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Abstract: We investigate ambiguity for symmetric difference nondeterministic finite
automata. We show the existence of unambiguous, finitely ambiguous, polynomially
ambiguous and exponentially ambiguous symmetric difference nondeterministic finite
automata. We show that, for each of these classes, there is a family of n-state nondeter-
ministic finite automata such that the smallest equivalent deterministic finite automata
have O(2n) states.
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1 Introduction

The ambiguity of nondeterministic finite automata (NFAs) measures the max-

imum number of different accepting paths for all the words in the language

accepted by the NFA. An NFA is said to be k-ambigious if every word in the

language is accepted with at most k different accepting paths [Leung(1998)].

The bound on the number of different accepting paths then indicates whether a

given NFA is unambigious (k = 1), finitely ambigious (k is a positive integer),

polynomially ambigious (the bound is polynomial in the length of the input

word) or exponentially ambigious. The concept of ambiguity has been investi-

gated extensively (for example, see [Leung(2005), Ravikumar and Ibarra(1989),

Weber and Seidl(1991)]).

There are a number of questions related to ambiguity. Firstly, of interest is

showing the existence of families of NFAs such that the family exhibits a specific

type of ambiguity. Secondly, one would wish to demonstrate for each type of

ambiguity, the existence of a family of NFAs which belongs strictly to that class.

Thirdly, it is interesting to consider the descriptional complexity of the fam-

ily of NFAs of the given ambiguity [Leung(2005), Ravikumar and Ibarra(1989)].

These questions have mostly been solved for standard NFAs. However, ambi-

guity in symmetric difference NFAs (⊕-NFAs) has not yet been investigated.

Moreover, ⊕-NFAs were recently shown to have interesting properties as far as
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descriptional complexity is concerned. In particular, the ⊕-NFAs can succinctly

represent languages with cyclic properties [Van Zijl(2004)]. Hence, in this work

we consider ambiguity for ⊕-NFAs, and in particular the first and third ques-

tions above, namely, the existence of families of ambigious ⊕-NFA, as well as

their descriptional complexity in each case. We shall demonstrate for each ambi-

guity class, a family of n-state ⊕-NFAs such that their minimal equivalent DFAs

have O(2n) states.

2 Definitions

We assume that the reader has a basic knowledge of automata theory, as for

example in [Sipser(1997)]. We briefly define the concepts used in the rest of this

work.

Definition 1. DFA: A deterministic finite automaton (DFA) M is a 5-tuple

M = (Q,Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is a finite

non-empty set of alphabet symbols, q0 ∈ Q is the start state and F ⊆ Q is a set

of final states. The transition function is δ : Q×Σ → Q.

Definition 2. Acceptance: Let Σ∗ denote the Kleene closure of Σ, and let

w = w0w1 . . . wk be a string in Σ∗. Then a given DFA M = (Q,Σ, δ, q0, F )

accepts the string w iff there is a sequence of states s0, s1, . . . , sk+1, where si ∈ Q

for all 0 ≤ i ≤ k + 1, such that s0 = q0, sk+1 ∈ F , and δ(si, wi) = si+1, for all

0 ≤ i ≤ k.

In the definition of acceptance, the sequence of states s0, s1, . . . , sk+1 is called

an accepting path for the string w. Also, the set of all strings (words) accepted

by a DFA forms the language accepted by the DFA.

It is often of interest to consider classes of words with particular properties.

In our case, we are interested in so-called primitive words:

Definition 3. Primitive word: For a wordw = w0w1 . . . wk, the string w0 . . . wi

is a prefix of w, for every i such that 0 ≤ i ≤ k. A word w is called primitive if it

cannot be written as st where s is a prefix ofw and t > 1[Domaratzki et al.(2002)].

In contrast to a DFA, an NFA allows multiple choices for each transition. Let

2Q indicate the power set of Q. Then we define an NFA as follows:

Definition 4. NFA: A nondeterministic finite automaton (NFA) M is a 5-tuple

M = (Q,Σ, δ,Q0, F ), where Q is a finite non-empty set of states, Σ is a finite

non-empty set of alphabet symbols, Q0 ⊆ Q is the set of start states and F ⊆ Q

is a set of final states. The transition function is δ : Q×Σ → 2Q.

