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Abstract: We develop and study the concept of dataflow process networks as used for example
by Kahn to suit exact computation over data types related to real numbers, such as continuous
functions and geometrical solids. Furthermore, we consider communicating these exact objects
among processes using protocols of a query-answer nature as introduced in our earlier work. This
enables processes to provide valid approximations with certain accuracy and focusing on certain
locality as demanded by the receiving processes through queries.

We define domain-theoretical denotational semantics of our networks in two ways: (1) directly,
i. e. by viewing the whole network as a composite process and applying the process semantics
introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similar
to that used by Kahn from the denotational semantics of individual processes in the network.
The direct semantics closely corresponds to the operational semantics of the network (i. e. it is
correct) but very difficult to study for concrete networks. The compositional semantics enables
compositional analysis of concrete networks, assuming it is correct.

We prove that the compositional semantics is a safe approximation of the direct semantics. We
also provide a method that can be used in many cases to establish that the two semantics fully
coincide, i. e. safety is not achieved through inactivity or meaningless answers.

The results are extended to cover recursively-defined infinite networks as well as nested finite
networks.

A robust prototype implementation of our model is available.
Key Words: exact real computation, distributed computation, dataflow networks, denotational
semantics, domain theory
Category: F.1.1, C.2.4, F.3.2, G.1.0, G.0

1 Introduction

In our previous work [Konečný and Farjudian 2010] we introduced the notions of query-
answer protocol for communicating partial information about exact values and we gave
such protocols a lattice semantics that captures progress of information transfer mea-
sured using the lattice of queries. We also formalised the notion of a process that is
capable of communicating with other processes using query-answer protocols over its
input and output sockets. The behaviour of such a process is captured as a set of possible
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fun( f ) maxD

f : D→ R max { f (x) x ∈ D} : R

Figure 1: A simple network computing the maximum of a function f over an interval J.
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Figure 2: An infinite network computing the exact exponential on [0, 1], cf. [Potts 1998,
p.124].

event sets (called traces). From such sets of traces we derived for a process a functional
output-to-input query semantics (Q-semantics) and an input-to-output query-answer se-
mantics (QA-semantics).

In this article we build on these notions and study networks of processes, adopt-
ing and extending the notation introduced in [Konečný and Farjudian 2010]. Intuitively,
sockets are the gates of processes to the outside world, while channels are the roads link-
ing these gates. A collection of processes connected by channels forms a network. After
hiding all channels a network can be seen as a process, which we call a composite pro-
cess. We formalise this idea first for finite networks then for infinite recursively defined
networks, providing means to reason about the semantics and operation of the resulting
composite processes.

1.1 Example networks

In [Konečný and Farjudian 2010] we have motivated the study of processes using an in-
formal presentation of two process networks — a small finite network in which there is
a process that computes the maximum of a specific continuous function communicated
over a channel (Fig 1) and an infinite network that embodies a Taylor expansion of the
exponential function (Fig 2). Here we introduce further three examples:

– A network embodying the continuous fraction expansion of the square root (Fig. 4),
which is simple yet non-trivial and has a loop. Some processes used in this network
are specified using activity diagrams in Fig. 3. The remaining processes (or very
similar ones) have been formalised in [Konečný and Farjudian 2010].
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– A network embodying the Picard operator (Fig. 5) solving a well-conditioned ini-
tial value problem (IVP), which has a loop made of continuous function channels.

– A network parallelising an arbitrary interval-based IVP/BVP solver (Fig. 6), which,
unlike the other examples, makes substantial use of parallelism.

Please note that the example networks do not give very efficient ways of solving
the associated problems. We use these networks for illustrating particular aspects of our
approach and we believe the patterns in them are present also in many examples that
have practical value. Such examples are work in progress.

We now give an informal explanation of the last one of the example networks above.
Assume that we are given a process called “solverD” that takes as its first input an en-
closure of the solution over an interval D ⊆ R. This enclosure is usually very loose
except in the origin where it specifies an initial condition. Another input of the solver
is an encoding of the ordinary differential equation (in the form of a vector field), pos-
sibly combined with boundary condition(s). This information is expressed as a trans-
former on enclosures of both the solution and its derivative. When given some enclo-
sures, it returns an improved pair of enclosures, typically inferring information about
the derivative from the given information about the solution using the differential equa-
tion. Boundary conditions are typically used to translate information about the solution
from one region of the time domain to another.

To parallelise this given solver, we first need to wrap it as a process called “E-
solverD” (E for endpoints) that can communicate not only the solution as a whole but
also the values of the solution function at the endpoints of the time domain D. The
composite process called “S-solverD” (S for split) shows how the domain D is split into
D1 and D2 and solved in parallel by two instances of “P-solverDi” (P for parallel), which
is a union of one “E-solverDi” and one “S-solverDi” for further splitting.

This recursive definition defines a “P-solverD” as an infinite network with an in-
stance of “E-solverD′” for each interval D′ within D created by some binary splitting.
Each “E-solverD′” can be made redundant by instead using the “S-solver D′” within the
parent “P-solverD′”, which results in solving the problem in parallel on two halves of
the domain of that “E-solverD′”.

Similar to the Taylor series network, one can derive the semantics of the infinite net-
work as a limit of the semantics of its finite portions (as formally defined in Section 7)
and when executing, only a finite portion of the network will be built and activated at
each moment.

1.2 Overview of formalisation

In Section 2 we formally define finite process networks and their event traces and in
Section 3 we extend Q-semantics and QA-semantics from processes to such networks
using a fixed point construction similar to Kahn’s. Section 4 defines a composite process
and a restriction of the network semantics to the composite process. Most importantly,
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relax

(qid,q) := GetQry(out)

n := |q|P

NrelaxP

[n > 0]
[n = 0]

Reply(out,qid,⊥)

in out

P P

Reply(out,qid,a)

inqid := DoQry(in,q-1,qid)

a := GetAns(in,inqid)

fork
in out1

out2P

P

P

a := GetAns(in,inqid)

Reply(out1,qid,a)

inqid := DoQry(in,q,qid)

(qid,q) := GetQry(out1)

a := GetAns(in,inqid)

inqid := DoQry(in,q,qid)

Reply(out2,qid,a)

(qid,q) := GetQry(out2)

NforkP

Figure 3: Definitions of processes N relaxP and NforkP .
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Figure 5: A network solving an initial value problem using the Picard operator

it then shows that the composition at the level of our more abstract semantics is safe
with respect to the trace-level semantics. Safety has to be complemented by liveness
and consistency analyses to rule out that safety is achieved though inactivity or explicit
error output. Therefore, in Section 5, we provide one way to compositionally deduce
liveness (which we call responsiveness in our context) using our “backwards” output-
to-input query semantics. Section 6 comprises a proof that composition does not spoil
our version of process consistency. Finally, in Section 7, we extend the composition
results to infinite recursively defined networks.

2 Network structure and traces

Definition 1. A process network N consists of

– A countable set PN of process names.

– A family of processes
(
Np

)
p∈PN indexed by process names.

2633Konecny M., Farjudian A.: Compositional Semantics ...



�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

solution
enclosure
+ initial
condition(s)

improved
solution
enclosuresolverD

field + boundary conditions
(D→ R)2 → (D→ R)2

D→ R D→ R

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������

������
������
������

solverD endpts
split

endpts
merge

E-solverD

field. . .
D→ RD→ R

enclosure of the value in the right endpoint

enclosure of the value in the left endpoint

R R

R R

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

point
split

value at

domain domain
mergesplit

S-solverD

P-solverD2

D→ R D→ R

R R

R R

P-solverD1

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������

������
������
������

E-solverD

S-solverD

P-solverD

(3×)
merge D→ R

R R

RR

D→ R

fork

fork

fork

Figure 6: Parallelisation of an enclosure-based IVP/BVP solver for ODEs.
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– A pairwise disjoint family of countable sets
(
CNp1,p2

)
p1,p2∈PN indexed by pairs of

process names where each set CNp1 ,p2
contains names of channels through which

process Np2 sends queries to and receives answers from process Np1 . Moreover, let
CN �

⋃
p1,p2∈PN CNp1 ,p2

and for a channel c ∈ CNp1 ,p2
⊆ CN , define N+c � Np1 and

N−c � Np2 .

– A pair of functions .+ and .− mapping a channel name c to process-labelled sockets
c+ and c−:

(∀p1, p2 ∈ PN , c ∈ CNp1,p2

)(
c+ = (p1, s

+) and c− = (p2, s
−)
)

satisfying the following conditions:

• s+ ∈ S +Np1
and s− ∈ S −Np2

• The input and output sockets have matching protocols:

(
c+ = (p1, s

+), c− = (p2, s
−)
)
=⇒ (Ps+

Np1
= Ps−

Np2

)
This common protocol is denoted Pc

N .

• Each socket is connected to at most one channel, i. e. .+ and .− are injections.

The superscriptN is dropped when no confusion is likely to arise. For further
convenience we set C− � {c− c ∈ C} and C+ � {c+ c ∈ C}.

– Disjoint sets of symbols S −N and S +N naming the network’s open input and output
sockets, respectively, using the following bijections:

σ−: S −N →
{
(p, s−)

∣∣∣ p ∈ PN , s− ∈ S −Np
, (p, s−) � C−

}
σ+: S +N →

{
(p, s+)

∣∣∣ p ∈ PN , s+ ∈ S +Np
, (p, s+) � C+

}

We also set SN � S +N ∪ S −N and for each s ∈ SN with (p′, s′) = σ(s) where

σ = σ+ ∪ σ−, the socket’s protocol P s′
Np′

is denoted either Ps
N or P(p′ ,s′)

N .

In the formation of a network, some sockets on some processes may be left attached
to no channels — these are the open sockets introduced above. Later on (Def. 5) it will
be shown how a network is encapsulated into a composite process with these sockets as
its process sockets.

Let us now formally define the square root network introduced informally in Fig. 4,
which we will denoteN √·:

– PN
√·
�

{
dec, div, incA, nneg,mrg, frk, rlx, incB

}
– The assignment of processes to names is as shown in Fig. 7 where each process

name is followed by a colon and its assigned process.
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– The family of channel name sets consists of empty sets except for:

• Cdec,div = {c1} with c1+ = (dec, out), c1− = (div, num)

• and analogously for channels c2–c8 as indicated in Fig. 7.

– The input open socket is named S −N √· � {in} and the output one S +N √· � {out}.

Also, we will consider the following slight modifications ofN √·:

– N
√·

mrg0: The process mrg is modified so that it does not forward each query to both
input sockets but forwards query 0 only to socket in0 and all other queries only to
socket in.

– N
√·

norlx: Process rlx and channel c7 are removed, channel c6 is connected to process
incB.

It should be intuitively clear that N
√·

mrg0 behaves almost identically to N √·, while

N
√·

norlx does not answer any query larger than 0 due to unbounded looping in its cycle.

Definition 2 (The trace set of a network). For any networkN , we define the set of its
traces, denoted TN , as the smallest set satisfying:

– Every ζ ∈ TN is an interleaving of its process-indexed projections
(
ζp
)

p∈PN and
each ζp is in TNp .

– For each trace ζ = (Σ, E, η,�•) ∈ TN we have:

• The direct causality relation�• is a bijection from the event subset γ c− (Ec−) ⊂ E
onto the event subset γc+ (Ec+) ⊂ E.
(I. e. the channel c transfers events between the processes in a one-to-one man-
ner.)

In the above ζc+ , ζc− are composite projections from ζ first to the processes and
then to the sockets that the channel connects and γ c+ , γc− are the composite
event inclusion maps (see [Konečný and Farjudian 2010, Def. 3]) associated
with these projections, respectively.

• Moreover, whenever β− �• β+ for β− ∈ γc−(Ec−) and β+ ∈ γc+ (Ec+), then
η(β−) = η(β+).
(I. e. the channel c correctly transfers all queries and answers.)

• For each event β ∈ E if the set {β′ β � β′} contains no unanswered queries,
then it is finite.
(I. e. each answer is obtained in finite time.)
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Figure 7: Network N √·: process and channel assignments. All channels use the real
number protocol with natural number queries and rational interval answers.

direct
β cause η(β) query-focused event description

0 (frk, (out1, 1 ?�→! [1, 2])) external query registered by fork

1 0 (frk, (in, 1 ?�→! [1, 2])) fork forwards the query to merger

2 1 (mrg, (out, 1 ?�→! [1, 2])) merger registers the query

3 2 (mrg, (in, 1 ?�→! [1, 2])) merger forwards the query to incrementer A

4 3 (incA, (out, 1 ?�→! [1, 2])) incrementer A registers the query

5 4 (incA, (in, 1 ?�→! [0, 1])) incrementer A forwards the query to divider

6 5 (div, (out, 1 ?�→! [0, 1])) divider registers the query

7 6 (div, (num, 1 ?�→! [1, 1])) divider forwards the query to decrementer

8 6 (div, (den, 1 ?�→! [1,∞])) divider forwards the query to incrementer B

9 7 (dec, (out, 1 ?�→! [1, 1])) decrementer registers the query

10 8 (incB, (out, 1 ?�→! [1,∞])) incrementer B registers the query

11 10 (incB, (in, 1 ?�→! [0,∞])) incrementer B forwards the query to relaxer

12 9 (dec, (in, 1 ?�→! [2, 2])) decrementer forwards the query outside

13 11 (rlx, (out, 1 ?�→! [0,∞])) relaxer registers the query

14 13 (rlx, (in, 0 ?�→! [0,∞])) relaxer forwards the relaxed query to fork

15 14 (frk, (out2, 0 ?�→! [0,∞])) relaxer’s query registered by fork

16 15 (frk, (in, 0 ?�→! [0,∞])) fork forwards the query to merger

17 16 (mrg, (out, 0 ?�→! [0,∞])) merger registers the query

18 17 (mrg, (in0, 0 ?�→! [0,∞])) merger forwards the query to initialiser

19 18 (nneg, (out, 0 ?�→! [0,∞])) initialiser registers the query

Figure 8: An example trace of the networkN √·.
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To illustrate the definition of the network trace set, let us peep inside the trace set
of the square root network N √·. A typical trace from this set would look as shown in
Fig. 8. For the sake of readability, the events are listed by the likely time interleaving of
the query components. This ordering is not part of the trace and one has to remember
that answers occur in a different sequence than queries.

