
Visualizing and Analyzing the Quality of XML Documents

Daniela da Cruz

(Universidade do Minho, Braga, Portugal

danieladacruz@di.uminho.pt)

Pedro Rangel Henriques

(Universidade do Minho, Braga, Portugal

prh@di.uminho.pt)

Abstract: In this paper we introduce eXVisXML, a visual tool to explore documents
annotated with the mark-up language XML, in order to easily perform over them tasks
as knowledge extraction or document engineering.

eXVisXML was designed mainly for two kind of users. Those who want to analyze an
annotated document to explore the information contained—for them a visual inspection
tool can be of great help, and a slicing functionality can be an effective complement.

The other target group is composed by document engineers who might be interested in
assessing the quality of the annotation created. This can be achieved through the mea-
surements of some parameters that will allow to compare the elements and attributes
of the DTD/Schema against those effectively used in the document instances.

Both functionalities and the way they were delineated and implemented will be dis-
cussed along the paper.

Key Words: Document engineering, Quality assessment, Visualization, Slicing

Category: D.2.8, H.0

1 Introduction

Our recent research on program comprehension using slicing and visual inspec-

tion, as well as the work on grammar metrics led us to investigate how those

approaches could be adapted to the field of document engineering. As a conse-

quence we have conceived a tool, called eXVisXML, to aid in the inspection and

analysis of XML documents.

By analogy with another tool we have developed in the past for program

visualization and comprehension, we say that eXVisXML allows us to capture

the soul of structured documents, i.e., the intrinsic characteristics of XML doc-

uments. eXVisXML allows us to visualize the structure of the document (the

hierarchy of XML elements), and provides a set of quality metrics, which enable

us to reason out the document properties.

On one hand, our tool shows, in a graphical form, the document tree with the

content associated to the leaves, providing means to navigate over it; moreover

it displays, in a tabular form, all the element occurrences associated with the

respective attribute/value pairs. Using forward slicing techniques, eXVisXML

Journal of Universal Computer Science, vol. 17, no. 1 (2011), 126-150
submitted: 8/4/10, accepted: 12/12/10, appeared: 1/1/11 © J.UCS

allows the user to select parts of the document to focus his analysis just on

some aspect; namely we can regenerate the original document restricted to some

elements. These features are aimed at the comprehension of the document and

its exploration (in the sense of knowledge extraction). This feature is displayed in

two windows, one for the tree, and the other for the table of elements. We argue

that the graphical representation of the abstract syntax tree complemented by

the table of elements provides an easy to read and effective way to grasp the

sense of the document.

On the other hand, eXVisXML allows the document engineer to assess the

quality of his annotation schema (the DTD/XML-Schema he has designed) when

applied to real cases. eXVisXML computes automatically a set of syntactic and

semantic parameters (according to the standard metrics for XML documents)

and shows them in a separate window. Those parameters are evaluated over the

actual document and the respective schema in order to be possible, for instance,

to compare the total number of elements available against the actual number of

different elements used.

Before introducing our tool, eXVisXML, in Section 5 — describing its archi-

tecture and discussing the implementation strategies — we address the visual-

ization of XML documents (Section 2) and related work, i.e., other tools also

developed with a purpose similar to eXVisXML; then we discuss, in Section 3,

the concept of document slicing and how it can complement the visualization

and navigation, making easier the comprehension of the document; at last, we

dedicate Section 4 to discuss metrics to assess XML documents. The paper ends

in Section 6 with some concluding remarks.

2 XML Documents Visualization

The ability to retrieve information from plain documents, in a simple and ef-

ficient way, is one of the objectives that has motivated the search for markup

languages. Concerning machine manipulation, the annotation systems like XML,

so far developed, were completely successful; XSL and other production-systems

can easily extract information from annotated documents and transform them.

However for human beings, this task is not as easy as desirable, mainly if the

annotation is complex or the document too big.

To help in finding the document fragments corresponding to some kind of

element/attribute, or even located in some sub-document, document engineers

developed specific query languages. In the last few years, appeared among many

other, XPath (Clark & DeRose, 1999; Olteanu et al., 2002) and XQuery (Cham-

berlin, 2002) languages specially designed to query collections of XML data.

XPath or XQuery stand for XML like SQL for databases, making possible to find

and extract elements and attributes from structured documents.

127da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Moreover, the research for tools to visualize XML documents, is not a new

issue. People recognized a long time ago that the existence of visual editors was

crucial to create or read structured documents.

Nowadays there are many tools which merge the XPath querying facilities

with the visualization of XML documents. Some of this tools are: XPath Analyzer

by Altova1; XPath Visualizer2; XPath Viewer by Microsoft3; XPath Query Editor

by Stylus Studio4.

Although these tools offer a (textual) hierarchical view with highlighted syn-

tax and make easier the manipulation of documents, allowing to expand and col-

lapse sets of elements, they are not always powerful enough for the exploration

of the document’s constituents (elements and attributes) and the relationships

among them.

The tool closest to our proposal is XML Schema Designer5; however, that tool

just deals with XML schemas. XML Designer provides a visual representation of

the elements, attributes, types, and so on, that make up XML schemas. With

XML Designer we can: construct new or modify existing XML schemas; create

and edit relationships between tables; create and edit keys.

Actually, the kind of visualization that we propose is similar to the one

provided by XML Schema Designer, but also applicable to XML documents. This

is, we propose a graphical representation of the internal abstract tree associated

with the XML document, where intermediate nodes are XML elements and the

text fragments (#PCDATA) are the leaves.

