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Abstract: We investigate the relationship between computable metric spaces (X, d, α)
and (X, d, β), where (X, d) is a given metric space. In the case of Euclidean space, α
and β are equivalent up to isometry, which does not hold in general. We introduce the
notion of effectively dispersed metric space and we use it in the proof of the following
result: if (X, d,α) is effectively totally bounded, then (X, d, β) is also effectively totally
bounded. This means that the property that a computable metric space is effectively
totally bounded (and in particular effectively compact) depends only on the underlying
metric space. In the final section of this paper we examine compact metric spaces (X, d)
such that there are only finitely many isometries X → X. We prove that in this case a
stronger result holds than the previous one: if (X, d, α) is effectively totally bounded,
then α and β are equivalent. Hence if (X, d, α) is effectively totally bounded, then
(X, d) has a unique computability structure.
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1 Introduction

Let k ∈ N, k ≥ 1. We say that a function f : Nk → Q is recursive if there exist
recursive functions a, b, c : Nk → N such that f(x) = (−1)c(x) a(x)

b(x)+1 , ∀x ∈ Nk.
A function f : Nk → R is said to be recursive if there exists a recursive function
F : Nk+1 → Q such that |f(x) − F (x, i)| < 2−i, ∀x ∈ Nk, ∀i ∈ N.

A tuple (X, d, α) is said to be a computable metric space if (X, d) is a
metric space and α : N → X is a sequence dense in (X, d) (i.e. a sequence which
range is dense in (X, d)) such that the function N2 → R, (i, j) �→ d(αi, αj)
is recursive (we use notation α = (αi)). We say that α is an effective sepa-
rating sequence in (X, d) (cf. [Yasugi, Mori and Tsujji 1999]). If (X, d, α) is
a computable metric space, then a sequence (xi) in X is said to be recur-
sive in (X, d, α) if there exists a recursive function F : N2 → N such that
d(xi, αF (i,k)) < 2−k, ∀i, k ∈ N and a point a ∈ X is said to be recursive in
(X, d, α) if the constant sequence a, a, . . . is recursive. For example, if q : N → Q
is a recursive surjection, then (R, d, q) is a computable metric space, where d
is the Euclidean metric on R. A sequence (xi) is recursive in this computable
metric space if and only if (xi) is a recursive sequence of real numbers and a ∈ R
is a recursive point in this space if and only if a is a recursive number.

Let (X, d) be a metric space and let S be a nonempty set whose elements
are sequences in X . We say that S is a computability structure on (X, d) (cf.
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[Yasugi, Mori and Tsujji 1999]) if the following four properties hold:

(i) if (xi), (yj) ∈ S, then the function N2 → R, (i, j) �→ d(xi, yj) is recursive;

(ii) if (xi)i∈N ∈ S, then (xf(i))i∈N ∈ S for any recursive function f : N → N;

(iii) if (yi) is a sequence in X such that d(yi, xF (i,k)) < 2−k, ∀i, k ∈ N, where
F : N2 → N is a recursive function and (xi) ∈ S, then (yi) ∈ S;

(iv) there exists (xi) ∈ S such that (xi) is dense in (X, d).

Let (X, d) be a metric space. If α is an effective separating sequence in (X, d),
then the set Sα of all recursive sequences in (X, d, α) is a computability structure
on (X, d). Suppose now that α and β are effective separating sequences in (X, d).
We say that α is equivalent to β, α ∼ β, if α is a recursive sequence in (X, d, β).
It follows easily that α ∼ β if and only if Sα = Sβ .

A closed subset S of a computable metric space (X, d, α) is said to be re-
cursively enumerable if {i ∈ N | Ii ∩ S 	= ∅} is an r.e. set, where (Ii) is
some effective enumeration of all open rational balls in (X, d, α) (by an open
rational ball we mean an open ball with rational radius and with center αi,
for some i ∈ N), co-recursively enumerable if X \ S =

⋃
i∈N If(i), where

f : N → N is a recursive function and recursive if it is both r.e. and co-r.e.
([Brattka and Presser 2003]). It is not hard to see that if α ∼ β, then S is r.e.
(co-r.e.) in (X, d, α) if and only if S is r.e. (co-r.e.) in (X, d, β) and consequently
S is recursive in (X, d, α) if and only if S is recursive in (X, d, β). Hence the
notions of recursive enumerability, co-recursive enumerability and recursiveness
of a set are examples of notions which depend only on the induced computability
structure and not on particular α which induces that structure.

If α and β are effective separating sequences in a metric space (X, d), then
α and β need not be equivalent. For example, if c ∈ R is a nonrecursive number
and (αi) a recursive sequence of real numbers dense in (R, d), where d is the
Euclidean metric, then (αi + c) is an effective separating sequence in (R, d), c is
a recursive point in (R, d, (αi + c)) and c is not recursive in (R, d, (αi)). Hence
(αi) and (αi + c) are not equivalent.

Let (X, d, (αi)) be a computable metric space and f an isometry of (X, d).
By an isometry of (X, d) we mean a surjective map f : X → X such that
d(f(x), f(y)) = d(x, y), ∀x, y ∈ X . Then (X, d, (f(αi))) is also a computable
metric space and in general the sequences (αi) and (f(αi)) are not equivalent by
the previous example. Note that f “maps” the computability structure induced
by (αi) on the computability structure induced by (f(αi)), i.e.

S(f(αi)) = {(f(xi)) | (xi) ∈ S(αi)}.
In particular, if A is the set of all recursive points in (X, d, (αi)) and B the set
of all recursive points in (X, d, (f(αi))), then f(A) = B.
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We say that effective separating sequences (αi) and (βi) in a metric space
(X, d) are equivalent up to isometry if (αi) ∼ (f(βi)) for some isometry f of
(X, d). It is easy to see that this relation is an equivalence relation on the set of
all effective separating sequences in (X, d).

A metric space (X, d) is said to be totally bounded if for each ε > 0 there
exist finitely many points y0, . . . , ym ∈ X such that X =

⋃
0≤i≤m B(yi, ε). Here

B(x, r) for x ∈ X and r > 0 denotes the open ball of radius r centered at x. If
(X, d, α) is a computable metric space, then the sequence α is dense in (X, d) and
we have the following conclusion: the metric space (X, d) is totally bounded if and
only if for each k ∈ N there exists m ∈ N such that X =

⋃
0≤i≤mB(αi, 2−k). We

say that a computable metric space (X, d, α) is effectively totally bounded
if there exists a recursive function f : N → N such that

X =
f(k)⋃
i=0

B(αi, 2−k),

∀k ∈ N ([Yasugi, Mori and Tsujji 1999]).

Example 1. If S is a recursive nonempty compact subset of Rn, then there exists
a recursive sequence (xi) in S and a recursive function f : N → N such that
S ⊆ ⋃

0≤i≤f(k)B(xi, 2−k), ∀k ∈ N ([Zhou 1996, Weihrauch 2000]) and therefore
(S, d, (xi)) is an effectively totally bounded computable metric space, where d is
the Euclidean metric on S.

Example 2. Let ω : N → Q be a recursive sequence which converges to a non-
recursive number γ ∈ R and such that ω(0) = 0, ω(i) < ω(i + 1), ∀i ∈ N. It
is easy to construct a recursive sequence of rational numbers α which is dense
in [0, γ]. Then the tuple ([0, γ], d, α) is a computable metric space, where d is
the Euclidean metric on [0, γ]. Suppose that ([0, γ], d, α) is effectively totally
bounded. Then [0, γ] =

⋃
0≤i≤f(k) B(αi, 2−k), ∀k ∈ N, for some recursive func-

tion f : N → N. If h : N → Q is defined by h(k) = max{αi | 0 ≤ i ≤ f(k)},
k ∈ N, then h is a recursive function and |γ − h(k)| < 2−k, ∀k ∈ N which con-
tradicts the fact that γ is a nonrecursive number. Hence the computable metric
space ([0, γ], d, α) is not effectively totally bounded, although the metric space
([0, γ], d) is totally bounded.

It is not hard to check that if α and β are equivalent effective separating
sequences in a metric space (X, d), then (X, d, α) is effectively totally bounded
if and only if (X, d, β) is effectively totally bounded. Furthermore, if f is an
isometry of (X, d) and (αi) an effective separating sequence, then (X, d, (αi))
is effectively totally bounded if and only if (X, d, (f(αi))) is effectively totally
bounded. This follows immediately from the fact that f(B(x, r)) = B(f(x), r),
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∀x ∈ X , ∀r > 0. Therefore, if α and β are effective separating sequences equiv-
alent up to isometry, then (X, d, α) is effectively totally bounded if and only if
(X, d, β) is effectively totally bounded.

There exist totally bounded metric spaces with effective separating sequences
nonequivalent up to isometry (Section 2). Nevertheless, the equivalence

(X, d, α) effectively totally bounded ⇔ (X, d, β) effectively totally bounded
(1)

holds in general and that is a result which will be proved in Section 3 where
we introduce the notion of effectively dispersed metric space. In Section 2 we
also prove that each two effective separating sequence in Euclidean space Rn are
equivalent up to isometry.

In Section 4 we examine compact metric spaces (X, d) such that there are
only finitely many isometries of (X, d). We prove that in this case a stronger
result holds than (1): if α and β are effective separating sequences in (X, d)
such that (X, d, α) is effectively totally bounded, then α ∼ β. This implies the
following: if there exists an effective separating sequence α in (X, d) such that
(X, d, α) is effectively totally bounded, then (X, d) has a unique computability
structure.

1.1 Basic techniques

Let k, n ∈ N, k, n ≥ 1. By a recursive function f : Nk → Nn we mean a function
whose component functions f1, . . . , fn : Nk → N are recursive. In the following
proposition we state some elementary facts.

