
Software Process Definition: a Reuse-based Approach

Ahilton Silva Barreto
(COPPE/UFRJ - Universidade Federal do Rio de Janeiro

Caixa Postal 68511 – CEP 21945-970 – Rio de Janeiro, Brazil
ahilton@cos.ufrj.br)

Leonardo Gresta Paulino Murta

(Instituto de Computação – Universidade Federal Fluminense (UFF)
Niterói, RJ, Brazil

leomurta@ic.uff.br)

Ana Regina Cavalcanti da Rocha
(COPPE/UFRJ - Universidade Federal do Rio de Janeiro

Caixa Postal 68511 – CEP 21945-970 – Rio de Janeiro, Brazil
darocha@cos.ufrj.br)

Abstract: Software product development has been taking advantage of reuse techniques for
some decades. Concepts like software components, architectures, and product lines have been
successfully applied in several contexts to develop software products, although some
difficulties are still faced. Software processes have strong similarities with software products,
and some researchers argue that they are software too. Therefore, we believe that software
processes may take advantage of some benefits expected by the use of existing software
products reuse techniques, adapted to software processes. It is also possible that similar
difficulties are faced. This paper presents a software process definition approach based on reuse
techniques, which aims at making some of the benefits expected by software product reuse
available to software process definition activities. Concepts such as process components,
architectures, process lines and features are described and used. We describe the proposed
approach, tools developed to support it, and also results of a survey on the expected benefits
and difficulties on software process reuse in the point of view of experienced software process
engineers.

Keywords: Software Process Definition, Software Process Lines, Software Process Reuse,
Software Process Components
Categories: D.2.0, D.9, D.2.13, K.6.3

1 Introduction

Several works described in the literature argue that software processes have strong
similarities with software products. Osterweil [1987], for instance, established that
software processes are software too, and just like software, could have its
requirements specified, could be modeled, developed, tested, and reused. There are
also works in the literature that describe similarities between software process reuse
and software product reuse. Kellner [1996] argues that knowledge of software product
reuse techniques could be applied to software processes as well. Some examples of
such knowledge are: architectures populated with reusable process elements, to

Journal of Universal Computer Science, vol. 17, no. 13 (2011), 1765-1799
submitted: 8/2/10, accepted: 29/8/11, appeared: 1/9/11 © J.UCS

represent the main structure of software processes and make their definition and
tailoring easier; repository management infrastructure to store, catalog, search,
retrieve, and access reusable process elements; configuration management of reusable
process elements, including their version control and change management; etc.

Software process definition is not a simple task; it demands experience and
involves knowledge from several aspects of software engineering. There are many
factors to consider, such as: needs and characteristics of the organization or project,
techniques and methods to use, adherence to standards and reference models, business
constraints (schedule, costs, etc), among others. Therefore, this task usually requires a
highly skilled professional which is able to reconcile all these factors. Often, software
organizations do not have this kind of professional available, and usually need help
from more experienced consultants.

An even more complex scenario is when processes need to be defined not for one,
but for several different organizations. This is a common requirement for software
process implementing organizations (hereafter SPIOs). A SPIO is a consultant
organization that is hired by other organizations intending to define, deploy, or
improve their software processes. In Brazil, the concept of SPIO has gained
importance with the publication of MPS.BR [SOFTEX, 2009], a Brazilian reference
model in which this kind of organization is very important. SPIOs are authorized by
the MPS.BR coordinators to support software process improvement on other
organizations. Most of the improvement initiatives aiming to achieve MPS.BR
maturity levels were supported by SPIOs, and today there are about 200 organizations
successfully appraised in this model. It can give us an idea of the relevance of the
SPIOs and the need to properly support them.

However, in spite of these complex scenarios, if knowledge belonging to
experienced process engineers could be made explicit, formalized, and available to
other professionals, it would probably be possible to reuse this knowledge in an
effective way. The interplay of software processes and software reuse is wide. SPIOs
usually need to define processes to several different organizations. Although each
organization has its own characteristics and peculiarities (that will probably lead to
unique processes), many characteristics of the processes are similar to previously
defined processes by the same SPIO to other organizations, which is a good process
reuse opportunity. Software development organizations can also reuse previously
defined processes in different projects with similar characteristics. Finally, software
projects can also contribute to reusable process definitions through the collection of
data and lessons learned from the enactment of processes. Although SPIOs and
organizations may always perform some kind of ad-hoc reuse (e.g., they may adapt
and reuse process descriptions or templates, performing a kind of oportunistic reuse,
similarly to what happens in product development, in which developers try to copy-
and-paste existing code), it is expected that a defined reuse approach will leverage
process reuse in these contexts, optimizing the gains of each reuse oportunity.

