
Bio-Inspired Mechanisms for Coordinating Multiple
Instances of a Service Feature in Dynamic Software

Product Lines

Jaejoon Lee
(Lancaster University, Lancaster, United Kingdom

j.lee@comp.lancs.ac.uk)

Jon Whittle
(Lancaster University, Lancaster, United Kingdom

whittle@comp.lancs.ac.uk)

Oliver Storz
(Lancaster University, Lancaster, United Kingdom

oliver@comp.lancs.ac.uk)

Abstract: One of the challenges in Dynamic Software Product Line (DSPL) is how to support
the coordination of multiple instances of a service feature. In particular, there is a need for a
decentralized decision-making capability that will be able to seamlessly integrate new instances
of a service feature without an omniscient central controller. Because of the need for
decentralization, we are investigating principles from self-organization in biological organisms.
As an initial proof of concept, we have applied three bio-inspired techniques to a simple smart
home scenario: quorum sensing based service activation, a firefly algorithm for
synchronization, and a gossiping (epidemic) protocol for information dissemination. In this
paper, we first explain why we selected those techniques using a set of motivating scenarios of
a smart home and then describe our experiences in adopting them.

Keywords: Bio-inspired computing, dynamic software product line, variability mechanism
Categories: D.2.12

1 Introduction

Product line engineering is a paradigm of software reuse, which aims at developing a
family of products with reduced time-to-market and improved quality [Clements, 02]
[Weiss, 99] [Kang, 02]. Most approaches in product line engineering, however, have
focused on the development of statically configured products using core assets with
static configuration of variation points [Bosch, 02]. That is, all variations are
instantiated before a product is delivered to customers and, once the decisions are
made, it is difficult for users to alter them.

Recently, there have been increasing demands for dynamic product
reconfiguration in various application areas. Dynamic product reconfiguration refers
to making changes to a deployed product configuration at runtime. Dynamic addition,
deletion, or modification of product features, or dynamic changes of architectural
structures [Kramer, 90] are some of the examples. Dynamic product reconfiguration

Journal of Universal Computer Science, vol. 17, no. 5 (2011), 670-683
submitted: 8/2/10, accepted: 4/11/10, appeared: 1/1/11 © J.UCS

has been studied in various research areas such as self-healing systems [Garlan, 02]
[Ganek, 03] [Oreizy, 99], context-aware computing [Yau, 02] [Schilit, 94], software
component deployment [Mikic-Rakic, 02] [Hoek, 03] [Hall, 99], and ubiquitous
computing [Sousa, 02] [Banavar, 02]. When a change in the operational context is
detected, it may trigger product reconfiguration to provide context-relevant services
or to meet quality requirements (e.g., performance).

Dynamic reconfiguration approaches in the literature, however, have focused on
specific problems of each application area (e.g., behavior models for dynamic
changes, context recognition from software or hardware environments, and
autonomous management of software component versions), and development of
reusable and dynamically reconfigurable core assets has not been fully investigated
[Lee, 06] [Gomaa, 04]. As such, a research theme that addresses development issues
for reusable and dynamically reconfigurable core assets has emerged and it is called
dynamic software product lines (DSPLs) [Hallsteinsen, 08].

An appealing application area for DSPL approaches is that of next generation
smart homes. Smart homes are equipped with many small embedded devices that
interact with each other and respond to their environment in order to assist and/or
improve the daily lives of the homeowner. Smart homes present a number of difficult
software engineering challenges. Firstly, these types of system must be highly self-
adaptive, able to dynamically reconfigure their behavior both to respond to changes in
the environment and to coordinate with other devices that may be in the vicinity.
Secondly, the longevity of smart homes implies that devices cannot simply be
replaced when they become obsolete. Rather, they must evolve organically over time.
Homeowners may purchase new devices to add to their home, remove or update
existing devices, or modify the overall requirements that govern how the devices
work together. And all of this must be done in a way that the smart home continues to
function effectively to satisfy its overall goals. Yet, we still want to reuse core assets
to deploy smart home products for various customers and each product should meet
user specific requirements.