Proposition1. (i) Let T ⊆ Nk+n be a recursively enumerable set. Then the set
S = {x ∈ Nk | ∃y ∈ Nn (x, y) ∈ T } is recursively enumerable.

(ii) Let S ⊆ Nk+n be a recursively enumerable set such that for each x ∈ Nk

there exists y ∈ Nn such that (x, y) ∈ S. Then there exists a recursive function
f : Nk → Nn such that (x, f(x)) ∈ S, ∀x ∈ Nk.

In the following proposition we state some elementary facts about recursive
functions Nk → R.

Proposition2. (i) If f, g : Nk → R are recursive, then f + g, f − g : Nk → R
are recursive.

(ii) If f : Nk → R and F : Nk+1 → R are functions such that F is recursive
and |f(x) − F (x, i)| < 2−i, ∀x ∈ Nk, ∀i ∈ N, then f is recursive.

(iii) If f : Nk+1 → R and ϕ : Nk → N are recursive functions, then
the functions g, h : Nk → R defined by g(x) = max0≤i≤ϕ(x) f(i, x), h(x) =
min0≤i≤ϕ(x) f(i, x), x ∈ Nk, are recursive.

(iv) If f, g : Nk → R is a recursive function, then the set {x ∈ Nk | f(x) <
g(x)} is r.e.
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We say that a function Φ : Nk → P(Nn) is recursive if the function Φ :
Nk+n → N defined by

Φ(x, y) = χΦ(x)(y),

x ∈ Nk, y ∈ Nn is recursive. Here P(Nn) denotes the set of all subsets of
Nn, and χS : Nn → N denotes the characteristic function of S ⊆ Nn. A
function Φ : Nk → P(Nn) is said to be recursively bounded if there exists a
recursive function ϕ : Nk → N such that Φ(x) ⊆ {0, . . . , ϕ(x)}n, ∀x ∈ Nk, where
{0, . . . , ϕ(x)}n equals the set of all (y1, . . . , yn) ∈ Nn such that {y1, . . . , yn} ⊆
{0, . . . , ϕ(x)}.

We say that a function Φ : Nk → P(Nn) is r.r.b. if Φ is recursive and
recursively bounded. The proof of the following proposition is straightforward.

Proposition3. If Φ, Ψ : Nk → P(Nn) are r.r.b. functions, then the sets {x ∈
Nk | Φ(x) = Ψ(x)}, {x ∈ Nk | Φ(x) ⊆ Ψ(x)}, {x ∈ Nk | Φ(x) = ∅} are recursive.

It is not hard to prove the following proposition.

Proposition4. Let Φ : Nk → P(Nn) and Ψ : Nn+k → P(Nm) be r.r.b. func-
tions. Let Λ : Nk → P(Nm) be defined by

Λ(x) =
⋃

z∈Φ(x)

Ψ(z, x),

x ∈ Nk. Then Λ is an r.r.b. function.

Example 3. If α, β : Nk → N and f : Nk+1 → Nn are recursive functions, then
the function Nk → P(Nn), x �→ {f(i, x) | α(x) ≤ i ≤ β(x)} is r.r.b.

It is not hard to prove the following lemma.

Lemma5. Let Φ : Nk → P(Nk) be r.r.b. and let T ⊆ Nn be r.e. Then the set
S = {x ∈ Nk | Φ(x) ⊆ T } is r.e.

Let σ : N2 → N and η : N → N be some fixed recursive functions with the
following property: {(σ(i, 0), . . . , σ(i, η(i))) | i ∈ N} is the set of all nonempty
finite sequences in N, i.e. the set {(a0, . . . , an) | n ∈ N, a0, . . . , an ∈ N}. Such
functions, for instance, can be defined using the Cantor pairing function. We are
going to use the following notation: (i)j instead of σ(i, j) and i instead of η(i).
Hence

{((i)0, . . . , (i)i) | i ∈ N}
is the set of all nonempty finite sequences in N.

Lemma6. Let Φ : Nk → P(Nn) be an r.r.b. function and let f : Nn → R be
a recursive function. Then there exist recursive functions ϕ, ψ : Nk → R such
that

ϕ(x) = min
y∈Φ(x)

f(y), ψ(x) = max
y∈Φ(x)

f(y)
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for each x ∈ Nk such that Φ(x) 	= ∅.

Proof. Let α : N → Nn be some recursive surjection. Let Γ : N → P(Nn) be
defined by

Γ (i) = {α((i)j) | 0 ≤ j ≤ i}.
Then Γ is r.r.b. (Example 3). Note that each nonempty subset of Nn equals
Γ (i) for some i ∈ N. Therefore, for each x ∈ Nk there exists i ∈ N such that
(Φ(x) = Γ (i) or Φ(x) = ∅.) By Proposition 3 and Proposition 1(ii) there exists a
recursive function λ : Nk → N such that Φ(x) = Γ (λ(x)) for each x ∈ Nk such
that Φ(x) 	= ∅. Now we define ϕ : Nk → R by

ϕ(x) = min
0≤j≤λ(x)

f(α((λ(x))j )), ψ(x) = max
0≤j≤λ(x)

f(α((λ(x))j )),

x ∈ Nk. Then ϕ and ψ have the desired property (recursiveness of these functions
follows from Proposition 2(iii)). ��

Lemma7. There exists a recursive function ζ : N2 → N such that for all
m, p ∈ N each finite sequence x0, . . . , xp in {0, . . . ,m} is equal to (i)0, . . . , (i)i
for some i ∈ N such that i ≤ ζ(m, p).

2 Computability structures on Euclidean space

Let n ≥ 1 and let d be the Euclidean metric on Rn. The main step in proving
that every two effective separating sequences in (Rn, d) are equivalent up to
isometry is the following proposition.

Proposition8. Let a0, . . . , an be recursive points in Rn which are geometrically
independent (i.e. a1 − a0, . . . , an − a0 are linearly independent vectors) and let
(xi) be a sequence in Rn such that (d(xi, ak))i∈N is a recursive sequence of real
numbers for each k ∈ {0, . . . , n}. Then (xi) is a recursive sequence.

Proof. For k ∈ {0, . . . , n} let vk : N → R be the function defined by

vk(i) = d(xi, ak), i ∈ N.

Let i ∈ N. For k ∈ {0, . . . , n} we have

〈xi − ak|xi − ak〉 = vk(i)2, (2)

where (x, y) �→ 〈x|y〉, x, y ∈ Rn, is the inner product. It follows from (2) that
for each k ∈ {1, . . . , n} we have

〈xi − ak|xi − ak〉 − 〈xi − a0|xi − a0〉 = vk(i)2 − v0(i)2
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which implies

〈xi| − 2ak + 2a0〉 = vk(i)2 − v0(i)2 − 〈ak|ak〉 + 〈a0|a0〉.
Hence there exist recursive functions s1, . . . , sn : N → R such that

〈xi|ak − a0〉 = sk(i), (3)

∀i ∈ N, ∀k ∈ {1, . . . , n}. For i ∈ N let x1
i , . . . , x

n
i ∈ R be numbers such that

xi = (x1
i , . . . , x

n
i ). Let A be the n× n matrix whose k − th row is the n−tuple

ak − a0, i.e. A =

⎛
⎜⎝
a1 − a0

...
an − a0

⎞
⎟⎠. It follows from (3) that A

⎛
⎜⎝
x1
i
...
xni

⎞
⎟⎠ =

⎛
⎜⎝
s1(i)

...
sn(i)

⎞
⎟⎠.

The rank of the matrix A is clearly n, hence A is invertible and we have⎛
⎜⎝
x1
i
...
xni

⎞
⎟⎠ = A−1

⎛
⎜⎝
s1(i)

...
sn(i)

⎞
⎟⎠ . (4)

In general, if B is an invertible matrix, then each element of B−1 can be written
as the quotient of the determinants of matrices which consist of certain elements
of B. Therefore each element of A−1 is a recursive number and it follows from (4)
that (x1

i )i∈N, . . . , (xni )i∈N are recursive sequences. Hence (xi)i∈N is a recursive
sequence. ��

Proposition 8 is essentially a consequence of the fact that we can compute
each component of xi by certain formula which involves addition, subtraction,
multiplication and division of numbers d(xi, a0), . . . , d(xi, an) and components
of the points a0, . . . , an. It follows from Proposition 8 that for geometrically in-
dependent recursive points a0, . . . , an in Rn and x ∈ N the following implication
holds:

the numbers d(x, a0), . . . , d(x, an) are recursive ⇒ the point x is recursive.
(5)

However, in a general computable metric space it is not possible to find n ∈ N
and recursive points a0, . . . , an such that the implication (5) holds. This shows
the following example.

Example 4. Let p be the metric on R2 given by p((x1, y1), (x2, y2)) = max{|x2−
x1|, |y2 − y1|}. If (αi) is a recursive dense sequence in R2, then (R2, p, (αi)) is
a computable metric space and the induced computability structure coincides
with the usual computability structure on R2. Suppose (x0, y0), . . . , (xk, yk)
are any recursive points in R2. Let M > 0 be some upper bound of the set
{|x0|, |y0|, . . . , |xk|, |yk|}. Let a, b ∈ R be such that a > 3M , |b| < M and such
that a is a recursive, and b a nonrecursive number. Then p((a, b), (x0, y0)), . . .
p((a, b), (xk, yk)) are recursive numbers, but (a, b) is a nonrecursive point.
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The following corollary is an immediate consequence of Proposition 8.

Corollary 9. Suppose (Rn, d, α) is a computable metric space, f : Rn → Rn

an isometry and a0, . . . , an recursive points in (Rn, d, α) which are geometrically
independent and such that f(a0), . . . , f(an) are recursive points in Rn in the
usual sense. Then f ◦ α is a recursive sequence in the usual sense.