To accomplish the reuse of software process related knowledge, reuse techniques
have been adapted from traditional software product development to the context of
software process definition [Kellner, 1996; Washizaki, 2006b; Reis et al., 2001].
Concepts like components, architectures, product lines, and patterns have been
adapted to the context of software processes, as we describe in Section 2.

1766 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

In this paper we present a software process definition approach that aims at
catching the reuse opportunities that exist in the different contexts in which processes
need to be defined (software processes implementing organizations, software
development organizations, and software projects), through the use of reuse
techniques. We adapt some concepts from software product reuse expecting that some
of their expected benefits also apply to software processes reuse, such as less rework,
increased quality, and less time required to perform the activities. However, we also
consider that some of the difficulties faced by software product reuse initiatives may
also apply to processes, such as lack of quality of the reusable elements, lack of
adequate supporting tools, and high costs to deploy the reuse initiatives. In our
approach, knowledge acquired from more experienced software process engineers and
from processes enactment can be made available for reuse in order to define more
adequate processes, as described in the next Sections. Furthermore, we intend to make
process definition an easier activity, even for less experienced professionals. Thus,
reusable process elements have to be simple enough to allow a professional trying to
define processes be able to do it, defining intelligible processes without having to
worry with excessive formalisms or complexity. In order to define the main aspects of
our approach, some additional requirements were also considered:

1. The need to consider legacy processes – The existence of legacy software
processes, i.e., software processes that were already defined, that would have
to be made reusable should be considered. Therefore, the definition of the
concepts used by our approach and their interrelationships had to be
performed in a way that legacy processes could be modelled without
modification and could be refactored to support reuse in the future. In other
words, we chose an evolutionary approach over a revolutionary approach,
aiming at not losing what was already available and also at not forcing an
extreme and probably very expansive change. Moreover, since the existence
of legacy processes is common to several other organizations, it was
important to describe how to make them reusable.

2. The need to consider multi-organizational contexts – COPPE/UFRJ is an
important SPIO in Brazil and has already supported more than 40
organizations to define, enact, and improve their processes. It usually has to
define processes to several different organizations. We believe this context is
common to many other organizations, and therefore it was important to
properly address the reuse opportunities of this scenario.

3. The need to consider practices from high process maturity levels – Reference
models and standards, like CMMI-DEV [Chrissis et al., 2006], MPS.BR
[SOFTEX, 2009] and ISO/15504 [ISO/IEC-15504, 2003] establish that, in
high maturity organizations, processes need to be defined based on smaller
process units. They also establish that processes have to be defined based on
the selection of the more adequate subprocesses to compose the process,
considering their historical stability, capacity, and performance data.
Therefore, the selection of subprocesses to compose a process considering
their known past stability and capacity data (i.e. the way it is able to perform)
tends to produce more adequate processes. Thus, the existence of
subprocesses and ways to reuse such subprocesses is fundamental to support
the needs of high-maturity organizations.

1767Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

This paper is a major evolution of a previous conference paper [Barreto et al.,
2008] that described the main aspects of our software process reuse approach. The
new content material comprises the focus and a broader discussion on process reuse
itself, implemented tools that support the approach, and an overall update on our reuse
approach. We also describe results of a survey that aimed at capturing the expected
level of benefits and difficulties of each process reuse approach used (process
components, process lines, and process features) in the point of view of experienced
process engineers. We also present some usage results of parts of the approach, as
described in [Barreto et al., 2010].

This paper is organized into eight sections, including this introduction. Section 2
presents some background concepts and related work on software process definition
and reuse. In Section 3 we explain how the main reuse concepts were adapted to our
approach. Section 4 presents the considered process reuse scenarios, while Section 5
shows how to define reusable process elements. In Section 6 we present and discuss
the results of the performed survey. Section 7 presents an environment to support
process reuse that has been developed. Finally, Section 8 presents some conclusions
and future work.

