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Abstract: We consider the uniform BSS model of computation where the machines
can perform additions, multiplications, and tests of the form x ≥ 0. The oracle machines
can also check whether a tuple of real numbers belongs to a given oracle set or not.
We present oracle sets containing positive integers and pairs of numbers, respectively,
such that the classes P and DNP relative to these oracles are not equal. The first set
is constructed by diagonalization techniques and the second one is derived from the
Knapsack Problem.
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1 Introduction

We consider the uniform BSS model of computation (cp. [Blum et al. 1989]),

where the non-deterministic machines are able to guess arbitrary real numbers

in one step and the digital non-deterministic machines are restricted to be ma-

chines using only zeros and ones as guesses (cp. also [Poizat 1995]). For the corre-

sponding polynomial time complexity classes we do not know whether one of the

inclusions in PIR ⊆ DNPIR ⊆ NPIR is strict. However, there are oracles O ⊆ IR∞

such that the classes PO
IR and NPO

IR are equal or are not (cp. [Emerson 1994]).

Emerson’s proof technique can also be used to separate relativized versions of

DNPIR and NPIR. Since, by assigning a positive integer i to any digital non-

deterministic oracle machine working in polynomial time such that the machine

corresponding to i does not use any r > i in a query on its own code, we get a

sequence of sets of codes of machines, (Ki)i≥1, which allows to define a suitable

oracle Q1 =
⋃

i≥1 Wi by diagonalization. If we define Wj =
⋃

i<j Vi by V0 = ∅
and Vi = {(code(NWi ), i + 1) ∈ Ki × IN | NWi does not accept code(NWi)},
then the problem L1 =df {y | (∃n ∈ IN+)((y, n) ∈ Q1)} cannot be in DNPQ1

IR .

On the other hand, since the non-deterministic BSS machines are able to guess

any integer in one step, we get L1 ∈ NPQ1

IR and, consequently, DNPQ1

IR �= NPQ1

IR .

Moreover, it is possible to show DNPZZ
IR �= NPZZ

IR and DNPQ
IR �= NPQ

IR by analogy

with [Gaßner, 2009 (1)].

The discussion on corresponding relativizations for several types of groups in

[Gaßner 2008] also shows which known constructions can be transferred to which
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type of structures. Whereas the separation of DNPO
Σ and NPO

Σ by constructing

an oracleO as above is possible for any infinite structure Σ, the separation of PO
Σ

and DNPO
Σ by the method introduced in [Baker et al. 1975] can be successfully

used only for structures Σ of countable signature.

For infinite structures of uncountable signature Σ, we do not know any gen-

eral method for defining an oracle O satisfying PO
Σ �= DNPO

Σ that is only based

on logical techniques. However, if we consider the BSS machines over the reals

which can perform additions, multiplications, and tests of the form x ≥ 0, we can

make use of special integers for characterizing the behavior of the deterministic

oracle machines on selected inputs and the resulting sequence of these integers

allows us to construct an oracle set Q2 ⊆ IN satisfying PQ2

IR �= DNPQ2

IR by means

of diagonalization techniques. Moreover, we can derive an oracle Q3 ⊆ IN × IR

satisfying PQ3

IR �= DNPQ3

IR from the Real Knapsack Problem such that we get

a more natural decision problem as the oracle. Our constructions are based on

constructions of oracles Q ⊆ IR∞ presented in [Gaßner, 2009 (2)]. Here we will

show that it is even possible to fix the arity of the tuples in the oracle sets.

Remark. L. Blum, M. Shub, and S. Smale introduced a uniform model of com-

putation over the ring and over the field of the reals, respectively. To simplify

matters, we want to consider only the ring operations.

For other models of computation over algebraic structures, a summary of

papers where diagonalization techniques have been applied is given, for instance,

in [Bürgisser 1999].