Acceptance for an NFA is defined as follows:
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Definition 5. NFA acceptance: An NFA accepts a word w ∈ Σ∗ if there is

at least one accepting path s0s1 . . . sk+1 for w = w0w1 . . . wk, where s0 ∈ Q0,

sk+1 ∈ F and si+1 ∈ δ(si, wi) for all 0 ≤ i ≤ k.

Note that there can be many paths on the given word w, as there is a choice

of several subsequent states at each state. The combination of all the possible

paths for a given string w forms an acyclic graph. This graph is known as the

execution tree. The root of the execution tree is a start state of the NFA. The

nodes on level i + 1 are given by calculating δ(qj , wi) for every node qj on level

i. Note that the different branches of the execution tree are independent of each

other (this will not be the case for the execution tree of a ⊕-NFA).

Definition 6. Execution tree (NFA): Let M = (Q,Σ, δ, q0, F ) be an NFA.

Define G = (V,E) as the acyclic graph such that V = Q, and q0 ∈ V is the root

of G. Let w = w0w1 . . . wk ∈ Σ∗, and consider any associated sequence of states

s0, s1, . . . sk+1 such that si+1 ∈ δ(si, wi), for all 0 ≤ i ≤ k. Then (si, si+1) ∈ E

and we say that si is a node on level i.

The class of NFAs cannot accept more languages than the class of DFAs:

Theorem 7. Subset construction: Any NFA M = (Q,Σ, δ, q0, F ) has an

equivalent DFA M ′ = (Q′, Σ, δ′, q0, F
′) which accepts the same language, and

which can be found by using the subset construction: Let Q′ = 2Q. Then, for any

A ⊆ Q,

δ′(A, σ) =
⋃
q∈A

δ(q, σ) .

Also, A ∈ F ′ iff there is at least one q ∈ A such that q ∈ F . That is, a state

A in the DFA is a final state if there is at least one element in A which is a final

state in the original NFA.

Proof. See [Sipser(1997)].

NFAs, however, do have an advantage over DFAs, in that there are regular

languages that can be recognized by n-state NFAs, but for which the smallest

DFA recognizing that language requires 2n states. This difference in descriptional

complexity is called succinctness:

Definition 8. Succinctness: An NFA M = (Q,Σ, δ, q0, F ), with |Q| = n, is

called succinct if its equivalent minimal DFA requires at least O(2n) states.

We now consider symmetric difference NFAs (⊕-NFAs) – for more detail,

see for example [Dornhoff and Hohn(1977), Van Zijl(2004)]. We use symmetric

difference here in the normal set-theoretic sense, so that A⊕B = (A∪B)\(A∩B)
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for any two sets A and B. Then, a ⊕-NFA is simply an NFA, except that the

subset construction is applied using symmetric difference:

δ′(A, σ) =
⊕
q∈A

δ(q, σ) .

This seemingly simple change in the subset construction has far-reaching im-

plications for the behavioural and language-theoretic properties of NFAs versus

⊕-NFAs. Given an NFA M = (Q,Σ, δ, q0, F ) and ⊕-NFA M ′ = (Q,Σ, δ, q0, F )

with identical definitions, their execution trees are typically different, and they

accept different languages. Hence, the behaviour of ⊕-NFAs with respect to am-

biguity, is not the same as for NFAs.

Acceptance for a ⊕-NFA is again defined as for traditional NFAs 1. However,

execution trees for ⊕-NFAs require a new definition:

Definition 9. Execution tree (⊕-NFA): Let M = (Q,Σ, δ, q0, F ) be an ⊕-

NFA. Define G = (V,E) as the acyclic graph such that V = Q, and q0 ∈ V is

the root of G. Let w = w0w1 . . . wk ∈ Σ∗, and consider all associated sequences

of states sj0, s
j
1, . . . , s

j
k+1

such that si+1 ∈ δ(si, wi), for 1 ≤ j ≤ m. If m is even,

then (si, si+1) /∈ E.