Edges describe the direct inclusion of document parts. So, we can distin-

guish two kinds of nodes: text nodes and structure nodes. The labels of structure

nodes correspond to XML element types and text nodes (always leaves) are la-

beled with #PCDATA components (the actual text of the document). The visual

representation used to show this information is lighter than the usual XML tag

representation. It is well known the advantage of the use of graphical features

to expose and explain structural and behavioral information.

3 XML Documents Slicing

A program slice consists of the parts of a program that (potentially) affect the

values computed at some point of interest. Such a point of interest is referred

to as a slicing criterion, and is typically specified by a pair (program point, set

of variables). The parts of a program that have a direct or indirect effect on

the values computed at a slicing criterion C constitute the program slice with

1 http://www.altova.com/products/xmlspy
2 http://www.topxml.com/xpathvisualizer/
3 http://msdn.microsoft.com/en-us/library/aa302300.aspx
4 http://www.stylusstudio.com/xpath_evaluator.html
5 http://msdn2.microsoft.com/en-us/library/ms171943(VS.80).aspx

128 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

respect to criterion C. The task of computing program slices is called program

slicing (Tip, 1995).

As referred in (Silva, 2005), the slicing technique can also be applied to XML

documents. Essentially, given an XML document, it is produced a new XML

document (a slice) that contains the relevant information in the original XML

document according to some criterion (the slicing criterion). Furthermore, it

is also possible to slice a DTD, where the output is a new DTD such that the

computed slice is valid according to the original DTD.

This technique was implemented in a Haskell prototype tool called XML-

Slicer (Silva, 2006), using the HaXML library (Mertz, 2001). In this approach,

XML documents and DTD’s are seen as trees; and the slicing criterion consist

of a set of nodes in the tree. In both types of slicing—DTD slicing and XML

slicing—given a set of elements, it will be extracted those elements which are

strictly necessary to maintain the tree structure, i.e., all the elements that are

in the path from the root to any of the elements in the slicing criterion. The dif-

ference between them is that while a slicing criterion in a DTD selects a type of

elements, a slicing criterion in an XML document can select only some particular

instances of this type.

Both slicing techniques produce valid XML and DTD slices with respect to

the slicing criterion, if both the original are valid.

As a conclusion, we can say that this slicing technique can be seen as an easier

way to query an XML document, simpler than an XPath/XQuery statement; it

does not require to write the complete path to locate some information (or

elements) in document.

4 XML Documents Metrics

Effective management of any process requires quantification, measurement, and

modeling. Software metrics provide a quantitative basis for the development and

validation of models of the software development process. Metrics can be used

to improve software productivity and quality.

In the last years, a wide set of software metrics was defined and can be

classified as follow: product metrics (to evaluate a software product); process

metrics (to evaluate the design process); and resources metrics (to appraise the

required resources).

In the field of XML, the quality assessment is also relevant because the ap-

proach followed by engineers, or end-users, to design the annotation-schema (the

type of a family of documents), or even to markup existing texts, is many times

improvised and naif. Concepts like well-formedness or validity are not sufficient

to appraise XML documents; they are only prerequisites to achieve quality.

Some of the software metrics (briefly referred above) have been adopted to

129da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

measure the quality of XML documents (Klettke et al., 2002), being applied both

to DTDs and XML-schemas (XSDs).

A tool dealing with XSD metrics is XsdMetz (Visser, 2006; Lämmel et al.,

2005). The tool was implemented in the functional programming languageHaskell,

using functional graph representations and algorithms. The tool is related with

SdfMetz, which computes metrics on SDF grammar representations (Alves &

Visser, 2005). XsdMetz tool exports successor graphs in dot format so that they

could be drawn by GraphViz (Koutsofios & North, 2002).

However, in this paper we will only focus on the metrics defined over DTDs.

As a consequence of that research effort, a set of XML metrics was defined—

size, structure complexity, structure depth, fan-in and fan-out, instability, tree

impurity. Below and after our own contribution (attributes per element, non-

used components and text length), we introduce them, as they form the basis of

the quality measurement that will be implemented by the proposed tool.

Before presenting those metrics, we should define the notion of a sucessor

graph (SG), now applied to DTDs (Visser, 2006; Lämmel et al., 2005), in order

to measure the dependence between components. Given a DTD, we say that

a new component (in this case, an element or an attribute) is an immediate

successor of the element under definition, i.e., the component in the context

of which the new one appears; then, we introduce an arrow (an oriented edge)

from the element to the component. Based on this relation, the result is a graph

representation of the structure of the XSD/DTD.

Size

Given a DTD, its size (i.e. the value for this metric) is the total number of nodes

in the SG, i.e., the number of DTD components.

Size(DTD) = nEL + nA

where nEL — number of elements in the DTD, and nA — number of attributes

in the DTD.

Structure complexity

To determine the complexity of a DTD, the McCabe metrics, developed to eval-

uate the control flow of software, was adopted. There exist slight variations of

McCabe Complexity measure (MCC), but in essence MCC counts the number of

linearly independent paths through the control flow graph of a program module.

MCC for grammars may simply count all decisions in a grammar, this is,

operators for alternative, optional and iteration. Because DTDs are equivalent

to context-free grammars, Lammel et al, in (Lämmel et al., 2005), argue that in

the same way, the MCC for DTDs correspond to the addition of edges to SG if

130 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

quantifiers + and ∗ occur and if mixed content elements (but not #PCDATA)

exist.

So, the formula to measure the complexity of a DTD is:

Compl(DTD) = e− n+ 1 + nIDREF

where e is the number of edges in the SG, n is the number of nodes in the SG

and nIDREF is the number of IDREF attributes. Note that actually the number

of references to other identifiers increases the complexity.