2 Background and Related Work

A software process can be defined as the coherent set of policies, organizational
structures, technologies, procedures, and artefacts that are needed to conceive,
develop, deploy, and maintain a software product [Fuggetta, 2000]. The essence of
the process paradigm seems to be that humans solve problems by creating process
descriptions and then instantiating them to reach the solution. Rather than repetitively
and directly solving individual instances of problems, humans prefer to create
generalized solution specifications and make them available for instantiation (often by
others) to solve individual problems directly [Osterweil, 1987].

The software process is a critical factor for delivering quality software systems,
as it aims to manage and transform the user need into a software product that meets
this need [Acuña et al., 2000]. The following facts are among the key benefits of a
defined process [Madhavji, 1991]: (i) it can be measured against itself or other
processes and any differences can be brought to reason; (ii) it can be used to promote
process understanding and standards among software developers; (iii) it can be
reused; (iv) it can simplify process management, control, and automation; (v) it can
help identifying process measurements points; (vi) it can become the basis for the
next level of process improvement; (vii) it may enable effective communication about
software processes; (viii) it may support co-operative work among human beings.

According to ISO/IEC 15504, a standard process is the set of definitions of the
basic processes that guide all processes in an organization. It describes the
fundamental process elements that will be part of the projects’ defined processes. It
also describes the relationships (for example, ordering and interfaces) between these
process elements. A defined process, on the other hand, is a process that is managed
(planned, monitored, and adjusted), and tailored from the set of standard processes of
the organization according to its tailoring guidelines. A defined process of a project
provides the basis for planning, performing, and improving the tasks and activities of
the project [ISO/IEC-15504, 2003].

1768 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

As stated earlier, there are several reuse opportunities on software process
definition activities. In the last years, some works [Rombach, 2005; Armbrust et al.,
2009; Washizaki, 2006a; Ru-Zhi et al., 2005] have suggested different approaches to
try to accomplish process reuse, as we describe in the following paragraphs.

Software reuse can be achieved in different deep levels. In a shallow level, it is
possible to visualize reuse as copy-and-paste activities or at most as individual
component reuse. In a deeper level, it is possible to envision reuse of not only
individual components, but of a set of collaborating components and the relationships
among them (i.e., reuse of the whole architecture) [Garg et al., 2003]. We believe the
same principle also applies to process reuse.

Process components are described and structured in different ways by different
authors. Fusaro et al. [1998] argue that a process component can indicate a technique,
a method, or a process. They present a framework to support the comprehension and
evaluation of process components candidates to be used in software processes. Ru-
Zhu et al. [2005] present a reuse-oriented process component representation
framework for the description and classification of process components. They suggest
a process component should be described in terms of a general description (users
view, goal oriented), a specification description (process engineers view,
implementation oriented), and a data description (project manager view, optimization-
oriented). Gary and Lindquist [1999] present the Open Process Components (OPC)
approach, in which process information is expressed in any formalism or language
that defines the semantics of the component. OPC separates this information in three
ways: process schema, process states and transitions, and process implementation.
Fadila and Mohamed [2009] define process component as a software process model
fragment, useable independently from the original software process model. The
authors briefly present an approach to support the definition of process components
derived from process models that were not defined for reuse or that were defined
using different reuse approaches. SPEM [OMG, 2008], states that a process
component contains exactly one process represented by an activity, and defines a set
of work product ports that define the inputs and outputs for a process component.

Thus, there is not a general agreement on which information has to exist in a
process component or which level of detail it must have. These decisions are usually
based on the intended use for a component in each approach. All the described
approaches provide some valuable concepts and are important to create a critical mass
on the subject of process reuse. However, they do not consider other kinds of reusable
elements, such as process features or process lines, which are described in the
following paragraphs. Moreover, these papers do not present supporting tools and the
description of the approaches is usually very brief.

Although acknowledging that using components to compose processes could
bring benefits, starting a process definition using such small parts to compose large
processes can still be difficult, error prone, and counterproductive. If we observe
software product reuse, it is possible to note that one of the lessons learned from the
efforts to achieve reuse on the last decades was that bottom-up reuse (i.e. using
arbitrary components to build systems) usually does not work in practice [Bosch,
2000]. Well succeeded reuse programs should employ also a top-down approach, i.e.
components are created in a way that they can be placed into a high-level structure
defined by a software architecture [Bosch, 2000]. Therefore, combining the two

1769Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

approaches seems to be a better choice, i.e., to start from a higher abstraction level
(top-down) and throughout the composition consider also the individual components
(bottom-up).