We note that the definition of the execution tree above implies that the

different accepting paths interact in the execution tree, in the sense that there can

only ever be an odd number of occurrences of a node on a given level – if an even

number occurs, then all these nodes are cancelled out and their corresponding

paths terminate on the previous level.

⊕-NFAs with one alphabet symbol (unary ⊕-NFAs) have been investigated

extensively, as these machines are equivalent to linear feedback shift registers

(LFSRs) [Dornhoff and Hohn(1977)] and have many practical applications such

as random number generation and perfect hashing [Chaudhuri et al.(1997)]. As

we make extensive use of unary ⊕-NFAs, we now give a short summary of their

properties (for more detail, see [Dornhoff and Hohn(1977), Van Zijl(2004)]).

For an n-state unary ⊕-NFA, an n× n binary matrix A = [aij ]n×n over the

Galois field GF(2) can be used2 to encode its transition function so that for

every state qi ∈ Q,

aji =

{
1, if qj ∈ δ(qi, a)

0, otherwise .

1 Another variation [Van Zijl(2004), Vuillemin and Gama(2009)] on acceptance is pos-
sible when acceptance is defined to reflect the parity characteristic of the symmetric
difference operation. That is, a string is accepted if there is an odd number of ac-
cepting paths.

2 GF(2) has the usual binary addition and multiplication, but with the property that
1 + 1 = 0. In other words, it behaves like an XOR gate.
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The powers of A then represent the successive states of the equivalent DFA.

Any such matrix A also has a characteristic polynomial c(X) = det(A − IX).

The properties of c(X) determine the cyclic behaviour of the ⊕-NFA. In partic-

ular, if for an n-state ⊕-NFA its characteristic polynomial c(X) is primitive and

irreducible, then it is known that the corresponding DFA has 2n − 1 states.

Consider the following example which contrasts a unary NFA with a unary

⊕-NFA.

Example 1. Let M = ({q0, q1, q2, q3}, {a}, δ, {q0}, {q3}) be defined as below:

q0 q1 q2 q3

a a a a

a a a

a

a

Here, δ is given by

δ a

q0 {q0, q1}

q1 {q1, q2}

q2 {q2, q3}

q3 {q0, q1, q3} .

When we consider M to be an NFA, its equivalent DFA is given by

q0 q0, q1 q0, q1, q2 q0, q1, q2, q3

a

a a a

The language accepted by M is then L∪ = {ak | m ≥ 3}.

On the other hand, consider the situation where M is a ⊕-NFA. Then appli-

cation of the subset construction results in the DFA below:

q0 q0, q1 q0, q2 q0, q1, q2, q3 q1 q1, q2 q1, q3

q0, q2, q3q2q2, q3q0, q1, q2q0, q3q3q0, q1, q3q1, q2, q3

a a a a a a

a

aaaaaaa

a

Thus, the language accepted by the ⊕-NFA M is given by

L(M) = {a15k+i | i ∈ {3, 6, 7, 9, 11, 12, 13, 14} and k ≥ 0} .
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The execution tree for the NFA M on the string aaaa is given in Figure 1,

while the execution tree for M as a ⊕-NFA is given in Figure 2.

Note now that the symmetric difference of the nodes on a given level rep-

resent the corresponding node in the equivalent DFA. This also means that all

occurrences of a given node label, on a specific level in the execution tree, are

cancelled out if there is an even number of occurrences of that node label on

that level. On the other hand, if there is an odd number of occurrences, then

none cancel out on that level. For example, on the last level in Figure 2, there

are two occurrences of q0, and hence all q0’s are cancelled out. But since there

are three occurrences of q1, none of the q1’s are cancelled out.

q0

q0

q0

q0

q0 q1

q1

q1 q2

q1

q1

q1 q2

q2

q2 q3

q1

q1

q1

q1 q2

q2

q2 q3

q2

q2

q2 q3

q3

q0 q1 q3

Figure 1: Execution tree for NFA M on string aaaa.

q0

q0

q0

q0

q0 q1

q1

q1 q2

q1

q1

q1 q2

q2

q2 q3

q3

q0 q1 q3

Figure 2: Execution tree for ⊕-NFA M on string aaaa.
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�

We now give an example to illustrate the ⊕-NFA specific properties men-

tioned above.

