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Abstract: Database transformations provide a unifying umbrella for queries and up-
dates. In general, they can be characterised by five postulates, which constitute the
database analogue of Gurevich’s sequential ASM thesis. Among these postulates the
background postulate supposedly captures the particularities of data models and sche-
mata. For the characterisation of XML database transformations the natural first step
is therefore to define the appropriate tree-based backgrounds, which draw on hered-
itarily finite trees, tree algebra operations, and extended document type definitions.
This defines a computational model for XML database transformation using a variant
of Abstract State Machines. Then the incorporation of weak monadic second-order
logic provides an alternative computational model called XML machines. The main
result is that these two computational models for XML database transformations are
equivalent.
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1 Introduction

For a long time database transformations as a unifying umbrella for queries and

updates have been the focus of the database research community. The logical

foundations of queries have always been a central focus of interest for database

theoreticians. In particular, queries are considered as transformations from an

input schema to an extended output schema that preserves the input. From here

it is a very small step to formalising binary relations on database instances that

encompass queries and updates [Abiteboul and Vianu, 1988]. Since then a lot

of research has been undertaken aiming at a logical characterisation of database

transformations (e.g. [Abiteboul and Kanellakis, 1998; Van den Bussche, 1993;

Van Den Bussche et al., 1997; Van den Bussche and Van Gucht, 1992]).

As discussed in [Abiteboul and Kanellakis, 1998], database transformations

should satisfy criteria such as well-typedness, effective computability, genericity

and functionality. However, the results of these investigations were only fully

satisfactory in the case of queries. Extending these results to updates is by no

means straightforward [Van den Bussche and Van Gucht, 1993]. A computation
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model that can serve as a theoretical foundation for database transformations

in general exploiting the theory of Abstract State Machines (ASMs) has only

recently been proposed [Schewe and Wang, 2010].

1.1 Previous Work

The sequential and parallel ASM theses [Gurevich, 2000; Blass and Gurevich,

2003] define sequential and parallel algorithms by a set of intuitive postulates.

Blass and Gurevich show that sequential and parallel Abstract State Machines

[Börger and Stärk, 2003], respectively, capture these classes of algorithms. In

our previous work [Schewe and Wang, 2010] we picked up on this line of thought

characterising database transformations in general. Similar to the ASM theses

we formulated five postulates that define database transformations, and proved

that these are exactly captured by a variant of ASMs called Database Abstract

State Machines (DB-ASMs).

One key issue in these postulates is the adoption of meta-finite states [Grädel

and Gurevich, 1998], i.e. as for ASMs states are defined by first-order structures,

but for database transformations we require that these structures are composed

of a finite database part and an unrestricted algorithmic part with bridge func-

tions linking them. Other differences to the general postulates in the sequential

and parallel ASM theses concern the dealing with partial updates [Gurevich and

Tillmann, 2005], the use of a limited form of parallelism by means of aggre-

gate updates [Cohen, 2006], and the incorporation of a restricted form of non-

determinism originating from choices among query results. The non-determinism

is further regulated by the bounded non-determinism postulate, which states

that non-determinism is always bounded to a choice among substructures of the

database part of a state. A major difference is further that a bounded explo-

ration witness in the bounded exploration postulate is not restricted to a finite

set of closed terms, but may involve also so-called access terms, which capture

associative access to a database. This modified bounded exploration postulate

is the major source of difficulty for the proof of the characterisation theorem

[Schewe and Wang, 2010].

While the characterisation of database transformations is done without any

reference to a particular data model, the presence of backgrounds [Blass and

Gurevich, 2000; Blass and Gurevich, 2007] supposedly enables tailoring the char-

acterisation to any data model of interest. That is, the equivalence between the

postulates and DB-ASMs holds with respect to a fixed background. The cor-

responding background postulate only defines the minimum requirements for

backgrounds such as the availability of truth values, records and multisets with

the necessary operations in each state. For instance, when dealing with relational

databases finite relational signatures must be adopted [Abiteboul et al., 1995;
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Ebbinghaus and Flum, 1999], and when dealing with XML tree-based structures

have to become part of the background.

1.2 Contributions

In this article we build upon the general characterisation of database transfor-

mations to develop a theoretical framework for XML database transformations.

This leads to two major contributions: First of all, we provide tree-based back-

grounds that are necessary for XML, which define a subclass of DB-ASMs that

can exactly capture XML database transformations. Secondly, we define a more

elegant computational model, called XML machines, which mainly differs from

DB-ASMs with tree-based backgrounds by the use of weak monadic second-order

logic in forall and choice rules. We then show that this model of XML machines

is behaviourally equivalent to the DB-ASM model with the same tree-based

background.

For the first of these contributions we define unranked trees using child and

sibling relations. This is tailored towards XML by labelling and value functions.

Furthermore, we define an XML tree algebra on hedges (i.e. list of trees), contexts

and labels, extending several known tree algebras [Bojanczyk and Walukiewicz,

2007; Wilke, 1996]. Thus, hereditarily finite trees together with the functions

required for trees and hedge algebra operations, provide the major ingredients

for tree-based backgrounds.

Furthermore, in order to capture schemata for XML documents, we adopt

extended document type definitions (EDTDs) [Papakonstantinou and Vianu,

2000], which according to [Murata et al., 2005] subsume many of other XML

schema definition languages such as DTDs or XML Schema. This leads to the

addition of tree typing schemes into a tree-based background. For XML database

transformations we only require that initial and final states adhere to given

typing schemes. Adopting the results in this paper to any other XML schema

formalism is straightforward.

The disadvantage of the ASM-based characterisation of XML database trans-

formations is its lack of linkages to other work on theoretical foundations of XML

databases. As XML is intrinsically connected with regular languages, a lot of re-

search has been done to link XML with automata and defining logics. Weak

monadic second-order logics (MSO) are linked to regular tree languages [Doner,

1970; Thatcher and Wright, 1968] in the sense that a set of trees is regular iff it

is in weak MSO with k successors.

Therefore, we define an alternative model of computation for XML database

transformations, which exploits weak MSO [Wang and Ferrarotti, 2009]. Prag-

matically speaking, the use of weak MSO formulae in forall and choice rules

permits more flexible access to the database. As weak MSO subsumes first-order

logic, it is straightforward to see that the model of XML machines captures all
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transformations that can be expressed by the DB-ASM model with the same

tree-based background. As our main result in [Schewe and Wang, 2010] states

that DB-ASMs capture all database transformations as defined by the intuitive

postulates, it should also not come as a surprise that XML machines are in fact

equivalent to DB-ASMs with tree-based backgrounds. For the proof we show

that XML machines satisfy the postulates in a sense the hard part of the proof

is already captured by the main characterisation theorem in [Schewe and Wang,

2010].

1.3 Related Work

Our research is devoted to XML database transformations exploiting the the-

ory of Abstract State Machines, so naturally ASMs, database tansformations in

general, and XML database theory broadly define related research areas.

The seminal work by Gurevich on the sequential ASM thesis [Gurevich, 2000]

is most inspiring for our work. From it we borrowed the idea to formalise database

transformations by intuitive postulates, and to define an abstract machine model

capturing them. ASMs have been used in all kinds of application areas, in partic-

ular also in database systems. This includes among others concurrency control

[Kirchberg et al., 2009], recovery [Gurevich et al., 1997], and even the develop-

ment of data warehouses [Zhao et al., 2009]. ASMs have also been studied as a

means to express complete query languages [Blass et al., 2002]. All this research

has the common denominator that ASMs are applied to particular database

problems, whereas our research actually aims at adopting the fundamental the-

oretical ideas underlying ASMs to study database theory. To our knowledge this

has not been done elsewhere.

With respect to database transformations in general our research also draws

on ideas from the work of van den Bussche et al. in the context of object-

oriented databases [Van den Bussche, 1993; Van Den Bussche et al., 1997; Van

den Bussche and Van Gucht, 1992]. One significant difference, however, is that

we did not yet pay particular attention to the characterisation of queries.