3 Network semantics

To simplify our reasoning about semantics, we will usually assume that all processes in
a network are without hidden state.

Definition 3. A network is said to be without hidden state iff all its processes are such.

Definition 4 (Fixed point semantics of network).
For a networkN without hidden state, we define its fixed point QA-semantics as follows:

�N�QA :
∏

(p,s−)∈σ(S −N )

�
P(p,s−)
N
�

QA
→

∏
o∈CN∪σ(SN )

�
Po
N
�

QA

�N�QA

((
d(p,s−)

)
(p,s−)∈σ(S −N )

)
� LFP (Φ) =

⊔
α ordinal

Φα(⊥)

where Φ is a monotone endofunction defined in terms of the tuple
(
d(p,s−)

)
(p,s−)∈σ(S −N ) as

follows: (
Φ
((

dA
o

)
o∈CN∪σ(SN )

))
(p,s−)

� d(p,s−)

(input sockets keep their initial semantics)(
Φ
((

dA
o

)
o∈CN∪σ(SN )

))
(p,s+)

� �Np�QA

((
dA

cs−
)

s−∈S −Np

)
s+

(semantics of output socket given by its processes)(
Φ
((

dA
o

)
o∈CN∪σ(SN )

))
c
� �N+c �QA

((
dA

cs−
)

s−∈S −
N+c

)
c+

(semantics of channel given by the outputting process)

where for each s− ∈ S −Np
, cs− is either a channel satisfying (cs−)− = (p, s−) or the input

socket (p, s−) if there is no such channel.
By reversing the roles of input and output sockets and replacing the QA-semantics

with Q-semantics, we define the fixed point Q-semantics ofN as follows:

�N�Q :
∏

(p,s+)∈σ(S +N )

�
P(p,s+)
N
�

Q
→

∏
o∈CN∪σ(SN )

�
Po
N
�

Q

�N�Q

((
q(p,s+)

)
(p,s+)∈σ(S +N )

)
� LFP (Ξ) =

⊔
α ordinal

Ξα(⊥)
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where Ξ is a monotone endofunction defined in terms of the tuple
(
q(p,s+)

)
(p,s+)∈σ(S +N ) as

follows: (
Ξ
((

qA
o

)
o∈CN∪σ(SN )

))
(p,s+)

� q(p,s+)

(output sockets keep their initial Q-semantics)(
Ξ
((

qA
o

)
o∈CN∪σ(SN )

))
(p,s−)

� �Np�Q

((
qA

cs+

)
s+∈S +Np

)
s−

(Q-semantics of input socket given by its processes)(
Ξ
((

qA
o

)
o∈CN∪σ(SN )

))
c
� �N+c �Q

((
qA

cs+

)
s+∈S +

N−c

)
c−

(Q-semantics of channel given by the inputting process)

Next, we work out
�N √·�QA as an example application of this definition. Let d i

denote the i-th iteration of applying the operatorΦ to ⊥ when computing the least fixed
point. Note that i could be a transfinite ordinal when the processes in the network have
discontinuous semantics.

Assume that the input socket’s semantics is d1
(in,dec)(i) = ai = [aL

i , a
U
i ] with

⋂
i∈ω ai =

[a, a] for some a ∈ R, a > 1. Also assume that aL
i ≥ 1 for all i. Note that on output

sockets and on the channels d1 has the initial assignment of semantic elements to a
tuple of bottoms, i. e. d1

s is λq.[−∞,∞].
After the second iteration, the value of d 2 on channel c1 already stabilises on

λq.[aL
q − 1, aU

q − 1] and on channel c4 on λq.[0,∞].
In the third iteration, the mapping on channel c5 “inherits” the mapping λq.[0,∞]

from c4 via process mrg. Consequently, in the fourth iteration, c6 and the output socket
also get exactly the same improvement. In the fifth iteration, c7 gains a map with q �→
[0,∞] for q > 0 and afterwards c8 gains a map with q �→ [1,∞] for q > 0.

The most interesting evolution happens around process div. While the value on c1
remains static, on c8 and c2 it evolves as follows:

iteration c8 c2

6, 7 q �→ [1,∞] for q > 0 q �→ [0, aU
q − 1] for q > 0

12, 13 q �→ [2, aU
q−1 + 1] for q > 1 q �→ [

aL
q−1

aU
q−1+1
,

aU
q −1
2 ] for q > 1

...
...

...
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After careful elementary analysis we observe that the least fixed point on the output
socket is the following map:

q �→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
aL

q−1

2 +
aU

q−1 − 1

2 +
aL

q−2−1

. . .(2+(aU/L
0 −1))

, 1 +
aU

q −1

2 +
aL

q−1 − 1

2 +
aU

q−2−1

. . .(2+(aL/U
0 −1))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for q > 0,

⊥, 0 �→ [0,∞]

where for convenience we override the names a L
0 and aL

1 so that aL
0 = 0 and aL

1 = 1. Let
us denote the intervals in this output series rq = [rL

q , r
U
q ].

We do not include a long and fully general analysis of this sequence. Using ele-
mentary methods we have proved that

√
a ∈ ⋂q∈ω rq for any representation of the input

value a of the form specified earlier.
Convergence to a singleton is harder to prove, yet we believe that it holds in gen-

eral. In the special case where the input a is represented exactly for all query indices
(i. e. aL

q = aU
q = a for all q), it is easy to show that

(
rL

q+2

)2 − a(
rL

q
)2 − a

=

(
a − 1

2rL
q + a + 1

)2
and

(
rU

q+2

)2 − a(
rU

q
)2 − a

=

⎛⎜⎜⎜⎜⎝ a − 1

2rU
q + a + 1

⎞⎟⎟⎟⎟⎠
2

(1)

which means that if a ∈ r2
q, then a ∈ r2

q+2 and the width of rq decreases exponentially
with rate approximately

(
(
√

a − 1)/(
√

a + 1)
)q.

We would now hope that an analysis such as this one is sufficient to conclude that
the network computes

√
a when executed. It is not hard to verify that it is the case for

N √· but it remains to be explained when it is the case in general. Theorem 7 below is
one essential component of a general safety analysis.

4 Process composition

Definition 5 (Process composition). Each networkN defines a new composite process
NN whose:

– sockets are the network’s open sockets, i. e.

S +NN � S +N , S −NN � S −N

– socket protocol assignment follows that of the component processes of the network
to which the sockets belong, i. e. P(p,s)

NN � Ps
Np
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– trace set is TNN �
{
ζ±

∣∣∣ ζ ∈ TN }
where ζ± is the restriction of ζ to the index set S −N∪S +N followed by a rearrangement
of the event indices using the mapping (p, (s, e)) �→ (σ−1(p, s), e).

The composed QA- and Q-semantics of NN , denoted �N�QA �S +N and �N�Q �S −N ,
respectively, are obtained by restricting �N�QA and �N�Q to the socket components,
ignoring the channels, and then renaming the socket indices using σ −1.