Example 2. Let M be the ⊕-NFA as defined in Example 1 above. Then the tran-

sition function δ is encoded into the matrix A below:

A =

⎡
⎢⎢⎣
1 0 0 1

1 1 0 1

0 1 1 0

0 0 1 1

⎤
⎥⎥⎦ .

Some simple algebraic calculation shows that c(X) = det(A−IX) is given by

c(X) = X4+X+1. It is known that this polynomial is primitive and irreducible.

Hence, the DFA equivalent to M should have a cycle of length 24−1 = 15 states.

As shown in Example 1 above, this is indeed the case. The reader may also note

that this DFA is minimal.


�

We finallly give formal definitions for the various classes of ambiguity.

Definition 10. Unambigious (UNA,⊕-UNA): An NFA or ⊕-NFA is said

to be unambigious if every word in the language is accepted with at most one

accepting path.

Definition 11. Finitely ambigious (FNA,⊕-FNA): An NFA or ⊕-NFA is

said to be finitely ambigious if every word in the language is accepted with at

most k accepting paths, where k is a positive integer.

Definition 12. Polynomially ambigious (PNA,⊕-PNA): An NFA or ⊕-

NFA is said to be polynomially ambigious if every word in the language is ac-

cepted with at most k accepting paths, where k is bound polynomially in the

length of the input word.

Definition 13. Exponentially ambigious (ENA,⊕-ENA): An NFA or ⊕-

NFA is said to be exponentially ambigious if every word in the language is

accepted with at most k accepting paths, where k is bound exponentially in the

length of the input word.

We now demonstrate the existence of ambigious ⊕-NFAs.

3 Ambiguity for ⊕-NFAs

In the following sections, we show the existence of families of unambiguous ⊕-

NFAs, finitely ambiguous ⊕-NFAs, polynomially ambiguous ⊕-NFAs and finally

880 van Zijl L., Geldenhuys J.: Descriptional Complexity ...



q0 q1 q2

a

a a

a

Figure 3: ⊕-NFA Mu
3 .

exponentially ambiguous ⊕-NFAs. Note that each example in essence provides a

method for constructing an n-state ⊕-NFAs with the required ambiguity. None

of the demonstrated families are succinct (that is, the equivalent minimal DFA

does not have O(2n) states), except in the case of the ⊕-UNA. We address the

issue of succinctness in Section 4.

3.1 Unambiguous unary ⊕-NFAs

Consider a unary ⊕-NFA Mu
n , such that Mu

n = (Q,Σ, δ, q0, F ), where Q =

{q0, q1, . . . , qn−1}, Σ = {a}, the start state set is {q0} and the final state set is

{qn−1}. Define the transition function δ as follows (see Figure 3 above):

δ(qi, a) =

⎧⎨
⎩

{q0, q1}, if i = 0,

{qi+1}, if 0 < i < n− 1,

{q0}, if i = n− 1 .

As an example, the execution tree for Mu
3 on the string aaaaaaa is shown in

Figure 4.

We now show that Mu
n is unambiguous.

Theorem 14. Mu
n is a ⊕-UNA.

Proof: If there is at most one final state on level k of an execution tree, then

there is only one path for a string of length k to be accepted. If this holds for

every k, then all the words in the language have only one acceptance path and by

definition the ⊕-NFA is unambiguous. The proof follows by induction, to show

that there is at most one final state on each level.

Base case: Let k = 0. Since q0 �∈ F , the base case holds.

Induction case: Assume that there is at most one final state (that is, qn−1)

on level k. We now show that there is at most one final state on level k + 1.

We first note that the nodes on every level of the execution tree are all

distinct. This always holds, as the execution tree forms branches q0 → q1 →

. . . → qn−1, each of which is offset by one level which starts when q0 splits into
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q0

q0

q0

q0 q1

q2

q0

q1

q2

q0

q0 q1

q2

q0

q1

q2

q0

Figure 4: Execution tree of Mu
3 on string aaaaaaa.

q0 and q1. The exception occurs when q0 and qn−1 appear on the same level

– in that case, the next level has two occurrences of node q0. But these two

occurrences of q0 cancel out under symmetric difference, and the other nodes

are still distinct. It therefore follows that there can be only one occurrence of

any node on any level.