Over the last decade, a lot of research effort has been put in the area of XML

databases, but the emphasis is usually on querying, whereas updates are ne-

glected. Several extensions of XQuery to encompass updates that we are aware

of [Chamberlin et al., 2006; Don Chamberlin and Siméon, 2008; Ghelli et al.,

2006; Sur et al., 2004] generally use explicit snapshot semantics to control the

evaluation order of updates at certain level of snapshot granularity, which are

often accompanied with some restrictions on the expression usage and the design

of error handling. It turns out that a well-founded theory with high-level specifi-

cation for XML database transformations including updates is still missing. Our

research draws on some approaches in this area.
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To manipulate over tree structures, we need operators on trees or hedges.

This motivates us to take into account tree algebras that have, however, been

developed for various different purposes. For instance, the forest algebra in [Bo-

janczyk and Walukiewicz, 2007] aims at providing an algebraic framework for

studying logical definability of different classes of tree languages, while the tree

algebra for binary ranked trees in [Wilke, 1996] was defined for characterising

the class of frontier-testable tree languages satisfying conditions such as “there

exists a natural number k such that any two trees with the same set of subtrees

of depth at most k either belong both to the language or both not”. In this

paper, we develop an XML tree algebra that adapts features from these existing

tree algebras towards the setting of XML trees.

Similarly, the research on XML schema languages, from which we adopt

EDTDs [Papakonstantinou and Vianu, 2000]. As MSO has intrinsic connection

with regular languages, which dates back to the observation by Büchi [Büchi,

1960], MSO has become important for XML database theory, see e.g. [Comon

et al., 2007]. Here, we mainly exploit weak MSO as a means to define an al-

ternative, more elegant way to express XML database transformations without

actually increasing expressiveness, in comparison with the DB ASM models with

the same tree-based backgrounds.

1.4 Organisation of the Article

The rest of the article is organised as follows. In Section 2 we give a brief presenta-

tion of the five postulates for database transformations from [Schewe and Wang,

2010]. We also present the variant of ASMs called Database Abstract State Ma-

chines (DB-ASMs) that have been proven to capture database transformations.

Sections 3–5 are devoted to the development of tree-based backgrounds that

will customize the background postulate for XML database transformations. We

start in Section 3 with formally defining trees and a tree algebra, which give rise

to constructors and functions that must be part of a background class. Section 4

introduces a weak monadic second-order logic, which adds further requirements

to tree-based backgrounds. Section 5 contains the final definition of tree-based

backgrounds, which in addition comprise tree type schemes in order to capture

schema information based on EDTDs. Then we link tree-based backgrounds with

DB-ASMs thereby obtaining the first computational model for XML database

transformations. The alternative computational model of XML machines, which

exploit weak MSO logic is introduced in Section 6. We then prove our main re-

sult that the model of XML machines is equivalent to the DB-ASM model with

tree-based backgrounds. Finally, we draw conclusions in Section 7.
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2 Database Transformations

In this section we summarize our previous work on database transformations

[Schewe and Wang, 2010]. We start with the five postulates: the sequential time,

abstract state, background, bounded exploration and bounded non-determinism

postulates. An object satisfying these postulates is a database transformation.

2.1 Postulates Defining Database Transformations

The sequential time postulate defines a database transformation as a computa-

tion that proceeds step-wise on a set of states.

Postulate 1 (sequential time). A database transformation t is associated

with a non-empty set of states St together with non-empty subsets It and Ft

of initial and final states, respectively, and a one-step transition relation τt over

St, i.e. τt ⊆ St × St.

A run of a database transformation t is a finite sequence S0, . . . , Sf of states

with S0 ∈ It, Sf ∈ Ft, Si /∈ Ft for 0 < i < f , and (Si, Si+1) ∈ τt for all

i = 0, . . . , f − 1. Database transformations t1 and t2 are behaviourally equivalent

if St1 = St2 , It1 = It2 , Ft1 = Ft2 and τt1 = τt2 hold.

The abstract state postulate generalises the corresponding postulate for se-

quential algorithms [Gurevich, 2000], according to which states are first-order

structures, i.e. sets of functions. These functions are interpretations of function

symbols given by some signature.

Definition 1. A signature Σ is a set of function symbols, each associated with

a fixed arity. A structure over Σ consists of a set B, called the base set of

the structure together with interpretations of all function symbols in Σ, i.e.

if f ∈ Σ has arity k, then it is interpreted by a function from Bk to B. An

isomorphism from structure X to structure Y is defined by a bijection σ : BX →
BY between the base sets that extends to functions by σ(fX(b1, . . . , bk)) =

fY (σ(b1), . . . , σ(bk)), where fX(b1, . . . , bk) denotes the interpretation of function

f(b1, . . . , bk) in structure X .

Postulate 2 (abstract state). All states S ∈ St of a database transformation

t are structures over the same signature Σt, and whenever (S, S′) ∈ τt holds, the

states S and S′ have the same base set. The sets St, It and Ft are closed under

isomorphisms, and for (S1, S
′
1) ∈ τt each isomorphism from S1 to S2 is also an

isomorphism from S′
1 to S′

2 = σ(S′
1) with (S2, S

′
2) ∈ τt.

Furthermore, the signature Σt is composed as a disjoint union out of a

database signature Σdb, an algorithmic signature Σa, and a finite set of unary

bridge function symbols, i.e. Σt = Σdb∪Σa∪{f1, . . . , f�}. The base set of a state
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is B = Bdb ∪Ba with interpretation of function symbols in Σdb and Σa over Bdb

and Ba, respectively. The interpretation of a bridge function symbol defines a

function from Bdb to Ba. With respect to such states the restriction to Σdb is a

finite structure, i.e. Bdb is finite.

The background postulate describes the background of a computation (i.e.

everything that is needed for the computation, but not captured by the notion of

state). For database transformations, in particular, we have to capture constructs

that are determined by the used data model, for example, relational, object-

oriented, object-relational or semi-structured. That means, we will have to deal

with type constructors and with functions defined on such types. Furthermore,

when we allow values (e.g. identifiers) to be created non-deterministically, we

would like to take these values out of an infinite set of reserve values. Once

created, these values become active, and we can assume they can never be used

again for this purpose.

Following [Blass and Gurevich, 2003] we use background classes to define

backgrounds. A background class is determined by a background signature con-

sisting of constructor and function symbols. Function symbols are associated

with a fixed arity as in Definition 1, while for constructor symbols we permit the

arity to be unfixed or bounded.

Definition 2. Let D be a set of base domains and VK a background signa-

ture, then a background class K with VK over D is constituted by the universe

U =
⋃
D′

of elements, where D′
is the smallest set with D ⊆ D′

satisfying the

following properties for each constructor symbol �� ∈ VK :

– If �� ∈ VK has unfixed arity, then �D� ∈ D′
for all D ∈ D′

, and �a1, . . . , am�
∈ �D� for every m ∈ N and a1, . . . , am ∈ D, and A�� ∈ D′

with A�� =⋃
�D�∈D′

�D�;

– If �� ∈ VK has bounded arity n, then �D1, . . . , Dm� ∈ D′
for all m ≤ n and

Di ∈ D′
(1 ≤ i ≤ m), and �a1, . . . , am� ∈ �D1, . . . , Dm� for every m ∈ N

and a1, . . . , am ∈ D;

– If �� ∈ VK has fixed arity n, then �D1, . . . , Dn� ∈ D′
for all Di ∈ D′

and

�a1, . . . , an� ∈ �D1, . . . , Dn� for all ai ∈ Di (1 ≤ i ≤ n),

and an interpretation of function symbols in VK over U .

Postulate 3 (background). Each state of a database transformation t must

contain an infinite set of reserve values, truth values and their connectives, the

equality predicate, the undefinedness value ⊥, and a background class K defined

by a background signature VK that contains at least a binary tuple constructor

3049Schewe K.-D., Wang Q.: XML Database Transformations



(·), a multiset constructor {{·}}, and function symbols for operations on pairs

such as pairing and projection, and on multisets such as empty multiset {{ }},
singleton {{x}}, and multiset union �.