The next step in proving that every two effective separating sequences in
(Rn, d) are equivalent up to isometry is the following lemma.

Lemma10. Let a0, . . . , an be geometrically independent points in Rn such that
d(ai, aj) is a recursive number for all i, j ∈ {0, . . . , n}. Then there exists an
isometry f : Rn → Rn such that f(a0), . . . , f(an) are recursive points.

Proof. By the Gram-Schmidt orthogonalization process there exists an orthonor-
mal basis {e1, . . . , en} of Rn such that the sets {a1 − a0, . . . , aj − a0} and
{e1, . . . , ej} span the same linear subspace of Rn for each j ∈ {1, . . . , n}. Let
f : Rn → Rn be the composition of the map g : Rn → Rn, x �→ x− a0 and the
map h : Rn → Rn, h(t1e1 + . . .+ tnen) = (t1, . . . , tn), t1, . . . , tn ∈ R. Then f is
an isometry and f(a0) = (0, . . . , 0),

f(ak) ∈ {(t1, . . . , tk, 0, . . . , 0) | t1, . . . , tk ∈ R, tk 	= 0},
∀k ∈ {1, . . . , n}. We prove now that f(ak) is a recursive point for each k ∈
{0, . . . , n}. This is clearly true for k = 0. For k ∈ {1, . . . , n} let bk1 , . . . , b

k
k ∈ R

be such that
f(ak) = (bk1 , . . . , b

k
k, 0, . . . , 0).

Suppose that f(a0), . . . , f(ak−1) are recursive points for some k ∈ {1, . . . , n}.
Let us prove that f(ak) is recursive. For l ∈ {0, . . . , k − 1} let

rl = d(f(ak), f(al)). (6)

Note that the numbers r0, . . . , rk−1 are recursive. It follows from (6) for l = 0
that

(bk1)2 + (bk2)2 + . . .+ (bkk)
2 = r20 (7)

and for l = 1 that

(bk1 − b11)
2 + (bk2)2 + . . .+ (bkk)

2 = r21 . (8)

Subtracting (8) from (7) we get that bk1 is a recursive number. We get from (6)
for l = 2 that

(bk1 − b21)
2 + (bk2 − b22)

2 + . . .+ (bkk)
2 = r22

which, together with (7), now implies that bk2 is recursive. Repeating this ar-
gument for l = 3, . . . , k − 1 we obtain that bk3 , . . . , b

k
k−1 are recursive. Now (7)

implies that bkk is recursive and therefore f(ak) is a recursive point. We conclude
that f(a0), . . . , f(an) are recursive points. ��
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Proposition11. Let (αi) be an effective separating sequence in Rn. Then there
exists an isometry f : Rn → Rn such that (f(αi)) is a recursive sequence in Rn.

Proof. Let i0, . . . , in ∈ N be such that αi0 , . . . , αin are geometrically indepen-
dent points. By Lemma 10 there exists an isometry f : Rn → Rn such that
f(ai0), . . . , f(ain) are recursive points. The claim of the theorem now follows
from Corollary 9. ��

Note the following: if (xi) and (yi) are recursive dense sequences in Rn,
then (xi) and (yi) are equivalent as effective separating sequences. This and
Proposition 11 imply the following.

Theorem 12. If α and β are effective separating sequences in (Rn, d), then α

and β are equivalent up to isometry.

Euclidean space Rn is not totally bounded, but each open (or closed) ball in
Rn is totally bounded. We say that a computable metric space (X, d, α) can be
exhausted effectively by totally bounded balls if there exists x̃ ∈ X and
a recursive function F : N2 → N such that

B(x̃,m) ⊆
F (k,m)⋃
i=0

B(αi, 2−k),

∀k,m ∈ N. It is clear that if such a function F exists for one x̃ ∈ X , then it exists
for each x̃ ∈ X . It is obvious that each effectively totally bounded computable
metric space can be exhausted effectively by totally bounded balls. Furthermore,
if α is some recursive dense sequence in Rn, then (Rn, d, α) can be exhausted
effectively by totally bounded balls. It is easy to conclude from this and Theorem
12 that any computable metric space of the form (Rn, d, α) can be exhausted
effectively by totally bounded balls.

In the contrast to the fact that the equivalence (1) holds in general, which
will be proved later, the equivalence

(X, d, α) can be exhausted effectively by totally bounded balls

� (9)

(X, d, β) can be exhausted effectively by totally bounded balls

does not hold in general, as the following example shows.

Example 5. Let the number γ be as in Example 2. It is easy to construct a
recursive sequence of rational numbers α′ which is dense in 〈−∞, γ]. Let d be
the Euclidean metric on 〈−∞, 0] and let (xi) be some recursive sequence of
real numbers which is dense in 〈−∞, 0]. Then the computable metric space
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(〈−∞, 0], d, (xi)) can be exhausted effectively by totally bounded balls. On the
other hand, if α : N → 〈−∞, 0] is defined by α(i) = α′(i) − γ, then α is an
effective separating sequence in (〈−∞, 0], d) and the computable metric space
(〈−∞, 0], d, α) cannot be exhausted effectively by totally bounded balls which
can be deduced from the fact that 0 is not a recursive point in this space.

The previous example also shows that effective separating sequences in a
metric space (X, d) need not be equivalent up to isometry; namely, it is easy to
see that the equivalence (9) holds when α and β are equivalent up to isometry.
The following two examples show that effective separating sequences in (X, d)
need not be equivalent up to isometry even when (X, d) is totally bounded.

Example 6. Let ([0, γ], d, α) be the computable metric space of Example 2. Let
α′ : N → R be defined by α′(2i) = α(i)

2 , α′(2i + 1) = −α(i)
2 , i ∈ N and

let α′′ : N → [0, γ] be defined by α′′(i) = α′(i) + γ
2 . Then α′′ is an effective

separating sequence in ([0, γ], d). Since the point γ
2 is recursive in ([0, γ], d, α′′),

but not in ([0, γ], d, α), and since γ
2 is a fixed point of each isometry of ([0, γ], d)

(namely the only isometries are the identity and the map t �→ γ − t, t ∈ [0, γ]),
we conclude that effective separating sequences α and α′′ are not equivalent.

Example 7. Let S be the unit circle in R2 and let d be the Euclidean metric
on S. Since S is a recursive set, there exists a recursive sequence (xi) in S

such that (S, d, (xi)) is an effectively totally bounded computable metric space
(Example 1). Let f : R2 → R2 be a rotation with the center (0, 0) such that
f(1, 0) is a nonrecursive point. Then (f(xi)) is an effective separating sequence
in (S, d) nonequivalent to (xi). Let A = {xi | i ∈ N} ∪ {f(xi) | i ∈ N}, let
T = {(x, y) ∈ S | x ≤ 0 or (x, y) ∈ A} and let d′ be the Euclidean metric on T .
Then (xi) and (f(xi)) are effective separating sequences in (T, d′) and it follows
easily that they are not equivalent up to isometry in this metric space.

3 Effective total boundedness and effective dispersion

Let (X, d) be a metric space. A nonempty subset S of X is said to be r−dense
in (X, d), where r ∈ R, r > 0, if X =

⋃
s∈S B(s, r). Note that a set S is dense

in (X, d) if and only if S is r−dense in (X, d) for all r > 0. We say that a finite
sequence x0, . . . , xn of points in X is r−dense in (X, d) if the set {x0, . . . , xn} is
r−dense in (X, d). Hence (X, d) is totally bounded if and only if for each ε > 0
there exists a finite sequence of points in X which is ε−dense in (X, d).

Let s ∈ R. A nonempty subset S of X is said to be s−dispersed in (X, d)
if d(x, y) > s, ∀x, y ∈ S, x 	= y. A finite sequence x0, . . . , xn of points in X

is said to be s−dispersed in (X, d) if d(xi, xj) > s, ∀i, j ∈ {0, . . . , n}, i 	= j.
Note that if x0, . . . , xn is an s-dispersed finite sequence, then {x0, . . . , xn} is an
s−dispersed set, while the converse does not hold in general.
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Proposition13. Let (X, d) be a totally bounded metric space and let s > 0.
Then the set A = {k ∈ N | there exists a finite sequence x1, . . . , xk which is
s−dispersed in (X, d)} is finite.

Proof. Let y0, . . . , yp be an s
2−dense finite sequence in (X, d). Suppose that

a finite sequence x1, . . . , xk is s−dispersed. For each i ∈ {1, . . . , k} let ji ∈
{0, . . . , p} be such that xi ∈ B(yji ,

s
2 ). If i, i′ ∈ {1, . . . , k}, i 	= i′, then ji 	= ji′

since d(xi, xi′) > s. Therefore we have an injection {1, . . . , k} → {0, . . . , p},
hence k < p. This shows that A is finite. ��

Let (X, d) be a totally bounded metric space. If S ⊆ X , S 	= ∅, and s > 0,
then, by Proposition 13, the set {k ∈ N | there exists a finite sequence x1, . . . , xk
of points in S which is s−dispersed in (X, d)} is finite. We denote the maximum
of this set by Λ(S, s). If x0, . . . , xn is a finite sequence in X , then we will write
Λ(x0, . . . , xn; s) instead of Λ({x0, . . . , xn}, s).

Example 8. With the Euclidean metric on [0, 3] we have Λ([0, 1], s) = 1 if s ≥ 1,

Λ([0, 1], s) = 2 if s ∈ [
1
2 , 1

〉
and Λ(0, 1, 3; s) =

⎧⎨
⎩

1, 3 ≤ s,
2, 1 ≤ s < 3,
3, 0 < s < 1.