Lemma 6. IfN is without hidden state, the process NN is also without hidden state.

Proof. Consider a trace ζ of NN and one of its causally-closed subtraces ζ ′. The trace
ζ is a restriction of a network trace ζN . Any direct causality in ζ has to be derived from
transitive causality in ζN . Thus there is also a causally-closed subtrace ζ ′N of ζN whose
restriction is equal to ζ ′. Now the restrictions of ζ ′N to individual processes inN are all
valid process traces because these processes are all without hidden state. Thus ζ ′N is a
valid network trace and ζ ′ is a valid trace for NN . ��

The process NN also has its QA- and Q-semantics �NN�QA and �NN�Q, respectively,
derived using traces. These semantics reflect the execution of the network more closely
but they are harder to describe in concrete instances than the composed semantics as
one has to first describe the set of all network traces and derive the semantics from
them. The following theorems show that our composed semantics safely approximate
the more accurate trace-level semantics:

Theorem 7 (Safety of composed QA-semantics).
For any networkN without hidden state we have �N�QA �S +N � �NN�QA.

Theorem 8 (Safety of composed Q-semantics).
For any networkN without hidden state we have �N�Q �S −N

� �NN�Q.

Proof. (Theorem 7) We use the trace-based definition of QA-semantics from
[Konečný and Farjudian 2010, Def. 23]. Pick an arbitrary trace ζ ∈ TN . To prove the
inequality, we show that

�N�QA �S +N

((�
ζ(p,s−)

�
QA

)
(p,s−)∈S −N

)
�
(�
ζ(p,s+)

�
QA

)
(p,s+)∈S +N

i. e. the composed semantics safely estimates any actual execution of the network. We
prove this by transfinite induction over the number of iterations used to compute the
least fixed point. In fact, we strengthen the claim so that it not only includes the output
sockets of the network but also the channels and input sockets, i. e. for all c ∈ CN ,
(p, s) ∈ σ(SN ) and (ordinal numbers) i ≥ 0:

(
Φi(⊥)

)
c
� �ζc+�QA and

(
Φi(⊥)

)
(p,s)
�
�
ζ(p,s)

�
QA

(2)
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This is clearly true for i = 0 because the components of Φ 0(⊥) for channels and output
sockets are bottom. Assuming that (2) holds for i, we prove it holds for i + 1 as well.
Using the definition of Φi+1(⊥) for a channel c we get:

(
Φi+1(⊥)

)
c
=
�
N+c
�

QA

⎛⎜⎜⎜⎜⎜⎝
((
Φi(⊥)

)
cs−

)
s−∈S −

N+c

⎞⎟⎟⎟⎟⎟⎠
c+

� �N+c
�

QA

⎛⎜⎜⎜⎜⎜⎝
(�
ζcs−
�

QA

)
s−∈S −

N+c

⎞⎟⎟⎟⎟⎟⎠
c+

by the induction hypothesis and monotonicity of the QA-semantics for the process N +c .
The definition of process QA-semantics also yields that the right-hand-side value is the
infimum over all process traces that are compatible with the given values on the input
sockets. Thus for such a particular trace, namely ζN+c , the value has to be below the
semantics of this trace:

(
Φi+1(⊥)

)
c
� �N+c

�
QA

⎛⎜⎜⎜⎜⎜⎝
(�
ζcs−
�

QA

)
s−∈S −

N+c

⎞⎟⎟⎟⎟⎟⎠
c+

� �ζc+�QA

The same inequality is proved similarly for output sockets instead of channels and for
input sockets it is trivial.

Now assume that α is a limit ordinal and (2) holds for all i < α. We have⎧⎪⎪⎨⎪⎪⎩
(Φα(⊥))c =

⊔{
(Φi(⊥))c

∣∣∣ i < α
}

(Φα(⊥))(p,s+) =
⊔{

(Φi(⊥))(p,s+)

∣∣∣ i < α
}

which implies: ⎧⎪⎪⎨⎪⎪⎩
(Φα(⊥))c � �ζc+�QA

(Φα(⊥))(p,s+) �
�
ζ(p,s+)

�
QA

We have proved that all approximations of the least fixed point satisfy (2). By the
completeness of the semantic lattices, we get that the least fixed point too — as the
supremum of all these approximations — satisfies (2). ��
Proof. (Theorem 8) To prove the inequality �N�Q �S −N � �NN�Q, as in the statement
of the theorem, recall from [Konečný and Farjudian 2010, Def. 18] that the right-hand-
side is a supremum of tuples

(
�ζs−�Q

)
s−∈S −N over all network traces ζ in which the events

used to define this tuple are all caused by the events that define the tuple
(
�ζs+�Q

)
s+∈S +N .

It suffices to show that this tuple of query elements is below or equal to �N�Q �S −N , i. e.

(�
ζs−
�

Q
)

s−∈S −N � �N�Q �S −N

((�
ζs+
�

Q
)

s+∈S +N

)
(3)

for each trace ζ ∈ TN . We argue that the inequality (3) follows if

qk � �N�Q �S −N

((⊥)s+∈S +N
[
σ−1(p0, s0) �→ q0

])
(4)

is true for each chain of directly caused events(
p0,

(
s0, (q0, x0)

))
�•

(
p1,

(
s1, (q1, x1)

))
�• . . . �•

(
pk,

(
sk, (qk, xk)

))
(5)
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leading from an output socket (p0, s0) ∈ σ(S +N ) to an input socket (pk, sk) ∈ σ(S −N ),
appearing in any ζ ∈ TN .

Statement (4) implies (3) because both sides of (3) are the supremum of the appro-
priate sides of (4) indexed by an appropriate set of chains as in (5).

To prove (4), recall �N�Q �S −N is the least fixed point, which can be expressed by
iterating an update operator on a mapping from all channels and sockets to query ele-
ments, starting with the constant bottom mapping except for the output channel (p 0, s0)
which gets q0. We will show that the k-th iteration of this update operator — and by
implication the least fixed point — is already larger than qk, thus proving (4).

To see that the k’th iteration is larger than qk, recall that the update operator uses the
Q-semantics of all processes each raising a typical qi to at least qi+1 for the channel or
socket associated with socket (pi+1, si+1) involved in the causality:

(
pi,

(
si, (qi, xi)

))
�•

(
pi+1,

(
si+1, (qi+1, xi+1)

))

��

5 Network responsiveness

As discussed in [Konečný and Farjudian 2010, Sect. 5.3.3], even when we know that a
process’ QA-semantics is exactly what we want, it does not guarantee desirable exe-
cution in each instance. A lower bound on the QA-semantics of a process such as the
one provided by Theorem 7, if not analysed correctly could be more misleading than
informative as the true QA-semantics may be equal to � for some queries, meaning
that these queries and those above are never answered or are always answered incon-
sistently. Fortunately, when we add responsiveness and QA-consistency for a network
to a good lower bound on its QA-semantics, these properties together guarantee correct
execution. It is thus important to research compositionally manageable conditions un-
der which networks certainly preserve responsiveness and also to find a way to prove
that a responsive network behaves consistently among traces. In this section we address
responsiveness and in the following one consistency.