2 The Separation by Diagonalization Techniques

Every BSS machine using an oracle B ⊆ IR∞ is determined by its machine

constants and a program. Since the characters of the programs including all

indices can be encoded by a finite sequence in {0, 1}∞ independently of the used

constants and the oracle B, we are able to consider a sequence of sets of oracle

BSS machines where the ith set contains each NB,c
i deciding a problem in PB

IR

by means of a program Pi and its own constants in c = (c1, . . . , cki) in a time

bounded by a polynomial pi. Moreover, for any B ⊆ IN, the behavior of any NB,c
i

on inputs (0, . . . , 0,m) ∈ INni for some ni and for large positive integers m can

be characterized by an integer Lchar(i, c) that we will define in order to generate

a sequence of integers, (Nj)j≥1, and a sequence of sets of machines, (KB
j )j≥1.

Our aim is that all machines in any KB
j =df {NB,c

i | Nj = c(i, Lchar(i, c))} have

the same behavior on inputs (0, . . . , 0,m) ∈ INni for large m. Note, that we use

the Cantor numbers c(x1, x2) = 1
2 ((x1 + x2)

2 + 3x1 + x2) and c(x1, . . . , xn) =

c(c(x1, . . . , xn−1), xn).

Since the number of polynomials in IR[x] which can be computed by a BSS

machine in bounded time is finite, it is enough to consider a finite sequence of
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polynomials f1, f2, . . . , fsi ∈ IR[x] for characterizing the behavior of NB,c
i on

(0, . . . , 0, x) ∈ INni . The number Lchar(i, c) =df c(i, μ1, . . . , μsi , μ) results from

the characterization of these polynomials. For any k ∈ {1, . . . , si}, let μk be

given by μk = code(fk) ∈ IN \ {0, 1, 2} if fk ∈ Q[x] and degree(fk) ≤ 1, and by

μk = limx→∞ sgn(fk(x)) + 1 otherwise. Moreover, let μ be an integer such that

the following conditions are satisfied for all m ≥ μ and for all k ∈ {1, . . . , si}.

fk(m) < 2m if degree(fk) = 0,

0 < fk(m) < 2m if degree(fk) = 1 and limx→∞ fk(x) = ∞,

fk(m) < 0 if degree(fk) ≥ 1 and limx→∞ fk(x) = −∞,

m < fk(m) < 2m if degree(fk) > 1 and limx→∞ fk(x) = ∞,

fk(m) �∈ IN if degree(fk) = 1 and fk �∈ Q[x].

Let Li,1, Li,2, . . . be an enumeration of {Lchar(i, c) | c ∈ IRki} and N1, N2, . . .

be an enumeration of
⋃

i≥1{c(i, Li,1), c(i, Li,2), . . .} such that Nj < Nj+1. These

numbers allow us to construct Q2 =
⋃

i≥1 Vi ⊆ IN recursively. Let m0 = 0,

V0 = ∅, and C1 = N1. Stage j ≥ 1: Let i = ij, r, and ni be integers such that

Nj = c(i, Li,r) and pi(ni) < 2ni and let

Zj = {c(1, Cj), . . . , c(2
ni , Cj)},

Wj =
⋃

k<j Vk,

Vj = {x ∈ Zj |
& (∃c ∈ IRki)(NWj ,c

i ∈ KWj

j & NWj ,c
i rejects (0, . . . , 0, Cj) ∈ INni

& NWj ,c
i does not use x in a query on input (0, . . . , 0, Cj) ∈ INni)},

Cj+1 = max{2Cj , Nj+1, c(2
ni , Cj)}.

We have L2 =
⋃

j≥1{(0, . . . , 0, Cj) ∈ INnij | Vj ∩ Zj �= ∅} ∈ DNPQ2

IR \ PQ2

IR and

thus PQ2

IR �= DNPQ2

IR . The proof can be done similarly as in [Gaßner, 2009 (2)].