Hence, if there is at most one occurence of qn−1 on level k, then there can

be at most one occurrence of qn−1 on level k + 1, and only if node qn−2 appear

in level k.

The result holds by induction. 
�

We now wish to show that Mu
n is a succinct ⊕-UNA. To that end, we first

establish the following lemma.

Lemma15. Let M be any n-state unary ⊕-NFA with one final state, and char-

acteristic polynomial c(X) which is primitive and irreducible. Then its corre-

sponding DFA is minimal.

Proof. Let M = (Q,Σ, δ, q0, F ) be a unary ⊕-NFA, with |Q| = n and |F | = 1,

such that its characteristic polynomial c(X) is primitive and irreducible. Let

M ′ = (Q′, Σ, δ′, q′0, F
′) be its corresponding DFA. Then M ′ has a cycle of length

2n − 1 states (from [Dornhoff and Hohn(1977), Van Zijl(2004)]), which includes

all possible subsets of states from Q, except the empty subset. This means that

there are exactly 2n−1 final states and 2n−1 − 1 nonfinal states in the cycle of

the DFA.

Encode the final states in the cycle of M ′ with ones, and the non-final states

with zeroes to obtain a binary sequence w. Then M ′ is minimal only if w is a

primitive word [Domaratzki et al.(2002)]. Suppose that w is not primitive. Then

w = sm for some prefix s of w, and some integer m > 1. Hence, if p = |s|, then
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q0q1 q2 q3

a a a

a

a

aa

a a

a

Figure 5: ⊕-NFA Mf
4 .

p × m = |w|. But |w| is odd, and therefore both p and m must be odd. Let k

be the number of ones in s. Then k ×m = 2n−1. But this means that the odd

number m is a factor of 2n−1, which is impossible. This is a contradiction, and

hence w must be primitive and therefore M ′ must be minimal.


�

Theorem 16. Mu
n is a succinct ⊕-UNA.

Proof. Mu
n is an n-state unary ⊕-NFA. To show succinctness, it is necessary

that its equivalent minimal DFA has O(2n) states. Consider the characteristic

polynomial c(X) for Mu
n . Then, for every n such that c(X) is primitive and irre-

ducible, the subset construction for Mu
n yields an equivalent DFA with exactly

2n− 1 states. But Mu
n has only one final state. Hence from Lemma 15, it follows

that the DFA equivalent to Mu
n is minimal, and therefore Mu

n is succinct.


�

3.2 Finitely ambiguous unary ⊕-NFA

Let Mf
n = (Q,Σ, δ, q1, F ), with F = {qn−2}, and let {qi} be taken to mean the

complement of qi over Q, so that {qi} = Q \ qi. The transition function δ is

defined as below:

δ(q0, a) = {q0}

δ(qi, a) = {q0, qi} for 0 < i < n− 1

δ(qn−1, a) =

{
{q0, qn−2, qn−1} for even n

{qn−2, qn−1} for odd n

An example of Mf
4 is given in Figure 5.

The execution tree for Mf
4 is given in Figure 6. It is easy to see that Mf

4 has

a constant ambiguity of 3. This observation holds for all values of n > 3: if the

root q1 is at level 0, then from level 3 onwards, there will always only be one

occurrence of q1 and three occurrences of qn−2.
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q1

q0

q1 q2

q0 q2

q0 q2

q3

q0 q2

q0 q2

q3

q1

q0

q1

q0 q1

q2

q0 q2

q3

q1

Figure 6: Execution tree of Mf
4 .

q1 q0, q1 q1 q1, qn−2

a

a a a

Figure 7: DFA for ⊕-FNA Mf
n .

Theorem 17. Mf
n is a ⊕-FNA.