We may consider the same principle applies to software process reuse. In other
words, it is possible to argue that although process components play a central role on
process definition, an approach that begins in a top-down way, with process
components being put into larger reusable structures (e.g. lifecycle models, process
architectures, process lines, or process templates) to be used in specific situations, is
expected to leverage process definition activities. These larger reusable structures
could be used to guide the definition of more complex process structures, composed
of several basic elements. For example, higher-level components (e.g., composed
activities) could be defined through the use of an internal architecture, establishing the
way that basic elements (e.g., activities) could be placed into them. Similarly, even
larger process structures (e.g., subprocesses, process phases, and defined processes)
could be detailed based on a pre-defined architecture.

Thus, the concept of architecture is also being used in the context of software
processes. According to Chrissis et al. [2006], a process architecture involves the
ordering, interfaces, interdependencies, and other relationships among the elements of
a process in a standard process. In a simplified way, we can consider that process
architecture defines the “skeleton” that a process must have, establishing the main
elements and how they relate to each other, not necessarily defining the details of
these elements. A similar and complementary concept that can be considered a
specialization of the process architecture concept is process template. It can be
defined as a generic and reusable process model that establishes a starting point to the
definition of a new process model [Reis et al., 2001]. A process template can be
customized to address the requirements of a particular context (methodological,
organizational, or technological), or also combined with other templates or
instantiated process models [Franch and Ribó, 2002]. These concepts are closely
related to the concept of framework [Johnson, 1997], usually applied in software
product development.

Sofware product lines [Clements and Northrop, 2001] can also be adapted to be
used in software processes. A product line works like a factory, that instantiates
similar products, each one of them with a set of or features, through the arrangement
of existent components. Features play an important role in this context. A feature can
be defined as a logical unit of behavior that is specified by a set of functional and non-
functional (i.e., quality attributes) requirements [Bosch, 2000]. A feature generally
captures a considerable set of requirements and is, as such, used to group
requirements, which simplifies requirements handling [Bosch, 2000]. Likewise, it is
possible to consider that processes can be defined using similar ideas, i.e. processes
can be instantiated from previously defined process components, in a way that each
instance satisfies a set of chosen process features. So, software process lines (SPLs)
are product lines whose products are software processes [Washizaki, 2006b;
Rombach, 2005].

Rombach [2005] uses the term “SPL engineering” and states that the objectives of
using it are – as in the case of all reuse approaches – increasing predictability,

1770 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

reducing cost and time, and reducing risk. According to him, the main characteristics
of SPL engineering include: (i) Two separate development processes: the domain
engineering process, which creates processes for reuse, and the application
engineering process, which develop project-specific processes; (ii) A process
repository: reusable processes at all abstraction levels are made available; (iii) A
systematic reuse process: for each predefined choice of variabilities, the choice of
process components is pre-defined (e.g., via empirically justified ‘project maps’); (iv)
A systematic process management process: for each exception (e.g. an unexpected
behavior of the process occurs), it will be decided whether this exception will be
factored into the generic process or not.

Washizaki [2006a] also proposed a 4-step bottom-up approach to establish SPLs
that include similarities and variabilities. Likewise, Simidchieva et al. [2007] suggest
a characterization of what might comprise a process family and introduces a formal
approach to defining families based upon this characterization, where a process
family is very closely related to a SPL. Ambrust et al. [2009] describe “SPL
engineering” in more detail. Their approach establishes the three main steps to be
followed to define a SPL in the context of an organization. The steps are: (i) Process
Line Scoping, which identifies the range of characteristics that processes in the
process line should cover; (ii) Process Line Modeling; which defines generic work
products, commonalities, and variabilities; and (iii) Process Line Architecting, which
defines a reference process architecture, based on the process line model. The authors
also describe a 5-steps approach to deal with the first step of SPL engineering (i.e.,
Process Line Scoping). There are also other works that deal with this subject,
reinforcing the described concepts [Hollenbach and Frakes, 1996; Lobsitz, 1996;
Perry, 1996; Sutton and Osterweil, 1996; Jørgensen, 2000; Jaufman and Münch,
2005; Ternité, 2009].