An example network that does not preserve responsiveness is N
√·

norlx. Recall that

N
√·

norlx differs from N √· in that it has no rlx process. When computing the fixed-point
QA-semantics by iterating Φ, all updates in the di mappings occur at index 0 and the
fixed point is reached in finitely many iterations. Focusing on the div process we see the
following:

iteration c8 c2

5, 6 0 �→ [1,∞] 0 �→ [0, aU
0 − 1]

10, 11 0 �→ [1,∞] 0 �→ [0, aU
0 − 1]

...
...

...
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The least fixed point on the output socket will be a mapping that assigns 0 �→ [0,∞]
and all other indices remain assigned with bottom.

Here the QA-semantics reveals that something goes wrong because it is rather un-
informative. Nevertheless, it does not reveal the fact that some queries will never be
answered. E.g. when sending the query 1, it will propagate through the cycle in the net-
work round and round forever without receiving or providing any answers, resulting in
a livelock.

A worse case is a variant of the N √· network in which the rlx process is faulty
and it forwards each query twice — once reduced, as it should, and once not reduced.
The faulty rlx does not answer its query until both its induced queries are answered.
When both are answered, it forwards the answer to the reduced query and ignores the
other one. The semantics of the faulty rlx process does not change at all and thus also
the semantics of the network remains the same, indicating convergence towards

√
a.

Nevertheless, the network does not answer any query except 0.
To obtain necessary conditions for preserving responsiveness, we analyse cycles,

using the following definition:

Definition 9 (Removing network channels). For a network N and a subset C ′ ⊆ CN
of its channels, let N[C ′] denote the network obtained from N by removing the chan-
nels C′ and for each c ∈ C ′ naming its two new sockets cin and cout with σ(cin) = c−

and σ(cout) = c+.

We will present a sufficient condition guaranteeing that a network preserves respon-
siveness, based on Q-semantics and the same measure of progress we used to define
convergence rate:

Definition 10. A network N is called Q-decreasing iff there exists a subset of chan-
nels C� ⊆ C for which N[C�] contains no loops and its Q-semantics

�N[C�]
�

Q is
decreasing in the following sense:

∀h : N→ C�,∀q0 ∈ �Ph(0)
N �Q : |q0| > 0⇒ ∃k ∈ N : |qk| < |q0|

in which for every i ∈ N

qi+1 �
((�
N[C�]

�h(i)out

Q

)
(qi)

)
h(i+1)in

In other words, when queryingN[C �] with q0 on socket h(0)out, observing what conse-
quent queries there are on h(1)in, forwarding those queries over to h(1)out and observing
what consequent queries there are on h(2) in etc., one of the observed queries has strictly
lower measure than q0.

Notice that if some of the channels c ∈ C� do not lie on any cycle (e. g. channels c1
and c4 inN √·, see Fig. 7), the channel split causes the network to be divided into several
independent parts. In particular, sending the query q c on socket cout has no influence on
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what happens on socket cin and other sockets in the other part. In this situation, if the
sequence h crosses between two independent parts, the Q-semantics becomes⊥ and the
inequality holds trivially.

The network N √· is Q-decreasing. For instance, in N √·[{c2}] any query on c2out

will have to pass via process rlx and thus if it has any consequence on c2 in, it will be
smaller by 1. By the same argument the networkN

√·
mrg0 is Q-decreasing as well.

On the other hand, the network N
√·

norlx is not Q-decreasing, which we argue as fol-

lows. Each set C� forN
√·

norlx will have to contain at least one of the channels that appear

on the cycle, i. e. c2, c3, c5, c6 or c8. (Recall that there is no c7 in N
√·

norlx.) Let c ∈ C�

be one of these channels. Then the sequence h(i) = c and query q 0 = 1 gives qk = 1 for
all k, which means that the network cannot be Q-decreasing.

Theorem 11 (Composition preserves responsiveness). If in a Q-decreasing network
N all processes are responsive, the composed process NN is also responsive.

Proof. Assume that all premises are true but the process NN is not responsive. This
should yield a contradiction.

To break responsiveness, there has to be a network trace ζ = (Σ, E, η,�•) ∈ TN ,
whose restriction ζ ′ � ζ�SN , denoting ζ ′ = (Σ, E′, η′,�•′), has an unanswered query
β0 ∈ E′ ⊆ E on an output socket and all queries on input sockets directly (with respect
to �•′) caused by β0 are answered. Assume that η(β0) = ((s+0 , p

+
0 ), (q, Ω)).

Since the process Np+0
is responsive, there has to be an unanswered query on its

input socket that is a direct (with respect to �•) consequence of β 0. This query cannot
lead to an external socket because we assume that all external queries directly (with
respect to �•′) caused by β0 are answered. Thus the query leads to a channel and has to
be registered by the process on the other side of the channel. Let this event be β 1. Due
to the definition of causality in networks, we have β0 � β1.

By repeating this argument, we obtain an infinite sequence β 0, β1, β2, . . . of unan-
swered queries on output sockets s0, s1, s2, . . . of processes p0, p1, p2, . . . with β0 �
β1 � β2 � . . ..

Let C� be a set of channels that provide evidence that the network is Q-decreasing.
Since without these channels the network has no cycles, there have to be infinitely
many indices j1 < j2 < j3 < . . . with η(β ji ) = (c+i , (qi, Ω)), ci ∈ C�, i. e. the unanswered
queries q1, q2, . . . happen all on some channels in C�, and each β ji+1 is caused by β ji .

2

The trace ζ can be transformed by simply renaming indices to a legitimate trace of
the split networkN[C�], in particular retaining all the events β0, β1, β2, . . . and all their
properties. Now Def. 10 may be applied with h(i) = c i, from which it follows that for
each i either

∣∣∣�qi
�

Q

∣∣∣ = 0 or there is some i′ > i with
∣∣∣�qi
�

Q

∣∣∣ > ∣∣∣�qi′
�

Q

∣∣∣. The former is
impossible because only ⊥ has |⊥| = 0 and no actual query can mean ⊥. The latter is
impossible because no infinite sequence of natural numbers can be strictly decreasing.

��
2 The channels ci, (i ∈ N), do not need to — in fact cannot — be distinct.
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The theorem can be strengthened by using a weaker Q-decreasing property — one
relative to a certain input QA-semantics, using input relative Q-semantics as introduced
in [Konečný and Farjudian 2010, Sect. 5.3.4]. To prove responsiveness under all cir-
cumstances, one has to quantify this property over all possible input QA-semantics.

6 Network consistency

In order to show that a network such as our example square root network is consistent,
we prove that a responsive composition of QA-consistent processes is QA-consistent
and at the same time strengthen Theorem 7 to give a semantic equality for such net-
works.

Theorem 12 (Composition of QA-consistent processes). Let N be a responsive net-
work of responsive QA-consistent processes without hidden state. Then NN is QA-
consistent and �N�QA �S +N =

�NN�QA.