We focus, in this paper, on one specific software engineering challenge for next
generation smart homes: coordination of multiple instances of a service feature in the
context of DSPLs. In conventional software product lines, whenever multiple
instances of a service feature need to be deployed for a product configuration, this
information is gathered at the product analysis phase and taken into consideration for
the product configuration. The critical assumption here is that the number of instances
is determined and it will not be changed at runtime. For example, in a telephony
domain, the maximum number of single line subscribers is determined for a product
and their interactions are managed by a central coordinating component. In the smart
home domain, this approach (i.e., centralized coordination of predetermined number
of instances) is not feasible, because:

- the number of active service features depends on available mobile devices and
these devices may join in and leave from a product configuration at runtime;
- a central coordinator cannot be deployed in a particular device due to the
mobility and ad-hoc connectivity of devices; and
- the physical location of a device (e.g., two devices close to or far from each
other) may also matter for deciding behavior changes (e.g., only one instance of a
service feature should be active if multiple instances of them are close to each

671Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

other) and no variability management technique adequately supports such a
situation.

To address such challenges, we studied various techniques that could support

seamless addition/removal of service features and distributed coordination of them in
the context of DSPLs. In particular, the issues identified above lead to the need for a
decentralized decision-making capability that will, without an omniscient central
controller, be able to seamlessly integrate new instances of a service feature. Because
of the need for decentralization, we studied principles from self-organization in
biological organisms. Organisms such as ants, bees, bacteria and birds are equipped
with highly efficient, decentralized control mechanisms that permit rapid behavioral
changes to respond to changes in the environment. Our ultimate goal is to investigate
the applicability of such mechanisms in DSPLs for smart homes. As an initial proof of
concept, we applied three bio-inspired techniques to a simple smart home scenario:
quorum sensing based service activation, a firefly algorithm for synchronization, and
a gossiping (epidemic) protocol for information dissemination. In this paper, we first
explain why we selected those techniques through the motivating scenarios of a smart
home and then describe our experiences in adopting them.

The rest of this paper is organized as follows. Section 2 introduces some
background information of this paper and section 3 describes how we adopted and
applied those techniques. In section 4, a simulation environment is introduced and is
followed by related work and conclusions.

2 Background

2.1 Case study: a Smart Cup

A motivating scenario that we will use as a case study in this paper is a smart cup. An
in-home networked smart home assists the elderly by monitoring their daily intake of
crucial fluids. This is implemented by a sensor-enabled cup that beeps when fluid
intake is necessary, has a level to monitor the fluid consumed, shares consumption-
data with its neighboring smart cups, and also adjusts the required intake level when
notified of consumption-data from other smart cups. This service feature is called a
drinking reminder feature and each cup has an instance of this feature. (See Figure 1
for a feature model of a smart home, which includes this feature.)

The scenario currently assumes the presence of the following devices and
functionalities:

- A smart cup is equipped with tilt sensors that provide each cup with
information about the angle it is being held at. If provided with information
about the initial fluid level, cups are able to use the information provided by
the tilt sensor to infer how much fluid has been drained from the cup.

- A smart cup also has a beeper that enables it to produce an audible alarm if the
targeted fluid intake has not been reached. The cup runs an evaluation cycle
with a periodic frequency; at each period, the cup evaluates current fluid
intake and beeps if necessary.

- A smart tap has a sensor that measures the amount of water that is emitted
from the tap into cup devices. The tap uses its built-in radio to communicate

672 Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

information about the amount of liquid that has been dispensed into the cup
device that is currently positioned underneath the tap.

Smart
Home

…

Set Liquid
Amount

Drinking Reminder

Composed-of Generalization/
Specialization

Mandatory feature Optional feature Alternative features

Legend

- Floating-Sensor based Measuring
Method requires Floating Sensor.
- Light requires Lamp.