Proof: Directly from the definition of the transition function: δ(q1, aa) leads

to two branches with one branch ending in q0, and the other branch ending

in {q0, q1}, on level two of the execution tree. But as δ(qi, a) = {q0, qi}, for

i �= 0, i �= n−1, the symmetric difference ensures that these two branches simply

result in one occurrence of q1 and three occurrences of the final state qn−1. The

same argument holds for all succeeding levels of the execution tree. 
�

We note that Mf
n is not succinct for any values of n. In fact, the DFA has

four successive states, with a self-loop on the final state, for all values of n (see

Figure 7). In Section 4 we develop a method to take a unary ⊕-NFA of any type

of ambiguity, and create a binary ⊕-NFA with the same ambiguity, but which

is succinct. Hence, we show the existence of a succinct ⊕-FNA in Section 4.

We now consider polynomial ambiguity.

3.3 Polynomially ambiguous unary ⊕-NFA

Let Mp
n be a ⊕-NFA with start state set {q0}, final state set {qn−1}, and tran-

sition function as below:
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δ(qi, a) =

⎧⎨
⎩

{q1, q2, . . . , qn−1}, if i = 0,

{qi, qn−1}, if 1 ≤ i ≤ n− 2

{qi}, if i = n− 1.

Figure 8 illustrates the ⊕-NFA Mp
n, and Figure 9 shows the execution tree

of Mp
4 .

q0

q1 q2 qn−2 qn−1. . .

. . .
a a a a

a a a a

a

a

a

Figure 8: ⊕-NFA Mp
n.

Theorem 18. Mp
n is a ⊕-PNA for all even n.

Proof: It is sufficient to note that the pattern of states in the execution tree of

Mp
n ensures that the number of occurrences of state qn−1 increases by n−2 more

for every next level. This is due to the fact that states q1 to qn−2 each add one

more occurrence of qn−1 for the next level. Therefore, level k+1 has n− 2 more

occurrences of qn−1 than level k, and a word of length m has m(m−2)− (m−3)

different accepting paths. 
�

q0

q1

q1

q1

q1 q3

q3

q3

q3

q3

q3

q2

q2

q2

q2 q3

q3

q3

q3

q3

q3

q3

q3

q3

q3

Figure 9: Execution tree of Mp
4 .
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As for ⊕-FNAs, we postpone the presentation of a succinct ⊕-PNA to Sec-

tion 4.

3.4 Exponentially ambiguous unary ⊕-NFA

Let M e
n be a ⊕-NFA with start state set {q0} and final state set {q0}, and

transition function δ given by

δ(qi, a) =

{
{q0, q1, q2, . . . , qn−1}, if i = 0,

{qi}, otherwise.

Figure 10 illustrates M e
3 .

q0

q1 q2

a

a

a

a

a a

a

Figure 10: ⊕-NFA M e
3 .

Theorem 19. M e
n is exponentially ambiguous.

Proof: Again, by observation of the execution tree. The nodes on alternate levels

follow a pattern with k occurrences of q0 on level i followed by k occurrences of

{q0, q1, . . . , qn−1}. 
�

4 Finding succinct examples of ambiguous ⊕-NFAs

All the ⊕-NFAs in the previous section were unary ⊕-NFAs. In order to give

succinct examples of ⊕-NFAs for each type of ambiguity, we use those unary

definitions to construct binary ⊕-NFAs which are succinct for all n, by a method

first illustrated in [Van Zijl(2005)]. Recall that for a unary ⊕-NFA M , the suc-

cinctness depends on whether the characteristic polynomial c(X) associated with

M is primitive and irreducible over GF(2) or not. There is no pattern for a poly-

nomial to be succinct for all n, and hence we cannot give a single ⊕-NFA which

will be succinct for all n. We force succinctness in the general case by using a

binary ⊕-NFA such that on one alphabet symbol we force succinctness, and on

the other alphabet symbol we force the required ambiguity behaviour.
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Figure 11: Execution tree of M e
3 .

4.1 Forcing succinctness for binary ⊕-NFAs

We briefly recap the method described in [Van Zijl(2005)] – given a unary ⊕-

NFA M , how do we construct an n+1-state binary ⊕-NFA M ′ which is succinct

and preserves the inherent behaviour of M?