Given a state, we can add the required Booleans and ⊥ into the base domains,

then apply the construction in Definition 2 to obtain a much larger base set and

interpret functions symbols with respect to this enlarged base set.

The exploration boundary postulate for sequential algorithms requests that

only finitely many terms can be updated in an elementary step [Gurevich, 2000].

For parallel algorithms this postulate becomes significantly more complicated,

as basic constituents not involving any parallelism (so-called “proclets”) have

to be considered [Blass and Gurevich, 2003]. For database transformations the

problem lies somehow in between. Computations are intrinsically parallel, even

though implementations may be sequential, but the parallelism is restricted in

the sense that all branches execute de facto the same computation. We capture

this by means of location operators, which generalise aggregation functions as in

[Cohen, 2006]. Let M(D) be the set of all non-empty multisets over a domain D,

then a location operator ρ overM(D) consists of a unary function α : D → D
′
, a

commutative and associative binary operation 	 over D
′
, and a unary function

β : D
′ → D

′′
, which define ρ(m) = β(α(b1)	 · · ·	α(bn)) for m = {{b1, ..., bn}} ∈

M(D).

The definitions of updates, update sets and update multisets are the same

as for ASMs [Börger and Stärk, 2003]. For a database transformation t, let S

be a state of t, f a function symbol of arity n in the state signature of t, and

a1, ..., an, v be elements in the base set of S, then an update of t is a pair (�, v),

where � is a location f(a1, ..., an). An update set is a set of updates; an update

multiset is a multiset of updates. An update is trivial in a state s if its location

content in s is the same as its update value, while an update set is trivial if all

of its updates are trivial. An update set Δ is consistent if it does not contain

conflicting updates, i.e. for all (�, v), (�, v′) ∈ Δ we have v = v′.
Using location operators that are assigned to locations, an update multiset

can be reduced to an update set. It is further possible to construct for each

(S, S′) ∈ τt a minimal, consistent update set Δ(t, S, S′) such that applying this

update set to the state S will produce the state S′. For a database transformation

t and a state S ∈ St define Δ(t, S) = {Δ(t, S, S′) | (S, S′) ∈ τt}.
The fact that only finitely many locations can be explored remains the same

for database transformations. However, permitting parallel accessibility within

the database part of a state forces us to slightly change our view on the bounded

exploration witness. For this we need access terms (f, β, α), and for simplicity,

we drop the function symbol f .

Definition 3. An access term is either a ground term α or a pair (β, α) of terms,

the variables x1, . . . , xn in which refer to the arguments of some f ∈ Σdb. The
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interpretation of (β, α) in a state S is the set {f(x1, . . . , xn)[a1/x1, . . . , an/xn] |
valS,{x1 �→a1,...,xn �→an}(β) = valS,{x1 �→a1,...,xn �→an}(α)} of locations. Structures S1

and S2 coincide over a set T of access terms if the interpretation of each (β, α) ∈
T over S1 and S2 are equal.

Postulate 4 (bounded exploration). For a database transformation t there

exists a fixed, finite set Twitness of access terms of t (called a bounded exploration

witness) such that Δ(t, S1) = Δ(t, S2) holds whenever the states S1 and S2

coincide over T .

The last postulate addresses the boundedness of non-determinism by putting

a severe restriction on the non-determinism in the transition relation τt.

Postulate 5 (bounded non-determinism). If there are states S1, S2, S3 ∈
St with (S1, S2) ∈ τt, (S1, S3) ∈ τt and S2 
= S3, then there exists an access term

of the form (β, α) in Twitness.

This postulate states that if in a one-step transition over state S we have

non-determinism (equivalently: Δ(t, S) contains more than one update set), then

there must exist an access term that is not a ground term in the bounded explo-

ration witness of t. In other words, if we only have ground access terms in the

bounded exploration witness of t, then we cannot have non-determinism in the

transitions.

2.2 Database Abstract State Machines

For the signature Σ we adopt the requirements of the abstract state postulate,

i.e. it comprises a sub-signature Σdb for the database part, a sub-signature Σa

for the algorithmic part, and bridge functions {f1, . . . , f�}. For states we assume

that the requirement in the abstract state postulate, according to which the

restriction to Σdb results in a finite structure, is satisfied. Furthermore, we assume

a background in the sense of the background postulate being defined. We refer

to database variables as variables that must be interpreted by elements in Bdb

and fr(r) as the set of free variables appearing in a DB-ASM rule r. A rule r is

called closed if fr(r) = ∅.

Definition 4. The set R of DB-ASM rules over a signature Σ = Σdb ∪ Σa ∪
{f1, . . . , f�} is defined as follows:

– If t0, . . . , tn are terms over Σ, and f is an n-ary function symbol in Σ, then

f(t1, . . . , tn) := t0 is a rule r in R called assignment rule with fr(r) =
n⋃

i=0

var(ti), where var(ti) is the set of variables occurring in the terms ti

(i = 0, . . . , n).
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– If ϕ is a Boolean term and r′ ∈ R is a DB-ASM rule, then if ϕ then r′

endif is a rule r in R called conditional rule with fr(r) = fr(ϕ) ∪ fr(r′).

– If ϕ is a Boolean term with only database variables fr(ϕ) ⊇ {x1, . . . , xk}
and r′ ∈ R is a DB-ASM rule, then forall x1, . . . , xk with ϕ do r′ enddo
is a rule r in R called forall rule with fr(r) = fr(r′)∪ fr(ϕ)−{x1, . . . , xk}.

– If r1, . . . , rn are rules in R, then also the rule r defined as par r1 . . . rn par

is a rule in R, called parallel rule with fr(r) =
n⋃

i=0

fr(ri).

– If ϕ is a Boolean term with only database variables fr(ϕ) ⊇ {x1, . . . , xk}
and r′ ∈ R is a DB-ASM rule, then choose x1, . . . , xk with ϕ do r′ enddo
is a rule r in R called choice rule with fr(r) = fr(r′)∪fr(ϕ)−{x1, . . . , xk}.

– If r1, r2 are rules in R, then also the rule r defined as seq r1 r2 seq is a rule

in R, called sequence rule with fr(r) = fr(r1) ∪ fr(r2).

– If r′ ∈ R is a DB-ASM rule and ϑ is a location function that assigns location

operators � to terms γ with var(γ) ⊆ fr(r′), then let ϑ(γ) = � in r′ endlet
defines another DB-ASM rule r ∈ R called let rule with fr(r) = fr(r′).

The definition of sets of update sets Δ(r, S) for a closed DB-ASM rule r with

respect to states S (defined with a background as in Postulate 3 and a finiteness

condition as in Postulate 2) is straightforward [Schewe and Wang, 2010].

Definition 5. A Database Abstract State Machine (DB-ASM)M over signature

Σ as in Postulate 2 and with a background as in Postulate 3 consists of a set

SM of states over Σ satisfying the requirements in Postulate 2 and closed under

isomorphisms, non-empty subsets IM ⊆ SM of initial states, and FM ⊆ SM of

final states, both also closed under isomorphisms, a program πM defined by a

closed DB-ASM rule r over Σ, and a binary relation τM over SM determined by

πM such that {Si+1 | (Si, Si+1) ∈ τM} = {Si +Δ | Δ ∈ Δ(πM , Si)} holds.

The following two theorems are the main results in [Schewe and Wang, 2010].

Theorem 6. Each DB-ASM M defines a database transformation tM with the

same signature and background as M .

Theorem 7. For each database transformation t there is a DB-ASM M such

that t and tM are behaviourally equivalent.
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3 Trees and Tree Algebra

As XML documents are trees, XML database transformations have to perform

computations on trees. Thus tree values have to be available in the base set, and

operations on such trees must be available for the definition of terms. Further-

more, tree values and operations have to be defined in the background. In this

section we provide these necessary constituents of the background, which leads

to the definition of tree background classes in Section 5.