Lemma14. Suppose (X, d) is a totally bounded metric space, s > 0 and n =
Λ(X, s). Let x0, . . . , xn−1 be a finite sequence which is s−dispersed in (X, d).
Then x0, . . . , xn−1 is 2s−dense.

Proof. Let a ∈ X . Then the finite sequence a, x0, . . . , xn−1 is not s−dispersed
and since x0, . . . , xn−1 is s−dispersed, there exists i ∈ {0, . . . , n− 1} such that
d(a, xi) ≤ s. Hence the finite sequence x0, . . . , xn−1 is 2s−dense. ��

Now, let α and β be effective separating sequences in (X, d) such that the
computable metric space (X, d, α) is effectively totally bounded. In order to prove
that (X, d, β) is also effectively totally bounded, it would be enough to prove that
for each k ∈ N we can effectively find the number Λ(X, 2−k). Namely, in that case
for any k ∈ N we can effectively find i1, . . . , in ∈ N such that the finite sequence
βi1 , . . . , βin is 2−(k+1)−dispersed, where n = Λ(X, 2−(k+1)) and then this finite
sequence of points (and consequently the finite sequence β0, . . . , βmax{i1,...,in})
must be 2−k−dense. However, the number Λ(X, 2−k) cannot be found effectively
in general, as the following example shows.

Example 9. Let (λi) be a recursive sequence of real numbers such that λi ≥ 0,
∀i ∈ N and such that the set {i ∈ N | λi = 0} is not recursive ([Pour-El and
Richards 1989]). We may assume λi < 4−i, ∀i ∈ N. Let ti = 4−i + λi, i ∈ N,
X = {ti | i ∈ N}∪{0} and let d be the Euclidean metric on X . Then (X, d, (ti))
is an effectively totally bounded computable metric space. Let i ∈ N. It is
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straightforward to check that Λ(X, 4−i) = i+ 1 if λi = 0 and Λ(X, 4−i) = i+ 2
if λi > 0. Therefore the function N → N, i �→ Λ(X, 2−i) is not recursive.

A totally bounded metric space (X, d) is said to be effectively dispersed
if there exists a recursive function s : N → Q such that si ∈ 〈0, 2−i〉, ∀i ∈ N
and such that the function N → N, i �→ Λ(X, si) is recursive.

If X is a set and p ∈ N let Fp(X) denotes the set of all functions x :
{0, . . . , p} → X (hence Fp(X) is the set of all finite sequences in X of the form
x0, . . . , xp). Of course, for x ∈ Fp(X) and i ∈ {0, . . . , p} we will denote x(i) by
xi. If x ∈ Fp(X), then we say that the finite sequence x has length p and we
write p = length(x).

If (X, d) is a metric space and x ∈ Fp(X), p ≥ 1, let ρ(x) denotes the real
number defined by

ρ(x) = min{d(xi, xj) | i, j ∈ {0, . . . , p}, i 	= j}.

Let (X, d) be a metric space and let A be a nonempty bounded set in this
space. For each n ∈ N we define the real number Cn(A) (see [Kreinovich 1977])
by

Cn(A) = sup{ε ∈ R | ∃x ∈ Fn+1(A) such that x is ε− dispersed}.

Note that
Cn(A) = sup{ρ(x) | x ∈ Fn+1(A)}.

Lemma15. Let (X, d) be a metric space, let A and B be nonempty bounded
sets in this space and let ε > 0 be such that for each a ∈ A there exists b ∈ B

such that d(a, b) < ε and for each b ∈ B there exists a ∈ A such that d(b, a) < ε.
Then for each n ∈ N

|Cn(A) − Cn(B)| ≤ 2ε.

Lemma 15 can be proved easily using the following lemma, which is an immediate
consequence of the triangle inequality in a metric space.

Lemma16. If (X, d) is a metric space, a, b, a′, b′ ∈ X and ε, r > 0 such that
d(a, b) > r, d(a, a′) < ε and d(b, b′) < ε, then d(a′, b′) > r − 2ε.

Lemma17. Let (X, d, α) be a computable metric space. For l ∈ N let α[l] de-
notes the finite sequence α(l)0 , . . . , α(l)

l
. Then there exists a recursive function

f : N → R such that
f(l) = ρ(α[l])

for each l ∈ N such that length(α[l]) ≥ 1 (i.e. l ≥ 1).
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Proof. Since N → P(N2), l �→ {(i, j) ∈ N2 | i 	= j, 0 ≤ i, j ≤ l}, is clearly
an r.r.b. function and N3 → N2, (l, i, j) �→ ((l)i, (l)j), is a recursive function,
Proposition 4 implies that the function N → P(N2),

l �→ {((l)i, (l)j) | i 	= j, 0 ≤ i, j ≤ l}
is r.r.b. If we apply Lemma 6 to this function and the function N2 → R, (i, j) �→
d(αi, αj), we get the claim of the lemma. ��
Corollary 18. Let (X, d, α) be a computable metric space and let (sk)k∈N be a
recursive sequence of real numbers. With notation of the previous lemma we have
that the set

D = {(l, k) ∈ N2 | α[l] is sk dispersed}
is recursively enumerable.

Proof. For all x ∈ Fp(X), p ≥ 1, and r > 0 we have that x is r−dispersed if and
only if ρ(x) > r. Therefore,

(l, k) ∈ D if and only if ρ(α[l]) > sk or l = 0.

The claim of the corollary now follows from Lemma 17 and Proposition 2(iv).
��

Proposition19. Let (X, d, α) be a computable metric space. For m ∈ N let
Am = {α0, . . . , αm}. Then the function N2 → R,

(n,m) �→ Cn(Am),

is recursive.

Proof. For i ∈ N let us denote by α[i] the finite sequence α(i)0 , . . . , α(i)
i
.

For all n,m ∈ N we have

Cn(Am) = max
x∈Fn+1(Am)

ρ(x). (10)

Let ζ be the function of Lemma 7. Then each element of Fn+1({0, . . . ,m})
is of the form (i)0, . . . , (i)i for some i ≤ ζ(m,n+ 1).

Let Φ : N2 → P(N) be defined by

Φ(n,m) = {i ≤ ζ(m,n+ 1) | i = n+ 1 and (i)j ≤ m, ∀j ∈ {0, . . . , i}}.
Clearly, Φ is r.r.b. Let n,m ∈ N. We have that the set of all finite sequences
(i)0, . . . , (i)i for i ∈ Φ(n,m) equals Fn+1({0, . . . ,m}). Therefore

{α[i] | i ∈ Φ(n,m)} = Fn+1(Am)

and, by (10),
Cn(Am) = max

i∈Φ(n,m)
ρ(α[i]).

The claim of the proposition now follows from Lemma 17 and Lemma 6. ��
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Theorem 20. Let (X, d) be a totally bounded metric space. Let α be an effective
separating sequence in (X, d). Then the following statements are equivalent.

(i) the computable metric space (X, d, α) is effectively totally bounded;

(ii) the function N → R, n �→ Cn(X), is recursive;

(iii) the metric space (X, d) is effectively dispersed.

Proof. Suppose that (i) holds. For m ∈ N let Am = {α0, . . . , αm}. Let ϕ : N →
N be a recursive function such that X =

⋃ϕ(k)
i=0 B(αi, 2−k), ∀k ∈ N. Then, by

Lemma 15,
|Cn(X) − Cn(Aϕ(k))| ≤ 2 · 2−k,

for all n, k ∈ N. Therefore (ii) holds (Proposition 2(ii)).
Suppose now that (ii) holds and let us prove (iii). If X is finite, then (iii)

clearly holds. Suppose X is infinite. Then 0 < Cn+1(X) ≤ Cn(X), ∀n ∈ N. We
also have limn→∞Cn(X) = 0, otherwise there exists s > 0 such that Cn(X) > s

for each n ∈ N which contradicts Proposition 13.
Let r : N → Q be a recursive function whose image is dense in R. Now, for

each k ∈ N there exists i, n ∈ N such that

ri < 2−k and Cn+1(X) < ri < Cn(X).

By Proposition 2(iv) and Proposition 1(ii) there exist recursive functions ϕ, ψ :
N → N such that rϕ(k) < 2−k and Cψ(k)+1(X) < rϕ(k) < Cψ(k)(X), ∀k ∈ N.
This, by definition of the numbers Cn(X), n ∈ N, implies

Λ(X, rϕ(k)) = ψ(k) + 2,

∀k ∈ N. Therefore (X, d) is effectively dispersed.
Finally, let us prove that (iii) implies (i). Let s : N → Q be a recursive

function such that 0 < sk < 2−k, ∀k ∈ N and such that

k �→ Λ(X, sk), k ∈ N, (11)

is a recursive function. Let k ∈ N. Then there exist a finite sequence x1, . . . , xp
which is sk−dispersed in (X, d), where p = Λ(X, sk). Since the sequence α

is dense in (X, d), we easily conclude that there exist i1, . . . , ip such that the
sequence αi1 , . . . , αip is sk−dispersed.

For l ∈ N let us denote by α[l] the finite sequence α(l)0 , . . . , α(l)
l
. Hence for

each k ∈ N there exists l ∈ N such that

α[l] is sk−dispersed and l + 1 = Λ(X, sk). (12)

The fact that (11) is a recursive function, Lemma 18 and Proposition 1(ii) imply
that there exists a recursive function λ : N → N such that for each k ∈ N (12)
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holds when l = λ(k). Now Lemma 14 implies that α[λ(k)] is 2sk dense for each
k ∈ N.

Let f : N → N be defined by

f(k) = max{(λ(k + 1))i | 0 ≤ i ≤ λ(k + 1)}.