In fact, if the DTD corresponds to a pure tree (which always has n nodes and

n − 1 edges) without internal references, then we get as structural complexity

the value Compl(DTD) = 0. On the other side, every recursion, all iterators +

and ∗, and all IDREF attributes increase the complexity.

Structure Depth

This metric, which computes the depth of the SG, also provides information

about the complexity of the schema.

To compute the depth of the SG, we have to eliminate recursion, otherwise

the result would be infinite. Then, the depth of each node is computed as follows:

Depth(n) =

{
0 n is leaf

max(Depth(ni)) + 1 for each ni

where ni corresponds to a child of node n.

According to (Klettke et al., 2002), an SG with a depth much higher than

seven is complex and reveals a bad DTD design.

Fan-in and Fan-out

FanIn gives the number of incoming edges in the node.

FanIn(n) = #{ni|ni is parent node of n}

FanOut gives the number of outgoing edges in the node.

FanOut(n) = #{ni|ni is child node of n}

Both metrics are directly applicable to the nodes of SG. For the graph as a

whole, the average and the maximum values for those parameters can be useful

to spot unusual nodes, which can be inspected to detect the anomaly and fix

the problem. Elements with a high FanIn/FanOut value are more complex than

other elements with a lower value.

131da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Instability

Based on FanIn/FanOut metrics, a measure related with the instability of a

node can be computed as follows:

Instability(SG) = FanOut
FanIn+FanOut × 100%

A node with a low instability allows us to conclude that it is less dependent

of other nodes, while many nodes are depend on it. This is, instability can be

interpreted as resistance to change, hence a node with low instability corresponds

to a situation where changes that occur over the node will affect relatively many

other nodes.

Tree Impurity

TI(SG) = n∗(e−n+1)
(n−1)∗(n−2) ∗ 100%

where n is the number of nodes in the SG and e is the number of edges.

This metric is clearly inspired in Fenton’s impurity concept used in the context

of software or grammar quality assessment.

A tree impurity of 0% means that a graph is a tree and a tree impurity of

100% means that it is a fully connected graph.

Now we introduce the set of complementary new metrics, which we have

defined.

Attributes per Element

To complement the Size metric, we define

AttrsEle(DTD) =
∑

nA

nEL

where nEL — is the number of the elements in the DTD, and nA — is the

number of attributes.

This metric allows us to figure out the average number of attributes defined

per element in the DTD.

A similar metric could be defined over the XML document.

AttrsEle(XML) =
∑

nAu

nELu

where nELu — is the number of the elements used in the document, and nAu

— is the number of attributes actually used.

This metric, applied directly to the XML document, allows us to figure out

the average number of attributes actually used per effective elements present in

the XML document.

132 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Non-used Components

In order to detect the non-used components (elements and attributes) in an XML

document, we define:

NonAttr(XML) = Attr(DTD)−Attr(XML)

if Attr(DTD) represents the set of attributes defined in the DTD, and Attr-

(XML) represents the set of actual attributes (the attributes used in the XML

document instance), then NonAttr(XML) is the set of non-used attributes.

The set of non-used elements, NonElem(XML), is defined precisely in the

same way:

NonElem(XML) = Elem(DTD)− Elem(XML)

Once again, it gives an idea of the elements in the DTD that are not used in

XML instances (it is similar to the notion of dead-code in a class—this is, a set

of methods that are never called).

Then we define two metrics:

NAttr(XML) = #NonAttr(XML)

and,

NElem(XML) = #NonElem(XML)

that measure the size (number of elements) of those two sets.

Text Length

TxtLen(XML) =
∑

length(PCDATA)
nPCDATA

where, length(PCDATA) computes the total length of the document’s text

(the sum of the length of all text fragments, i.e., text associated with element

tags, or untagged text), and nPCDATA is the number of text fragments (the

number of PCDATA leaves that appear in the XML document tree).

In a similar way,

AttrTxtLen(XML) =
∑

length(AttPCDATA)
nAu

133da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

measures the average attribute text length.

Usually, the choice between the use of an element or an attribute, in a XML

document type, is an ambiguous matter; in practice, some document engineers

consider some particularities as elements, while others consider them as at-

tributes. That metrics is precisely useful to study that phenomena; in fact, when

we write a XML instance that duality/ambiguity becomes clear. We have the

perception that an attribute should be used when its content is not too large,

while an element should be used when we do not know how much large will be

its content.

Over XML-schemas, the metrics applied are similar to the referred above, but

with a slight difference: usually, the successor graph is built in the same way but

the set of nodes that are strongly connected are grouped into the same node (a

module). However, as said previously, we will not consider them in this paper;

to learn more about the common metrics defined over XML-schemas, we suggest

the reading of (Visser, 2006).

5 eXVisXML, XML Document Visualization and Exploration

In this section, we concretize the ideas introduced along the previous sections,

concerned with visualization, slicing and measuring of XML andDTD documents,

discussing how they were fully implemented in the proposed tool eXVisXML.

Nowadays, the development of a tool requires that the implementor searches

for existing programming resources (libraries, design-patterns or program tem-

plates, frameworks, generators, etc.), which can be used in his specific project.

The input for our tool are the the DTD and the XML document. From these 2

documents we can extract all the information needed. The information extraction

process will be done by parsing the documents.

The diagram in Figure 1 depicts the architecture of eXVisXML the idea it

gives is that of the flow of information through the various components, on a

input/output basis, with the input being the documents and output the data

produce by the metrics or slicing algorithms.

The application relies heavily on a clean user interface, as a requisite it has to

be capable of synthesizing great quantities of information in small area. Special

care had to be taken on the design and usability. For the effect we have designed

an intuitive application flow, from the application description to the actual view

of the document and metrics as depicted in the following diagram of figure 2.