3.1 Trees, Contexts and Selector Constructs

It is common to regard an XML document as an unranked tree, in which a node

may have an unbounded but finite number of children nodes.

Definition 8. An unranked tree is a structure (O,≺c,≺s) consisting of a finite,

non-empty set O of node identifiers, called tree domain, ordering relations ≺c

and ≺s over O called child relation and sibling relation, respectively, satisfying

the following conditions:

– there exists a unique, distinguished node or ∈ O (called the root of the tree)

such that for all o ∈ O − {or} there is exactly one o′ ∈ O with o′ ≺c o, and

– whenever o1 ≺s o2 holds, then there is some o ∈ O with o ≺c oi for i = 1, 2.

The relations ≺c and ≺s are irreflexive (x 
≺ x).

For x1 ≺c x2 we say that x2 is a child of x1; for x1 ≺s x2 we say that x2
is the next sibling to the right of x1. In order to obtain XML trees from this,

we require the nodes of an unranked tree to be labelled, and the leaves, i.e.

nodes without children, to be associated with values. Therefore, we fix a finite,

non-empty set Σ of labels, and a finite family {τi}i∈i of data types. Each data

type τi is associated with a value domain dom(τi). The corresponding universe

U contains all possible values of these data types, i.e. U =
⋃
i∈I

dom(τi).

Definition 9. An XML tree t (over the set of labels Σ with values in the

universe U) is a triple (γt, ωt, υt) consisting of an unranked tree γt = (Ot,≺c

,≺s), a total label function ωt: Ot → Σ, and a partial value function υt: Ot → U

such that whenever υt is defined on the argument o, o is a leaf in γt.

We use root(t) to denote the root node of an XML tree t. Given two XML

trees t1 and t2, t1 is the subtree of t2 if the following properties are satisfied:

(1) Ot1 ⊆ Ot2 , (2) o1 ≺c o2 holds in t1 iff it holds in t2, (3) o1 ≺s o2 holds in

t1 iff it holds in t2, (4) ωt1(o
′) = ωt2(o

′) holds for all o′ ∈ Ot1 , and (5) either
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υt1(o
′) = υt2(o

′) holds or otherwise both sides are undefined for all o′ ∈ Ot1 . t1
is said to be the largest subtree of t2 at node o, denoted as ô, iff (1) t1 is the

subtree of t2 with root(t1) = o and (2) there does not exist an XML tree t3 with

t3 
= t1 and t3 
= t2 such that t1 is the subtree of t3 and t3 is the subtree of t2.

The set of all XML trees over Σ – neglecting the universe U – is denoted as TΣ .

A sequence t1, ..., tk of XML trees is called an XML hedge or simply a hedge,

and a multiset {{t1, ..., tk}} of XML trees is called an XML forest or simply a

forest. ε denotes the empty hedge.

Definition 10. The set of XML contexts over an alphabet Σ (ξ /∈ Σ) is the

set TΣ∪{ξ} of unranked trees over Σ ∪ {ξ} such that for each tree t ∈ TΣ∪{ξ}
exactly one leaf node is labelled with the symbol ξ and has undefined value, and

all other nodes in a tree are labelled and valued in the same way as an XML

tree defined in Definition 9.

The context with a single node labelled ξ is called the trivial context and

also denoted as ξ. With contexts we can now define substitution operations that

replace a subtree of a tree or context by a new XML tree or context. This leads

to the following distinction between four kinds of substitutions:

Tree-to-tree substitution For an XML tree t1 ∈ TΣ1 with a node o ∈ Ot1

and an XML tree t2 ∈ TΣ2 the result t1[ô �→ t2] of substituting t2 for the

subtree rooted at o is an XML tree in TΣ1∪Σ2 .

Tree-to-context substitution For an XML tree t1 ∈ TΣ1 with a node o ∈ Ot1

the result t1[ô �→ ξ] of substituting the trivial context for the subtree rooted

at o is an XML context in TΣ1∪{ξ}.

Context-to-context substitution For an XML context c1 ∈ TΣ1∪{ξ} and an

XML context c2 ∈ TΣ2∪{ξ} the result c1[ξ �→ c2] of substituting c2 for the

node labelled by ξ in c1 is an XML context in TΣ1∪Σ2∪{ξ}.

Context-to-tree substitution For an XML context c1 ∈ TΣ1∪{ξ} and an

XML tree t2 ∈ TΣ2 the result c1[ξ �→ t2] of substituting t2 for the node

labelled by ξ in c1 is an XML tree in TΣ1∪Σ2 .

The correspondence between an XML document and an XML tree is straight-

forward. Each element of an XML document corresponds to a node of the XML

tree, and the subelements of an element define the children nodes of the node cor-

responding to the element. The nodes for elements are labeled by element names,

and character data of an XML document correspond to values of leaves in an

XML tree. As our main focus is on structural properties of an XML document,

attributes are handled, as if they were subelements, to simplify the discussion.
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To provide manipulation operations over XML trees at a level higher than

individual nodes and edges, we need some tree constructs to select arbitrary tree

portions of interest. For this we provide two selector constructs, which result

in subtrees and contexts, respectively. For an XML tree t = (γt, ωt, υt), these

constructs are defined as follows:

– context is a binary, partial function defined on pairs (o1, o2) of nodes with

oi ∈ Ot (i = 1, 2) such that o1 is an ancestor of o2, i.e. o1 ≺∗
c o2 holds for

the transitive closure ≺∗
c of ≺c. We have context(o1, o2) = ô1[ô2 �→ ξ].

– subtree is a unary function defined on Ot. We have subtree(o) = ô.

Figure 1: XML tree portions

Example 1. Consider the XML tree shown in Figure 1. Suppose we want to select

(1) a subtree, rooted at a node labelled by b, which has exactly two children nodes

labelled by a, and (2) a context, defined by a subtree that is rooted at a node

labelled by b, in which a subtree with a root labelled by e is substituted by the

trivial context ξ.

For (1) using DB-ASM rules we could build the following fragment:

forall x with ∃x1, x2.((x ≺c x1) ∧ (x ≺c x2) ∧ ωb(x) ∧ ωa(x1) ∧ ωa(x2)∧
x1 
= x2 ∧ ∀x3((x ≺c x3) ∧ ωa(x3) ⇒ (x3 = x1 ∨ x3 = x2)))

do

t1 := subtree(x) ; . . .

enddo

Of course, in doing so the formula in the with-clause has to be interpreted

using the XML tree t and binding variables to identifiers in the tree domain

Ot. Furthermore, ≺c has to be interpreted by the children relation, and pred-

icants ωa by the labelling function with label a ∈ Σ. Such formulae and their

interpretations will be discussed later.

Similarly, for (2) we could use the following fragment of a DB-ASM rule:
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forall x with (x ≺∗
c x1) ∧ ωb(x) ∧ ωe(x1)

do

t2 := context(x, x1) ; . . .

enddo

The resulting tree portions of interest are highlighted in Figure 1. The left

shadowed one corresponds to the subtree requested in (1), while the right shad-

owed one corresponds to the context requested in (2).

The use of the tree selector constructs context(x1, x2) and subtree(x) along

with algebra operations, which we will introduce in the next subsection allow

us to extract and then recombine portions of an existing XML tree to form a

new XML tree. This enables the desired level of abstraction for XML database

transformations beyond manipulation of nodes and edges.