Proof. Consider a trace ζ = (Σ, E, η,�•) ∈ TN that has no unanswered queries and pick
some event β ∈ E. Denote the query and answer in η(β) as q and a, respectively. Since all
events caused by β are answered, there are only finitely many of them. Using induction
on the anti-reflexive relation �• we show that for each β ′ with β � β′ there exists n ∈ N
with Φn(

�
ζo
�

QA)c′(q′) � a′ where η(β′) = (c′, (q′, a′)) and Φ is the operator used in
Def. 4. For events that cause no other events, this property holds for n = 1 thanks to
the QA-consistency and lack of hidden state in the answering process. For other events,
we set n to be one higher than the highest n for all events directly caused by this event.
Again, this is correct thanks to the QA-consistency of and lack of hidden state in the
answering process.

We have just proved that all actual answers in ζ are reached by some finite iteration
of the Φ operator. It is therefore the case that the least fixed point of Φ is not below
any of the traces’ QA-semantics. In combination with Theorem 7, we get the desired
equality and moreover, since the equality holds for every trace, also QA-consistency.

��

7 Infinite networks

The goal of this section is to formalise a method for specifying recursive process net-
works such as those illustrated in Figs 2 and 6 and to extend the concepts and results of
the previous two subsections to the composite processes defined by such networks.

7.1 Recursive network families

Definition 13 (Dummy processes). A process is called dummy if all its traces consist
purely of queries on its output sockets answered with �.
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Definition 14. A recursive network family is a set of tuples
(Ni, Pi, πi

)
i∈I where I is a

finite set and for each i ∈ I:

– Ni is a network

– Pi ⊆ PNi and πi: Pi → I is a map such that for each p ∈ Pi:

• the process Np is dummy

• the processes Np and NNπi (p) have the same sockets and socket protocols.

Informally, each such dummy process N p is a place holder within the network N i

for the process NNπi(p) . The following definition builds on this intuition:

Definition 15 (Unfolding of recursive network families). The unfolding of a recur-
sive network family

(Ni, Pi, πi
)
i∈I is the sequence (N 0

i )i∈I , (N1
i )i∈I , (N2

i )i∈I , . . . defined
as:

– N0
i � Ni

– Nn+1
i � Ni[Np �→ NNn

πi (p)
] which stands for the network N i in which all processes

Np with p ∈ Pi have been substituted by the indicated processes with compatible
sockets.

To avoid introducing the same notation many times over, for the remainder of Sec-
tion 7 assumeF = (Ni, Pi, πi

)
i∈I is some recursively defined family and (N 0

i )i∈I , (N1
i )i∈I ,

(N2
i )i∈I , . . . is its unfolding.
As a concrete example, we let F exp denote the family 1 �→ (NR, {R} ,R �→ 1), 2 �→

(Nexp, {R} ,R �→ 1) partially specified in Fig. 9, which corresponds to the infinite ex-
ponentiating network in Fig. 2. Assume that N T is a modification of Tk from Fig. 2
abstracting k via a new natural number socket using the simplest protocol for natural
numbers, which allows only traces with exactly one event that specifies the whole num-
ber as its answer. While technically not accurate, it helps one’s intuition to replace both
Ndummy in Fig. 9 with NNR�{x,k,out}.

7.2 Trace, process and network refinement

Our goal is to extend all our theorems about networks to recursive network families
and processes defined by them. Most will follow naturally from the network theorems
once we show that the semantics of the networks in the unfolding of a recursive family
form a monotone sequence. To that end, we formalise a notion of trace and process
refinement and show that unfolding forms a refinement sequence and all our semantics
are monotone with respect to refinement.

Definition 16 (Trace refinement). A query-answer trace ζ1 = (Σ, E1, η1,�•1) is refined
by another query-answer trace ζ2 = (Σ, E2, η2,�•2), written ζ1 � ζ2, if and only if there
is an injective map τ : E1 → E2 such that:
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Figure 9: A recursive network family for an exponentiation infinite network.

– for any β, β′ ∈ E1 we have β �•1 β
′ if and only if τ(β) �•2 τ(β′)

(i. e. refinement keeps causality among existing events; τ is an order morphism);

– whenever η1(β) = (q1, x1) and η2(τ(β)) = (q2, x2), then q1 = q2 and either x1 = x2

or x1 = �
(i. e. refinement does not change existing events except improving� answers);

– whenever β �•2 β
′ and β is outside the image of τ, then so is β′

(i. e. events added by refinement cannot cause existing events);

– whenever β′ ∈ E2 is either outside the image of τ or its answer differs from its τ
preimage, then for any β �•2 β

′ the event β is either also outside the image of τ or
the answer in its τ preimage is �
(i. e. refinement can add a consequence to existing event only if its answer is �).

Whenever there is such a τ which is also a bijection, then we say ζ1 is closely refined
by ζ2, denoted ζ1 �• ζ2.

Refinement is also naturally extended to process and network traces — the definition
for these traces changes only in the second point where the two events must agree in all
components, including socket and process indices, except the answers.

Definition 17 (Process and network refinement). A process N1 is refined by process
N2, written N1 � N2, if and only if the two processes have the same sockets and socket
protocol assignments and there is a surjection r: TN2 → TN1 with r(ζ) � ζ for all traces
ζ and r(ζ)s+ �• ζs+ for all output sockets s+.

The definition of network refinement is word-for-word analogous to the definition
of process refinement.

Note that structural similarity between a pair of refinement-related networks is im-
plied by the refinement between the traces of the two networks.
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Lemma 18 (Unfolding forms refinement chains). The unfolding of a recursive net-
work family satisfies Nn

i � Nn+1
i for each i ∈ I, n ∈ N.

Proof. Firstly, we have N 0
i � N1

i because a dummy process is trivially refined by any
other process with the same sockets and protocols and substituting a process with its
refinement in a network is a network refinement.

By induction on n we get the required property using the same argument. ��
Lemma 19 (Semantics are monotone with respect to refinement).

1. For a trace refinement ζ1 � ζ2, we have�
ζ1
�

Q �
�
ζ2
�

Q and
�
ζ1
�

QA �
�
ζ2
�

QA.

2. For processes N1 � N2 without hidden state, we have
�N1�TQ � �N2�TQ and �N1�QA � �N2�QA.

3. For networksN1 � N2 without hidden state, we have
�N1�Q � �N2�Q and �N1�QA � �N2�QA.

Proof. 1. ζ1 contains fewer queries than ζ2 and Q-semantics, as supremum of all
queries, increases with more queries.

For any query element, we have a subset of relevant answers in ζ 1 compared to ζ2
and possibly an extra � for ζ1. Thus the QA-semantics, as the infimum of these
answers, is decreasing.

2. Each trace in N2 has a counterpart trace in N1 whose Q-semantics is smaller on
each input socket but same on each output socket. Thus the Q-semantics of N 2 is
above the Q-semantics of N1.

Take some lower bound on the QA-semantics on the input sockets and all N 2 traces
whose restrictions on the input sockets have QA-semantics above or equal this
lower bound. The mapping r that witnesses the refinement translates these traces to
N1 traces that are still above the lower bound because their QA-semantics may have
been only increased. There can be additional traces below the lower bound in N 1

thanks to some events on the input sockets disappearing or changing their answers
to �. We show that such traces do not influence the infimum of answers on output
sockets and thus conclude the proof that the QA-semantics in N 1 is above that in
N2.