We discuss in the following subsections how to visualize, slice and measure

the input documents. Those features will be illustrated by means of an working

example (see Figures 6 and 7) — an excerpt of the well-known screenplay by

134 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Figure 1: eXVisXML architecture

William Shakespeare, The Romeo and Juliet Love Story6, (RJls) — previewing

the output that it will produce. Moreover, this will give a flavor of eXVisXML

behavior.

5.1 XML/DTD Parsing

Parsing technologies differentiate themselves, mainly on the approach taken to

undergo the access and representation of a document, which ends up having an

increased importance in the parser’s choice.

– Simple API for XML (SAX) - One of the fastest and most efficient mecha-

nisms, much due its event oriented sequential reading.

– Document Object Model (DOM) - Performs a document traversal building a

in-memory tree representation, and for that reason this is a slow and memory

demanding mechanism.

– Streaming API for XML Parsing (StAX) - A compromise between the last

two types of parser technologies, it does not require a document traversal or

6 http://www.ils.unc.edu/˜bluec/gutenbergDTD/

135da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Figure 2: Flowchart of eXVisXML

sequential reading, it can position itself wherever on the document, reading

information as needed.

There are many implementations of this technologies, across a number of

programming languages, for that reason it becomes essential to find not only

the most adequate implementation, performance wise that is, but also the most

sustainable one, meaning, that help us focus on the problem itself and not on

technical difficulties, so that the application reaches its full potential.

Parser Technology Language

libxml2 SAX C

WoodStox StAX Java

NSXMLParser SAX Objective-C

lxml SAX Python

Table 1: XML parsers in this work, according to parser type and language im-

plementation.

136 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

XML Parser

The parameters established for the selection of the parser where based on the

technology in which the parser was design (SAX, DOM or StAX), the language it

was conceived, as well as performance and general documentation quality. There

is, however, one more relevant factor in the election of the parser, it is necessary

that the programming language that the parser will be developed on allows for

a simple yet powerful graphical support.

In order to determine the most high-performing parser a test was designed.

The test consists in the parsing of a three distinct documents of different size, the

parser should perform three simple operations: add the number of elements and

attributes in the document, and count the text size in #PCDATA text elements.

DTD Parser

There are no specific parameters for a DTD parser selection. DTD have fairly

simple structures offering no adversities in parsing, and so no special consider-

ation is taken in the selection of a particular DTD parser, functional or perfor-

mance wise. There is only a programming language dependency, between the

XML parser chosen and the DTD parser. It is then part of our list of consider-

ations, which continuos to be leaded by XML parser performance.

Decision

Our investigation lead us to narrow down the number of options increasingly.

It became immediately clear that the most used parser technologies nowadays

present some limitations on parsing, namely as the document size increases,

therefore, DOM type parsers were immediately excluded. We suppose that eX-

VisXML will be used mostly to analyze large documents, it is then unwise to

store a very large document under a data structure in memory, such as DOM

does.

And so the attention turned to SAX based parsers, altogether more efficient.

However, we still required a intermediate representation for some functionalities,

the creation of such a representation would be time consuming and not relevant

for the objective of the project at hand. Moreover SAX still has to pass through

an entire document for each event callback, although much more efficient than

DOM, it bares an unnecessary weight. The solution figured as a compromised

between this two technologies, which fortunately it exists. StAX offered us the

compromise we catered between DOM and SAX but, unfortunately, it does not

provide any type of efficient in-memory object style structure.

StAX first appeared in the Java community, a number of Java parsers took

immediate advantage. It was only natural that our search for a StAX based

parser started in the platform where it is most mature.

137da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

JAXB provided us with all the capabilities needed, and more. It allows for the

validation and parsing of XML documents. But mostly it distinguishes itself with

two features, object mapping and the ability to drop down to a SAX or DOM

based parser. Object mapping is an interesting feature, it works by binding a xml

document to a java class, a process called marshaling or inversely, unmarshaling.

This feature is most helpful in a development point of view, sadly JAXB requires

that a class model exist, making this capability unuseful in this project context.

This lead us to search for yet another compromise. We came to Woodstox,

a very fast StAX based parser, with support for XML validation. Woodstox in

conjunction with Apache Axiom7 provides a efficient parser with object mapping

capabilities. Furthermore, Apache Axiom sits on top of Woodstox reading the

parser events, transforming and adding them to a object tree and storing it in

memory on a per read basis, bringing together all the advantages of DOM with

the speed of StAX.

5.2 Visualization

The role of the visualization technology, in fields like program comprehension and

software engineering, is strongly recognized by the computer science community

as a very fruitful one. The use of software visualization features allows us to get

a high quantity of information in a faster way. Graphical representations have

a positive impact in learning process because it engages the users in a more

efficient comprehension process.

There are several kinds of views that can be produced: they can show operational

data or behavioral data (more abstract view); they can be static or dynamic; they

can be more structural or they can be more quantitative (based on metrics or

other kind of statistical information).

These graphical or iconic representations must be carefully chosen because

they usually depend on the problem domain. In our case, we want to visu-

alize XML declarations or documents as discussed in Section 2. Since struc-

ture/content visualization is used as a vehicle to make easier the comprehension

of a document, it is necessary to care about the choice of visual paradigms/styles

that will be used.

Taking this fact into account, eXVisXML interface is divided into 3 main

parts:

– one window that displays the source document;

– one window exhibiting the tree associated with the source document — both

tree representations, the graphical one (see Figure 3) and the hierarchical

textual view, will be available;

7 http://ws.apache.org/axiom/

138 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

– one window to show the Attribute Table (AT), formally a map: Name ×
V alue — for each element selected over the tree, the AT shows the set of

attributes of that element and the actual value of each one.