Clearly, f is recursive. It is obvious that the sequence α0, . . . , αf(k) is 2 · sk+1−
dense in (X, d) and since 2 · sk+1 < 2 · 2−(k+1) = 2−k, this sequence is also
2−k−dense. Therefore (X, d, α) is effectively totally bounded. ��

Let (X, d, α) be a computable metric space. By Theorem 20

(X, d, α) is effectively totally bounded ⇔ (X, d) is effectively dispersed.

Corollary 21. Let α and β be effective separating sequences in a metric space
(X, d). Then (X, d, α) is effectively totally bounded if and only if (X, d, β) is
effectively totally bounded.

A computable metric space (X, d, α) is said to be effectively compact
(cf. [Yasugi, Mori and Tsujji 1999]) if (X, d, α) is effectively totally bounded and
(X, d) is complete. If α and β are effective separating sequences in a metric
space (X, d), then, by Corollary 21, (X, d, α) is effectively compact if and only
if (X, d, β) is effectively compact.

We will say that a metric space (X, d) is effectively compact if there exists
α such that (X, d, α) is an effectively compact computable metric space. Corol-
lary 21 says that (X, d, β) is an effectively totally bounded computable metric
for every effective separating sequence β in an effectively compact metric space
(X, d).

Note that a compact metric space (X, d) is effectively compact if and only if
it is effectively dispersed and it has at least one effective separating sequence.

4 Isometries and effective compactness

We have seen in Section 2 that each two effective separating sequences in Rn

with the Euclidean metric are equivalent up to isometry. Examples 5, 6 and 7
show that this property does not hold in general. Note, however, that metric
spaces constructed in these examples are not effectively compact. In contrast
to Example 6, every two effective separating sequences in [0, 1] with the Eu-
clidean metric are equivalent up to isometry, moreover they are equivalent as
the following example shows.

Example 10. Let (αi) be a recursive sequence of rational numbers such that
{αi | i ∈ N} = Q ∩ [0, 1]. Let d be the Euclidean metric on [0, 1]. Then (αi)
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is an effective separating sequence in ([0, 1], d). Let β be an effective separating
sequence in ([0, 1], d). We claim that β ∼ α.

Choose i0 ∈ N so that βi0 <
1
4 . For each k ∈ N there exist i, j ∈ N such that

d(βi, βj) > 1 − 2−(k+2), d(βi, βi0) <
1
4 . Therefore there exist recursive functions

ϕ, ψ : N → N such that for each k ∈ N these two inequalities hold when
i = ϕ(k), j = ψ(k). So for each k ∈ N we have

|βϕ(k) − βψ(k)| > 1 − 2−(k+2), |βϕ(k) − βi0 | <
1
4
,

from which we easily conclude that βϕ(k) < 2−(k+2). Hence d(0, βϕ(k)) < 2−(k+2),
∀k ∈ N, which means that 0 is a recursive point in the computable metric space
([0, 1], d, β).

In general, it is easy to see that if (X, q, γ) is a computable metric space
and x a recursive point in this space, then N → R, i �→ q(x, γi), is a recursive
function.

Therefore, the function i �→ d(0, βi), i ∈ N, is recursive, i.e. (βi) is a recursive
sequence in R and (αi) ∼ (βi).

Example 10 says that [0, 1] with the Euclidean metric has a unique computability
structure. On the other hand, the unit circle S1 in R2 with the Euclidean metric
is effectively compact, but it has nonequivalent effective separating sequences
(Example 7), hence it has more than one computability structure. One obvious
difference between these metric spaces is that there are infinitely many isometries
S1 → S1, but only two isometries [0, 1] → [0, 1].

As we will see in this section, the property of an effectively compact metric
space (X, d) that there are only finitely many isometries X → X implies that
(X, d) has a unique computability structure, not just for those (X, d) which are
metric subspaces of Euclidean space, but in general.

The idea how to prove this is in certain sense similar to the idea used in
Example 10. As we noticed in that example, if x, y ∈ [0, 1] are such that d(x, y)
is close to 1, then x and y are close respectively to 0 and 1 or to 1 and 0.
Let us now observe this situation in the case of a compact metric space (X, d)
and let us, for simplicity, take that (X, d) is such that there exists exactly one
isometry X → X (the identity). The question is this: if x0, . . . , xp and y0, . . . , yp
are finite sequences in X and if the number d(xi, xj) is close to the number
d(yi, yj) for all i, j, what can be said about the distances between the points
x0, . . . , xp and y0, . . . , yp respectively? As we will see in Proposition 26, under
certain conditions the point xi must be close to the point yi for each i. Using
this fact, it will be possible to prove that effective separating sequences α and
β in (X, d) are equivalent (under assumption that (X, d) is effectively compact):
we can effectively find numbers v0, . . . , vp and w0, . . . , wp such that d(αvi , αvj )
is close to d(βwi , βwj ) for all i, j ∈ {0, . . . , p} and then it follows that βwi is an
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approximation of αvi for each i; if we ensure that each αk is close to some αvi ,
then each αk can be effectively approximated by some βk′ and this means that
the sequences α and β are equivalent.

As we will see, the described idea can be generalized to the case when (X, d)
has more that one isometry onto itself (but finitely many) and this will give the
desired result.

First, we need some facts about finite sequences in a metric space.
Let X be a set. Let G(X) be the set of all sequences (vk)k∈N in

⋃∞
p=0 Fp(X)

such that
length(vk) < length(vk+1), ∀k ∈ N.

If v = (vk)k∈N ∈ G(X), then clearly any subsequence of v is also an element of
G(X).

If (vk)k∈N is a sequence in
⋃∞
p=0 Fp(X), then for k, i ∈ N, i ≤ length(vk),

we denote (vk)i by vki .
Let (X, d) be a metric space. We say that (vk)k∈N ∈ G(X) is l−convergent

in (X, d), l ∈ N, if for each l′ ∈ {0, . . . , l} the sequence k �→ vl
′+k
l′ , k ∈ N,

converges in (X, d) (note that the fact (vk)k∈N ∈ G(X) implies length(vk) ≥
k, ∀k ∈ N).

Lemma22. Let (X, d) be a metric space and x0 ∈ X. If (vk)k∈N ∈ G(X) and
l ∈ N are such that the sequence k �→ vk+ll , k ∈ N, converges to x0, then for
each subsequence (wk)k∈N of (vk)k∈N the sequence k �→ wk+ll , k ∈ N, converges
to x0.

Proof. If (wk)k∈N is a subsequence of (vk)k∈N, then wk = vϕ(k), ∀k ∈ N, where
ϕ : N → N is some increasing function (i.e. ϕ(i) < ϕ(i+ 1), ∀i ∈ N). Therefore
for each k ∈ N we have

wk+ll = v
ϕ(k+l)
l = v

(ϕ(k+l)−l)+l
l

from which we conclude that k �→ wk+ll , k ∈ N, is a subsequence of k �→ vk+ll , k ∈
N, and the claim of the lemma follows. ��

Lemma23. Let (X, d) be a compact metric space and suppose v = (vk)k∈N ∈
G(X) is l−convergent in (X, d) for some l ∈ N. Then there exists a subsequence
of v which is (l + 1)−convergent in (X, d).

Proof. Let us observe the sequence k �→ v
k+(l+1)
l+1 , k ∈ N. Since (X, d) is compact,

there is an increasing function ϕ : N → N such that k �→ v
ϕ(k)+(l+1)
l+1 , k ∈ N, is

a convergent sequence. Now, let w = (wk)k∈N be a sequence defined by

wk = vϕ(k)+l+1,
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k ∈ N. Then w is a subsequence of v, w ∈ G(X) and for each k ∈ N we
have wk+l+1

l+1 = v
ϕ(k+l+1)+l+1
l+1 , hence the sequence k �→ wk+l+1

l+1 , k ∈ N, is a

subsequence of k �→ v
ϕ(k)+l+1
l+1 , k ∈ N, and therefore is convergent. For l′ ∈

{0, . . . , l} the sequence k �→ wk+l
′

l′ , k ∈ N, is convergent by Lemma 22. Hence w
is (l + 1)−convergent. ��

Let (X, d) be a metric space. If x, y ∈ Fp(X), then we denote the number
max0≤i≤p |xi − yi| by d(x, y). The function X × X → R, (x, y) �→ d(x, y), is a
metric on Fp(X).

Let x, y ∈ Fp(X). We say that x and y are isometrically equivalent and
we denote that by x ∼iso y if d(xi, xj) = d(yi, yj), ∀i, j ∈ {0, . . . , p}. Similarly,
sequences (xi) and (yi) inX are said to be isometrically equivalent, (xi) ∼iso (yi),
if d(xi, xj) = d(yi, yj), ∀i, j ∈ N.

If x, y ∈ Fp(X) and r ∈ R, then we say that x and y are r−isometrically
equivalent, x ∼≤r

iso y, if

|d(xi, xj) − d(yi, yj)| ≤ r, ∀i, j ∈ {0, . . . , p},

and we say that x and y are strictly r−isometrically equivalent, x ∼<riso y, if

|d(xi, xj) − d(yi, yj)| < r, ∀i, j ∈ {0, . . . , p}.

If α = (αi)i∈N is a sequence in a set X and p ∈ N, then we denote the finite
sequence α0, . . . , αp by α≤p.

Lemma24. Let (X, d) be a compact metric space and let α = (αi)i∈N be a
dense sequence in this metric space. Suppose v = (vk)k∈N ∈ G(X) is such that

vk ∼iso

(
α≤length(vk)

)
, ∀k ∈ N.

Then there exists a sequence (γi) in X such that the following two properties are
satisfied:

(i) (γi) ∼iso (αi);

(ii) for each ε > 0 and each q ∈ N there exists l ∈ N such that length(vl) ≥ q

and
d(γi, vli) < ε, ∀i ∈ {0, . . . , q}.