It is possible to note that some works were published in the last years on software
process reuse. This can be considered an indication that traditional product reuse
techniques could really be successfully applied to software processes and also
contribute with the creation of a critical mass about process reuse. Therefore, the
described approaches were very important as a basis for the work being described in
this paper. Some of the concepts described by them were used in our approach;
although some works were concomitant with initial versions of our approach
[Armbrust et al., 2009; Ternité, 2009; Barreto et al., 2008]. However, these works do
not properly deal with the requirements of our approach, as described in Section 1. In
other words, these works do not precisely describe how process reuse can happen in
the multi-organizational context (i.e., SPIOs); they also do not consider legacy
processes, detailing the steps to make them reusable and what information should be
considered; and they also do not consider measures as an important part of the
reusable elements, in order to properly select process components. Moreover, all these
works focus on particular aspects of process reuse, such as SPL scoping, components
classification, or the steps to create a SPL, and supporting tools are often very limited.
Furthermore, none of these works provide evidence on the expected benefits and
difficulties related to process reuse. At last, while there are many works on how to
define languages and mechanisms to automate processes, there are less works aiming

1771Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

at providing knowledge and guidance on how to actually define processes, describing
what to consider, which elements to choose, regardless of representation details.

3 An Adaptation of Software Product Reuse Concepts to
Software Process Reuse

As described in Section 2, there are several different ways to describe and use the
main software process reuse concepts. Thus, as a first step in the development of our
process reuse approach, considering the goals described in Section 1, we have defined
how to use the main concepts and their interrelationships, as shown on Figure 1.

To define these concepts, we have performed a literature search considering the
most relevant aspects of process reuse, and how the topic has been addressed by the
academia and industry, including the works described in Section 2. We have also
considered the experience of many years of COPPE/UFRJ as a software process
implementing organization [Montoni et al., 2008; Ferreira et al., 2008; Santos et al.,
2007]. This kind of experience was very important to identify improvement
opportunities in process definition activities, considering the real needs of software
process implementing organizations and software development organizations aiming
at defining software processes.

Figure 1: Simplified version of the core concepts and their relationships

In this approach, a process element is a decomposition of a process in some level
of granularity. We define two kinds of process elements: process components and
activities. These concepts are closely related, but the main difference is that a
component is defined for reuse. Thus, a component may have an internal architecture,
composed by other components that may be not completely defined, to allow some
kind of customization (variability). Moreover, a component is considered something
that is worth reusing, analyzing its stability or performance [Florac and Carleton,

1772 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

1999], versioning, establishing traceability, and so on. Activities, on the other hand,
are process elements that are completely defined, and do not exhibit any kind of
variability [Barreto et al., 2008]. Activities were used this way in our legacy
processes, and due to this legacy demand we chose to keep the concept, maintaining
its non-varying characteristic, as justified by the additional requirement 1 in Section
1. Thus, activities are usually used as building blocks for software process
components, and can be reused only indirectly when they belong to a process
components. A useful analogy is software components and software classes. Software
components, like process components, are available in software reuse libraries for
download and are internally composed by classes (assuming that they are
implemented according to object-oriented paradigm). Classes, like process activities,
are also reused indirectly, but it is uncommon to directly reuse an individual class due
to its fine granularity, lack of encapsulation, and high coupling with other classes.
Both components and activities encapsulate other kinds of process information, e.g.,
required or produced work products, roles, supporting tools to be used, supporting
knowledge to aid their enactment, etc. A measure is used to measure process
components and makes it possible to select process components based on their past
behavior in a similar context. A software process component can be defined in any
level of detail, i.e., from a single activity to a whole process. However, a process
component always has to be composed by at least one activity, since we consider that
a finer reuse unit would probably introduce unnecessary complexity and make reuse
activities more difficult. To exemplify these concepts, we could have a process
component “Elicit Customer Requirements” responsible for describing how
requirements should be elicited. We could also have an activity “Establish
Traceability Matrix” that could be considered not relevant for being directly reused,
since it would always be performed the same way, and could be made part of the
larger process component. Of course, if different ways of establishing traceability
matrix become a reality in the future, this activity can be refactored and promoted to a
process component.