The selection of the graphical environment was done according to the follow-

ing criteria: ease of development; documentation; platform independent.

It became apparent as we examined and searched for viable solutions that the

current state of desktop based platform independent UI frameworks was unsatis-

factory with the most advanced and capable one being Java Swing, furthermore,

there is a high tendency towards web based data visualization toolkits, an im-

portant part of the application being discussed. Given the current advances in

web development it was possible to develop a functional version of eXVisXML

completely on web, a convenient solution, although we still desired the speed

provided by a desktop based implementation.

The idea of making eXVisXML accessible from a web interface became more

real as the desire for taking it to a wider crowd grew. Unfortunately it has its

shortcomings: although broadband connections are common nowadays, there is

still the technical impossibility of uploading a very large document, both client

side (upload rate) and server side (storage capacity). We expect eXVisXML to

cater people using large documents, however few documents should be large

enough for uploading to become impractical, furthermore eXVisXML is a tool for

analyzing the structure not content of XML documents, we can safely predict

that most documents are comprised of a recurrent structure. Therefore the ap-

plication should serve the purpose it stands for without neglecting its primary

user base.

It is fair to say that any application dealing with large XML documents

is limited by hardware, and so we do not believe that this is an impediment.

However we do realize that eXVisXML with it’s emphases in visual evaluation is

more appealing to users with dealing with complex documents.

The desire of building a desktop version of eXVisXML is still well alive, and

so the option of building eXVisXML as a modular application, independent from

interface became clear, as it provides more alternatives in a long-term future.

Decision

The application discussed in this document is a proof of concept, as such, it’s

acceptance is attained by the average concordance with the approaches taken,

it also means that as a piece of software underdevelopment.

By making it available through the internet and by making it easy for any

user to tinker with it, without the need to download any additional software we

expect to attract a more significant user base.

139da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

A wider and varied user base gives us the opportunity to study how users

interact with the platform. With this precious feedback the tool should improve

and mature greatly, hopefully proving our initial assumptions right.

The central piece of the software is no doubt the visualization platform,

used to render an image of the documents. Through the course of this project

we have looked into a handful of visualizations toolkit, both from a desktop

point of view as well as a web point of view. From these handful a few have

distinguished, though only one was chosen in the end. These where:

Prefuse was among the firsts to investigate mainly because it was also used in

previous iterations of eXVisXML Prefuse latest release dates of 2007, meaning

the project currently is not actively maintained, which was a major downside.

Nevertheless it is still among the best visualizations tools for the desktop if

we had chosen to follow that specific path.

Prefuse provides visualization for the Java programming language, making

it easy to integrate with the core eXVisXML application if the opportunity

arises.

Prefuse flare8 is a more recent version of the Prefuse toolkit, web oriented

and developed in ActionScript for being played with the adobe flash player.

Prefuse flare was used in the beginning of development quickly became ap-

parent that it was incapable of rendering larger documents smoothly. Initial

tests proved that a smaller document ranging from 100KB to 300KB was

sufficient to bring down most browsers, raising CPU utilization to 100% and

making normal computer utilization impossible.

The connection between this visualization toolkit and the core application

was facilitated with the use of a JGraphT a graph library for java which

was capable of exporting in GraphML format, however the control over the

document exportable format was almost inexistent, it would often grow im-

mensely and still not provide all the information we would find useful.

ZGRViewer9 showed up as an alternative to Prefuse flare’s CPU utilization

problem. ZGRViewer reads graphviz dot documents and displays it in the

browser by the means of a Java applet. Once again export was facilitated

though limited through JGraphT.

ZGRViwer would render significantly faster then Prefuse flare, although the

quality and usability of the graphs wasn’t nearly as good.

In the XML tree view ZGRViewer would zoom out to a whole view of the

tree, even small documents can take up more than one screen space, the

visualization would initially appear as a squeezed web and magnification

was also slow, it soon became clear that ZGRViewer would not suit our

needs also.

140 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Figure 3: Tree representation for RJlsDoc. — partial view (some nodes collapsed)

Javascript Infovis Toolkit10 met all of our requirements, a number of visu-

alization examples are provided in the toolkit page, each one caters to a

specific data and structure.

It was developed using Javascript and so it was compatible with all browsers,

a big plus as Prefuse Flare needed a compatible flash player for example.

Javascript is client side, meaning that all the visualization are to be rendered

by the client’s computer, plus selective capacities such as “on-demand nodes”

makes up for a much fluid user experience, in fact, documents that would

struggle to pass the tests in the two previous toolkits had no problem, other

than the occasional hiccups.

The utilization of Javascript Infovis toolkit meant however a redesign of the

core application in order to deal with JSON documents capable of synthe-

sizing the Tree and Graph structure of the XML and DTD documents re-

spectively. Nevertheless the time spent adapting the visualizations in other

toolkits was far more consuming than the time needed to adapt the core

application. The adaptation proved successful and very important to the

outcome of this project.

141da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Figure 4: Sucessor Graph for RJls DTD

5.3 Slicing

According to a slicing criterion (see Section 3) given by the end-user, the tool

shall be able to select and highlight the path from the root until the node sat-

isfying the criterion. If the slicing criterion matches an attribute, not only the

node where the attribute appears will be highlighted, but also the corresponding

line in the Attribute Table.

Considering again the working example, suppose that “Greg” was chosen as

the slicing criterion value in order to find all the screenplay components where

actor Gregory appears.