3.2 Tree Algebra

A many-sorted tree algebra has three sorts: L for labels, H for hedges, and

C for contexts, along with a set {ι, δ, ς, ρ, κ, η, σ} of function symbols with the

following signatures:

ι : L×H → H δ : L×C → C ς : H×C → C

ρ : H×C → C κ : H×H → H η : C×H → H

σ : C×C → C

Given a fixed alphabet Σ and two special symbols ε and ξ, the set T of terms

over Σ ∪ {ε, ξ} comprises label terms, hedge terms, and context terms. That is,

T = TL ∪ TH ∪ TC, where TL, TH and TC stand for the sets of terms over sorts

L, H and C, respectively. The set of label terms TL is simply the set of labels,

i.e. TL = Σ. The set TH contains the subset T s
H of tree terms, i.e. we identify

trees with hedges of length 1, and is defined by: (1) ε ∈ T s
H, (2) t〈h〉 ∈ T s

H for

t ∈ Σ and h ∈ TH, and (3) t1, ..., tn ∈ Tm
H for ti ∈ T s

H (i = 1, ..., n). The set of

context terms TC is the smallest set with ξ ∈ TC and t〈t1, ..., tn〉 ∈ TC for a label

t ∈ Σ and terms t1, ..., tn ∈ T s
H ∪ TC such that exactly one ti (i = 1, . . . , n) is a

context term in TC.
Trees and contexts have a root, but hedges do not (unless they can be identi-

fied with a tree). For hedges of the form of t〈ε〉 we use t as a notational shortcut,

if we can avoid confusion with the label term t. The notation #t denotes the

sort of a term t.

Example 2. Let Σ = {a, b, c}, then a, b and c are terms of sort L, a〈b〈b〉, c〈a〉〉
and b〈c〉, a〈a〈b〉, b〉 are terms of sort H, and a〈a〈b〉, ξ, c〉 is a term of sort C.
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Intuitively speaking, the functions ι and δ extend hedges and contexts up-

wards with labels, and ς and ρ incorporate hedges into non-trivial contexts from

left or right, respectively, which takes care of the order of subtrees arising in

XML as illustrated in Example 3. The function κ denotes hedge juxtaposition,

and likewise σ is context composition. The function η denotes context substitu-

tion, i.e. substituting ξ in a context with a hedge, which leads to a tree. These

functions are illustrated in Figure 2 and formally defined as follows:

ι(a, (t1, . . . , tn)) = a〈t1, . . . , tn〉 (1)

(The case n = 0 leads to a〈ε〉 on the right hand side.)

δ(a, c) = a〈c〉 (2)

ς((t1, . . . , tn), a〈t′1, . . . , t′m〉) = a〈t1, . . . , tn, t′1, . . . , t′m〉 (3)

ρ((t1, . . . , tn), a〈t′1, . . . , t′m〉) = a〈t′1, . . . , t′m, t1, . . . , tn〉 (4)

κ((t1, . . . , tn), (t
′
1, . . . , t

′
m)) = t1, . . . , tn, t

′
1, . . . , t

′
m (5)

η(c, (t1, . . . , tn)) = c[ξ �→ t1, . . . , tn] (6)

σ(c1, c2) = c1[ξ �→ c2] (7)

Example 3. Let us have a look at Figure 3. Given a context term t2 = a〈b, ξ〉
and a hedge term t1 = b〈c〉, b〈c〉, we obtain the context in (i) by ς(t1, t2) =

a〈b〈c〉, b〈c〉, b, ξ〉 and the context in (ii) by ρ(t1, t2) = a〈b, ξ, b〈c〉, b〈c〉〉.

Proposition11. The algebra defined above satisfies the following equations for

t1, t2, t3 ∈ T (i.e., whenever one of the terms in the equation is defined, the other

one is defined, too, and equality holds):

η(σ(t1, t2), t3) = η(t1, η(t2, t3)) (8)

σ(σ(t1, t2), t3) = σ(t1, σ(t2, t3)) (9)

κ(κ(t1, t2), t3) = κ(t1, κ(t2, t3)) (10)

η(δ(t1, t2), t3) = ι(t1, η(t2, t3)) (11)

ς(t1, ς(t2, t3)) = ς(κ(t1, t2), t3) (12)

ρ(t1, ρ(t2, t3)) = ρ(κ(t2, t1), t3) (13)

ρ(t3, ς(t1, t2)) = ς(t1, ρ(t3, t2)) (14)

The tree algebra provides an algebraic approach to manipulate portions of

a tree structure at a highly flexible abstraction level, such as subtrees and con-

texts. In doing so, individual nodes and edges are considered to be special cases

of subtrees and contexts. In terms of manipulating tree structures, our tree al-

gebra is powerful enough to express operations provided by the forest algebra
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Figure 2: Tree algebra

Figure 3: An illustration of functions ς(t1, t2) and ρ(t1, t2)

[Bojanczyk and Walukiewicz, 2007] and Wilke’s tree algebra [Wilke, 1996]. For

example, the operations ιA(a), λA(a, t) and ρA(a, t) in [Wilke, 1996] can be ex-

pressed as ι(a, ε), ρ(δ(a, ξ)) and ς(δ(a, ξ)), respectively, in our tree algebra.

4 Weak Monadic Second-Order Logic

We first provide a weak MSO logic to navigate within an XML tree by adopting

the logic from [Comon et al., 2007] with the restriction that second-order vari-

ables can only be quantified over finite sets. The use of MSO logic is motivated
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by its close correspondence to regular languages, which is known from early work

of Büchi [Büchi, 1960]. For XML the navigational core of XPath2.0 capture first-

order logic, and some extensions on XPath have been shown to be expressively

complete for MSO, or strictly less expressive than MSO such as “regular XPath”

[ten Cate and Segoufin, 2008]. In a second step we incorporate the logic into the

framework of DB-ASMs.

4.1 Tree Formulae

Let VFO and VSO denote the sets of first- and second-order variables, respectively.

Using abstract syntax the formulae of MSOX are defined by

ϕ ≡ x1 = x2 | υ(x1) = υ(x2) | ωa(x1) | x ∈ X | x1 ≺c x2 | x1 ≺s x2 |
¬ϕ | ϕ1 ∧ ϕ2 | ∃x.ϕ | ∃X.ϕ (15)

with x, x1, ..., xk ∈ VFO, X ∈ VSO, unary function symbols υ and ωa for all a ∈
Σ, and binary predicate symbols ≺c and ≺s. We interpret formulae of MSOX for

a given XML tree t = (γt, ωt, υt) over the set Σ of labels with γt = (Ot,≺t
c,≺t

s).

Naturally, the function symbols ωa and υ are interpreted by the labelling and

value functions ωt and υt, respectively, and the predicate symbols ≺c and ≺s

are interpreted using the children and sibling relations ≺t
c and ≺t

s, respectively.

Furthermore, we need variable assignments ζ : VFO ∪ VSO → Ot ∪ P(Ot)

taking first-order variables x to node identifiers ζ(x) ∈ Ot, and second-order

variables X to sets of node identifiers ζ(X) ⊆ Ot. As usual ζ[x �→ o] (and

ζ[X �→ O], respectively) denote the modified variable assignment, which equals

ζ on all variables except the first-order variable x (or the second-order variable

X , respectively), for which we have ζ[x �→ o](x) = o (and ζ[X �→ O](X) = O,

respectively). For the XML tree t and a variable assignment ζ we obtain the

interpretation valt,ζ on terms and formulae as follows. Terms are either variables

x, X or have the form υ(x), thus are interpreted as valt,ζ(x) = ζ(x), valt,ζ(X) =

ζ(X), and valt,ζ(υ(x)) = υt(ζ(x)). For formulae ϕ we use [[ϕ]]S,ζ to denote its

interpretation by a truth value, and obtain:

– [[τ1 = τ2]]t,ζ = true iff valt,ζ(τ1) = valt,ζ(τ2) holds for the terms τ1 and τ2,

– [[ωa(x)]]t,ζ = true holds iff ωt(valt,ζ(x)) = a,

– [[x ∈ X ]]t,ζ = true iff valt,ζ(x) ∈ valt,ζ(X),

– [[¬ϕ]]t,ζ = true iff [[ϕ]]t,ζ = false,

– [[ϕ1 ∧ ϕ2]]t,ζ = true iff [[ϕ1]]t,ζ = true and [[ϕ2]]t,ζ = true,

– [[∃x.ϕ]]t,ζ = true iff [[ϕ]]t,ζ[x �→o] = true holds for some o ∈ O,
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– [[∃X.ϕ]]t,ζ = true iff [[ϕ]]t,ζ[X �→O] = true for some finite O ⊆ O,

– [[x1 ≺c x2]]t,ζ = true iff valt,ζ(x2) is a child node of valt,ζ(x1) in t, i.e.

valt,ζ(x1) ≺t
c valt,ζ(x2) holds, and

– [[x1 ≺s x2]]t,ζ = true iff valt,ζ(x2) is the next sibling to the right of valt,ζ(x1)

in t, i.e. valt,ζ(x1) ≺t
s valt,ζ(x2) holds.

