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Abstract: A feature model (FM) defines the valid combinations of features, whose
combinations correspond to a program in a Software Product Line (SPL). FMs may
evolve, for instance, during refactoring activities. Developers may use a catalog of
refactorings as support. However, the catalog is incomplete in principle. Additionally,
it is non-trivial to propose correct refactorings. To our knowledge, no previous analysis
technique for FMs is used for checking properties of general FM refactorings (a trans-
formation that can be applied to a number of FMs) containing a representative number
of features. We propose an efficient encoding of FMs in the Alloy formal specification
language. Based on this encoding, we show how the Alloy Analyzer tool, which per-
forms analysis on Alloy models, can be used to automatically check whether encoded
general and specific FM refactorings are correct. Our approach can analyze general
transformations automatically to a significant scale in a few seconds. In order to evalu-
ate the analysis performance of our encoding, we evaluated in automatically generated
FMs ranging from 500 to 2,000 features. Furthermore, we analyze the soundness of
general transformations.
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1 Introduction

Feature Models (FM) [Czarnecki and Eisenecker 2000] specify configurability
constraints for a Software Product Line (SPL) [Clements and Northrop 2001].
A FM represents the common and variable features of a SPL and their depen-
dencies. In order to include new products, a SPL may evolve. Evolution efforts
can be supported by refactorings [Fowler 1999]. An extended definition for refac-
toring SPL – program and associated FMs – has been defined [Alves et al. 2006].
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A SPL refactoring is performed by program and FM refactorings. A FM refac-
toring must improve the quality of a FM by maintaining or increasing its config-
urability. To help developers in refactoring SPL, a catalog containing a number
of general FM refactorings was proposed [Alves et al. 2006], preserving config-
urability. This catalog is proved to be sound, complete and minimal. However,
catalogs of FM refactorings that increase configurability are incomplete in prin-
ciple. Therefore sometimes developers may have to refactor FMs based on ad hoc
reasoning, an error-prone activity. In order to address this problem, refactoring
designers must propose new transformations.

It is non-trivial to propose correct refactorings. Checking soundness by ad
hoc reasoning or in a theorem prover [Gheyi et al. 2006a] is hard and time-
consuming, requiring extra expertise. As shown by Batory [Batory 2005], FMs
can be translated into propositional formula, in this translation enables analysis
with existing logic-based tools, such as SATisfiability Problem (SAT) solvers.
Accordingly, Benavides et al. [Benavides et al. 2006a] survey a number of useful
analysis on FMs. Still, these tools do not focus on refactoring analysis.

This article extends our earlier work [Alves et al. 2006] by proposing an ef-
ficient encoding of FMs in Alloy [Jackson 2006], which is a formal specification
language. We consider FMs freely containing propositional formulas. Based on
this encoding, the Alloy Analyzer [Jackson et al. 2000], which is a tool used to
perform analysis on Alloy models, helps refactoring designers to automatically
and efficiently check whether FM refactorings are sound. The Alloy Analyzer
is backed by SAT solving techniques as well. Moreover, this approach helps
developers when refactoring SPLs by automatically verifying whether FM trans-
formations to specific programs constitute a refactoring. If the transformation is
not a refactoring, the tool generates a counterexample. The main contributions
of this article are the following:

– An efficient encoding of FMs in Alloy (Section 3);

– An automatic method for checking whether a general or specific FM trans-
formation is a refactoring (Section 4).

We evaluate our approach by checking the correctness of 19 general pro-
posed refactorings [Alves et al. 2006]. Moreover, we used the benchmark pro-
posed by Mendonça et al. [Mendonca et al. 2008] to evaluate the analysis per-
formance of our encoding. We used their automatically-generated FMs rang-
ing from 500 to 2,000 features each, and up to ECR = 30% (the ratio of the
number of variables in the extra constraints to the number of variables in the
feature tree [Mendonca et al. 2008]). When checking satisfiability of these FMs,
our analysis took a few seconds. Mendonça et. al, which propose an efficient
compilation technique for BDDs, performed the same experiment. They could
analyze two out of ten FMs containing 2,000 features (ECR=30%) in at most 94
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seconds. They had memory overflow issues, which did not occur in our approach,
when analyzing the other 8 FMs. The analysis performance and the number of
features involved in our approach seems to be reasonable, since most of FMs in
practice contains less than thousands of features.

The remainder of this document is organized as follows. We describe the state
of the art and discuss issues in FM refactorings in Section 2. We overview Alloy
and present an encoding of FMs in Alloy in Section 3. Section 4 explains how to
specify and analyze FM refactorings using our encoding. Finally, we show the
related work and conclusions in Sections 5 and 6, respectively.

2 Overview

In this section, we give a brief overview of FMs (Section 2.1) and SPL refactoring
(Section 2.2). Finally, Section 2.3 presents some issues in FM refactorings.

2.1 Feature models

A FM represents the common and variable features of a SPL and the depen-
dencies between them [Czarnecki and Eisenecker 2000, Kang et al. 1990]. A fea-
ture diagram is a tree-like graphical representation of a feature model. Rela-
tionships between a parent feature and its child features (also regarded as sub-
features) may be Optional (represented by an unfilled circle), Mandatory (rep-
resented by an filled circle), Or – one or more must be selected (represented
by a filled triangle), and Alternative – exactly one subfeature must be selected
(represented by a unfilled triangle). A FM may also include cardinality con-
straints [Czarnecki et al. 2005], but they are not considered here. Figure 1 de-
picts these relationships graphically.

Figure 1: Feature Diagram Notations

Besides these relationships, FMs may include propositional logic formulas
about features. For instance, the formula earphone ⇔ mp3 states that the fea-
ture earphone is selected if and only if the feature mp3 is selected.

Figure 2 depicts a simplified FM for a mobile phone. A mobile phone may
have an earphone. Moreover, it may have at least an mp3 player or a digital
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camera. Finally, a mobile phone has an earphone if and only if it has a mp3
player. So, the FM has four features (mobilephone, earphone, mp3 and camera),
one formula (earphone ⇔ mp3) and two relations: an optional relation between
mobilephone and earphone, and an or feature relation between mobilephone,
mp3 and camera.