Composition Rules

Capability Layer

Set Time
Interval

Read Available
Period

Smart Cup

Calibration

Alarm

Beep Light Voice Text

Measure Current
Amount

Food Freshness
Manager

Video

Voice Alarm

Available
Period

Reminder

Wireless
Connection

Floating
Sensor

Operating Environment
Layer

Domain Technology
Layer

Measuring Method

Dead
Reckoning

Floating-Sensor
based

Lamp

Implemented-by

Figure 1: Feature Model of a Smart Home

The problems posed by this scenario include:
1. the dissemination of information about the fluid intake to other smart cups in

the smart home to enable these devices to reach a decentralized decision as
to whether enough fluid has been consumed or not;

2. the dissemination of the intended duration of the evaluation frequency, the
targeted fluid intake, and the evaluation window during which actions of
liquid intake should be considered as being relevant for the current
evaluation,

3. the synchronisation of the evaluation cycles of the individual smart cup, with
the aim of getting all cups to evaluate (and therefore sound the alarm) in a
coordinated fashion, i.e., at the same time, and

4. the selection of smart cups within the home that should be responsible for
sounding the audio alarm; the aim is to ensure that the alarm can ideally be
perceived from every location within the home, whilst minimizing the
number of smart cups that beep in order to conserve power and to avoid a
cacophony of sound, which would annoy homeowners.

The following subsections provide background on the bio-inspired algorithms
which we apply to this smart cup scenario. Note that the gossip and firefly algorithms

673Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

already exist in the literature, but our contribution is a novel application domain; the
quorum sensing algorithm is new.

2.2 Information Propagation: Gossip (Epidemic) Protocol

Recent years have seen the emergence of systems that disseminate information in
computer networks using protocols that mimic how humans spread information
through gossiping: individuals have knowledge of pieces of information and from
time to time exchange a subset of their knowledge with other individuals, who may in
turn pass this information on to further individuals, thereby gradually disseminating
the information to all individuals in the peer group. (It is also called as an epidemic
protocol, because the spread of information is similar to the spread of a virus in a
biological environment.)

A node N that is participating in gossip-based information exchange periodically
carries out the following steps [Bakhshi, 09]:

1. N randomly selects one other node (node B);
2. N randomly selects one or more information items from its local repository

of information;
3. N sends the selected information items to B, causing B to add the received

information to its local repository;
4. optionally:

a. N requests B to provide randomly selected information from B’s
repository;

b. N adds the information received from B to its own repository.

Gossip protocols have been shown to be robust in the presence of failures of

individual nodes [Gavidia, 06]. They have, for example, been used to disseminate
news items in wireless mesh networks [Gavidia, 06], or to disseminate state
information with the aim of constructing hierarchies of clusters in wireless sensor
networks [Iwanicki, 09].

2.3 Synchronization: Firefly Algorithm

As part of their mating ritual, male fireflies gather in groups and flash in a
synchronized fashion [Mirollo, 90]. The algorithm used to synchronize the flashing is
completely decentralized and relies purely on each fly observing the light pulses
emitted by its neighbors. The following is an overview of the algorithm [Azar, 07]:

1. flies flash with a certain frequency;

2. once a fly has flashed it has to gradually build up enough internal charge
before it can flash again;

3. if a fly observes one of its neighbors flashing, it advances its internal clock to
bring itself closer to flashing. This is achieved by applying a boost to the fly’s
internal charge;

4. the strength of the boost applied depends on the time that has passed since the
firefly has last emitted a flash. The closer the flies are to flashing themselves,
the larger the boost.

674 Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

2.4 Feature Activation Control: Quorum Sensing

The term ‘quorum-sensing’ refers to the ability of organisms to activate certain
behaviours based on the density of other organisms in their environment. Since all
organisms within a certain region experience the same density, quorum-sensing can
be used to reach consensus among organisms.

Quorum-sensing in the bacterial world is, for example, used for triggering the
production of virulence factors or spores, for controlling bioluminescence or for
controlling different phases in the development of bio-films [Bassler, 06].

