Algorithm Steps

Sequence Diagrams Generation Algorithm

Inputs: UML sequence diagram in XMI

If the element is one of the three combined fragments, perform the above corresponding operation 1, 2, or 3.

4. Analyze each interaction operand of the given combined fragment sequentially:

Figure 11: Sequence Diagram Generation Algorithm

Figure 12: USE Commands and Sequence Diagrams Generated for a Sequence
Diagram Example in Fig. 10

as shown in Fig. 12 (b). The current version of XMI2USE only supports syn-
chronous messages and the following three combined fragment operator types:
option, alternative and loop. Fig. 11 describes the sequence diagram generation
algorithm we used. By applying the algorithm into a sequence model given in
Fig. 10, we obtain the USE commands as given in Fig. 12(a). After the trans-
formation, USE reads those commands and generates two sequence diagrams
shown in Fig. 12(b).

2452 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

6 Conclusion and Future Work

The USE tool is one of few OCL tools allowing interactive monitoring of OCL
invariants and pre- and postconditions and the automatic generation of non-
trivial system states. However, USE expects a textual description of a model
and its OCL constraints that are not compatible with other UML modeling/
analysis tools. In this paper, we have described an MDA-based transformation
approach with our tool implementation, XMI2USE, that provides an automatic
specification transformation from EMF-based modeling tools to USE. Our work
aims to provide an integrated tool environment for OCL-based UML model
verification. It currently supports the transformation of class models, object
models and sequence models into USE forms. So far, support on the following
tools has been tested: IBM’s Rational Software Architect (RSA) and Rational
Software Modeler (RSM) and Borland’s Together.

To validate our approach, we have used the XMI2USE in our graduate-level
software engineering classes to write advanced OCL expressions for secure mod-
els. Students used the tool for modeling and analyzing access control policies
and we have found that the automated transformation increased the productiv-
ity and quality of the project. Our case study used the EU-Rent Car Rentals
system design [Frias et al., 2006], which includes up to 153 classes, 94 associa-
tions, 87 operations, and 49 post conditions, the results of which can be found
in [Sun, 2010]. We are currently working on extending our tool to support the
transformation from USE to RSA and other EMF-based modeling tools. Future
work includes the elaboration of our transformation engine so that it can support
a more generic XMI-based transformation framework.

Acknowledgments

This study was supported in part by funds from the Young Investigators De-
velopment Program and the Vice Provost for Research at Baylor University.

References

[Anastasakis et al., 2007] Anastasakis, K., Bordbar, B., Georg, G., and Ray, I.
UML2Alloy: A Challenging Model Transformation. In ACM/IEEE 10th Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages 436–
450. Springer. (2007).

[Bae and Chae, 2008] Bae, J. and Chae, H. UMLSlicer: A tool for modularizing the
UML metamodel using slicing. In 8th IEEE International Conference on Computer
and Information Technology, 2008. CIT 2008, pages 772–777. (2008).

[Boldsoft, 2002] Boldsoft . Boldsoft OCL Tool Model Run. (2002).
[Bordbar and Anastasakis, 2005] Bordbar, B. and Anastasakis, K. UML2Alloy: A tool

for lightweight modelling of Discrete Event Systems. IADIS International Conference
in Applied Computing. (2005).

2453Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

[Chiorean, 2001] Chiorean, D. Using OCL Beyond Specifications. In Workshop of the
pUML-Group held together with the UML 2001 on Practical UML-Based Rigorous
Development Methods. (2001).

[Database Systems Group, 2007] Database Systems Group, B. U. USE: A UML based
Specification Environment (Preliminary Version 0.1). (2007). http://www.db.
informatik.uni-bremen.de/projects/USE/use-documentation.pdf.

[Dennis et al., 2004] Dennis, G., Seater, R., Rayside, D., and Jackson, D. Automating
commutativity analysis at the design level. In ISSTA ’04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis, pages
165–174. ACM. (2004).

[Frias et al., 2006] Frias, L., Querait, A., and Oliv’e, A. EU-Rent car rentals specifi-
cation. (2006). Available from http://www.lsi.upc.es/dept/techreps/techreps.html.

[Gogolla et al., 2007] Gogolla, M., Buttner, F., and Richters, M. USE: A UML-Based
Specification Environment for Validating UML and OCL. Science of Computer Pro-
gramming, 69:27–34. (2007).

[Hussmann et al., 2002] Hussmann, H., Demuth, B., and Finger, F. Modular architec-
ture for a toolset supporting ocl. Science of Computer Programming, 44(1):51–69.
(2002).

[Kleppe et al., 2005] Kleppe, A., Warmer, J., and Bast, W. MDA Explained – The
Model Driven Architecture: Practical and Promise. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA. (2005).

[Jackson, 2002] Jackson, D. Alloy: a lightweight object modelling notation. ACM
Transaction on Software Engineering Methodology, 11(2):256 –290. (2002).

[Leroux et al., 2006] Leroux, D., Nally, M., and Hussey, K. Rational software architect:
A tool for domain-specific modeling. IBM Systems Journal, 45(3):555 –568. (2006).

[Object Management Group (OMG), 2003] Object Management Group (OMG)
Model-Driven-Architecture (MDA) Guide Version 1.0.1. [2003-06-01]. (2003).

[Object Management Group (OMG), 2005] Object Management Group (OMG) MOF
2.0/XMI Mapping Specification, v2.0. (2005).

[Object Management Group (OMG), 2006] Object Management Group (OMG) Ob-
ject Constraint Language (OCL) Specification Version 2.0. OMG Document ptc/06-
05-01. (2006).

[Object Management Group (OMG), 2007] Object Management Group (OMG) Uni-
fied Modeling Language (UML), Infra- and Superstructure, V2.1.2. (2007).

[Object Management Group (OMG) Taskforce, U.M.L.R., 2001] Object Management
Group (OMG) Taskforce, U.M.L.R. UML Specification v. 1.3. Object Management
Group. (2001).

[Sohr et al., 2005] Sohr, K., Ahn, G.-J., Gogolla, M., and Migge, L. Specification and
validation of authorisation constraints using UML and OCL. In Proceedings of the
10th European Symposium on Research in Computer Security(ESORICS 2005), vol-
ume 3679, pages 64–79. Springer. (2005).

[Sun, 2010] Sun, W. An OCL-based Verification Approach to Analyzing Static Prop-
erties of a UML Model. Master’s thesis, Baylor University. (2010).

[Sun et al., 2009] Sun, W., Song, E., Grabow, P., and Simmonds, D. XMI2USE: A
Tool for Transforming XMI to USE Specifications. In Heuser, C. and Pernul, G.,
editors, Advances in Conceptual Modeling - Challenging Perspectives, volume 5833
of Lecture Notes in Computer Science, pages 147–156. Springer Berlin / Heidelberg.
(2009).

[Tigris.org, 2009] Tigris.org. ArgoUML, an open source UML modeling tool. http:
//argouml.tigris.org/. (2009).

[Toval et al., 2003] Toval, A., Requena, V., and Fernandez, J. Emerging OCL tools.
Software and Systems Modeling, 2(4):248–261. (2003).

[Wimmer and Kramler, 2006] Wimmer, M. and Kramler, G. Bridging grammarware
and modelware. Lecture Notes in Computer Science, 3844:159. (2006).

2454 Sun W., Song E., Grabow P.C., Simmonds D.M.: Toward an Integrated Tool ...