Proof. Observe the sequence in X defined by k �→ vk0 , k ∈ N. Compactness
of (X, d) implies that there exists an increasing function ϕ : N → N such
that k �→ v

ϕ(k)
0 , k ∈ N, is a convergent sequence. Let a(0) be the subsequence

(vϕ(k))k∈N of v. Then a(0) is a 0−convergent element of G(X). By Lemma 23
there exists a subsequence a(1) of a(0) which is 1−convergent. Repeating this
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argument, we obtain a sequence a(0), a(1), . . . , a(l), . . . in G(X) such that a(l) is
l−convergent and a(l + 1) is a subsequence of a(l) for each l ∈ N.

For l ∈ N let γl be the limit of the sequence k �→ a(l)k+ll , k ∈ N. We claim
that (γl)l∈N is the desired sequence. Note that, by Lemma 22, for all l, l′ ∈ N,
l′ ≥ l, the sequence k �→ a(l′)k+ll , k ∈ N, converges to γl. If l ∈ N, then, using
notation a(l) = (a(l)k)k∈N, we have that for each k ∈ N the finite sequence a(l)k

is isometrically equivalent to α≤m for some m ∈ N, namely a(l) is a subsequence
of v, hence a(l)k = vk

′
for some k′ ∈ N.

Let i, j ∈ N. Let l ∈ N be such that l ≥ i, l ≥ j. Then γi = limk→∞ a(l)k+ii

and since k �→ a(l)k+li , k ∈ N, is a subsequence of k �→ a(l)k+ii , k ∈ N, we have
γi = limk→∞ a(l)k+li . In the same way we get γj = limk→∞ a(l)k+lj . Now

d
(
a(l)k+li , a(l)k+lj

)
= d(αi, αj), ∀k ∈ N,

implies d(γi, γj) = d(αi, αj). Hence (γi) ∼iso (αi).
Let ε > 0 and q ∈ N. For each i ∈ {0, . . . , q} we have γi = limk→∞ a(q)k+qi .

For i ∈ {0, . . . , q} let ki ∈ N be such that d(γi, a(q)
k+q
i ) < ε, ∀k ≥ ki. Let

k = max{k0, . . . , kq}. Then d(γi, a(q)
k+q
i ) < ε, ∀i ∈ {0, . . . , q}. Let l ∈ N be such

that a(q)k+q = vl. Then d(γi, vli) < ε, ∀i ∈ {0, . . . , q}. ��

Lemma25. Let (X, d) be a compact metric space, p ∈ N, a ∈ Fp(X) and
(vN )N∈N a sequence in Fp(X) such that vN ∼≤2−N

iso a, ∀N ∈ N. Then there
exists w ∈ Fp(X) such that w ∼iso a and such that d(w, u) ≥ r whenever
u ∈ Fp(X) and r > 0 are such that d(vN , u) ≥ r, ∀N ∈ N.

Proof. Using the fact that (X, d) is compact, it is easy to conclude that there
exists a subsequence (vNk)k∈N of (vN )N∈N such that (vNk

i )k∈N is a convergent
sequence in (X, d) for each i ∈ {0, . . . , p}. Let w ∈ Fp(X) be such that wi =
limk→∞ vNk

i , ∀i ∈ {0, . . . , p}. For all i, j ∈ {0, . . . , p} we have

|d(vNk

i , vNk

j ) − d(ai, aj)| ≤ 2−Nk , ∀k ∈ N,

and therefore d(wi, wj) = d(ai, aj). Hence w ∼iso a. Actually the sequence
(vNk)k∈N converges to w in Fp(X) with respect to metric (x, y) �→ d(x, y).
So d(w, u) < r for some u ∈ Fp(X) and r > 0 implies d(vNk , u) < r for some
k ∈ N. ��

Proposition26. Let (X, d) be a compact metric space such that there exist ex-
actly n isometries X → X (n ∈ N, n ≥ 1). Let α = (αi)i∈N be a dense sequence
in this metric space. Then for each ε > 0 and each q ∈ N there exist N, p ∈ N,
p > q, and u1, . . . , un ∈ Fp(X) such that ui ∼iso α≤p, ∀i ∈ {1, . . . , n}, and such
that the following implication holds:

v ∈ Fp(X), v ∼≤2−N

iso α≤p ⇒ d(v, ui) < ε for some i ∈ {1, . . . , n}. (13)
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Proof. Let f1, . . . , fn be all isometries X → X . Let i, j ∈ {1, . . . , n}, i 	= j. Since
fi 	= fj and α is dense in (X, d), there exists k ∈ N such that fi(αk) 	= fj(αk).
From this we conclude the following: there exists p0 ∈ N and ε0 > 0 such that

d((fi ◦ α)≤p0 , (fj ◦ α)≤p0) > ε0, ∀i, j ∈ {1, . . . , n}, i 	= j.

(Of course, g ◦ α for g : X → X denotes the sequence (g(αi))i∈N.)
Let us suppose that the claim of the proposition is not true. Then there exist

ε > 0 and q ∈ N such that there exist no N, p and u1, . . . , un with the stated
property. Let k0 = max{p0, q} + 1. Let k ∈ N. For i ∈ {1, . . . , n} let

ui = (fi ◦ α)≤k+k0 .

Then each ui is isometrically equivalent to α≤k+k0 . From this and the fact that
k + k0 > q we conclude that for each N ∈ N the implication (13) does not
hold (with p = k + k0). Therefore for each N ∈ N there exists vN ∈ Fk+k0(X)
such that vN ∼≤2−N

iso α≤k+k0 and d(v, ui) ≥ ε for each i ∈ {1, . . . , n}. It follows
from Lemma 25 that there exists w ∈ Fk+k0(X) such that w ∼iso α≤k+k0 and
d(w, ui) ≥ ε.

We have the following conclusion. For each k ∈ N there exists wk∈ Fk+k0(X)
such that wk ∼iso α≤k+k0 and

d(wk, (fi ◦ α)≤k+k0 ) ≥ ε, (14)

∀i ∈ {1, . . . , n}. By Lemma 24 there exists a sequence γ = (γi) in X such that
γ ∼iso α and such that for each r > 0 and each q ∈ N there exists k ∈ N such that
k+k0 ≥ q and d(γi, wki ) < r, ∀i ∈ {0, . . . , q}. Suppose that (γi)i∈N = (fj(αi))i∈N

for some j ∈ {1, . . . , n}. Then the sequence (γi) is dense. Choose r > 0 so that
3r < ε and q ∈ N so that the finite sequence γ≤q is r−dense. Let k ∈ N be such
that k + k0 ≥ q and

d(γi, wki ) < r, (15)

∀i ∈ {0, . . . , q}. Let i′ ∈ {q+1, . . . , k+k0}. Then there exists i ∈ {0, . . . , q} such
that d(γi, wki′) < r. It follows

d(wki′ , w
k
i ) ≤ d(wki′ , γi) + d(γi, wki ) < r + r = 2r.

Now d(γi, γi′) = d(αi, αi′ ) = d(wki , w
k
i′) < 2r and so

d(wki′ , γi′) ≤ d(wki′ , γi) + d(γi, γi′) < r + 2r = 3r < ε.

hence d(wki′ , γi′) < ε. This and (15) imply that d(wki , γi) < ε holds for each
i ∈ {0, . . . , k + k0}. But γi = fj(αi), ∀i ∈ N, therefore d(wk, (fj ◦ α)≤k+k0 ) < ε.
This is in contradiction with (14). Therefore

(γi)i∈N 	= (fj(αi))i∈N, (16)
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∀j ∈ {1, . . . , n}.
Now we define a map g : X → X in the following way. If x ∈ X , then

x = limi→∞ αϕ(i), where ϕ : N → N. The sequence (αϕ(i))i∈N is therefore
Cauchy which, together with γ ∼iso α, implies that the sequence (γϕ(i))i∈N

is Cauchy. We define g(x) to be the limit of this sequence. (The metric space
(X, d) is complete since it is compact.) This definition does not depend on the
choice of the function ϕ : if ψ : N → N is such that x = limi→∞ αψ(i), then
limi→∞ d(αϕ(i), αψ(i)) = 0, therefore limi→∞ d(γϕ(i), γψ(i)) = 0, which implies
limi→∞ γϕ(i) = limi→∞ γψ(i).

If x, y ∈ X and ϕ, ψ : N → N are such that x = limi→∞ αϕ(i), y =
limi→∞ αψ(i), then

d(x, y) = lim
i→∞

d(αϕ(i), αψ(i)) = lim
i→∞

d(γϕ(i), γψ(i)) = d(g(x), g(y)).

Hence g is an isometry (that g is surjective can be deduced from the compactness
of (X, d), see [Sutherland 1975]). Note that g(αi) = γi, ∀i ∈ N, hence (γi)i∈N =
(g(αi))i∈N. It follows from (16) that g 	= fj , ∀j ∈ {1, . . . , n}. But this contradicts
the fact that f1, . . . , fn are all isometries X → X . ��

Let (X, d) be a metric space, α = (αi) a dense sequence in this space and
A ⊆ X . Let p ∈ N, r, ε > 0 and u1, . . . , un ∈ Fp(A), where n ∈ N, n ≥ 1.
We say that u1, . . . , un is a (p, r, ε)−basis for A in (X, d, α) if ui ∼<riso α≤p for
each i ∈ {1, . . . , n} and if the following holds: whenever v ∈ Fp(A) is such that
v ∼≤r

iso α≤p, then d(v, ui) < ε for some i ∈ {1, . . . , n}. A (p, r, ε)−basis u1, . . . , un
for A in (X, d, α) is said to be a proper (p, r, ε)−basis if ui ∼iso α≤p for each
i ∈ {1, . . . , n}. Note: if u1, . . . , un is a proper (p, r, ε)−basis for A, then u1, . . . , un
is also a proper (p, r′, ε)−basis for A for each r′ < r.