The quorum-sensing circuit of bacteria generally works as follows:
1. bacteria release special molecules (called “auto-inducers”) into the

environment, either as part of normal growth or in response to changes in the
environment. Autoinducers are typically molecules from the N-acyl
homoserine lactone (AHL) family in the case of Gram-negative bacteria and
short peptides in the case of Gram-positive bacteria [Bassler, 06];

2. these molecules accumulate in the environment;
3. bacteria of the same species that released the auto-inducers or in some cases

different species of bacteria have special receptors for recognising the auto-
inducer molecules;

4. once the auto-inducer concentration reaches a certain threshold, certain
genetic sequences, and therefore certain behaviours, are activated.

The famous ‘waggle dance’ of bees is an example of quorum sensing. When
searching for new nests, bees explore potential sites and, upon returning from a site,
they recruit other bees to their site by ‘dancing’. The number of dance repetitions is
proportional to the quality of the site. Hence, bees finding good sites are able to
recruit bees finding bad sites – bees finding poor sites stop dancing sooner. When the
density of bees at a new site increases beyond a certain threshold, a decision is made
for the whole swarm to move to the site.

3 Applying Bio-Inspired Algorithms to Smart Homes

We applied these three techniques to address the problems described in section 2.1.
In the following, we explain how we adopted and applied the techniques in detail.

3.1 Sharing Consumed Liquid Amount Data

We propose to use a gossip protocol to propagate information within the smart home.
While our design focuses on the dissemination of information about the fluid intake,
similar gossip-based approaches can be used to disseminate other information,
including the intended frequency that should be used for evaluating the liquid intake,
the targeted intake, and evaluation window.

Each time fluid is consumed through one of the smart cups, it records information
about this event, including:

- the amount of liquid that was consumed;
- the time that has elapsed since the event took place, thus enabling devices to

discard events that occurred too far in the past and are therefore irrelevant for
determining the overall fluid intake over the current evaluation period.

675Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

From time to time each smart cup exchanges a subset of these records (and any
records that it has received from other smart cups) with the smart cups that are in
communication range, i.e., they gossip. A smart cup receiving such a gossip message
stores the received records, unless they are duplicates of records already present on
the smart cup.

To enable the receiving smart cup to detect duplicates of records that it already
possesses, each record additionally contains a globally unique identifier that is
generated when the record is created. A received record is only stored by a smart cup
if the unique id of that record does not match any records that are already present on it.
The algorithm used by smart cups to record, manage and propagate records of fluid
intake is outlined in Figure 2.

while true:
if device clock has been advanced:

increment elapsedTime on each stored record
expire all records that are older than max

clock ticks
if new fluid has been consumed:

new_record = new ConsumptionRecord()
new_record.elapsedTime = 0
new_record.devicName = this.name
new_record.consumption = newly consumed amount
new_record.uid = create_new_uid()
store new_record

if time to communicate:
if fluid has been consumed recently

through this device:
broadcast all records concerning this

device to devices in range
randomly select a device we have records for
broadcast that device’s records to devices
in range

if we have received records:
if we do not already possess these records:

store these records

Figure 2: Algorithm used by devices to record, manage and propagate information
about the amounts of fluid consumed

3.2 Synchronizing Checking Period

If a smart cup receives such a message (this act is similar to observing the flash of a
firefly), it compares the timing information contained in that message with its own
timing information. If the clocks of both smart cups are equal or are within a certain
tolerance, the receiver records the sender and the smart cups are synchronised with
the sender.

If the clock cycles differ, the receiver compares the number of smart cups that the
sender considers itself synchronised with and the number of smart cups the receiver
considers itself synchronised with. If the receiver is synchronised with a larger
number of smart cups than the sender, the receiver discards the message. If the sender
is synchronised with a larger number of smart cups than the receiver, the receiving
device adjusts its clock cycle to the sender’s clock cycle. This action is similar to
fireflies boosting their internal charge and flashing sooner after having received a

676 Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

neighbour’s flash with the aim of eventually synchronising itself to the timing of their
neighbouring fly.