The syntax of MSOX can be enriched by adding ϕ1 ∨ϕ2, ∀x.ϕ, ∀X.ϕ, ϕ1 ⇒
ϕ2, ϕ1 ⇔ ϕ2 as abbreviations as usual. Likewise, the definition of bound and

free variables of MSOX formulae is also standard. The notation fr(ϕ) refers to

the set of free variables of the formula ϕ.

4.2 Formulae in DB-ASMs with Trees

When using XML trees as values in the base set of a state of DB-ASMs the logic

MSOX is not sufficient, as we have to take more than one such tree into account.

Fortunately, this only requires an extension for the atomic formulae, i.e. those

formulae in the first line of (15) above.

Regarding the function and predicate symbols for XML trees (i.e. υ, ωa, ≺c

and ≺s) we have to add the XML tree as an additional argument, respectively,

and omitting the index of ωa in order to cope with different sets of labels. Hence,

we obtain function symbols υ, ω, ≺c and ≺s of arity 2, 2, 3 and 3, respectively.

Informally, υ(x, y) denotes the value at leaf node y in the tree x, ω(x, y) denotes

the label of node y in the tree x, y ≺c (x)z denotes the (truth) value of y ≺c z

in the tree x, and y ≺s (x)z denotes the (truth) value of y ≺s z in the tree x.

Together with other function symbols defined as part of the background

signature and variables we can build the set of terms. For this, variables now have

to be sorted including sorts for node identifiers and for sets of node identifiers

above, plus labels, hedges, contexts, etc. The set of atomic formulae then contains

formulae of the form τ1 = τ2 and x ∈ X with terms τi (i = 1, 2) of the same

sort, x of sort “node identifier”, and X is of sort “set of node identifier”. The

set of formulae can be built in the usual way using negation, conjunction and

existential quantification plus the usual shortcuts.

5 XML Database Transformations

In this section we develop a general notion of XML database transformation.

As outlined in Section 2, the customisation for a particular data model requires

the definition of appropriate backgrounds. We approach this in two steps: first

defining tree background classes that build upon the tree algebra and the weak
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MSO logic, and secondly adding tree type schemes to capture schema informa-

tion. Any object satisfying Postulates 1 - 5 with a tree-based background as

customised in this section is defined to be an XML database transformation.

Using the same tree-based backgrounds we obtain a computational model

for XML database transformations on the basis of DB-ASMs. Then following

Theorems 6 and 7 we obtain that DB-ASMs with tree-based backgrounds capture

exactly all XML database transformations.

5.1 Tree Background Classes

The background for an XML database transformation describes all available tree

structures that may be used within an XML database transformation. Such back-

grounds are called tree-based backgrounds. To define tree-based backgrounds, we

first require a background signature specific to XML database transformations.

Definition 12. A tree-based background signature V contains at least

– constructor symbols for finite tuple [·], set {·}, hedge , . . . , and tree 〈·〉,

– function symbols root, ≺c,≺s, ω and υ to define XML trees,

– function symbols context and subtree for the selection of tree portions,

– function symbols ε (empty hedge) and ξ (trivial context),

– function symbols ι, δ, ς , ρ, κ, η and σ as defined by the tree algebra, and

– all constructor and function symbols defined in the background postulate.

In the sense of [Börger and Stärk, 2003] all function symbols in a background

signature are static, i.e. their interpretation is fixed and does not permit updates.

On the other hand, the interpretation of functions symbols defined in the signa-

ture of underlying states may be updated. Next we need a universe of elements,

for which we require a set D of base domains as in Definition 2. Let us fix a set Σ

of labels and a tree domain O (i.e. a set of node identifiers). Then Σ defines one

of the base domains, and O defines a tree universe as well as a set of contexts.

Definition 13. The tree universe over O is the smallest set HFT (O) of all

finite trees over O with t〈t1, . . . , tn〉 ∈ HFT (O) for t ∈ O and finite trees

t1, . . . , tn ∈ HFT (O).

For n = 0 in this definition we obtain trivial trees t〈〉 ∈ HFT (O). If we

identify t〈〉 with t, we have in fact O ⊆ HFT (O). Each finite tree in a tree

universe is indeed a tree skeleton, i.e. none of nodes are labelled or assigned with

values. By the Kuratowski encoding [Van Den Bussche et al., 1997], hereditarily
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finite trees in HFT (O) can be viewed as a special kind of hereditarily finite lists

and thus can be interpreted as hereditarily finite sets. Similarly, we can define a

set of contexts over O.

Definition 14. The set of contexts over O is the smallest set HFT (O, ξ) with
ξ ∈ HFT (O, ξ) and t〈t1, . . . , tn〉 ∈ HFT (O, ξ), where t ∈ O, exactly one of

t1, . . . , tn is a context (i.e., ti ∈ HFT (O, ξ)) and the others are finite trees (i.e.,

tj ∈ HFT (O) for j = 1, ..., n and j 
= i).

In addition to the set Σ of labels, the tree universe HFT (O) and the set of

contexts HFT (O, ξ) define two more base domains.

Definition 15. A tree background class consists of a background signature V ,

a set D of base domains with Σ ∈ D, HFT (O) ∈ D and HFT (O, ξ) ∈ D, and

a tree background structure over V and D, which is a structure consisting of a

universe U =
⋃
D′

with D′
as defined in Definition 2 and the interpretation of

function symbols in V over U .

Remark. The set of algebraic equations discussed in Proposition 11 holds in

every tree background class.

5.2 Tree Type Schemes

XML documents may be associated with a schema. Following the discussion in

[Murata et al., 2005] we concentrate on (Extended Document Type Definitions)

EDTDs, as they subsume many XML schema formalisms.

Given an alphabet Σ, the set of regular languages over Σ is denoted as

reg(Σ). We first recall the definition of DTDs (as labelled ordered tree object

type definition) in [Papakonstantinou and Vianu, 2000].

Definition 16. A document type definition (DTD) consists of an alphabet Σ,

a root r ∈ Σ and a mapping β : Σ → reg(Σ) assigning to each a ∈ Σ a regular

language over Σ.

While such DTDs provide some schema information, they cannot express all

desirable properties of XML documents. For instance, the DTD would not allow

us to separate the type of an element from its label name. Extended DTDs as

introduced in [Papakonstantinou and Vianu, 2000] (as specialised labelled ordered

tree object type definition) take care of this problem.

Definition 17. An Extended Document Type Definition (EDTD) consists of a

DTD (Σ′, r, β) and a mapping μ : Σ′ → Σ with another alphabet Σ ⊆ Σ
′
.
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We can use the elements in Σ′ to fine-tune the desired structure of XML

document adhering to a given EDTD, while μ(a) defines the actual tag that is

to be used. We adopt the notational convention to write ab for elements in Σ′

with μ(ab) = a ∈ Σ. Normally, the superscript b of ab is then called the type of

the element, but to simplify the development in the next subsection we refer to

ab ∈ Σ′ as the type. If μ−1(a) contains only one element, we omit the superscript

and assume that μ maps a to itself.

Let t be an XML tree over Σ′, d1 = (Σ′, r, β) a DTD and d2 = (Σ, d1, μ)

an EDTD, then t is said to satisfy d1 if the root of t is labelled as r, and

a1 . . . an ∈ β(o) for each o ∈ Ot labelled by a with children nodes labelled by

a1, . . . , an. The tree t is said to satisfy d2 if there exists a tree t
′ overΣ′ satisfying

d1 such that μ(t′) = t. Here we applied μ to a whole XML tree, which must be

understood as the canonical extension from node labels to trees.