Figure 2: Feature Model Example

Although there are a number of proposals for defining meaning for relation-
ships in FMs (see work by Schobbens et al. [Schobbens et al. 2007] for a survey),
the most usual semantics for a FM is given by the set of its valid configura-
tions (possibly instantiated software products). A valid configuration contains
a set of feature names; if valid, it satisfies all constraints (relations and formu-
las) of the model. For example, the configuration ({mobilephone, camera }) is
valid for the model in Figure 2 representing a mobile phone only with camera.
However, the configuration ({mobilephone, earphone }) is invalid because the
or feature relation between mobilephone, mp3 and camera states that whenever
mobilephone is selected, at least mp3 or camera must be selected. Also, the
formula earphone ⇔ mp3 is violated.

2.2 Refactoring Product Lines

In order to motivate the need for FM refactorings, in this section, we explain
issues that need to be addressed when considering refactoring in the SPL context.
Then we present an extended definition of refactoring for such context.

The term refactoring was coined by Opdyke in his thesis [Opdyke 1992]. He
proposed refactorings as behavior-preserving program transformations; initially
the definition supports the iterative design of object-oriented application frame-
works [Opdyke 1992]. The cornerstone of his definition is that refactorings must
maintain correct compilation and observable behavior. In practice, behavior
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preservation is evaluated by successive compilation and tests. Opdyke’s work
and many of the later refactoring definitions apply to frameworks (heavily used
in current SPL development) and often introduce variation points.

Nevertheless, as program transformations, they do not handle configurability
issues (only tackled at FM level). In practice, a decrement in SPL configurability
while refactoring should not occur. If a set of products represented by A1 are
correctly refactored into a set of products represented by A2, following traditional
refactoring steps (compilation and unit tests), still it is not guaranteed that
configurability is preserved. We must certify that FM2 (corresponding to A2)
preserves the same possible configurations as FM1 (corresponding to A1). Since
the configurability is described by the FM, such model should also be considered
during SPL refactoring.

Our previous work with others extends the definition of refactoring for dealing
with SPLs [Alves et al. 2006]:

Definition 1 SPL refactoring is a change made to the structure of a SPL in
order to improve (preserve or increase) its configurability, without changing the
observable behavior of its original products.

In our definition, maintaining or increasing configurations of a SPL is a desirable
quality. Alves et al. [Alves et al. 2007] present some program refactorings for
SPL, which are implemented using Aspect-Oriented Programming. Some of these
ideas have been implemented in a supporting tool [Soares et al. 2008]. So, a SPL
refactoring thus can be seen as a program refactoring plus a FM refactoring,
which is defined next [Alves et al. 2006]:

Definition 2 A FM refactoring is a transformation that improves the quality
of a FM by maintaining or increasing its configurability. So, the resulting FM
contains all valid configurations of the initial FM, but may contain more.

Developers can apply general FM refactorings based on template match-
ing [Alves et al. 2006] to check whether a transformation is correct. Each gen-
eral refactoring consists of two templates (patterns) of FMs, on the left-hand
(LHS) and right-hand (RHS) sides. A refactoring can be applied whenever the
FM matches the template. A matching is an assignment of all meta-features
occurring in the LHS template to concrete values. Any element omitted by the
templates remains unchanged, thus refactoring templates only show differences
between FMs. Moreover, a dashed line on top of a feature indicates that this
feature may have a parent feature. A dashed line below a feature indicates that
this feature may have additional subfeatures.

As an example, Refactoring 1 is a general transformation (we can apply it to
a number of FMs that match its template) that transforms an or relationship
into two optional features. The transformation increases the configurability of
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the resulting FM by allowing the additional configuration {A }. A, B, and C

are meta-features.

Refactoring 1 〈change or to option〉

For instance, the FM depicted in Figure 2 matches the LHS FM template of
Refactoring 1. The meta-features A, B and C are matched with mobilephone,
mp3 and camera, respectively.

Our earlier work [Alves et al. 2006] also presents a different kind of transfor-
mation: merging. This transformation combines a number (greater than one) of
FMs into a single FM, different from a FM refactoring which relates a single
FM to another one. Segura et al. [Segura et al. 2008] also present a number of
merging transformations. In this work, we focus on FM refactorings. But the
results of this work can be similarly applied to merging transformations.

2.3 Issues in Feature Model Refactorings

In this article, we focus on issues related to FM refactorings. A cata-
log of FM refactorings (preserving or increasing configurability) was pro-
posed [Alves et al. 2006, Segura et al. 2007], helping developers evolve FMs.
The catalog of FM refactorings that maintain configurability (called B-
refactorings [Alves et al. 2006, Gheyi et al. 2008] – the original and refactored
FMs contain the same configurations) is proved to be sound, complete and mini-
mal. However, the catalog of refactorings that increase configurability (the refac-
tored FM contains at least the same configurations of the original one) is not
proved to be complete.

Since the previously proposed catalog [Alves et al. 2006, Segura et al. 2007,
van Deursen and Klint 2002] is incomplete, FM refactoring may demand intu-
ition to check whether a transformation that they wish to carry out is indeed
a sound refactoring that increases configurability. However, it is difficult, time-
consuming and error-prone to directly reason about FM semantics to check con-
figurability.
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In order to solve this problem, more general refactorings (Refactoring 1)
have to be defined. However, there are no strict guidelines to follow when defin-
ing sound refactorings. FM refactorings then must be proved manually or with
the help of a theorem prover [Gheyi et al. 2006a]. Nevertheless, as it is widely
known, theorem proving is a demanding task and requires sophisticated ex-
pertise. Interactive proofs for proposed FM refactorings may be time consum-
ing [Gheyi et al. 2006a].

Additional issue with proofs rises from that fact that failure to prove FM
transformations is meaningless for stating that they are not refactorings. In
order to show this non-conformance, refactoring designers must discover a con-
figuration (counterexample) that belongs to the initial FM but does not belong
to the resulting FM. It is not straightforward to find counterexamples in FMs
with hundreds of features that may represent thousands of products. Therefore,
refactoring designers may waste time trying to prove transformations that are
not refactorings. In this context, the current approach for proving FM refactor-
ings is not practical. Refactoring designers need a more effective way to increase
the catalog of sound FM refactorings.