3 An Oracle Derived from the Knapsack Problem

In [Koiran 1994] and [Meer 1992], the relationships P=
add �= DNP=

add and P=
lin �=

DNP=
lin were proved for the additive BSS model over (IR; IR;+,−; =) and the

linear BSS model over (IR; 1;+,−, {φr | r ∈ IR}; =) where φr(x) = rx. It was

shown that the Real Knapsack Problem

KPIR =
∞⋃

n=1

{(x1, . . . , xn) ∈ IRn | (∃(α1, . . . , αn) ∈ {0, 1}n)(
n∑

i=1

αixi = 1)}

belongs to DNP=
add and does not belong to P=

lin (cp. also [Koiran 1993]). Since,

for an input (x1, . . . , xn) ∈ IR∞, a digital non-deterministic machine can guess

any sequence (α1, . . . , αn) ∈ {0, 1}n and compute α1x1 + · · · + αnxn in linear

time, KPIR ∈ DNPIR holds. It is not known whether KPIR ∈ PIR holds. The proof
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techniques used in [Meer 1992] fail if the order test is permitted. However, the

following oracle allows us to apply similar techniques as in [Meer 1992] in order

to show the inequality of the resulting relativized versions of PIR and DNPIR.

Let E0 = Q, let τ1, τ2, . . . be a sequence of transcendental numbers such that

τi+1 is transcendental over Ei =df Ei−1(τi), and let the following sets An for

n ≥ 1, the oracle Q3, and the decision problem L3 be given.

An = {(α1, . . . , αn) ∈ {0, 1}n | αn = 1}.
Q3 =

⋃∞
n=1{(

∑n
i=1 αi2

i−1,
∑n

i=1 αivτi) |(α1, . . . , αn) ∈ An & v ∈ ZZ \ {0}}.
L3 =

⋃∞
n=1{(0, . . . , 0, r) ∈ IRn+1 | (∃z ∈ ZZ)((z, r) ∈ Q3)}.

In order to show that L3 �∈ PQ3

IR , we will consider any BSS machine M which

uses Q3 as the oracle and only the constants c1, . . . , ck.

Let F0 =
⋃∞

i=0 Ei. For i = 1, . . . , k, let Fi = Fi−1 and di = 1 if ci ∈ Fi−1,

let Fi = Fi−1(ci) and di = ∞ if ci is not algebraic over Fi−1, and let Fi =

Fi−1[ci] if there is an irreducible polynomial pi ∈ Fi−1[x] of degree di ≥ 2 with

pi(ci) = 0. In the latter setting, ci is algebraic over Fi−1. We will use that there

is some i0 such that the coefficients of each of these polynomials pi have the

form wτm1
1 · · · τmi0

i0
cj11 · · · cji−1

i−1 for some w ∈ ZZ.

Any value computed by M on input (0, . . . , 0, x) ∈ IR∞ can be described by

some term of the form
∑t

j,j1,...,jk=0 αj1,...,jk,jc
j1
1 · · · cjkk xj where each αj1,...,jk,j is

an integer and, consequently, by some term of the form 1
r0

∑t
j=0 rj+1x

j where

we have

rj =
∑

m1,...,mi0
≤m0

jµ<min{dµ,j0}

zm1,...,mi0 ,j1,...,jk,j
τm1
1 · · · τmi0

i0
cj11 · · · cjkk

for some m0, j0, and zm1,...,mi0 ,j1,...,jk,j
∈ ZZ and

zm′
1
,...,m′

i0
,j′

1
,...,j′

k
,0 �= 0 for some m′

1, . . . ,m
′
i0 , j

′
1, . . . , j

′
k. (1)

Thus, for any input (0, . . . , 0, x) ∈ IR∞, a non-trivial oracle query whether

(z, q(x)) ∈ Q3 holds (where degree(q) ≥ 1) can be answered yes only if an

equation of the form
t∑

j=0

rj+1x
j = r0

n∑

i=1

viτi (2)

is satisfied for some (v1, . . . , vn) ∈ vAn where v is in ZZ \ {0} and vAn is defined

by vAn = {(vα1, . . . , vαn) ∈ {0, v}n | αn = 1}. For n′ > i0, v
′ ∈ ZZ \ {0}, and