The oscillation frequency of fireflies is limited by the speed at which their internal
potential can be charged up. Hence the speed at which fireflies are able to advance
their internal clock is limited. However, similar limitations do not exist in the context
of smart cups in our scenario: once a receiver has decided to synchronise its own
clock to the clock of the sender, the receiver fully advances its internal clock cycle to
match the sender’s clock cycle.

while true:

 if time to emit synchronisation message:
 message = new SynchronisationEvaluationMessage()
 message.sender = this.name

 message.timeToNextEvaluation =

 ourTimeToNextEvaluation

 message.synchronisedDevices = list of devices
 we are synchronised with broadcast message
 if synchronisation message received:

 if sender’s clock cycle and
 our clock cycle are within tolerance:

 store sender as being in sync
 store message.synchronisedDevices

 as being in sync
 else:

 if length(message.synchronisedDevices) >
 length(ourSynchronisedDevices):

 synchronise our clock to match
 message.timeToNextEvaluation
 store sender as being in sync

 store message.synchronisedDevices

 as being in sync

 else if length(message.synchronisedDevices)

Figure 3: An outline of the synchronization algorithm

If both smart cups have an equal number of synchronised smart cups, the receiver
synchronises its clock to the sender’s clock cycle if the sender is closer to evaluating
the fluid intake.

By basing decisions on the number of other smart cups that a smart cup is
synchronised with, we avoid situations where a smaller group of synchronised nodes
can cause a much larger group of synchronised nodes to abandon their
synchronisation and synchronise to the clocks of the smaller group. An outline of the
algorithm is presented in Figure 3.

3.3 Selecting a Beeping Cup

Once a smart cup has come to the conclusion that the targeted fluid intake has not
been reached, it uses a quorum-sensing inspired algorithm to decide whether to
activate its built-in audible alarm or not. To achieve this, smart cups activate their

677Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

built-in microphones and listen for audible alarm signals emitted by other smart cups
for a randomly selected number of clock ticks.

If a smart cup receives an audio signal (in the frequency band that is used by the
alarm) that is above a certain volume threshold during this period, they assume that a
smart cup which is close by has already activated its alarm signal, and that activating
another alarm signal in this area is unnecessary. As a result, the smart cup does not
activate its own audio alarm. If the randomly selected number of clock ticks has
passed and the smart cup has not received any signals above the given volume
threshold, it infers that the area it is located in does not contain any others that have
activated their alarm signal. It therefore activates its own alarm signal. An overview
of the algorithm is presented in Figure 4.
 if not enough fluid consumed:

 activate microphone
 time_to_listen = select random number

 between 0 and n_listen

 listen for time_to_listen clock ticks
 deactivate microphone

 if not alarm signal above
 critical volume threshold received:

Figure 4: Algorithm used to decide whether to activate the audio alarm

In analogy to quorum-sensing, the algorithm uses the volume of the audio-alarm
signals received from other devices to infer the density of the population of smart
cups with activated alarms. The behaviour activated by the quorum-sensing circuit
once the critical population density has been reached (i.e. the volume of the audio
signal is above a certain threshold), is the abstinence from activating the smart cup’s
own audio circuitry. The quorum-sensing-based decision remains valid until the fluid
intake is evaluated again.

4 A Simulation Environment

We have implemented a simulation environment for the scenario described in section
2.1 and have implemented the algorithms presented in sections 3.1, 3.2 and 3.3. The
user interface of the simulation provides users with the functionality to add smart cups
and other devices to the simulation, change their position, fill and drink from smart
cups, and control the simulation time. (See Figure 5 for a screenshot of the simulator.)

Following the algorithm outlined in section 3.1, each smart cup maintains a cache
of consumption records. Internally each smart cup maintains two different types of
liquid consumption data:

- a list of consumption records relating to fluid that has been consumed
through this device, and

- another consumption record related to fluid consumed through other devices.