The process architecture is similar to a workflow, and may be composed of
process components, activities, or any combination of them. The process architecture
defines the main structure the process has to have, determining the main elements and
how they relate to each other, not necessarily defining all their details. An example of
process architecture could be a lifecycle model. In this case, we know the main
phases of the process, how they are related and their goals. However, several different
instantiations are possible using the same structure, i.e. different components or
activities that conform to the established structure can be used, depending on the
situation. Thus, the process architecture aims to guide and make it easier to define
processes, determining a basic structure to follow during the definition. The
architecture needs to be flexible enough so that it can be adapted to the several
different situations that can happen on organizations or projects. However, the
determination of how much flexibility is enough is a responsibility of the process
engineer in charge of defining it, and will be very influenced by the scope defined for
it. Section 5 provides more details on the steps to define reusable elements, including
the definition of the scope and the verification of the reusable items, which tend to
help in this determination.

1773Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

We can consider a software process line (SPL) as a kind of software process
architecture. However, since a SPL is a reusable asset, which aims at generating
different software processes based on the same structure, a software process
architecture is named as SPL only if it is able to generate different process
definitions. The SPL concept is not shown in Figure 1 since it can be considered a
role that process architectures may assume. A SPL may have mandatory components,
which have to be present on every process instantiated from it. It may also have
optional components, which may be present or not on the derivations of the SPL. At
last, a SPL may have variation points, which are process components that may be
instantiated in different ways, depending on the specific situation. For each variation
point, there are some variant components, which are process components allowed to
fit that variation point. It is important to note that even variation points can be
optional. So, it is possible to have mandatory variation points, where at least one of
its variant elements has to be present in the derived process; or optional variation
points, in which it is possible to select none of the variant components, i.e., that
component will not be included in the derived process.

A process architecture can be internal to a software process component (allowing
its decomposition) or independent (representing a whole process), i.e. it can be used
directly to derive defined processes or simplified process lines. A process element
connector is used to connect several process elements. A connector has a source
element, a target element, and some rule to associate them (e.g., start-end, end-end,
etc). To illustrate, we could have a process architecture internal to the process
component “Specify Requirements”. In this architecture, we could have the process
components “Specify System Requirements”, “Specify Software Requirements”, and
“Verify Requirements Specified” connected using “end-start” connectors, i.e., when
the enactment of one component ends, the enactment of the following can start.

To make it possible to describe variabilities in a SPL, we have defined two kinds
of process components: concrete and abstract. A concrete component does not allow
any kind of variability. In other words, there are no remaining decisions to make, and
it can be directly enacted, measured, and controlled in a software project. An abstract
component, on the other hand, is a way to represent variabilities. It can have no
internal architecture, in such a way that it can be directly substituted by concrete
components (variants); or it can have an internal architecture that includes other
abstract components or optional elements. In this kind of component, the definition is
incomplete, and the component cannot be directly enacted. To allow the substitution
of abstract components by adequate concrete components during processes definition,
concrete components may determine which abstract components they implement.
Only process architectures that have abstract components or optional elements are
called software process lines. To exemplify these concepts, we could have a SPL to
describe processes adherent to CMMI-DEV maturity level 2. This SPL would
describe different ways to assure the quality of the work products. Thus, there could
be an abstract component “Review Project Plan”, which would be a variation point in
the SPL. To resolve the variation point, concrete components such as “Inspect Project
Plan” or “Perform a Simple Review of the Project Plan” could be used.

A process feature in our approach is an adaptation of the concept of feature used
in the traditional product lines domain to the context of processes. A feature can be
seen as an aspect, quality, or characteristic that the process has to be compliant with.

1774 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

It constrains the use of components, establishing a set of components that can
(required components) or cannot (conflicting components) be used. Thus, it consists
of a set of rules applied to process components that guides process definition based on
process requirements. It is important to mention that in the current version of our
approach, the semantics of a feature is defined by the user. In other words, it is used
mainly as a high level mechanism for component selection. Therefore, the granularity
of a feature will depend on its intended use, and the process engineer will have to
determine the adequate level. Section 5 will discuss the definition of features in more
detail, showing that reviews should be performed to ensure that they are adequately
defined for each particular situation.

4 Software Process Reuse Scenarios

In this approach, we consider that process reuse can take place in different contexts,
such as [Barreto et al., 2008]: (i) Software Process Implementing Organizations
(SPIOs) – may need to define relatively similar processes to several different
organizations; (ii) Software Development Organizations – may need to define their
standard processes, or specialize these processes to situations that are common to the
organization; and (iii) Software Projects – contribute to the components repository
with data from process enactment, such as measures, improvement requests, etc.