3 Feature Models in Alloy

In this section, we specify an efficient encoding of FMs using Alloy. We choose
Alloy due to its tool support, which can perform analysis, because it was appro-
priate of easy to use for formulating our particular type of problems. Moreover,
it contains a functionality (the unsat core) that helps us debugging inconsistent
models [Torlak et al. 2008].

First we give a brief overview of Alloy (Section 3.1). Section 3.2 presents
our encoding that is intended to solve the problems presented in Section 2.3.
The approach is generalized in Section 3.3. Finally, Section 3.4 shows how the
encoding can be used to perform analysis on FMs.

3.1 Alloy Overview

An Alloy model or specification is a sequence of paragraphs of two kinds: signa-
tures that are used for defining new types, and constraints, such as facts. Each
signature denotes a set of objects (similar to an UML class), which are associated
to other objects by relations declared in the signatures. A signature paragraph
introduces a type and a collection of relations, called fields, along with their
types and other constraints on their included values.

The Alloy Analyzer tool [Jackson et al. 2000] allows us to perform analysis on
an Alloy specification in order, for instance, to check whether some properties are
deducible from the model for a pre-defined scope. A scope defines the maximum
number of objects allowed for each signature during analysis. The tool assigns
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a bound to the number of objects of each type. The tool automatically searches
all possible situations up to a given scope. As you increase the scope, the space
of cases to consider grows dramatically. Even a small scope usually defines a
huge space [Jackson 2006]. In the default scope of 3, for example, which assigns
a bound of three to each signature, each binary relation contributes 9 elements
(since each three elements of the domain may or may not be associated with
each three elements of the range) — that is, a factor of 512 combinations (the
number of all possible subsets with 9 elements). So a tiny model with only four
relations may have a space of over a billion cases [Jackson 2006].

The simulations performed by the Alloy Analyzer tool are sound and com-
plete up to a given scope. If there is some instance that contradicts an assertion
up to a given scope, the tool shows a counterexample. However, if the tool does
not find any counterexample, we only know that the property holds on that
scope. We cannot conclude that the formulas declared in the assertion are valid
for a greater scope since the tool is not a theorem prover. By increasing the
scope, however, we can gain greater confidence. In some specific domains, we ex-
actly know the number of instances involved of each signature. In this situation,
we can perform a complete analysis (see Section 4).

3.2 Encoding

A FM encompasses a set of feature names. In our encoding, there are two signa-
tures (FM and Name) and one relation (features) representing all elements of
FMs.

sig FM {
features: set Name

}
sig Name {}
The set qualifier specifies that the relation features associates each element

in FM to a set of elements in Name.
As described before, a configuration contains a set of feature names selected.

We might have declared the signature Configuration with one relation to a set of
selected feature names. In this case, we need to define a scope for this signature.
However, we are constrained by the performance of the Alloy Analyzer regard-
ing number of signatures, so we declare as few signatures as possible. The Alloy
Analyzer searches all possible combinations for a solution by giving all possible
values to all signatures up to a given scope. By decreasing the number of signa-
tures, it decreases the number of combinations, hence increasing performance.
In our theory, since it only contains two signatures, we only need to define the
scope of two signatures. So, a variable (conf ) is then defined for the following
predicates, typed as a set of feature names. In this way, we do not declare a new
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signature. The configuration values are implicitly defined by subsets of the values
given to names. It will generate the subsets of names on demand different from
the previous approach (declaring a signature), in which it is always generated
all possible configurations, hence decreasing performance.

Relationships between features (Figure 1) are declared as Alloy formulas –
one predicate is given for each FM relation. In Alloy, predicates (pred) are
used to package reusable formulas. Given arbitrary feature A and its subfeature
(child) B, next we specify the optional and mandatory relationships between A
and B in predicates. We also state a predicate for the root (root) of a FM. For
a given configuration (conf ), the root feature must be included.

pred optional[A,B:Name, conf:set Name] {
B in conf ⇒ A in conf

}
pred mandatory[A,B:Name, conf:set Name]{

A in conf ⇔ B in conf
}
pred root[A:Name, conf:set Name] {

A in conf
}
The in keyword denotes the subset operator. Suppose that A is related to a

number of subfeatures children. Next we specify the or and alternative relation-
ships in predicates.

pred orFeature[A:Name, children:set Name, conf:set Name] {
A in conf ⇔ some c:children | c in conf
#children > 1

}
pred alternative[A:Name, children:set Name, conf:set Name] {

orFeature[A,children,conf]
#children & conf < = 1

}
The some keyword represents the existential quantifier. The # and & opera-

tors denote the cardinality of a set and the intersection set operator, respectively.
A FM may also contain a set of propositional formulas. A straightforward en-
coding for these formulas is to define an additional relation in FM to link each
FM to a set of formulas, being possibly represented by a Formula signature. In
such encoding method, a signature hierarchy representing all kinds of proposi-
tional formulas (conjunctions, disjunctions) must be specified. Moreover, a recur-
sive predicate that checks whether a configuration satisfies a formula is needed.
Since Alloy 4 does not offer explicit support for recursive predicates, the resulting
specification is not very readable. In addition, as mentioned before, additional
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signatures in general decreases the Alloy Analyzer performance. Therefore, we
devised an encoding method that abstracts formulas’ syntax; they are encoded
based on their semantics, similarly to the relation predicates previously showed
in this section. Notice that all predicates representing FM relationships contain
the variable conf.

3.2.1 Example

Suppose that we would like to represent the FM in Figure 2 using the encoding
presented in Section 3.2. In Alloy, one signature can extend another, establishing
that the extended signature (subsignature) is a subset of the parent signature.
Firstly, we declare its elements; a singleton (one) subsignature, which has exactly
one object, for each FM element. The FM in Figure 2 is represented by M, which
extends FM, and presents 4 features. A singleton signature is declared for each
feature name. Finally we state M ’s features in a fact (fact), which packages
formulas that always hold, such as invariants about the elements.

one sig M extends FM {}
one sig mobilePhone, earphone, mp3, camera extends Name {}
fact MFeatures {

M·features = mobilePhone + earphone + mp3 + camera
}
The + operator denotes the set union operator. Our main goal is to reason

whether a transformation preserves or increases FM configurations. For that,
FM semantics must be specified in Alloy. One approach is to declare an Al-
loy function yielding a set of valid configurations for a FM. By our concern in
improving analysis performance, we cannot declare a semantics function for all
FMs, which could be very inefficient. We then specified a semantics predicate
for each FM. Part of this predicate is fixed for all FMs. The other part depends
on its relationships and formulas. This encoding is systematic, straightforward
for being included into tool support. Next, we explain the encoding through an
example, later generalizing our approach.