Proposition 26 says that if (X, d) is a compact metric space such that there
exist exactly n isometries X → X , then for each ε > 0 and each q ∈ N there
exist p,N ∈ N, p > q, and a proper (p, 2−N , ε)−basis u1, . . . , un for (X, d, α)
(i.e. for X in (X, d, α)).

Suppose now that α is an effective separating sequence in (X, d). Is it pos-
sible, for given k, q ∈ N, to find effectively numbers p,N , p > q, and numbers
i10, . . . , i

1
p, . . . , in0 , . . . , inp so that u1 = (αi10 , . . . , αi1p), . . . , un = (αin0 , . . . , αinp ) is

a (p, 2−N , 2−k)−basis for (X, d, α)? We will see later that this is possible if the
computable metric space (X, d, α) is effectively compact. The idea which will
be used in the proof of this fact is to reduce the search for such a basis to a
finite subset of X of the form {α0, . . . , αm}, m ∈ N. In that sense, the following
lemma and Lemma 29 will be useful.

Lemma27. Let p ∈ N and let r, ε > 0 be such that r
2 < ε. If A is a r

4−dense set
in (X, d) and u1, . . . , un is a (p, r, ε2 )−basis for A in (X, d, α), then u1, . . . , un is
a (p, r2 , ε)−basis for (X, d, α).
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Proof. Let v ∈ Fp(X) be such that v ∼≤ r
2

iso α≤p. Since A is r
4−dense, there exists

a ∈ Fp(A) such that d(v, a) < r
4 . Let i, j ∈ {0, . . . , p}. Then

|d(vi, vj) − d(αi, αj)| ≤ r

2
. (17)

Since |d(vi, vj)−d(ai, aj)| ≤ d(vi, ai)+d(vj , aj), we have |d(vi, vj)−d(ai, aj)| < r
2 .

This and (17) imply
|d(ai, aj) − d(αi, αj)| < r.

Hence a ∼≤r
iso α≤p and therefore there exists i ∈ {1, . . . , n} such that d(a, ui) < ε

2 .
This, together with d(a, v) < r

4 <
ε
2 , implies d(v, ui) < ε. Hence u1, . . . , un is a

(p, r2 , ε)−basis for (X, d, α). ��

Lemma28. If (X, d) is a metric space, δ > 0 and x, y, z ∈ Fp(X) such that
d(x, y) < δ and y ∼iso z, then x ∼<2δ

iso z.

Proof. Let i, j ∈ {0, . . . , p}. We have d(yi, xi) < δ, d(yj , xj) < δ, |d(xi, xj) −
d(yi, yj)| ≤ d(xi, yi) + d(xj , yj) and therefore |d(xi, xj)− d(zi, zj)| = |d(xi, xj)−
d(yi, yj)| < 2δ. Hence x ∼<2δ

iso z. ��

Lemma29. Let u1, . . . , un be a proper (p, r, ε)−basis for (X, d, α), where r
2 <

ε. Suppose A is an r
2−dense set in (X, d). Then there exists a (p, r, 2ε)−basis

u′1, . . . , u′n for A in (X, d, α).

Proof. Since A is r
2−dense, for each i ∈ {1, . . . , n} there exists u′i ∈ Fp(A) such

that d(ui, u′i) <
r
2 . Then, for each i ∈ {1, . . . , n}, Lemma 28 and ui ∼iso α≤p

imply u′i ∼<riso α≤p. Suppose v ∈ Fp(A) is such that v ∼≤r
iso α≤p. Then d(v, ui) < ε

for some i ∈ {1, . . . , n} which implies d(v, u′i) < ε + r
2 < ε + ε = 2ε. Therefore

u′1, . . . , u′n is a (p, r, 2ε)−basis for A in (X, d, α). ��

It is easy to prove the following lemma.

Lemma30. Let (X, d) be a metric space.
(i) Let r > 0, let A be an r−dense set in (X, d) and let f : X → X be an

isometry. Then f(A) is also r−dense.
(ii) If x, y ∈ Fp(X) and ε > 0 are such that y is ε−dense and d(x, y) < ε,

then x is 2ε−dense.

Theorem 31. Let (X, d, α) be an effectively compact computable metric space
such that there exist only finitely many isometries of the metric space (X, d). Let
β be an effective separating sequence in (X, d). Then β ∼ α.

The rest of this section is the proof of Theorem 31.
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Let f1, . . . , fn be all isometries X → X , fi 	= fj, i 	= j. As in the proof of
Proposition 26 we conclude that there exist a positive rational number ε0 and
p0 ∈ N such that

d((fi ◦ α)≤p0 , (fj ◦ α)≤p0) > 9ε0, (18)

for all i, j ∈ {1, . . . , n}, i 	= j. Choose a1, . . . , an ∈ Fp0({αk | k ∈ N}) and
b1, . . . , bn ∈ Fp0({βk | k ∈ N}) so that for each i ∈ {1, . . . , n}

d(ai, (fi ◦ α)≤p0 ) < ε0, d(bi, (fi ◦ α)≤p0 ) < ε0.

Clearly d(ai, bi) < 2ε0, ∀i ∈ {1, . . . , n}. It follows from Lemma 16 that

d(ai, aj) > 7ε0, d(bi, bj) > 7ε0, (19)

for all i, j ∈ {1, . . . , n}, i 	= j.

Lemma32. Let x, y1, . . . , yn∈ Fp0(X) and m ∈ {1, . . . , n} be such that d(x, ym)
< ε0, such that for each i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n} such that
d(yi, (fj ◦ α)≤p0 ) < ε0 and such that d(yi, yj) > 4ε0 for all i, j ∈ {1, . . . , n},
i 	= j. Then

(i) there exists l ∈ {1, . . . , n} such that d(x, bl) < 3ε0 and d(ym, al) < 2ε0;

(ii) if i, l′ ∈ {1, . . . , n} are such that d(x, bl′ ) < 3ε0 and d(yi, al′) < 2ε0, then
i = m.

Proof. (i) There exists l ∈ {1, . . . , n} such that d(ym, (fl ◦α)≤p0) < ε0. This and
d((fl ◦ α)≤p0 , al) < ε0 give d(ym, al) < 2ε0. In the same way d(ym, bl) < 2ε0
which, together with d(x, ym) < ε0, gives d(x, bl) < 3ε0.

(ii) Suppose i, l′ ∈ {1, . . . , n} are such that d(x, bl′) < 3ε0 and d(yi, al′) <
2ε0. Let l be as in (i). Inequalities d(x, bl) < 3ε0 and d(x, bl′) < 3ε0 imply
d(bl, bl′) < 6ε0 and we conclude from (19) that l = l′. Now from d(ym, al) < 2ε0
and d(yi, al) < 2ε0 we get d(ym, yi) < 4ε0. Therefore i = m. ��

Lemma33. Let y1, . . . , yn be a (p, r, ε)− basis for (X, d, α), where p ≥ p0 and
ε ≤ ε0. Then

(i) for each i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n} such that d(yi, (fj◦α)≤p) <
ε;

(ii) d((yi)≤p0 , (yj)≤p0) > 7ε0 for all i, j ∈ {1, . . . , n}, i 	= j;

(iii) if α≤p is ε−dense, then the finite sequences y1, . . . , yn are 2ε−dense.
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Proof. (i) Let k ∈ {1, . . . , n}. Since (fk ◦ α)≤p ∼iso α≤p, there exists ik ∈
{1, . . . , n} such that d((fk ◦ α)≤p, yik) < ε. If k, k′ ∈ {1, . . . , n} and ik = ik′ ,
then

d((fk ◦ α)≤p, (fk′ ◦ α)≤p) < 2ε ≤ 2ε0

which, together with (18), implies k = k′. Hence {1, . . . , n} → {1, . . . , n}, k �→ ik,

is injective and therefore bijective.
(ii) Let i, j ∈ {1, . . . , n}, i 	= j. By (i) there exist i′, j′ ∈ {1, . . . , n} such that

i′ 	= j′ and d((fi′ ◦ α)≤p, yi) < ε, d((fj′ ◦ α)≤p, yj) < ε. Then clearly

d((fi′ ◦ α)≤p0 , (yi)≤p0) < ε, d((fj′ ◦ α)≤p0 , (yj)≤p0) < ε.

We have ε ≤ ε0, so d((yi)≤p0 , (yj)≤p0) > 7ε0 by (18) and Lemma 16.
(iii) Suppose α≤p is ε−dense. Let i ∈ {1, . . . , n}. By (i) there exists j ∈

{1, . . . , n} such that
d(yi, (fj ◦ α)≤p) < ε.

The fact that yi is 2ε−dense follows now from Lemma 30. ��

Let i ∈ N. By α[i] we denote the finite sequence

α(i)0 , α(i)1 . . . , α(i)
i
.

Proposition34. (i) Let D be the set of all (i, j,m) ∈ N3 such that i = j and

d(α[i], α[j]) < 2−m.

Then D is r.e.
(ii) Let A be the set of all (i, p,N) ∈ N3 such that

α[i] ∼<2−N

iso α≤p.

Then A is r.e.
(iii) Let V be the set of all (m, p,N, k, v1, . . . , vn) ∈ Nn+4 such that (vi)j ≤ m

for each i ∈ {1, . . . , n} and each j ∈ {0, . . . vi} and such that

α[v1], . . . , α[vn] is a (p, 2−N , 2−k) − basis for {α0, . . . , αm} in (X, d, α).

Then V is r.e.