The slicing algorithm, included in our tool, will traverse the tree looking for

all matches of “Greg” with the value of each attribute and each leaf (#PCDATA

value). The result of this slicing operation will be the enhancement of each path

from the root of the document tree until each node where a match happened.

As an additional feature, eXVisXML can generate a new XML document in-

cluding only the components along the pathes highlighted in the previous slicing

operation. Notice that this new XML is also valid according to the submitted

DTD, hence the structure of the XML document is not changed.

142 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

5.4 Metrics

There are two main data representation structures in eXVisXML it was obvious

from the documents makeup that these were an n-ary tree and a unweighted

directed graph, for the XML document and DTD respectively.

Each XML element is a node in the tree, each node has an id, name, a data

field, and a list of children (other nodes). The id is used to distinguish nodes,

as a XML document can have several elements with the same name, in this way

we are able to reference the node should the need to alter back the document

arises. For now the identifier is nothing more than the Java object’s id and so

the current implementation changes from different instances of the tree as to be

expected, after all a new instance calls for a new Java object, the intention is

to develop a sequential hash function, similar to the one being used to generate

the object id, yet generating a constant id across instances, for an element of a

certain XML document with a determined structure. The data field contains an

element’s text, in this case the node name will always be defined as pcdata.

The directed graph of the DTD document is comprised of a list of vertex,

each vertex resembles the structure of the tree node discussed above, having an

id, name and set of adjacent edges. The id concept applies here as well. Each

adjacent edge has a “node to” and a “node from” field.

We have previously explained our decision in the use of Apache Axiom and

pull parsers, it may seem contrary to our initial approach to develop the same

structures present in a DOM parser, this can be, in fact, easily explained: these

structures do not hang in memory as a DOM parser tree would for example, they

are merely used for the calculation of metrics, they are completely disregarded

after the process is completed, they do not possess the same amount of infor-

mation either, being much slimmer they have in fact a more tenuous impact,

performance wise.

Both of these structures were build from the scratch and they carry the data

necessary for visual representation. The next obvious step was to fill in these

structures with the data coming from both XML and DTD files, we developed

several methods to do this, the ones we are interested in this section also initiate

and perform some metric evaluations, the reason is simple: though we have a

handful of metrics that require advanced algorithms most get by with simple

summations.

Applying to the working example (the RJls screenplay in Figures 6 and 7, the

set of metrics defined in Section 4, we obtain the measures listed in Table 2. To

evaluate part of those parameter values it was necessary to build first the sucessor

graph for the given DTD. Figure 4 sketches that SG. When the user selects the

appropriate option from eXVisXML menu, our tool will compute automatically

the referred metrics, and open a new tab with the values obtained.

Observing Table 2, some of the conclusions we can draw are:

143da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Metric Value

Size 27

Compl 13

Depth 7

FanIn(scene) 3

FanIn(title) 6

FanOut(scene) 6

FanOut(title) 0

Instability(scene) 3,3%

Instability(title) 0%

TI 58,9%

AttrsEle(DTD) 0,08

AttrsEle(XML) 0,027

NonAttr 0

NonElem 1

TxtLen 37,46

AttrTxtLen 1

Table 2: Metrics for the Romeo and Juliet screenplay

– From the Size metric, we conclude that the DTD has a medium size.

– From the Compl and Depth metrics, we conclude that the DTD as a consid-

erable complexity, as the structure depth is in the borderline considered by

Klettke et al in (Klettke et al., 2002). In fact, looking at the SG in Figure 4,

we can observe that there are many loops, which notably increases the DTD

complexity.

– Comparing the values of Instability in nodes scene and title, we can say

that the node scene has few dependencies with respect to other nodes, while

title does not have any dependency (which is corroborated by the respective

FanOut). So, we conclude that the resilience of these nodes is very low.

– Comparing the pairs NonAttr/NonElem (almost all attributes and elements

are used) and TxtLen/AttrTxtLen (long PCData fields and short attribute

values) we can conclude that the DTD was well designed. Specifically, from

the NonElem metric and comparing the DTD against the XML, we conclude

that the element stagedir under the context of the element line is never used.

– Parameters AttrsElem(DTD/XML), confirm the easiness of using that DTD.

144 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

5.5 Validation

Unfortunately being a web application adds up to extra validations as restrictions

have to apply in order to manage space and processing power, guaranteeing a

limited scalability. The following validations are done on each session:

– Document input validation

– Document size validation

– Schema validation

– Syntactic validation

– Graph dimension validation

These are performed in a specific order, failing to conform to any of them

results in an error message, preventing the user from going further in the visu-

alization. The message contains enough information for the user to correct the

error and try again.

The error messages distinguish themselves in two different groups, the ones

who imply an hardware restriction, and the ones who imply a software restriction.

For example, “Document size validation” and “Graph dimension validation”,

conform to hardware restrictions, as “Schema validation” and “Input validation”

conform to a software restrictions.

The hardware restrictions prevent the user from inputting potential large

documents, incapable of being processed in an web environment. Software re-

striction prevent the user from inputting erroneous documents and thus gener-

ating inaccurate or even absent results, given that the system was not able to

parse them. We shall go threw each restriction one by one and analyze them in

sufficiently.

Document input validation - When the user is prompted to upload the doc-

uments, it is provided with two input forms, one for the XML and another

for the DTD document, failing to fill any of these two forms will result in

validation error.

Document size validation - The system will prevent any XML document

that exceeds the size of 100KB to be uploaded. This size limit was deter-

mined through try and fail. While conditions may vary, standard internet

connection and general hardware capacities should be representative of the

system bottlenecks and performance. There are mainly two bottlenecks in-

herent to the software: the metrics calculation or re-calculation, that involves

graph and tree traversals; and retrieving the XML tree to the Javascript In-

fovis toolkit. Some measures can be taken, and were taken to alleviate these

problems although they do not solve them completely.