For each FM, a predicate is defined, containing all FM formulas directly
translated to their semantics function. Using this approach, there is no predi-
cate checking whether a configuration satisfies a formula. The immutable part
of the semantics predicate introduce the following constraints: every configura-
tion includes a subset of FMs names, and the root must always be included, as
declared next. We call them implicit constraints.

pred semanticsM[conf: set Name] {
conf in M·features
root[mobilePhone,conf]
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Then all relationships of the FM are declared in terms of the predicates
presented in Section 3.2.

optional[mobilePhone,earphone,conf]
orFeature[mobilePhone,earphone+ camera,conf]

After specifying all relationships and implicit constraints, now we specify all
explicit propositional formulas from the model. Figure 2 presents one formula
(earphone ⇔ mp3). Each formula’s operator is directly translated to an equiva-
lent one in Alloy. Every occurrence of a feature name is appended with in conf.
Any propositional formula can be directly translated to Alloy. Next we present
how to encode the previous formula.

earphone in conf ⇔ mp3 in conf
}

3.3 Generalization

In order to systematically specify a FM into Alloy using our encoding, the fol-
lowing steps must be taken:

– create a singleton subsignature for each feature extending from Name;

– specify the semantics predicate containing the relationships (reusing the en-
coding predicates) and formulas (using Alloy operators) in the FM.

In summary, the semantics predicate for any FM must include the two manda-
tory implicit constraints and the translation of all relationships and formulas
declared in the FM. Relationships are specified using the predicates in our en-
coding, and formulas are translated to equivalent ones in Alloy by appending
in conf to each name in the formula. This translation from FM to Alloy is
systematic and can be easily implemented by a tool.

3.4 Analysis

Based on the previous encoding, we can perform automatic analysis on FMs
using the Alloy Analyzer. Figure 2 has exactly one FM and 4 feature names.
Since it is known the exact number of objects for all signatures (FM and Name)
in our encoding, we can perform a complete analysis using the Alloy Analyzer
in the FM of Figure 2.

We apply the two analyses in this section only for better illustrating our ap-
proach. Analysis on a single FM has been tackled by several research contribu-
tions, such as Batory and Benavides et al. [Batory 2005, Benavides et al. 2006a],
so to this respect our approach is not novel. Trinidad et al. and White et
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al. [Trinidad et al. 2008a, White et al. 2008] show how to debug inconsistent
FMs and configurations. The analyses described in this section can provide an
additional benefit: the Unsat Core functionality from the Alloy Analyzer, which
may offer help to avoid extensive debugging when searching for errors in FMs.

Verifying a Configuration

We can use Alloy’s predicates to check whether a specific configuration is
valid for a FM. For example, the following predicate states whether selecting
mobilePhone and earphone is a valid configuration for M.

pred validConfig [] {
semanticsM[mobilePhone+ earphone]

}
run validConfig for 1 FM, 4 Name

The run analysis command must specify a scope for all signatures declared.
Our encoding contains 2 signatures. The previous fragment declares the run
command for one FM (we are analyzing only one FM) and for 4 names (the
FM encoded contains 4 features). Performing analysis on the previous predicate,
with the run command, no valid configuration is yielded. It means that choosing
mobilePhone and earphone does not encompass a valid configuration for M.

In these situations, the Alloy Analyzer tool contains the unsat core function-
ality, which pinpoints an irreducible unsatisfiable core of a declarative specifica-
tion. It highlights constraints that may be the cause of inconsistency. Running
the previous predicate for the previous configuration with additional mp3 yields
validity. Therefore, this is a valid configuration for M.

Finding a Valid Configuration

Furthermore, we can use Alloy Analyzer to automatically provide configurations
for a given FM. For instance, we can perform analysis to show valid configura-
tions of M by running the semanticsM predicate with the run command. The
Alloy Analyzer yields a solution.

run semanticsM for 1 FM, 4 Name

4 Checking Refactoring Soundness

In this section, we explain the main benefit of our encoding: checking whether
general FM refactorings are sound – preserving or increasing configurability – up
to a given scope (Section 4.1). Further, we describe alternative analysis purposes,
such as verifying individual transformations (Section 4.2), followed by an account
about performance of our encoding (Section 4.3).
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4.1 Encoding General Refactorings

Suppose that a refactoring designer proposes Refactoring 2, which allows one to
move an optional subfeature to a parent feature, as long as a specified formula
holds. This formula is modified in the resulting FM. A, B, C and D represent
meta-features.

Refactoring 2 〈move optional feature〉

In order to check soundness, the syntactic relationship between the LHS and
RHS FMs must be specified with Alloy signatures and facts; this is done by
specifying common and constrasting elements. Also, the semantics of each FM
is specified using an Alloy predicate. Only some elements of the specification,
which are called hot spots, must be specified.

Abstract Syntax

Refactoring 2 defines two FMs. The LHS and RHS FMs are represented as fm1
and fm2, respectively. They include four meta-features: A, B, C and D. Singleton
(one) subsignatures represent both FMs and all names.

one sig fm1,fm2 extends FM {}
one sig A,B,C,D extends Name {}
All meta-features belong to both FMs. We specify that A, B, C and D belong

to fm1. Notice that fm1 may contain more features not depicted in the trans-
formations; unspecified elements in the meta-FMs remain the same. Therefore,
in this case, both models have the same features.

fact SyntacticRelationship {
A+ B+ C+ D in fm1·features
fm1·features = fm2·features

}
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Semantics

Regarding semantics, each FM has an implicit constraint: a configuration must
include a subset of the features in the FM. Notice that fm1 declares two optional
relationships between A and C, and B and D, whereas fm2 contains two optional
relationships between A and C, and A and D. The explicit constraints must also
be specified (D ⇒ A and D ⇒ B). The previous constraints are specified in
following predicates.

pred semanticsM1[config: set Name] {
config in fm1·features
optional[A,C,config]
optional[B,D,config]
D in config ⇒ A in config

}
pred semanticsM2[config: set Name] {

config in fm2·features
optional[A,C,config]
optional[A,D,config]
D in config ⇒ B in config

}
As explained in Section 3, the semantics predicate of a FM must include the

root implicit fact and a number of formulas (other than the two formulas specified
before). Notice that they are not specified in semanticsM1 and semanticsM2 ; in
fact, when checking FM refactorings, we do not need to include a formula that
appears in both FMs (this is explained in Section 4.1.1).