As the labels of nodes in an XML tree are insufficient to express typing,

we have to provide types in addition. For an EDTD d2 = (Σ, d1, μ) with d1 =

(Σ′, r, β) the set of type names associated with XML trees satisfying d2 is Σ′.
Each type name a ∈ Σ′ is associated with a regular expression over Σ′.

Definition 18. Let D be a set of base domains with Σ ∈ D, HFT (O) ∈ D and

HFT (O, ξ) ∈ D. A tree type scheme over D is a triple (Σ′, Γ, Γ̃ ) consisting of

a finite, non-empty set Σ′ of type names, a type name assignment Γ : O → Σ′

that associates each o ∈ O with a type name Γ (o) in Σ
′
and a type expression

assignment Γ̃ that associates each a ∈ Σ′ with a regular expression Γ̃ (a) over

Σ′.

We write a(τ) for a type name a ∈ Σ′ together with its type expression τ =

Γ̃ (a). We interpret a(τ) by the set of trees {o〈h〉 | o ∈ O, ω(o) = μ(a), h ∈ [[τ ]]},
in which [[τ ]] denotes the interpretation of the τ by a set of hedges defined by:

[[∅]] = ∅ (16)

[[ε]] = {ε} (17)

[[a]] = {o〈〉 | o ∈ O and ωt(o) = μ(a)} (18)

[[τ1 | τ2]] = [[τ1]] ∪ [[τ2]] (19)

[[τ1τ2]] = {κ(h1, h2) | hi ∈ [τi]] for i = 1, 2} (20)

[[τ∗]] = {κ(h1, κ(h2, . . . , κ(hn−1, hn) . . . )) | n ∈ N, hi ∈ [τ ]]} (21)

Most database queries and updates require a pair of database schemata to

restrain input and output databases, respectively. Therefore, a tree-based back-

ground should provide two sets of tree type schemes that are associated with

initial and final states, respectively.

Definition 19. A tree-based background is a pair (K,T) consisting of a tree

background class K and a set T of tree type schemes.
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5.3 DB-ASMs for XML Database Transformations

Following common practice we treat XML database schemata and instances

separately.

Definition 20. An XML database schema is a finite, non-empty set S of EDTDs,

while an XML database instance over S is a finite, non-empty set I of XML trees

such that the following two conditions must be both satisfied: (1) each XML tree

t ∈ I is associated with an EDTD d ∈ S such that t ∈ sat(d); (2) each EDTD

d ∈ S has at least one XML tree t ∈ I such that t ∈ sat(d).

Informally speaking, an XML database is a finite, unordered collection of XML

trees, each of which should be associated with a tree name uniquely identifiable

in a state, corresponding to the name of an XML document.

Definition 21. An XML database transformation is a database transformation

with a tree-based background (K,T), satisfying the conditions:

– the sub-signature of the database part of a state contains a finite, non-empty

set of unary (and dynamic) function symbols representing tree names, and

– the database part of each initial and final state is an XML database instance

in which an EDTD is defined by the tree type schemes in T.

In essence, an XML database transformation describes a process starting

from some XML trees constrained by an input schema, processing them in ac-

cordance with database postulates defined in Section 2 and terminating with

some XML trees that are constrained by an output schema. The following the-

orem is a direct consequence of Theorems 6 and 7.

Theorem 22. DB-ASMs with tree-based backgrounds (K,T), in which initial and

final states have their database parts as being XML database instances over XML

database schemata defined by the tree type schemes in T, capture exactly all XML

database transformations.

6 XML Machines

In this section we present an alternative computational model for XML, which we

call XML machines. The reason is that DB-ASMs with tree-based backgrounds

do not exploit the weak MSO logic from Section 4. The fact that it nonetheless

captures all XML database transformation is mainly due to the power of the DB-

ASM rules. Using MSOX , however, permits more sophisticated navigation over

XML trees. Therefore, compared with DB-ASMs with tree-based backgrounds,

XML machines have two extensions: (1) the incorporation of MSOX formulae

in forall- and choice-rules; (2) an added partial update rule that is added for

convenience, although it does not add any additional expressive power.
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6.1 Extended Rules

As XML trees are unranked, a node may have an unbounded number of children

nodes. To access all of them we have two choices. One possibility is to process

the children nodes sequentially one by one using an unbounded loop. The alter-

native is to execute in parallel an unbounded number of processes, one for each

child. The former one requires only standard total updates, whereas the latter

one involves partial updates. For the sake of simplicity and naturalness of the

computation model the latter becomes our choice.

Using an unbounded number of parallel processes, we need an update op-

erator to merge two hedges into one. Using hedge juxtaposition by means of

the algebra operation κ is one possibility, but the order may not be the desired

one. Therefore, we consider hedges as forests by ignoring the order and using

simply forest union ∪. The non-determinism provided by the choice-rules can be

exploited for this, i.e. choose any order for the resulting forest to turn it back

into a hedge. In doing so, ∪ is defined over sort H such that ∪ : H2 → H, and

becomes part of the background.

With these preliminary remarks we can now define MSO-rules, in which the

formula ϕ always refers to a MSOX formula.

Definition 23. The set R of MSO-rules over a signature Σ = Σdb ∪ Σa ∪
{f1, . . . , f�} and a tree-based background is defined as follows:

– If t1 is a term over Σ, and t2 is a location in Σ such that #t2 = #t1, then

t2 := t1 is a rule r in R called assignment rule with fr(r) = var(t1)∪var(t2),
where var(ti) is the set of variables occurring in the term ti (i = 1, 2).

– If t1 is a term over Σ, t2 is a location in Σ and ∪ is a binary operator such

that #t2 = #t1 and ∪ : #t21 → #t2, then t2 ⇔∪ t1 is a rule r in R called

partial assignment rule with fr(r) = var(t1) ∪ var(t2), where var(ti) is the
set of variables occurring in the term ti (i = 1, 2).

– If ϕ is a formula and r′ ∈ R is an MSO-rule, then if ϕ then r′ endif is a

rule r in R called conditional rule with fr(r) = fr(ϕ) ∪ fr(r′).

– If ϕ is a formula with only database variables, {x1, . . . , xk, X1, . . . , Xm} ⊆
fr(ϕ) and r′ ∈ R is an MSO-rule, then forall x1, . . . , xk, X1, . . . , Xm with

ϕ do r′ enddo is a rule r in R called forall rule with fr(r) = fr(r′) ∪
fr(ϕ) − {x1, . . . , xk, X1, . . . , Xm}.

– If r1, r2 are rules in R, then par r1 r2 par is a rule r in R, called parallel

rule with fr(r) = fr(r1) ∪ fr(r2).

– If ϕ is a formula with only database variables, {x1, . . . , xk, X1, . . . , Xm} ⊆
fr(ϕ) and r′ ∈ R is an MSO-rule, then choose x1, . . . , xk, X1, . . . , Xm with
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ϕ do r′ enddo is an MSO-rule r in R called choice rule with fr(r) =

fr(r′) ∪ fr(ϕ) − {x1, . . . , xk, X1, . . . , Xm}.

– If r1, r2 are rules in R, then seq r1 r2 seq is a rule r in R, called sequence

rule with fr(r) = fr(r1) ∪ fr(r2).

– If r′ is a rule in R and ϑ is a location function that assigns location operators

� to terms t with var(t) ⊆ fr(r′), then let ϑ(t) = � in r′ endlet is a rule r

in R called let rule with fr(r) = fr(r′).

The definition of sets of update sets Δ(r, S) for a closed MSO-rule r with

respect to a state S is again straightforward [Schewe and Wang, 2010]. We only

explain the non-standard case of the partial assignment rule. Let r be a partial

assignment rule t2 ⇔∪ t1, S be a state over Σ and ζ a variable assignment

for fr(r). We then obtain Δ(r, S, ζ) = {{(�, a,∪)}} with � = valS,ζ(t2) and

a = valS,ζ(t1), i.e. we obtain a single update set with a single partial assignment

to the location �. As the rule r will appear as part of a complex MSO-rule without

free variables, the variable assignment ζ will be determined by the context,

and the partial update will become an element of larger update sets Δ. Then,

for a state S, the value of location � in the successor state S + Δ becomes

valS+Δ(�) = valS(�)∪
⋃

(�,v,∪)∈Δ

v , if the value on the right hand side is defined

unambiguously, otherwise valS+Δ(�) is undefined.