(0, . . . , 0, v′i0+1, . . . , v
′
n′) ∈ v′An′ , x =

∑n′

i=i0+1 v
′
iτi satisfies (2) if and only if

∑
m1,...,mi0

≤m0

jµ<min{dµ,j0}

(
∑t

j=0 x
jzm1,...,mi0 ,j1,...,jk,j+1)τ

m1
1 · · · τmi0

i0
cj11 · · · cjkk

=
∑

m1,...,mi0
≤m0

jµ<min{dµ,j0}

(
∑n

i=1 viτi)zm1,...,mi0 ,j1,...,jk,0
τm1
1 · · · τmi0

i0
cj11 · · · cjkk
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is satisfied and, consequently, only if the equations
∑

m1,...,mi0≤m0

zm1,...,mi0 ,j1,...,jk,1
τm1
1 · · · τmi0

i0

= (
∑

m1,...,mi0≤m0

zm1,...,mi0 ,j1,...,jk,0
τm1
1 · · · τmi0

i0
)(
∑i0

i=1 viτi),

(
∑

m1,...,mi0≤m0

zm1,...,mi0 ,j1,...,jk,2
τm1
1 · · · τmi0

i0
)(
∑n′

i=i0+1 v
′
iτi)

= (
∑

m1,...,mi0≤m0

zm1,...,mi0 ,j1,...,jk,0
τm1
1 · · · τmi0

i0
)(
∑n

i=i0+1 viτi)

are satisfied for any j1 < min{d1, j0}, . . . , jk < min{dk, j0}.
Since (1) holds, the latter equations can be satisfied only if we have vi = 0 ⇔

v′i = 0 for all i = i0 + 1, . . . ,min{n, n′}, vi = 0 for i = n′ + 1, . . . , n (if n′ < n),

and v′i = 0 for i = n+ 1, . . . , n′ (if n < n′). Thus, we have shown the following.

Lemma1. Let n > i0, (0, . . . , 0, vi0+1, . . . , vn) ∈ vAn, and x =
∑n

i=i0+1 viτi.

A non-trivial oracle query whether (z, q(x)) ∈ Q3 holds executed by M can be

answered yes on inputs of the form (0, . . . , 0, x) only if z =
∑i0

i=1 αi · 2i−1 +

sgn(|vi0+1|) · 2i0 + · · ·+ sgn(|vn|) · 2n−1 holds for some α1, . . . , αi0 ∈ {0, 1}.
Lemma2. L3 �∈ PQ3

IR .

Proof. Let us assume that L3 is decidable by a machine M described above in a

time bounded by some polynomial p and let n0 be an integer such that n0 > i0
and p(n0+1) < 2n0−i0−1. We want to consider the computation path P of M on

inputs (0, . . . , 0, x) ∈ IRn0+1 which can be uniquely described by conditions of the

form (gj(x), hj(x)) �∈ Q3 and fj(x) > 0 (j ≤ t, t ≤ p(n0+1)) where gj and hj are

polynomials which satisfy, for any j, degree(gj) > 0 or degree(hj) > 0 and each fj
is defined by some equation of the form fj(x) = xnj +anj−1x

nj−1+· · ·+a1x+a0.

Let τ > 0 be transcendental over Fk and greater than all zeros of f1, . . . , ft.

Then, the path P is traversed by M on (0, . . . , 0, τ) ∈ IRn0+1 \ L3. If gj(τ) is

in ZZ, then the polynomial gj is constant. Since, for the set G = {gj(τ) | j ≤
t & gj is a constant function}, we have |G| ≤ p(n0+1) < 2n0−i0−1, there is some

(0, . . . , 0, x0) ∈ IRn0+1 with x0 =
∑n0

i=i0+1 wαiτi satisfying a), b), and c).

a) (0, . . . , 0, αi0+1, . . . , αn0) ∈ An0 and αn0 �= 0 and w ∈ ZZ \ {0},
b) x0 > τ ,

c) z +
∑n0

i=i0+1 αi · 2i−1 �∈ G for any z ∈ {0, . . . , 2i0 − 1}.
By b) we have fj(x0) > 0. If gj(x0) is an integer, then we can show, by analogy

with the derivation of Lemma 1, that gj is constant and, consequently, gj(x0) ∈ G

holds. Thus, by c) and by Lemma 1, P is also traversed by M on (0, . . . , 0, x0) ∈
IRn0+1. But this contradicts a) by which (0, . . . , 0, x0) belongs to L3. �

Because of L3 ∈ DNPQ3

IR , we get the following.

Proposition3. There is an oracle Q derived from the Real Knapsack Problem

such that PQ
IR �= DNPQ

IR.
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