Analysis

The analysis is accomplished by means of the following assertion, which tests
the definition of a FM refactoring (Section 2.2). Assertions (assert) formula
paragraphs that declare a set of questions about a model. The following assertion
specifies whether all valid configurations of fm1 are also valid configurations of
fm2. Notice that we are checking a meta-property, which is a valid property for
a number of FMs matching the templates.

assert refactoring {
all config:set Name | semanticsM1[config] ⇒ semanticsM2[config]

}
check refactoring for 2 FM, 40000 Name

Notice that only the scope of FM and Name signatures must be specified.
Each refactoring defines two FM s, representing the LHS and RHS models; there-
fore, the scope of two (2) for FM is defined. We do not know the number of
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features of general FM refactorings, since a FM containing any number of fea-
tures can match the templates. So, in each refactoring the maximum number x

of features considered in the analysis must be stipulated. If the Alloy Analyzer
does not give any counterexample up to a given scope x, we can apply the FM
refactoring to any FM containing less than or equal to x features.

The Alloy Analyzer can check whether the previous assertion is valid (de-
ducible from the model constraints) up to a given scope. This property is checked
in all possible situations containing at most two feature models and 40,000 fea-
ture names. For Refactoring 2 the Alloy Analyzer does not find any counterex-
ample, with a scope of 40,000 features. Consequently, the refactoring is sound
for FMs containing less than 40,000 features and matching the fm1 template.
As in practice FMs with such set of features are rare, Refactoring 2 is safe for
general application.

The previous analysis took less than a second to be accomplished. We also
checked all 19 FM refactorings proposed in our previous work [Alves et al. 2006,
Gheyi et al. 2008]. We checked them using a scope of 10,000 in less than two
hours. None of them yields a counterexample. Our analyses have been performed
on an Intel Centrino Duo system with a 1.6 GHz processor and 1 GB RAM and
running Windows XP.

4.1.1 Unchanged Formulas

The FMs in Refactoring 2 contain the same relationships and formulas, except
for optional relationships and the replaced formula. Relationships are repre-
sented by formulas with the predicates from Section 3.2. Thus a set of formulas
(relationships and explicit formulas) forms in both FMs are not depicted in
Refactoring 2. All elements that are not mentioned in a refactoring remain un-
changed in both FMs. So, strictly, both FMs encodings must consider forms.
In order to specify a complete semantic definition, refactoring designers must
include forms in the semantics predicate for Refactoring 2, as declared next.

pred semanticsM1[config: set Name] {
config in fm1·features
optional[A,C,config]
optional[B,D,config]
D in config ⇒ A in config
forms

}
pred semanticsM2[config: set Name] {

config in fm2·features
optional[A,C,config]
optional[A,D,config]
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D in config ⇒ B in config
forms

}
Nevertheless, we omitted forms in the encoding presented in Section 4.1. In

fact, we do not need to specify forms since it is included in both FMs. The
definition of FM refactoring states that all valid configurations of the LHS FM
must be valid configurations of the RHS FM. If a configuration config satisfies
the semantics of the LHS FM, it must satisfy forms. Since it is satisfied in the
LHS FM, it is also satisfied in the RHS FM. So, they must focus only on the
differences between the two FMs. The same argument explains why refactoring
designers do not need to specify the implicit constraint on the root feature.
Both FMs present the same root, hence the same implicit constraint. In fact,
refactoring designers do not need to specify any constraint that appears in both
FMs of a refactoring template.

4.1.2 Unsound General Transformations

Refactoring designers may define transformations that are intended to be refac-
torings, but are unsound (decreasing configurability). In this context, our ap-
proach leads to counterexamples demonstrating the unsoundness of such trans-
formations.

For instance, refactoring designers may assume that the transformation de-
picted in Figure 3 is a sound refactoring. Since the two pairs of meta-features
(B,C ) and (D,E ) exclude each other, the designer may be compelled to express
the FM as two alternative relationships.

Figure 3: Unsound FM Refactoring

Following our approach, part of the model and the checking assertion are
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constructed as follows.

pred semanticsM1[config: set Name] {
config in fm1·features
orFeature[A,B+ C+ D+ E,config]
B in config ⇒ C !in config
C in config ⇒ B !in config
D in config ⇒ E !in config
E in config ⇒ D !in config

}
pred semanticsM2[config: set Name] {

config in fm2·features
alternative[A,B+ C,config]
alternative[A,D+ E,config]

}
assert wrongRefactoring {

all config:set Name | semanticsM1[config] ⇒ semanticsM2[config]
}
check wrongRefactoring for 2 FM, 5 Name

The Alloy Analyzer yields a configuration as counterexample for the asser-
tion, with features A and B only. This configuration is valid for fm1 of Figure 3,
however invalid for fm2. Therefore, applying the transformation from left to
right is not a refactoring since fm2 does not contain all configurations of fm1.
This counterexample is generated in less than a second. Checking the opposite
transformation is a refactoring is straightforward; we create a similar assertion,
and the tool does not give a counterexample for all possible FM containing up
to 10,000 features. In this case, the analysis takes about 10 seconds to conclude.