Example 4. Consider the XML tree in Figure 4 and assume it is assigned to the

variable (tree name) texa. The following MSO-rule constructs the XML tree in

(ii) from subtrees of the given XML tree in (i), each of which is rooted at a node

labeled as b with at least two descendant nodes labeled as a and c, respectively.

t1 := ε ;

forall x with ω(texa, x) = b ∧ ∃X.(∀x1, x2.((x1 ∈ X∧ ≺c (texa, x1, x2)

⇒ x2 ∈ X) ∧ ∀x1.(≺c (texa, x, x1) ⇒ x1 ∈ X)))

∧∃y, z.(ω(texa, y) = c ∧ ω(texa, z) = a ∧ y ∈ X ∧ z ∈ X)

do t1 ⇔∪ subtree(texa, x) enddo;

output := ι(d, t1)

Definition 24. An XML Machine (XMLM) M over signature Σ with a tree-

based background (K,T) consists of

– a set SM of states over Σ satisfying the abstract state postulate and closed

under isomorphisms,

– non-empty subsets IM ⊆ SM of initial states, and FM ⊆ SM of final states,

both also closed under isomorphisms and satisfying the conditions of Defi-

nition 20 with EDTDs defined by the tree type schemes in T,
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Figure 4: An XML tree and the result of tree operations

– a program πM defined by a closed MSO-rule r over Σ, and

– a binary relation τM over SM determined by πM such that {Si+1 | (Si, Si+1) ∈
τM} = {Si +Δ | Δ ∈ Δ(πM , Si)} holds.

6.2 Behavioural Equivalence

In this subsection we will show the behavioural equivalence between DB-ASMs

with tree-based backgrounds and XMLMs.

Theorem 25. The XML Machines with a tree-based background (K,T) capture

exactly all XML database transformations with the same background.

Proof. According to Theorem 22 each XML database transformation can be

represented by a behaviourally equivalent DB-ASM with the same tree-based

background. As DB-ASMs differ from XMLMs only by the fact that DB-ASM

rules are more restrictive than MSO-rules (they do not permit MSOX formulae

in forall- and choice-rules), such a DB-ASM is in fact also an XMLM.

Thus, it suffices to show that XMLMs satisfy Postulates 1 - 5 for XML

database transformations. The first three of these postulates are already cap-

tured by the definitions of XMLMs and tree-based background, so we have to

consider only the bounded exploration and bounded non-determinism postulates.

Regarding bounded exploration we note that the assignment rules within the

MSO-rule r that defines πM are decisive for the set of update set Δ(r, S) for any

state S. Hence, if f(t1, . . . , tn) := t0 is an assignment rule occurring within r,

and valS,ζ(ti) = valS′,ζ(ti) holds for all i = 0, . . . , n and all variable assignments

ζ that have to be considered, then we obtain Δ(r, S) = Δ(r, S′).
We use this to define a bounded exploration witness Twitness. If ti is ground,

we add the ground access term ti to Twitness. If ti is not ground, then the

corresponding assignment rule must appear within the scope of forall and choice

rules introducing the database variables in ti, as r is closed. Thus, variables in

ti are bound by a formula ϕ, i.e. for fr(ti) = {x1, . . . , xk} the relevant variable

assignments are ζ = {x1 �→ b1, . . . , xk �→ bk} with valS,ζ(ϕ) = true. Bringing ϕ
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into a form that only uses conjunction, negation and existential quantification,

we can extract a set of access terms {(β1, α1), . . . , (β�, α�)} such that if S and

S′ coincide on these access terms, they will also coincide on the formula ϕ.

This is possible, as we evaluate access terms by sets, so conjunction corresponds

to union, existential quantification to projection, and negation to building the

(finite) complement. We add all the access terms (β1, α1), . . . , (β�, α�) to Twitness.

More precisely, if ϕ is a conjunction ϕ1 ∧ ϕ2, then Δ(r, S1) = Δ(r, S2) will

hold, if {(b1, . . . , bk) | valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true}
holds (with ζ = {x1 �→ b1, . . . , xk �→ bk}). If Ti is a set of access terms such that

whenever S1 and S2 coincide on Ti, then {(b1, . . . , bk) | valS1,ζ(ϕi) = true} =

{(b1, . . . , bk) | valS2,ζ(ϕi) = true} will hold (i = 1, 2), then T1 ∪ T2 is a set of

access terms such that whenever S1 and S2 coincide on T1∪T2, then {(b1, . . . , bk) |
valS1,ζ(ϕ) = true} = {(b1, . . . , bk) | valS2,ζ(ϕ) = true} will hold.

Similarly, a set of access terms for ψ with the desired property will also be

a witness for ϕ = ¬ψ, and
⋃

bk+1∈Bdb

Tbk+1
with sets of access terms Tbk+1

for

ψ[xk+1/tk+1] with valS(tk+1) = bk+1 defines a finite set of access terms for

ϕ = ∃xk+1ψ. In this way, we can restrict ourselves to atomic formulae, which

are equations and thus give rise to canonical access terms.

Then by construction, if S and S′ coincide on Twitness, we obtain Δ(r, S) =

Δ(r, S′). As there are only finitely many assignments rules within r and only

finitely many choice and forall rules defining the variables in such assignments,

the set Twitness of access terms must be finite, i.e. r satisfies the bounded explo-

ration postulate.

Regarding bounded non-determinism, as a choice rule choose x1, . . . , xk
with ϕ do r′ enddo only allows the use of database variables x1, . . . , xk and

these variables are restricted to range only over the database part of a state, the

presence of non-determinism in one-step transitions can always correspond to a

non-empty set of access terms from the choice rule containing these database

variables.

7 Conclusions and Future Work

In this article we continued our research on foundations of database transforma-

tions exploiting the theory of Abstract State Machines. In [Schewe and Wang,

2010] we developed a theoretical framework for database transformations in gen-

eral, which are defined by five intuitive postulates and exactly charactericterised

by DB-ASMs, a variant of Abstract State Machines. We argued that specific

data model requirements are captured by background classes, while in general

only minimum requirements for such backgrounds are postulated.

We now made the backgrounds explicit for the case of XML database trans-

formations. For this we had to adopt hereditarily finite trees, operators of a
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hedge algebra, weak monadic second-order logic, and extended document type

definitions. Consequently, DB-ASMs with backgrounds defined in this particu-

lar way capture XML database transformations. In doing so, we actually proved

that capturing specific characteristics of data models by background classes is

the appropriate way to develop the theory, whereas in earlier work [Wang and

Schewe, 2007] we tried to approach the problem by direct manipulation of the

notion of state dealing with higher-order structures instead of first-order ones.

We did, however, go one step further, and defined an alternative and more

elegant computational model for XML database transformations, which directly

incorporates weak MSO formulae in forall and choice rules. This leads to so-called

XML machines. Due to the intuition behind the postulates it should come as no

surprise that the two computation models are in fact equivalent. We mainly had

to show that XML machines satisfy the postulates of database transformations

with tree-based backgrounds.

This research is part of a larger research agenda devoted to studying logical

foundations of database transformations, in particular in connection with tree-

based databases. The next obvious step is to define a logic that permits reasoning

about database transformations that are specified by DB-ASMs or in the case of

XML by equivalent XML machines. First steps in this direction have been made

in [Wang and Schewe, 2008]. Another line of research we intend to explore is the

connection between DB-ASMs with specific backgrounds such as the tree-based

backgrounds used in the context of XML and restrictions to the notion of state.

In particular, we are interested in states that can be recognised by certain types

of automata. This may lead to establishing links between ASMs, database theory

and particular structures, e.g. automatic structures.
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