Aligned with the ideas of Rombach [2005] regarding SPL engineering, in our
reuse approach the existence of one or more reusable software process repository is
needed to allow the effective reuse of software processes. These repositories store
process components, process lines, knowledge related to the enactment of
components, components measurements, among others. The repositories can be used
when defining processes for organizations or projects (definition with reuse, i.e., the
application engineering process), where components and other reusable items can be
searched and used to compose processes. The repository needs to be fed and
constantly evolved to offer to projects and organizations a useful and comprehensive
set of reusable items (definition for reuse, i.e., domain engineering process).

Considering the context of SPIOs, a common situation faced by them is when a
group of similar client organizations have a common goal regarding software
processes improvement. For instance, they all may want to achieve a certain level of a
maturity reference model such as MPS.BR or CMMI-DEV. This situation is common
in Brazil, especially when organizations are starting software process improvement
initiatives due to financial support provided by the Inter-American Development
Bank (IDB) and by the Brazilian Ministry of Science and Technology. For these
organizations, a software process improvement initiative in group tends to decrease
costs and make it easier to share experiences. Since organizations in a group tend to
be similar and are usually trying to achieve similar goals, the software processes
under definition tend to be similar as well. Therefore, there is a great process reuse
opportunity.

As shown in Figure 2, the SPIO establishes and feeds its repository with process
components, process lines, measures, data from the enactment of components, among
others (definition for reuse), considering general software process requirements,
previously defined processes, maturity models, and other process requirements. When
it is necessary to define a standard process for an organization or group of

1775Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

organizations (definition with reuse), the items from the repository can be (re)used,
based on particular needs, to compose new processes. When there are no available
items in the repository to fulfill a specific need, a call to the process of definition for
reuse can be made. Therefore, it is possible to constantly enrich the repository.
Together with the process or set of processes resulting from the definition, it is also
possible to provide the organization a subset of the SPIO´s components repository and
also the supporting tools, to allow the organization to modify and evolve its processes
and keep the culture of process reuse. In the provided repository there may be
partially solved process lines, i.e., with some variants already selected, but with some
variation points still open. The standard process itself can be deployed this way, with
some variability to solve.

A software development organization may take advantage of the reusable
processes defined by SPIOs and maintain its own reusable processes repository.
Similarly to the scenario described in Figure 2, based on the specific needs of a
process to be defined for a project, the organizational repository is used to compose
project defined processes. Correspondingly to the SPIO context, organizations should
also constantly feed and evolve their repository, aiming at making them progressively
useful and complete in regard to the needs of the organization. It is important to note
that organizations can define new standard processes or specializations of these
processes to later reuse.

Figure 2: Software Process Reuse on SPIOs

It is also possible to establish a feedback between the organizational repository
and the repository of the SPIO that originated it, as shown in Figure 3 (left hand side).
Organizations can contribute to the SPIO sending data related to the enactment of
reusable items. This information can be useful for the SPIO to assess the adequacy of
each component in the context they were used and also determine process
components behavior (stability and performance) in that context (this is related to
sub-objective 3 listed in Section 1). The SPIO can analyze the gathered information
from organizations and provide back to the organizations benchmarking data. This
allows them to compare the performance of their components with a baseline (i.e.,
mean and standard deviation) that comprises prior performances in similar contexts of
other organizations. It is important to note that this strategy avoids privacy issues
because no actual enactment data is provided. SPIOs can also provide from time to

1776 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

time updated data from its repository, such as new process components, new process
lines, and so on. These communication requirements are being addressed by our
supporting tools, specifically by Process Broker, which is described in Section 7.
However, organizations do not necessarily need to be associated to a SPIO. If this is
the case, they need to define their own reusable process elements.

Figure 3 Feedback loop and Project’s defined processes enactment

On projects, process components are finally enacted. Projects’ defined processes
are enacted and contribute with data to the reusable process repository of the
organization, such as measurements, lessons learned, and improvement requests. On-
the-fly improvements can be made on the processes of the projects, if needed, through
the replacement or maintenance of components in use. Figure 3 (right hand side)
illustrates this context. After some time collecting measures from the enactment of
components, it will be possible to consider this data to choose components during
process definition. For instance, if a process being defined has a behavior requirement
regarding costs, we could choose components that behaved in similar contexts in
accordance to the requirements of the process being defined (related to sub-objective
3 in Section 1).