Step 1: Construct a unary n-state ⊕-NFA M1 with Σ = {a} such that its corre-

sponding characteristic polynomial is primitive and irreducible. Then M1 has a

cycle of length 2n − 1. Number the states of M1 from q0 to qn−1.

Step 2: Extend M1 with an additional state qn, and choose δ(qn, a) = ∅. Note

that qn is not a reachable state in M1.

Step 3: Consider the original ⊕-NFA M over Σ = {b}. Remember that M has a

given desired property – for example, M could be unambigious. Now extend M

with the additional state qn, and choose δ(qn, b) = qn.

Step 4: Introduce qn into the transition function of M without changing its

behaviour. For example, let qn ∈ δ(q0, b), but in no other transitions from q1 to

qn−1.

Step 5: Merge M and M1 into one ⊕-NFA M ′ over Σ = {a, b}, and choose the

final state set to be {qn}.

It is easy to see M ′ will have a cycle of length 2n−1 over the alphabet symbol

a. However, a final state can be reached only by a word of the form akb, for some

k ≥ 0. Hence, to accept a word of the form akb, requires at least k + 1 states

in the DFA. Therefore, the minimal DFA equivalent to M ′ has at least 2n − 1

states, and hence M ′ is succinct.

In Example 1 we showed a 4-state unary ⊕-NFA, which is succinct. If we

expand the same pattern to an n-state ⊕-NFA, we get

M = ({q0, q1, . . . , qn−1}, {a}, δ, {q0}, {qn−1}):
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q0 q1 . . . qn−1

a a a

a a a

a

a

Here, δ is given by

δ a

q0 {q0, q1}

q1 {q1, q2}
...

...

qn−1 {q0, q1, qn−1} .

M then has characteristic polynomial Xn + X + 1, which is succinct for

certain values of n (such as n = 4 and n = 5). We use this ⊕-NFA to force the

succinctness of the ⊕-NFAs given in the previous sections.

Firstly, the ⊕-UNA of Section 3.1 has already been shown to be succinct.

For each of the ⊕-FNA, ⊕-PNA and ⊕-ENA given previously, we now use the

method described above to change each Mn into an M ′

n that is succinct.

Consider again the ⊕-FNA Mf
n of Section 3.2: Let Mf

n = (Q,Σ, δ, q1, F ),

with F = {qn−2}, and δ defined as below:

δ(q0, a) = {q0}

δ(qi, a) = {q0, qi} for 0 < i < n− 1

δ(qn−1, a) =

{
{q0, qn−2, qn−1} for even n

{qn−2, qn−1} for odd n
.

Based on the method above, we construct M ′

n+1 as

M ′

n+1 = (Q, {a, b}, δ′, {q1}, {qn})

with δ′ given by

δ′ a b

q0 q1 {q0}

qi qi+1 {q0, qi} for 0 < i < n− 1

qn−1 {q0, qn−1}

{
{q0, qn−2, qn−1} for even n

{qn−2, qn−1} for odd n

qn ∅ qn .

We show the DFA equivalent to M ′

3 in Figure 12.
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q0 q1 q2 q0, q2 q0, q1, q2 q0, q1 q1, q2

q1, q2, q3 q0, q2, q3 ∅

a a a a a a

b b

a

a, b

b

a

a b b

Figure 12: DFA for M ′

3.

It is easy to see that the DFA in Figure 12 is minimal, as for any string of

the form an−1b to be accepted, n states are required.

It is trivial to apply the same construction to both the ⊕-PNA of Section 3.3

and the ⊕-ENA of Section 3.4 to obtain succinctness in those cases.

5 Conclusion

We showed the existence of families of unambiguous, finitely ambiguous, poly-

nomially ambiguous and exponentially ambiguous ⊕-NFAs. We also showed suc-

cinctness for each of these classes. That is, for each of these classes, there is a

family of languages such that the smallest DFA equivalent to the given n-state

⊕-NFA, has O(2n) states. It remains to show families of ⊕-NFAs that strictly

belong to each ambiguity class.

Another issue that we intend to investigate, concerns the differences between

NFAs and ⊕-NFAs as far as ambiguity is concerned. In particular, we intend to

investigate the structural ambiguity of ⊕-NFAs.
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