678 Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

Figure 5: Screenshot of the simulator's user interface

Each time the simulation clock is incremented, both data sources are checked, and
the data that are older than a predefined time window expire. Also, each smart cup is
responsible for managing its local simulation time and synchronizes its clock with
other smarts cups by using the algorithm explained in section 3.2.

Once a smart cup has decided to beep as the fluid consumption was insufficient, it
first listens for other devices in its vicinity, as described in section 3.3. The model for
simulating audio propagation is based on the distance between the individual devices.
For simplicity, the simulation currently assumes that volume decreases linearly with
increasing distance from the sound source. In reality, however, sound waves
experience a quadratic decrease. To further illustrate the attenuation of sound by
obstacles, the simulator offers the ability to introduce Wall objects into the simulation
environment. In the simulation, Walls attenuate the amplitude of an audio signal by a
factor of 2. The strength of the sound signal in the simulator is visualized by the
thickness of the red line between devices as shown in Figure 5: the thicker the line is,
the louder each cup can hear the beeping sound.

5 Related Work

The study of self-organization in computing is not new (see, for example, a survey
paper from 1986 [Robertazzi, 86]). To date, however, this large body of work has
mainly focused on network management issues in, for example, the Internet, wireless
sensor networks and grid computing. The focus on these types of applications has
meant that research has concentrated around infrastructure issues such as allocation of
bandwidth and processing capacity, dissemination of information, power conservation,
and fault tolerance.

We are more concerned with how to design software in a way that supports self-
organization: for example, flexible design structuring techniques for software
artefacts, software models that support self-organization, requirements for self-

679Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

organizing software, and management of self-organizing software. Some notable
works on self-organization are mentioned below.

Self-organization in wireless sensor networks has become a hot research topic
recently, for example, to adapt to changing traffic patterns or to reconfigure
topologies. There has been work in resource sharing (e.g., [Duque-Anton, 97]),
forming and maintaining structures (e.g., [Cerpa, 02]), information dissemination (e.g.,
[Intanagonwiwat, 00]), and resilience (e.g., [Gupta, 03]). Such work, however,
focuses on low levels of abstraction and does not address problems usually associated
with software engineering such as how to design software to support self-organization.

There is also a distinguished history of bio-inspired computing. Some researchers
(e.g.,[Abelson, 00] [Lodding, 04] [Nagpal, 03]) have studied embryogenesis as a
means to design hardware-software architectures for persistent computing
environments. Hofmeyr and Forrest [Hofmeyr, 00] describe an intrusion-detection
system inspired by the human immune system. IBM’s autonomic computing initiative
uses the human nervous system to inspire self-managing systems. Evolutionary
computation derives inspiration from natural selection. Recently, approaches based on
studying swarms have been studied—for example, it has been shown that flock
behavior of birds can be derived from three simple rules [Reynolds, 87] and these
rules became the basis for computer graphics in the film Batman Returns. Despite all
of this excellent research on (bio-inspired) self-organization, one area that seems to
have been largely omitted to date is bio-inspired software engineering.

6 Conclusion

One of the challenges in DSPLs is the support for coordinating multiple instances of a
service feature. In particular, there is the need for a decentralized decision-making
capability that will be able to seamlessly integrate new instances of a service feature
without an omniscient central controller. Because of the need for decentralization, we
studied principles from self-organization in biological organisms. As an initial proof
of concept, we applied three bio-inspired techniques to a simple smart home scenario:
quorum sensing based service activation, a firefly algorithm for synchronization, and
a gossiping (epidemic) protocol for information dissemination.

The simulation results show that it is feasible to apply such mechanisms in DSPLs
for smart homes. The current simulator, however, also reveals its limitations:

- the support for heterogeneous devices: we assume that only the smart cups are
involved in the drinking reminder service feature. But, other devices such as a
smart TV for a visual notification to a user can also be involved and the
coordination among them needs to be further investigated;

- the enhancement of service quality: it is possible that a user uses the smart cup
for watering a flower pot instead of drinking, but the question is how we can
recognize such a situation to provide a high quality (accuracy for the drinking
reminder) service. Therefore we should be able to recognize and integrate
various optional sensors (e.g., humidity sensor installed at the flower pot) at
runtime and provide more dependable services;

- the deployment of smart cups in a real environment: in a real smart home
environment, these algorithms may not work as in the simulation environment
due to noise, the short range of wireless communications, etc. By deploying

680 Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

the software to a real hardware device, we might be able to explore more
challenging issues.