One problem of our previous approach – proving refactorings in a theorem
prover [Gheyi et al. 2006a]) – is that, in order to show that a transformation is
not a refactoring, refactoring designers have to manually find a counterexample.
In our approach, the Alloy Analyzer automatically yields counterexamples. The
analyses performed by the Alloy Analyzer are fast, considering the number of
features. In general, it takes a few seconds for FMs containing thousands of fea-
tures. Previously, we had proved 11 general refactorings [Alves et al. 2006] using
a theorem prover. This process is time consuming [Gheyi et al. 2006a]. Using
the approach presented here, after manually translating all transformations to
our encoding, we can automatically check those 11 refactorings using a scope of
10,000 features.
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4.1.3 Generalization

In order to check a general FM refactoring, refactoring designers must concretize
four hot spots from the encoding:

– extend Name with all meta-features in the refactoring;

– specify a syntactic relationship (the features relation) between source and
target FMs;

– specify all relationships and formulas in a predicate defining semantics;

– specify the number of features for analysis.

Figure 4 depicts a general method to specify a general FM refactoring, using
Refactoring 2. Only the hot spots require specification by refactoring designers.
This approach is systematic; a tool can be built to automatically generate a
specification in Alloy from a FM refactoring. The refactoring designers just need
to specify the templates and the tool will detect whether it is a sound FM
refactoring; Alloy knowledge is not required.

4.2 Analysis of Specific Transformations

Besides checking general transformations, our encoding can also be useful verify-
ing specific transformations. Suppose we would like to prove the transformation
depicted in Figure 5 is a refactoring.

In Section 3, we specify a FM that is similar to the LHS FM (fm1 ) in Fig-
ure 5. Next, we specify the RHS FM (fm2 ), following the guidelines explained
in Section 4.1.3. This specification is simpler, as it involves concrete features.

pred semanticsM2[config:set Name] {
config in M1·features
root[mobilePhone,config]
orFeature[mobilePhone,mp3+ camera,config]
optional[mp3,earphone,config]

}
Checking whether fm2 refactors fm1 yields a counterexample (configuration)

including mobilePhone, camera and earphone. This is a valid configuration for
fm1, but it is invalid for fm2. Consequently, the transformation is not a refac-
toring, since it actually decreases the configurability. If we would like to check
the transformation from fm2 to fm1, it does not yield a counterexample. Since
we exactly know the total number of features (4) involved in the transformation,
the analysis performed by the Alloy Analyzer is complete. Therefore, we prove
that fm1 refactors fm2.
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Figure 4: Checking General FM Refactorings

Despite the small size of analyzed FMs, this approach can be useful when
considering FMs containing a large number of features and big refactoring chains;
in the latter, designers may waste time trying to find an appropriate sequence.
If the analyzed transformation is not a refactoring, the automatically generated
counterexample improves developers’ understanding about the transformation,
helping to identify the problem. The counterexample is not possible to yield by
just using the catalog.

4.3 Performance Evaluation

We evaluated the analysis performance of our encoding in an experiment con-
sisted on checking whether a FM contains a valid configuration. We used one real
FM (the electronic shop FM containing 287 features and ECR=15%) and seven
categories of automatically generated FMs containing up to 2,000 of features
with 30% ECR. ECR is the ratio of the number of variables in the propositional
formulas to the number of variables in the feature tree [Mendonca et al. 2008].

All analyses have been performed on an Intel Centrino Duo system with a
1.6 GHz processor and 1 GB RAM and running Windows XP.

702 Gheyi R., Massoni T., Borba P.: Automatically Checking Feature Model ...



Figure 5: Proving a Specific Feature Model Refactoring

Table 1: Summary of Analysis Performance

Table 1 summarizes the results. In each row, we show the time required by our
approach to perform analysis. All analyses were performed in less than 7 seconds.
The same analysis was performed by Mendonça et al. [Mendonca et al. 2008]. In
all cases, our approach outperforms the mentioned work.

Mendonça et al. analyzed 10 FMs in Subject 8. In 80% of the cases, it gave
memory overflow. In 20% of the FMs, the analysis took more than a minute. We
evaluated each of the 10 FMs in less then 7 seconds without memory overflow.
This result may indicate that our encoding scales.

5 Related Work

Batory [Batory 2005] integrates prior results to connect feature diagrams, gram-
mars, and propositional formulas. This connection – similarly to ours – allows
the use of SAT solvers to analyze FMs. He explains in details how to check
whether: (1) a FM is inconsistent, and (2) a configuration is valid for a FM.
Both properties can also be checked in the Alloy Analyzer, as explained in Sec-
tion 3. He also explains how to carry out automatic FM instantiation. The user
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selects a number of features, then the tool yields a configuration suggestion for
the remaining features that satisfies the FM semantics. Our approach can ac-
complish a similar result, by declaring a predicate very similar to the semantics
predicate. The difference is that we add a formula, within the predicate, stating
the features selected by the user. For example, performing analyses on the follow-
ing predicate, the Alloy Analyzer yields valid configurations (if any) for the FM
depicted in Figure 2 when the user selects mobile Phone and earphone. Besides
these properties, the main goal of our work is to show how the Alloy Analyzer
can be used for checking meta-properties (general refactorings). In some cases,
theorem proving is even implied by the complete analyses.

pred partialConfiguration[conf: set Name] {
semanticsM[conf]
mobilePhone+ earphone in conf

}
Thüm et al. [Thum et al. 2009] present and evaluate an algorithm to deter-

mine the relationship between two feature models using satisfiability solvers. The
relationship can be: specialization (reducing products), refactoring (maintaining
products), generalization (including products) or none of these. The analysis in
our work focus on product maintenance or addition, with Alloy and its Ana-
lyzer. From the performance evaluations, similar results can be observed. Our
approach, likewise, can be applied to verify whether a transformation is a spe-
cialization; in this case, the verification aims at testing whether products in the
refactored model are encompassed by the original model. Categorization of FM
edits is a relevant kind of analysis; nevertheless Alloy assertions can go further
in performing other sorts of user-defined analyses, so developers are not lim-
ited to categorizing edits. The generated counterexamples may also be useful for
debugging. In addition, differently from the mentioned work, our work checks
general transformations (with meta-properties), providing additional guidance
to refactoring designers that establish commonly applied refactorings that do
not need to be verified at each application.