145da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

The metrics calculation is a necessary burden, in order to reduce its impact

we resort to the use of memory cache. The algorithm is simple, the calcu-

lations are performed on start and stored in cache, from that moment on

the metrics are only re-calculated on a per-need basis, for example, if the

user alters the xml document and saves it, or on a cache miss, that is, if the

application doesn’t find the correspondent metric instance on cache.

Retrieving the XML tree to the Javascript Infovis toolkit happens when

some modification is done to the XML document. The tree is passed on

to the user’s browser as a JSON file, this file is generally bigger than the

corresponding XML document, this should not represent any bottleneck in

a high bandwidth internet connection providing the limit of 100KB XML

document. In tests, considerably bigger documents stalled the navigation of a

XML tree, these occurs as the JSON file is stored in browser memory, running

on the Javascript machine. We can reduce the download time using Apache’s

mod gzip, effectively compressing the JSON file, this method cannot provide

consistent results though, it should however help in some particular cases.

Schema validation - In order for the metrics to have a meaning, consistent

data must be provided. Therefore we verify that a given DTD schema is

according with the provided XML document. The application does not have

the capacity to parse the XML document for Schema declarations, the DTD

Schema must be yielded as a separate file.

Syntactic validation - A requirement for any parser to perform his job. Syn-

tactic checking is done after uploading a document, if the test fails, the

document is discarded and the user is solicited to make the necessary cor-

rections and upload again.

Graph dimension validation - One of the metrics, graph depth, requires the

calculation of the longest path, this calculation is known to be a NP complete

problem. It’s polynomial nature means that the number of vertex composing

the graph have to be controlled. As we cannot evaluate the impact a small

increase in vertex number has, we need to limit these feature to a predefined

number of vertex. If that number is suppressed the user will be notified that

feature was turned off.

5.6 Technologies used

From a technical point of view, eXVisXML consists of two distinct applications.

Application number one, the core application, is composed of eXVisXMLś al-

gorithms, entities, data structures and data access routines. Application num-

ber two, the web front end, consists of a MVC structured framework, a simple

database and a visualization toolkit.

146 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

Application number one is designed as a three layer application, providing a

simple API to eXVisXML rough capabilities. Application number two uses the

core application as a library, passing in arguments and receiving processed data.

The application as the following structure as depicted in Figure 5

Figure 5: Technologies

Apache Axiom takes advantage of woodstocks as an alternative to the stan-

dard StAX implementation, providing StAX2 capability, a slightly faster ap-

proach, though not the main selling feature of woodstocks, in our case. Wood-

stocks provides us with the capability to validate an XML document against a

number of schemas, for now we are only interested in DTD schemas, none the

less the alternatives gives us assurance for future expansions.

The bridged between the two applications is two folded, standard java object

instances and JSON documents. While it may seem self explanatory, or even

obvious that the communication is done by instantiating objects between the

two applications, it is not obvious why is there exchange of JSON documents,

and so it is necessary that we explain its utilization and consequences.

JSON or Javascript Object Notation is more than a markup language, by

providing a textual means for displaying the object structure of a javascript

object, JSON is the ideal candidate to pass along data between two different

Javascript applications.

Ironically JSON is quite an alternative to XML, providing a much simpler

format. JSON as been growing over XML mainly in web services applications

where a simple and lightweight format is of upmost importance. JSON is also

the format used to describe trees and graphs in the infovis javascript toolkit.

Naturally, the representation of both the XML and DTD documents present

in the core application is different of the one in infovis javascript toolkit. In

order to exchange information between the two applications there was the need

to transform the data structures, and thus the need for Gson. Gson is a Google

147da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

project consisting of a Java library capable of converting Java Objects to JSON

and vice-versa. By converting the internal representation of the XML tree and

DTD graph to JSON we are able to port this description on the fly to the

Javascript Infovis Toolkit, furthermore the inverse, though harder is also feasible,

and so if the need arises the structure in hand should be easily adoptable to

implement that specific feature.

The Javascript InfoVis Toolkit has a number of different views, the ones chosen

to represent our visualizations where the SpaceTree and ForceDirected, for the

XML and DTD document respectively. The SpaceTree visualization has the most

interesting feature of the two: on demand nodes. On demand nodes is a technique

that makes the navigation of large trees visually appealing and fluid, it works

by retrieving the children nodes as the father gets selected.

Finally, the web application provides us with a graphical interface. We choose

the Play framework11 as a simple Model-View-Controller web framework that has

the advantage of being built in Java, integrating easily with our core application.

Play framework has other benefits, it lets us create and interact with a

database easily, define a implement an application logic in a clean way, do quick

and easy field validation and import extra functionality through a plugin system,

in the end helping us focus on the real features.

6 Conclusion

Along the paper, we defend the idea that an useful tool to explore XML doc-

uments can be setup merging principles from similar areas (like software and

grammar engineering, comprehension and quality assessment), as well as resort-

ing to technological solutions already implemented.

As a proof of concept, we conceived and partially eXVisXML, as proposed in

section 5.

Basically we reuse visualization principles (Section 2), slicing techniques (Sec-

tion 3), and software/grammar metrics (Section 4), aiming at an exploration en-

vironment that allows us to comprehend by visual inspection the structure and

contents of XML documents, and provides quantitative information to reason

about the quality of the mark-up schema as well as the annotation itself.