We’ll continue to explore the bio-inspired ideas to address these issues. We believe
that this will lead us to deliver some fundamentally new insights on variability
mechanisms inspired by the self-organization, dynamism and adaptation capabilities
of biological organisms. Also, we’re currently developing a smart cup on a hardware
device and will perform an empirical study on pros/cons for adopting bio-inspired
mechanisms to DSPLs.

Acknowledgements

This research is carried out in the Small Grants Scheme ‘BIO-SCALE: Bio-inspired
Software Composition for Assisted Living Environments’ project, which is funded by
Lancaster University, United Kingdom.

References

[Abelson, 00] Abelson, H., et al.: Amorphous computing, Communications of the ACM, vol.
43, 74-82, 2000.

[Azar, 07] Azar., P.: Fireflies & Oscillators. Harvard College Mathematics Review. Vol. 1 No.
2. 2007.

[Bakhshi, 09] Bakhshi, R., et al.: An Analytical Model of Information Dissemination for a
Gossip-based Wireless Protocol. Proc. 10th Int'l Conf. Distributed Computing and Networking
(ICDCN), Gachibowli Hyderabad, India, January 2009.

[Banavar, 02] Banavar, G., Bernstein, A.: Software infrastructure and design challenges for
ubiquitous computing applications, Communications of ACM, Vol.45, Issue 12, 2002, 92-96.

[Bassler, 06] B. Bassler and R. Losick. Bacterially Speaking. Cell, Volume 125, Issue 2, 2006,
237-246.

[Bosch, 02] Bosch, J., et al., Variability Issues in Software Product Lines, In: van der Linden,
F. (eds.): Software Product Family Engineering. Lecture Notes in Computer Science, Vol.
2290. Springer-Verlag, Berlin Heidelberg 2002, 13-21.

[Cerpa, 02] Cerpa, A., Estrin, D.: ASCENT: Adaptive self-configuring sensor networks
topologies, in IEEE INFOCOM, 2002, 1278-1287.

[Clements, 02] Clements, P., Northrop, L.: Software Product Lines: Practices and Pattern,
Addison Wesley, Upper Saddle River, NJ, 2002.

[Duque-Anton, 97] Duque-Anton, M., et al.: Extending Kohonen's self-organizing mapping for
adaptive resource management in cellular radio networks, IEEE Transactions on Vehicular
Technology, vol. 46, 1997, 560-568.

[Ganek, 03] Ganek, A.G., Corbi, T.A.: The drawing of the autonomic computing era, IBM
Systems Journal, Vol. 42, No. 1 2003, 5-18.

[Garlan, 02] Garlan, D., Schmerl, B.: Model-based Adaptation for Self-Healing Systems,
Proceeding of the Workshop on Self-Healing Systems (WOSS’02), Nov.18-19, 2002, 27-32.

681Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

[Gavidia, 06] Gavidia, D., Voulgaris, S., van Steen., M.: A Gossip-based Distributed News
Service for Wireless Mesh Networks. Proc. 3rd IEEE Conference on Wireless On demand
Network Systems and Services (WONS), Les Menuires, France, January 2006.

[Gomaa, 04] Gomaa, H., Hussein, M.: Dynamic Software Reconfiguration in Software Product
Families, In: van der Linden, F. (eds.): Software Product Family Engineering, Lecture Notes in
Computer Science, Vol. 3014. Springer-Verlag, Berlin Heidelberg 2004, 435-444.

[Gupta, 03] Gupta, G., Younis, M.: Fault-tolerant clustering of wireless sensor networks, in
IEEE Wireless Communications and Networking Conference, 2003, 1579-1584.