Deursen and Klint [van Deursen and Klint 2002] propose a textual language
for describing features. Their language is similar to the FM language consid-
ered in our work, but not encompassing formulas. The semantics, however, is
equivalent to ours. Also, a set of 15 rules relating equivalent FMs are proposed,
which are very similar to bidirectional refactorings [Alves et al. 2006]. Soundness
is informally guaranteed, in contrast with our approach, which uses the Alloy
Analyzer for increasing confidence on the result. We also give a tool support for
checking whether a specific transformation is sound.

Benavides et al. [Benavides et al. 2005] propose an automatic way to ana-
lyze five FM properties, such as the number of possible configurations and an
enumeration of all configurations, and check whether a FM is consistent. They
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present a mapping to transform an extended FM into a Constraint Satisfaction
Problem (CSP) in order to formalize extended FMs using constraint program-
ming. Using our approach, those five properties can also be checked. Their idea
of filters is equivalent to formulas. In our encoding, we give flexibility to the
user to write and check any kind of assertion based on our encoding. Moreover,
Alloy analysis is efficient with respect to the number of features. The tool also
has support for dealing with inconsistent models (Unsat Core). Our theory has
a limited support for integer expressions due to Alloy limitations, in contrast to
their work.

Czarnecki et al. [Czarnecki et al. 2005] introduce cardinality-based feature
modeling as integration and extension of existing approaches. They specify a
formal semantics for FMs and translate cardinality-based FMs into context-free
grammars. Also, Antkiewicz and Czarnecki [Antkiewicz and Czarnecki 2004]
present FeaturePlugin, which is a feature modeling plug-in for Eclipse. The tool
supports cardinality-based feature modeling, specialization of feature diagrams,
and configuration based on feature diagrams. As a future work, we intend to
build a tool support to automatically translate FMs to our encoding in Alloy. In
our work, we can check whether a configuration belongs to a FM. However, we
do not handle cardinality-based FMs. As a future work, we intend to extend our
encoding to include those kinds of constraints. In addition, their formal treat-
ment of FM specialization could be seen as the opposite of our notion of FM
refactoring.

Liu et al. [Liu et al. 2006] propose Feature Oriented Refactoring (FOR),
which is the process of decomposing a (possibly legacy) program into features.
Their solution does not focus on either configuration knowledge nor FMs. Also,
the authors present a semi-automatic refactoring methodology to enable the de-
composition of a program into features. However, FOR focuses on bootstrapping
a SPL from an existing application, rather than a model, as explored in our work.

Schobbens et al. [Schobbens et al. 2007] provide a formal semantics for FMs
(in their work, feature diagrams), in terms of generic formalization of syntax
and semantics. This effort results in a language — Varied Feature Diagrams
(VFD) — that is expressively complete, making it able to express several di-
verse constructs. The language bears resemblance to our encoding result, since
both are FM notation-independent. Although our specification is less expres-
sive (it lacks cardinality, for instance), we have a more specific intent, which is
automatic analysis of refactorings. Several theorems from the mentioned arti-
cle can be completely analyzed with our approach, such as redundancy-related
theorems [Schobbens et al. 2007].

Trujillo et al. [Trujillo et al. 2006] present a case study in feature refac-
toring. They refactor the AHEAD Tool Suite. Feature refactoring is defined
as the process of decomposing a program into a set of features. Hofner et
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al. [Hofner et al. 2006] propose an algebra that is used to describe and analyze
the commonalities and variabilities of a system family. Sun et al. [Sun et al. 2005]
propose an encoding of FMs in Alloy. It is similar to ours, but it does not con-
sider formulas. Moreover, the previous approaches do not aim at checking meta-
properties as in our work. None of those approaches aim at proposing automation
of FM refactoring analysis.

Our prior work on FM encoding in Alloy [Gheyi et al. 2006b] proposes a dif-
ferent encoding method. Still, both encodings allow checking whether a trans-
formation is a refactoring. However, the previous encoding [Gheyi et al. 2006b]
is more detailed than this work. It specifies a single predicate of well-formedness
and semantics for all FMs, different from this work in which we specify one pred-
icate for each FM. Moreover, all first-order logic formulas are specified by signa-
ture hierarchies. As a consequence, it can check additional meta-properties, such
as whether a refactoring preserves FM well-formedness rules. In contrast, the en-
coding presented here is much more efficient for checking FM refactorings since
it contains only two signatures. Almost everything (relations, configurations,
formulas) are specified using Alloy formulas instead of signatures representing
all kinds of formulas. For instance, it can check whether refactorings are sound
up to 10,000 features. However, since the previous encoding [Gheyi et al. 2006b]
declares more signatures and recursive functions using relations, the same time
period is needed to check only up to 30 features.

Segura et al. [Segura et al. 2008] use graph transformations as a suitable tech-
nology and associated formalisms to automate the merging of FMs, in which sev-
eral FMs are merged into a single FM. They present a catalogue of technology-
independent visual rules to describe how to merge FMs and a prototype imple-
mentation of their catalogue using the AGG system. Their FMs may include
feature attributes and cross-tree constraints. In contrast, we provide FM anal-
ysis using an efficient encoding in Alloy. We consider FMs containing any kind
of propositional formula, although feature attributes are not considered. In our
previous work on SPL refactoring [Alves et al. 2006], we present a theory on how
to merge FMs (for each initial FM, we must check whether it is refactored with
respect to the final FM), and some examples of transformations. Also in that pa-
per, we present a special kind of refactoring: bi-directional refactoring, in which
both FMs encompass the same configurations. It is important to mention that
bi-directional refactorings and merging are different kind of transformations. In
this work, we focus on checking FM refactorings (a single FM is transformed into
another FM), which is not tackled by Segura et al. [Segura et al. 2008]. Never-
theless, we can use our encoding for FM merging as well. In this case, the analysis
would entail checking whether the target FM is a valid refactoring for each of
the source FMs.

706 Gheyi R., Massoni T., Borba P.: Automatically Checking Feature Model ...



Czarnecki and Wasowski [Czarnecki and Wasowski 2007] provide an auto-
matic and efficient procedure for generating a FM from a propositional for-
mula. They characterize a class of logical formulas that are equivalent to FMs,
and identify logical structures corresponding to the formulas syntactic elements.
This procedure of generating a FM from a formula can be seen as a kind of FM
refactoring that preserves configurability and improves the quality of the FM
by extracting most of its formulas and expressing them graphically. With minor
changes, our encoding in Alloy can be used to check whether this procedure is
sound; the analysis can be carried out after specifying the initial and final FMs.