The complete implementation of eXVisXML is the task we are working on, at

moment. This is crucial to test the tool and prove our ideas, as well as to carry

out performance, and usability measurements. After that we will apply the tool

to a vast suite of test-cases in order check the set of metrics here proposed; maybe

some of them are useless, and some others are missing. Of course, that test suite

will be useful to tune the visualization, as well as to verify the effective impor-

11 http://www.playframework.org/

148 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

tance of the slicing functionality for document understanding and re-engineering.

<?xml version="1.0"?>

<!DOCTYPE DatabaseInventory SYSTEM "DatabaseInventory.dtd">

<DatabaseInventory>

<DatabaseName>

<GlobalDatabaseName>production.iDevelopment.info</GlobalDatabaseName>

<OracleSID>production</OracleSID>

<DatabaseDomain>iDevelopment.info</DatabaseDomain>

<Administrator EmailAlias="jhunter" Extension="6007">

Jeffrey Hunter

</Administrator>

<DatabaseAttributes Type="Production" Version="9i"/>

<Comments>

The following database should be considered the most stable for

up-to-date data. The backup strategy includes running the database

in Archive Log Mode and performing nightly backups. All new accounts

need to be approved by the DBA Group before being created.

</Comments>

</DatabaseName>

<DatabaseName>

<GlobalDatabaseName>development.iDevelopment.info</GlobalDatabaseName>

<OracleSID>development</OracleSID>

<DatabaseDomain>iDevelopment.info</DatabaseDomain>

<Administrator EmailAlias="jhunter" Extension="6007">

Jeffrey Hunter

</Administrator>

<Administrator EmailAlias="mhunter" Extension="6008">

Melody Hunter

</Administrator>

<DatabaseAttributes Type="Development" Version="9i"/>

<Comments>

The following database should contain all hosted applications. Production

data will be exported on a weekly basis to ensure all development environments

have stable and current data.

</Comments>

</DatabaseName>

<DatabaseName>

<GlobalDatabaseName>testing.iDevelopment.info</GlobalDatabaseName>

<OracleSID>testing</OracleSID>

<DatabaseDomain>iDevelopment.info</DatabaseDomain>

<Administrator EmailAlias="jhunter" Extension="6007">

Jeffrey Hunter</Administrator>

<Administrator EmailAlias="mhunter" Extension="6008">

Melody Hunter</Administrator>

<Administrator EmailAlias="ahunter">

Alex Hunter</Administrator>

<DatabaseAttributes Type="Testing" Version="9i"/>

<Comments>

The following database will host more than half of the testing

for our hosting environment.

</Comments>

</DatabaseName>

</DatabaseInventory>

Figure 6: The document depicts a database inventory, annotated according to

the markup language defined by the DTD in Figure 7.

149da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT DatabaseInventory (DatabaseName+)>

<!ELEMENT DatabaseName (GlobalDatabaseName

, OracleSID

, DatabaseDomain

, Administrator+

, DatabaseAttributes

, Comments)

>

<!ELEMENT GlobalDatabaseName (#PCDATA)>

<!ELEMENT OracleSID (#PCDATA)>

<!ELEMENT DatabaseDomain (#PCDATA)>

<!ELEMENT Administrator (#PCDATA)>

<!ELEMENT DatabaseAttributes EMPTY>

<!ELEMENT Comments (#PCDATA)>

<!ATTLIST Administrator EmailAlias CDATA #REQUIRED>

<!ATTLIST Administrator Extension CDATA #IMPLIED>

<!ATTLIST DatabaseAttributes Type (Production|Development|Testing) #REQUIRED>

<!ATTLIST DatabaseAttributes Version (7|8|8i|9i) "9i">

<!ENTITY AUTHOR "Jeffrey Hunter">

<!ENTITY WEB "www.iDevelopment.info">

<!ENTITY EMAIL "jhunter@iDevelopment.info">

Figure 7: DTD for the XML document in Figure 6.

References

Alves, Tiago, & Visser, Joost. 2005 (Maio). Metrication of SDF Grammars.

Research Report. Departamento de Informática, Universidade do Minho.

Chamberlin, D. 2002. XQuery: An XML query language. IBM Syst. J., 41(4),

597–615.

Clark, James, & DeRose, Steve. 1999. XML Path Language (XPath) Version

1.0. Tech. rept. World Wide Web Consortium.

Klettke, Meike, Schneider, Lars, & Heuer, Andreas. 2002. Metrics for XML

Document Collections. Pages 15–28 of: EDBT ’02: Proceedings of the Wor-

shops XMLDM, MDDE, and YRWS on XML-Based Data Management and

Multimedia Engineering-Revised Papers. London, UK: Springer-Verlag.

Koutsofios, Eleftherios, & North, Stephen. 2002. Drawing graphs with dot.

Lämmel, R., Kitsis, Stan, & Remy, D. 2005 (Novembro). Analysis of XML

schema usage. In: Conference Proceedings XML 2005.

Mertz, David. 2001. Transcending the limits of DOM, SAX, and XSLT: The

HaXml functional programming model for XML. IBM developerWorks (XML

Matters column), October.

Olteanu, D., Meuss, H., Furche, T., & Bry, F. 2002. Xpath: Looking forward.

Silva, Josep. 2005. Slicing XML Documents. Pages 121–125 of: WWV.

Silva, Josep. 2006. XMLSlicer. http://www.dsic.upv.es/ jsilva/xml/.

Tip, F. 1995. A survey of program slicing techniques. Journal of programming

languages, 3, 121–189.

Visser, Joost. 2006 (Fev). Structure Metrics for XML Schema. In: XATA -

XML: AplicaCcões e Tecnologias Associadas, Portalegre - Portugal.

150 da Cruz D., Henriques P.R.: Visualizing and Analyzing the Quality ...