[Hall, 99] Hall, R.S., Heimbigner, D.M., Wolf, A.L.: A cooperative approach to support
software deployment using the software dock, Proceedings of the 1999 International
Conference on Software Engineering, ACM Press: New York, NY 1999, 174-183.

[Hallsteinsen, 08] Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software
Product Lines, IEEE Computer, Vol. 41 (4), 2008, 93-95.

[Hoek, 03] Hoek, A. van der, Wolf, A.L.: Software release management for component-based
software, Software-Practice and Experience, Vol.33, 2003, 77-98.

[Hofmeyr, 00] Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system,
Evolutionary Computation, vol. 8, 2000, 443-473.

[Intanagonwiwat, 00] Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a
scalable and robust communication paradigm for sensor networks, in 6th Annual Conference on
Mobile Computing and Networking, 2000, 56-67.

[Iwanicki, 09] Iwanicki, K., van Steen., M.: Multi-hop Cluster Hierarchy Maintenance in
Wireless Sensor Networks: A Case for Gossip-Based Protocols. Proc. 6th European Conference
on Wireless Sensor Networks (EWSN), Cork, Ireland, February 2009.

[Kang, 02] Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering, IEEE
Software, 19(4), July/August 2002, 58-65.

[Kramer, 90] Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change
Management, Transaction on Software Engineering, Vol. 16, No. 11, November 1990, 1293-
1306.

[Lee, 06] Lee, J., Kang, K.: A Feature-Oriented Approach to Developing Dynamically
Reconfigurable Products in Product Line Engineering, In the Proceeding of the 10th
International Software Product Line Conference (SPLC), August 21-24, 2006, 131-140.

[Lodding, 04] Lodding, K.N.: Hitchhikers guide to biomorphic software, ACM Queue, vol. 2,
66-75, 2004.

[Mikic-Rakic, 02] Mikic-Rakic, M., Medvidovic, N.: Architecture-Level Support for Software
Component Deployment in Resource Constrained Environments, Proceedings of First
International IFIP/ACM Working Conference on Component Deployment, Berlin, Germany,
2002, 31-50.

[Mirollo, 90] Mirollo, R.E., Strogatz., S.H.: Synchronization of pulse-coupled biological
oscillators. SIAM J. Appl. Math. 50, 6 (Nov. 1990), 1645-1662. DOI=
http://dx.doi.org/10.1137/0150098

[Nagpal, 03] Nagpal, R.: A catalog of biologically-inspired primitives for engineering self-
organization, Engineering Self-Organising Systems, vol. 2977, 2003, 53-62.

682 Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

[Oreizy, 99] P. Oreizy, et al., An Architecture-Based Approach to Self-Adaptive Software,
IEEE Intelligent Systems, May/June 1999, 54-62.

 [Robertazzi, 86] Robertazzi, T.G., Sarachik, P.E.: Self-organizing communication networks,
IEEE Communications, vol. 24, 1986, 28-33.

[Reynolds, 87] Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model,
Computer Graphics, vol. 21, 1987, 25-34.

[Schilit, 94] Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications,
Proceedings of IEEE Workshop Mobile Computing Systems and Applications, IEEE CS Press,
Los Alamitos, Calf. 1994, 85-90.

[Sousa, 02] Sousa, J.P., Garlan, D.: Aura: An Architectural Framework for User Mobility in
Ubiquitous Computing Environments, Proceeding of the 3rd Working IEEE/IFIP Conference
on Software Architecture, Kluwer Academic Publishers 2002, 29-43.

[Weiss, 99] Weiss, D.M, Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process, Reading, MA: Addison Wesley Longman, Inc., 1999.

[Yau, 02] Yau, S.S., et al.: Reconfigurable Context-Sensitive Middleware for Pervasive
Computing, Pervasive Computing, July/September 2002, 33-40.

683Lee J., Whittle J., Storz O.: Bio-Inspired Mechanisms ...