To show that these “elevated” traces do not influence the infimum of answers on
output sockets, we use the lack of hidden state to allow us to consider only traces in
which all events are causally linked. The only way an answer in the QA-semantics
on input socket gets elevated is via absence of some query or an answer becoming
�. In both cases all causing events either also disappear or get the answer �, which
includes all the events on output sockets. Thus their QA-semantics is �, which
means they are irrelevant when calculating QA-semantics.
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3. The semantics of networks are derived using a least fixed point over the combined
action of the semantics of all processes in the network on the channels and output
sockets. If all process semantics decrease (increase), then the fixed point decreases
(increases). ��

7.3 Recursively defined networks and processes

Definition 20 (Recursively defined network and process). A recursively defined net-
work is given by a recursive network family F and an index u ∈ I.

The trace set of such a network, is defined as:

TF, u �
{
ζ = (Σ, E, η,�•)

∣∣∣∣
∀E′ ⊆ E finite and closed under �•−1: ∃n ∈ N : ∀m > n : ζ�E′ ∈ TNm

u

}

A recursively defined process NF, u is defined from a recursively defined network
(F, u) by hiding its internal structure analogously to how a composed process is defined
from a network.

For example, the exponentiation process defined by the infinite network illustrated
in Fig. 9 is specified formally as (F exp, 2).

An essential property of a recursively defined network is that no query chain de-
scends infinitely deep into it. The following definition captures this property formally.

Definition 21 (Finitely unfolding network). A recursively defined network (F, u) is
called finitely unfolding if for each trace ζ = (Σ, E, η,�•) of this network and for each
event β ∈ E, the subtrace generated from β by �• is a valid trace inN n

u for some n ∈ N.

Theorem 22 (Responsiveness of recursively defined process). Assume that the recur-
sively defined network (F, u) is finitely unfolding and that for all n ∈ N and i ∈ I the
process NNn

i
is responsive. Then the process NF, u is also responsive.

Proof. In any trace in which all events on input sockets are answered consider each
event and its causality closure, then use the fact that the closure falls in a finite unfolding
which is responsive to derive that the event is answered. ��

Next, we establish that the property of being without hidden state propagates through
recursive composition so that we can safely ignore differences between event and trace-
based semantics.

Lemma 23 (No hidden state in recursively defined process). If in a finitely unfold-
ing family F all processes in all networks Ni are without hidden state, then the re-
cursively defined process NF, u is also without hidden state.
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Proof. Take any trace of the network (F, u) and find in it a causally-closed subtrace.
Since direct causality in our processes and networks is finitely branching, the finitely
unfolding property guarantees that there is a finite global bound for the unfolding to
encompass the whole subtrace. Thus the subtrace is a valid trace of N n

u for some n
(Lemma 6) and therefore a valid trace of (F, u). ��

7.4 Semantics of recursively defined networks and processes

Definition 24 (Semantics of recursively defined network). For a recursively defined
network (F, u) without hidden state, we set:

�(F, u)�Q �
⊔
n∈N

�Nn
u
�

Q �(F, u)�QA �
�

n∈N

�Nn
u
�

QA

Lemma 25 (Semantics of recursively defined process). For a finitely unfolding recur-
sively defined network (F, u) without hidden state:

�
NF, u
�

Q =
⊔
n∈N

�
NNn

u

�
Q

�
NF, u
�

QA =
�

n∈N

�
NNn

u

�
QA

Proof. The lack of hidden state allows us to consider only traces of (F, u) that are
causally-closed. Since the network is finitely unfolding and the direct causality in our
networks is finitely branching, we have for each trace a number n such that the trace is
valid also for N n

u . Thus in the trace-based definition of process semantics, we can map
each causally-closed trace to a trace contributing to the expression of the right hand
side, all being combined using the same operator, i. e. supremum for Q-semantics and
infimum for QA-semantics. ��

The following theorem extends Theorems 7 and 8.

Theorem 26 (Safety of recursively composed semantics).
For a recursive network family F without hidden state and u ∈ I:

�(F, u)�Q �SNu
� �NF, u�Q �(F, u)�QA �SNu

� �NF, u�QA

Proof. This theorem is a straightforward consequence of Lemma 25 and Def. 24 and
the fact that both supremum and infimum are monotone operators. ��
Theorem 27 (QA-consistency of recursively defined processes).
For a finitely unfolding responsive recursively defined network (F, u) in which all pro-
cesses are QA-consistent, responsive and without hidden state:

�(F, u)�QA �SNu
=
�
NF, u
�

QA

and the process NF, u is QA-consistent.

Proof. By Theorem 12, each encapsulated unfolding NNn
u

is QA-consistent and the
QA-semantics equality holds. Therefore, the equality holds thanks to Lemma 25 and
Def. 24. Each causally-closed trace reaches the QA-semantics because it can be con-
tained within some unfolding NNn

u
, proving that NF, u is QA-consistent. ��
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8 Conclusion

We have laid the foundations of a framework in which one can study distributed query-
answer based computation and is especially suitable for exact computation over real
numbers and other similar continuous types — on ground or higher orders — as en-
countered in analysis and geometry. To achieve this goal, we have provided means to:

– analyse protocols for query-answer dialogues facilitating the transfer of partial in-
formation about objects;

– express the behaviour of a process that communicates with others using protocols
of this kind, capturing it both at abstract trace and semantic levels;

– safely estimate the semantic behaviour of a finite or infinite process network from
the behaviour of its components.

To carry out a compositional analysis of safety of finite nested networks, Theo-
rems 7, 11 and 12 are provided. To apply Theorem 11, one has to demonstrate the Q-
decreasing property — which requires an upper bound on the Q-semantics of a network
— which is in turn provided compositionally according to Theorem 8. In summary,
Theorems 7, 8, 11 and 12 together enable compositional reasoning about semantics
and convergence rates of finite networks. These results extend well to nested networks
that include recursively defined infinite compositions as we showed in Section 7.

8.1 Implementation overview

We have developed and published a BSD-licenced Haskell library [Konečný 2008a] for
defining protocols, executable processes and finite as well as recursively defined infinite
dataflow networks that fit the theory described in this article.

To enable protocols for exact real numbers and functions there are associated li-
braries for arbitrary precision interval arithmetic [Konečný 2008b] and outwards-round-
ed arbitrary precision multi-variate polynomial intervals [Konečný 2008c]. These li-
braries provide an abstract view of the arithmetic via type classes and give some choices
for the back-ends as well as potential for extensions with new back-ends. For exam-
ple, where fixed precision arithmetic is sufficient, one can opt for a back-end that uses
Double values for interval endpoints or polynomial coefficients. One of the back-ends
enables the use of the MPFR library arbitrary-precision floating point arithmetic.