Proof. (i) Let D = {(i, j,m, l) ∈ N4 | d(α(i)l
, α(j)l

) < 2−m}. Proposition 2(iv)
implies that D is r.e. Let

D′ = {(i, j,m) | (i, j,m, l) ∈ D, ∀l ∈ {0, . . . , i}}.

It follows easily from Lemma 5 that D′ is r.e. Now D = {(i, j,m) ∈ N3 | i =
j} ∩D′, hence D is r.e.
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(ii) Let A = {(l, N, i, j) ∈ N4 | |d(α(l)i
, α(l)j

)−d(αi, αj)| < 2−N}. By Propo-
sition 2(iv) A is r.e. Let A′ = {(l, p,N) ∈ N3 | (l, N, i, j) ∈ A, ∀i, j ∈ {0, . . . , p}}.
Again, we conclude from Lemma 5 that A′ is r.e. and the claim now follows from
A = {(l, p,N) ∈ N3 | l = p} ∩A′.

(iii) Let ζ : N2 → N be the function of Lemma 7. We have that each element
of Fp({0, . . . ,m}) is of the form (i)0, . . . , (i)i for some i ≤ ζ(m, p).

Let

A = {(l, p,N) ∈ N3 | α[l] is not 2−N − isometrically equivalent to α≤p}.

Then for all l, p,N ∈ N we have (l, p,N) ∈ A if and only if

l 	= p or
(∃i, j ∈ {0, . . . , p} such that |d(α(l)i

, α(l)j
) − d(αi, αj)| > 2−N

)
.

The set of all (l, p,N) ∈ N3 for which there exist i, j ∈ N such that

|d(α(l)i
, α(l)j

) − d(αi, αj)| > 2−N and i, j ∈ {0, . . . , p}

is r.e. by Proposition 2(iv) and Proposition 1(i). Therefore A is r.e.
Let V be the set of all (i, k, v1, . . . , vn) ∈ Nn+2 such that

(i, v1, k) ∈ D or (i, v2, k) ∈ D or . . . or (i, vn, k) ∈ D.

Then V is r.e. as the union of r.e. sets.
Let F be the set of all (i,m, p) ∈ N3 such that i = p and (i)j ≤ m

for each j ∈ {0, . . . , i}. Clearly, F is recursive. We also have that the set
G = {(m, v1, . . . , vn) ∈ Nn+1 | (vi)j ≤ m, ∀i ∈ {1, . . . , n}, ∀j ∈ {0, . . . vi}}
is recursive.

Finally, let us prove that V is r.e. We have (m, p,N, k, v1, . . . , vn) ∈ V if and
only if (m, v1, . . . , vn) ∈ G, (v1, p,N) ∈ A, . . . , (vn, p,N) ∈ A and

∀x ∈ Fp({α0, . . . , αm}) : if x ∼≤2−N

iso α≤p, then d(α[vj ], x) < 2−k for some j
(20)

However, (20) is equivalent to the following: for each i ∈ {0, . . . , ζ(m, p)}

(i,m, p) /∈ F or (i, N) ∈ A or (i, k, v1, . . . , vn) ∈ V. (21)

Let V ′ be the set of all (m, p,N, k, v1, . . . , vn) such that (21) holds for each
i ∈ {0, . . . , ζ(m, p)}. The fact that F is recursive and A and V r.e. implies,
together with Lemma 5, that V ′ is r.e. We have (m, p,N, k, v1, . . . , vn) ∈ V
if and only if (m, v1, . . . , vn) ∈ G, (v1, p,N) ∈ A, . . . , (vn, p,N) ∈ A and
(m, p,N, k, v1, . . . , vn) ∈ V ′. Therefore V is r.e. ��

For i ∈ N let us denote by β[i] the finite sequence β(i)0 , β(i)1 . . . , β(i)
i
.
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Lemma35. Suppose ϕ, ψ : N → N are recursive functions such that for each
k ∈ N the finite sequence α[ϕ(k)] is 2−k−dense in (X, d) and such that ϕ(k) =
ψ(k),

d (β[ψ(k)], α[ϕ(k)]) < 2−k,

∀k ∈ N. Then α ∼ β.

Proof. Let i, k ∈ N. Then there exists j ∈ N such that d(αi, α(ϕ(k))j
) < 2−k,

0 ≤ j ≤ ϕ(k). It follows from Proposition 2(iv) and Proposition 1(i) that there
exists a recursive function h : N2 → N such that d(αi, α(ϕ(k))h(i,k)

) < 2−k and
0 ≤ h(i, k) ≤ ϕ(k), ∀i, k ∈ N. Therefore for all i, k ∈ N we have

d
(
αi, β(ψ(k))h(i,k)

)
< 2 · 2−k.

It follows that α is a recursive sequence in (X, d, β), hence α ∼ β. ��

We are now ready to prove Theorem 31. Let ϕ : N → N be a recursive
function such that X =

⋃ϕ(k)
i=0 B(αi, 2−k), ∀k ∈ N. For k ∈ N let

Ak = {α0, . . . , αϕ(k)}.

Then Ak is 2−k−dense for each k ∈ N. Let k0 ∈ N be such that 2−k0 < ε0.
Let k ∈ N. By Proposition 26 there exist p,N ∈ N, where p ≥ max{ϕ(k +

k0), p0}, and a proper (p, 2−N , 2−(k+k0+2))−basis u1, . . . , un for (X, d, α). It
is clear that then u1, . . . , un is also a proper (p, 2−N

′
, 2−(k+k0+2))−basis for

(X, d, α) for each N ′ ≥ N . Thus we may assume that N ≥ k + k0 + 2.
The set AN+2 is 2−N

2 −dense in (X, d) and we have 2−N

2 < 2−N ≤ 2−(k+k0+2).
By Lemma 29 there exists a (p, 2−N , 2−(k+k0+1))−basis u′1, . . . , u

′
n for AN+2.

Since u′1, . . . , u
′
n ∈ Fp(AN+2), there exist v1, . . . , vn ∈ N such that u′1 = α[v1],

. . . , u′n = α[vn] and such that (vi)j ≤ ϕ(N + 2) for each i ∈ {1, . . . , n} and each
j ∈ {0, . . . vi}.

Hence we have the following conclusion: for each k ∈ N there exist p,N, v1,
. . . , vn ∈ N such that

p ≥ max{ϕ(k + k0), p0}, N ≥ k + k0 + 2, (vi)j ≤ ϕ(N + 2), (22)

∀i ∈ {1, . . . , n}, ∀j ∈ {0, . . . vi}, and such that

α[v1], . . . , α[vn] is a (p, 2−N , 2−(k+k0+1)) − basis for AN+2 in (X, d, α). (23)

Therefore, by Proposition 34(iii) and Proposition 1(ii), there exist recursive func-
tions p̃, Ñ , ṽ1, . . . , ṽn : N → N such that for each k ∈ N (22) and (23) hold when

p = p̃(k), N = Ñ(k), v1 = ṽ1(k), . . . , vn = ṽn(k). (24)
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Let B be the set of all (i, p,N) ∈ N3 such that

β[i] ∼<2−N

iso α≤p.

Then B is r.e. and we get this in the same way as we get that the set A in Propo-
sition 34(ii) is r.e. Since the sequence β is dense in (X, d), we easily conclude
that for each k ∈ N there exists i ∈ N such that

β[i] ∼<2−Ñ(k)+1

iso α≤p̃(k). (25)

Therefore Proposition 1(ii) implies that there exists a recursive function ψ : N →
N such that for each k ∈ N (25) holds when i = ψ(k).

Now we come to the crucial part of the proof. Let k ∈ N. Let p,N, v1, . . . , vn
be defined by (24) and let i = ψ(k). Since (23) holds, Lemma 27 implies that

α[v1], . . . , α[vn] is a (p, 2−(N+1), 2−(k+k0)) − basis for (X, d, α). (26)

Now (25) and (24) imply that

d(β[ψ(k)], α[ṽm(k)]) < 2−(k+k0) (27)

for some m ∈ {1, . . . , n}.
Since p ≥ ϕ(k + k0), α≤p is 2−(k+k0)−dense and by Lemma 33(iii) the finite

sequences α[v1], . . . , α[vn] are 2 · 2−(k+k0)−dense. Now, if n = 1, i.e. if there are
no isometries X → X apart from the identity, then m = 1 and (27) together
with Lemma 35 gives α ∼ β. Of course, n can be greater than 1 and so we have
to determine somehow for which m ∈ {1, . . . , n} (27) holds.

Using Lemma 33, we conclude from Lemma 32 that there exists l ∈ {1, . . . , n}
such that

d(β[ψ(k)]≤p0 , bl) < 3ε0 and d(α[ṽm(k)]≤p0 , al) < 2ε0.

For j, j′ ∈ {1, . . . , n} let

Cj,j′ = {x ∈ N | d(β[ψ(x)]≤p0 , bj) < 3ε0 and d(α[ṽj′ (x)]≤p0 , aj) < 2ε0}.
Hence, we have that for each x ∈ N there exist j, j′ ∈ {1, . . . , n} such that
x ∈ Cj,j′ . Since the set Cj,j′ is r.e. for all j, j′ ∈ {1, . . . , n}, what we see similarly
as in the proof of Proposition 34, we easily get that there exist recursive functions
λ, τ : N → N such that x ∈ Cλ(x),τ(x), ∀x ∈ N. For x = k we have k ∈ Cλ(k),τ(k),
hence

d(β[ψ(k)]≤p0 , bλ(k)) < 3ε0 and d(α[ṽτ(k)(k)]≤p0 , aλ(k)) < 2ε0.

It follows from Lemma 32 that τ(k) = m. So (27) implies

d(β[ψ(k)], α[ṽτ(k)(k)]) < 2−(k+k0)

and we conclude from Lemma 35 that α ∼ β. Hence Theorem 31 is proved.
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