Mendonça et al. [Mendonca et al. 2008] propose a compilation technique for
large scale FMs. For that, two heuristics are defined for compiling FMs to Bi-
nary Decision Diagrams (BDD). They evaluated their technique in a benchmark
containing a number of FMs from the industry, literature and automatically
generated ones with up to 2,000 features with 30% ECR, which represents the
percentage of the features used in the propositional formulas. They performed the
compilation technique on a benchmark of 10 automatically generated FM with
2,000 features and 30% ECR. As stated by the authors, the compilation process
is equivalent to check whether the FM is satisfiable. Mendonça et al. evaluated
their two heuristics on this benchmark. They had memory overflows in 98% and
80% of the FMs, for the respective heuristics. It took 93.9 and 58.6 seconds,
respectively, to perform the analysis on the other models with non-overflowed
memory. We used the same benchmark in order to evaluate the analysis perfor-
mance our encoding in Alloy. We performed the satisfiability analysis on the 10
FMs and did not have memory overflows. Each analysis took less than 7 sec-
onds. The authors also mention that they tried to evaluate their technique on
FM containing 5,000 features but they had 100% of memory overflow.

Benavides et al. [Benavides et al. 2006b] also present a performance test, in
this case for three off-the-shelf Java Constraint Satisfaction Problem (CSP),
SATisfiability Problem (SAT) and BDD solvers. They used a benchmark con-
taining FMs up to 300 features. They conclude that using BDDs for deter-
mining satisfiability in a FM is much faster than using SAT or CSP. We
had a different result when using the benchmark presented in Mendonça et
al. [Mendonca et al. 2008], with FMs containing 2,000 features. We also believe
that integrating such proposals in a framework will be the right direction to
follow. As a future work, we intend to use their benchmark to evaluate the
performance of our encoding.

Trinidad et al. [Trinidad et al. 2008a] show how to debug inconsistent FMs.
They propose a technique for automating error treatment of FMs by modeling
the problems of detecting and explaining errors, and providing solutions. They
consider cross-tree constraints (requires and excludes), although they do not
consider any kind of propositional formula, different from our approach.
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White et al. [Trinidad et al. 2008a] present how a constraint solver can de-
rive the minimal set of feature selection changes to fix an invalid configuration.
Moreover they show how this diagnosis CSP can automatically resolve conflicts
between configuration participant decisions.

Our approach has a similar support for debugging FMs and configurations.
In the latter case, we should specify the configuration by explicitly stating them
in propositional formulas. With the Unsat Core functionality, the Alloy Ana-
lyzer 4 allows the user to find a small set of constraints that makes an Alloy
model inconsistent. When performing analysis that does not yield a result when
it is expected to be, the tool contains a functionality that highlights the relevant
portions of the original model that contributed to the unsatisfiability. The tool
guarantees that the constraints making the model inconsistent are in the por-
tions highlighted. So, we have a limited support (we highlight a subset of the
specification but we do not show explanations to avoid them) for error explana-
tion, although the counterexamples and Unsat Core can be seen as explanations
as well. But it is important to mention that this is not our goal in this work. We
focus on proposing an approach for checking general FM refactorings and their
application to specific FMs.

Segura et al. [Segura et al. 2010] show how to generate complex feature
models representing million of products. We can use the FMs generated
to evaluate the analysis performance of our approach. Finally, Benavides et
al. [Benavides et al. 2010] present a literature review on the automated analysis
of feature models 20 years after of their invention.

6 Conclusions

In this article, we propose an efficient encoding of feature models (FM) in Alloy.
We show that this encoding, in conjunction with the Alloy Analyzer, is useful
for automatically checking whether a general or specific FM refactoring is sound.
Moreover, this approach not only tests whether a transformation is a refactoring,
but also shows a counterexample when it is not a refactoring, which is helpful
in finding likely bugs in the transformation.

We have proved a number of FM refactorings. The catalog of FM refactor-
ings that preserve configurability is complete and minimal. It contains fourteen
transformations. However the catalog that increases configurability is not com-
plete. We need much more transformations. We can follow our previous approach
and use the Prototype Verification System (PVS) 1 theorem prover to prove the
new transformations [Alves et al. 2006]. If we use theorem provers, which are not
simple to use, sometimes, they may need the assistance during the proofs. For
example, mostly we need to provide the appropriate values when instantiating
1 http://pvs.csl.sri.com/
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the quantifications during the proofs using PVS. After that, most of them were
done automatically. As a future work, we intend to further evaluate the automa-
tion by using different theorem provers. However, in this work, we prefer to use
the Alloy Analyzer tool. In our approach, it was very simple and easy to use
Alloy. Moreover, we checked the transformations using a scope containing thou-
sands of features. This may be a drawback compared of using provers since we
prove up to a given scope different from provers that prove for all cases. On the
other hand, we check them using a scope which is reasonable in practice. Most
of FMs contains less than 5,000 features. Additionally, the analysis usually takes
a few seconds. Moreover, Jackson [Jackson 2006] states that the Alloy Analyzer
tool usually finds a counterexample using a small scope. When it does not find
a counterexample by increasing the scope, the chance that a counterexample
remains does decrease. The tool performs an exhaustive search. Since we use a
scope containing thousands of features, the tool performs billions of checks. This
may be an indication that our transformations may be correct if we increase the
scope.

Momtahan [Momtahan 2005] establishes the minimum scope an Alloy signa-
ture must have in order to yield proof in the Alloy Analyzer. Since our encoding
does not present universal quantifications, we intend to check whether there is a
minimum scope for Name. This result will be very important in order to prove
FM meta-properties with smaller scopes in the Alloy Analyzer.

We also aim at building a FM refactoring tool, using the
FAMA framework [Trinidad et al. 2008b], or extending the FeaturePlu-
gin [Antkiewicz and Czarnecki 2004] to automatically generate Alloy specifica-
tions from a FM, and incorporate it in the FLIP tool [Soares et al. 2008], which
implements some program refactorings for evolving SPLs.
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