Formally, a protocol is a pair of data structures — one for queries and one for an-
swers — that implements the 2-parameter type class QAProtocol. All protocols that
are provided are binary serialisable for efficient distributed communication. A process
is defined as a data structure that contains information about input and output socket
names and their protocols for static checking as well as a deployment function that
starts up listener(s) for queries on output sockets and responds to them appropriately.
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A network is defined as a data structure containing a list of named processes, chan-
nel identifiers with process and socket mappings. Protocol “type checking” is currently
performed at network deployment time as follows. While channels are created with spe-
cific protocol types, they are stored in variables and passed in parameters that are typed
with an existential type that permits any protocol. When a process deployment func-
tion receives its channels as parameters from a network deployer, it casts the channels
parameters to the protocol types it expects. If the cast fails, the deployment function
produces a detailed error message.

Nested and recursive networks are supported via a function that wraps a network as
a process, in a manner similar to Definition 5. A process with no input sockets can be
deployed and sent queries on its output sockets. Deployment is directed by a network
manager. A network manager implements the type class Managerwhich has operations
for

– constructing a new manager with a specific network name,

– connecting one manager with another manager,

– deploying a process on a given manager.

Process deployment may involve the deployment of subprocesses if the process is a
wrapped network. The manager could (but currently does not) negotiate with other
managers to distribute the subprocesses over several computers.

By the generality of the framework, it is possible to incorporate as individual pro-
cesses certain existing programs, e. g. validated differential equation solvers such as
[Rauh et al. 2007, Nedialkov 2006, Makino and Berz 2005]. Where two processes use
different representations, they can be connected with the help of protocol converter pro-
cesses.

8.2 Related work

Our model differs from the well studied nondeterministic dataflow network model
[Jonsson and Kok 1989] mainly in the level of abstraction in its denotational seman-
tics. In dataflow networks the discrete objects passing through channels are usually the
data of interest and thus are not interpreted further. For us these objects are approxi-
mations of continuous data of interest. When we drop this interpretation and treat each
channel as two one-directional channels, we get a special case of the usual nondeter-
ministic dataflow networks. Thus various works on nondeterministic dataflow networks
can be applied on our networks when viewed from such a low-level perspective.

Our work shares some aspects with some currently active projects. For example,
project Erasmus [Grogono and Shearing 2008] defines a language for convenient pro-
gramming of communicating processes. A subset of this language could directly ex-
press our kind of dataflow networks, including the definition of a concrete syntax for
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our protocols. While our current prototype is using Haskell, which is a mature high-
level language, it may be interesting to develop another prototype in the latest version
of MiniErasmus, which is a prototype of the full Erasmus language. Nevertheless, we
are not aware of a denotational semantics for Erasmus that is similar to ours. As the
Erasmus language supports also fully dynamic networks, an extension of our semantics
to full Erasmus would be highly non-trivial.

In the Ptolemy project3, some challenges have been tackled regarding the hetero-
geneity of the components of certain concurrent systems including dataflow networks
similar to ours [Eker et al. 2003]. Compared with theirs, our perspective is more the-
oretical. In particular, there has been no (denotational) semantics developed for the
Ptolemy framework similar to ours.

Most numerical programming occurs in languages that are designed for sequential
execution, mainly Fortran, MATLAB and C++. Our approach allows one to package
manageable components written in such languages and deploy them as processes in a
network. In this way one can build systems and make use of existing validated numer-
ical and geometrical tools and libraries, such as INTLAB. Our model can be a suitable
abstraction above the low-level middleware such as MPI and Globus for programming
concurrent and/or distributed scientific applications.

Notice that one can express a lazy version of the very successful MapReduce ab-
straction [Dean and Ghemawat 2008] in our model. Thus our paradigm can be seen as
generalising map-reduce while keeping most of its semantic advantages and simplicity.

8.3 Future work

8.3.1 Further theorems for compositional analysis

A natural concept of convergence rate arises out of the current framework which de-
mands further investigation along the lines of the results provided in this article regard-
ing compositional analysis. Other important concepts requiring compositional analysis
are those of communication and time complexity of processes and networks.

8.3.2 Many-valued computation

Based on the setting in this article, many-valued computation is given semantics that
may hugely underestimate the actual results by only providing the infima of all possible
answers. The recent advances in semantics of many-valued operations
(e. g. [Marcial-Romero and Moshier 2008]) can provide a platform to develop more in-
formative semantics for many-valued distributed computation. These include impor-
tant problems such as root finding. No continuous single-valued map exists from the
space of functions over real numbers to real numbers which returns the root of its in-
put function. Moreover, once our framework is equipped with such semantics, it is

3 http://ptolemy.eecs.berkeley.edu/
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possible to make more use of other frameworks that include many-valued computa-
tion, such as Weihrauch’s TTE [Weihrauch 2000], the languages of [Potts 1998] and
[Marcial-Romero and Escardó 2007] and Müller’s iRRAM [Müller 2001].

8.3.3 Concrete problems

We plan to design, verify, analyse and optimise networks for computational geometry
operations, verification of hybrid systems and solving ordinary and partial differential
equations. Some of these networks have been already implemented and show promise
in tests but they still await formal analysis.

8.3.4 Distributed back-ends

While the library [Konečný 2008a] is designed with distributed deployment in mind, at
present only deployment on one computer node is supported. We plan to provide back-
ends that will enable an efficient deployment of exact dataflow networks on clusters as
well as on specialised hardware with an MPI interface or on various grid environments.

Acknowledgements

We are very grateful for the insights and corrections raised by the anonymous reviewers.
They helped us improve the presentation and focus of this article.

References

[Dean and Ghemawat 2008] Dean, J. and Ghemawat, S.: Mapreduce: Simplified data processing
on large clusters; Communications of the ACM, 51(1):107–114, 2008.

[Eker et al. 2003] Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Neuendorffer,
S., Sachs, S., and Xiong, Y.: Taming heterogeneity - the Ptolemy approach; Proceedings
of the IEEE, Special Issue on Modeling and Design of Embedded Software, 91(1):127–144,
January 2003.

[Grogono and Shearing 2008] Grogono, P. and Shearing, B.: Concurrent software engineering:
Preparing for paradigm shift; In Canadian Conference on Computer Science and Software
Engineering, pages 99–108, May 2008.

[Jonsson and Kok 1989] Jonsson, B. and Kok, J. N.: Comparing two fully abstract dataflow
models; In PARLE ’89: Proceedings of the Parallel Architectures and Languages Europe,
Volume II: Parallel Languages, pages 217–234, London, UK, 1989. Springer-Verlag.
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[Konečný 2008b] Konečný, M.: AERN-Real: Arbitrary-precision interval arithmetic for approx-
imating exact real numbers; A Haskell library available at: http://hackage.haskell.
org/cgi-bin/hackage-scripts/package/AERN-Real, July 2008.

2655Konecny M., Farjudian A.: Compositional Semantics ...



[Konečný 2008c] Konečný, M.: AERN-RnToRm: Arbitrary-precision arithmetic of multivari-
ate piecewise polynomial enclosures; A Haskell library available at: http://hackage.
haskell.org/cgi-bin/hackage-scripts/package/AERN-RnToRm, July 2008.

[Makino and Berz 2005] Makino, K. and Berz, M.: Cosy infinity version 9; Nuclear Instru-
ments and Methods A558, pages 346–350, 2005.
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