5 Defining Reusable Process Elements

In order to define reusable process elements (i.e. define processes for reuse), an SPIO
or software development organization may adopt a bottom-up or a top-down approach
(or a mix of them).

The top-down approach begins by defining process features and deriving the
other reusable elements from them. In the bottom-up approach, we start defining
process components based on previously defined processes, connecting and
characterizing them until we have all the reusable elements. We used the top-down
approach when there was a well defined set of requirements for the processes to be
defined and the organization or SPIO did not have legacy processes (i.e., previously
defined processes that were not defined for reuse and needed to be made reusable). In
this situation it seems to be easier to define the reusable elements that are necessary
and sufficient to fulfill the requirements. On the other hand, in some situations an
organization or SPIO may want to make its legacy processes reusable and define
reusable elements from them, to capture past situations and be prepared for new

1777Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

occurrences. In this case, we used a bottom-up approach (like a reengineering), which
seemed to be more adequate, since the set of requirements that would be fulfilled by
the reusable elements was not very clear at the beginning.

5.1 Defining Reusable Process Elements from Legacy Processes (Bottom-up
Approach)

To perform the bottom-up approach we suggest the use of four main steps, as shown
in Figure 4: (1) Define Process Components; (2) Define Process Features; (3) Define
Process Lines; (4) Approve the Inclusion of the Defined Reusable Elements into the
Repository. This approach was already used to define reusable elements from
processes defined to the Software Engineering Laboratory at COPPE/UFRJ (hereafter
LENS, which is the acronym used in Portuguese to refer to this laboratory), which is a
software development organization. LENS has already experienced a successful
MPS.BR appraisal in 2008, and its processes were considered adherent to MPS.BR
Level E (which corresponds to an intermediate state between CMMI-DEV Levels 2
and 3) and aims at achieving MPS.BR Level A (which is similar to CMMI-DEV
Level 5) in the near future. Projects at LENS are usually of two kinds: the
development of academic software and the development of software products hired by
customers from the industry. Project teams are usually small (not bigger than 10
people) and are mainly composed by M.Sc. and D.Sc. students.

Figure 4 Bottom-up approach to define reusable elements from legacy processes

The goal of the first step of the bottom-up approach is to define process
components that represent subprocesses that are potentially relevant for reuse. During
this step we need to consider organization’s standard process and also all processes
that have already been defined to projects of the organization, since they were tailored
from the standard processes, and these customizations are a good source of
information. It is necessary to identify the parts of the standard process that were

1778 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

always present on projects and the ones that suffered variation. The parts that varied
indicate that these are variation points of the process, since they could be performed
in different ways. All these varying parts have to be considered abstract process
components, which indicate the possibility to enact a subprocess in different ways.
We also need to define concrete components to each possible way to enact the defined
abstract components. Parts of the standard process that have never been changed can
be modelled as concrete process components.

Considering the processes of LENS, we analyzed the documents that contained
the rationale for adapting the standard processes (document produced during project
process planning) of twelve projects. We detected some common processes
customizations (which originated process components) such as: (i) the exclusion of
some modeling activities, such as the elaboration of sequence diagrams,
complementary diagrams or database project diagrams; (ii) inclusion of project
monitoring and action plans management activities; (iii) inclusion of prototyping
activities; and (iv) inclusion of activities to adapt C++ classes into JAVA. The fact
that some groups of activities were removed or added in the processes of the projects
indicates that these groups represent variations on the legacy standard processes,
which could be represented as process components to foster process reuse. Thus, we
created abstract components to indicate the variation possibilities and concrete
components to represent each possible customization.

It is important to mention that although the definition of software process
components is part of the supporting tools of our approach, as we describe in Section
7, we do not provide tools to support the identification of the common and varying
parts of the legacy processes. This support is provided only through knowledge that is
available to be consulted during the enactment of process components definition. In
the context of LENS it was easy to perform this step, since the differences among the
processes from the projects and the standard processes were described and justified,
as required by the adopted maturity model. If this kind of information is not available,
however, the use of tools that detect the differences between documents could help.
Nevertheless, it would only be helpful if the notation and structure of the processes
and their descriptions were uniform. Otherwise, the comprehension of the differences
could require as much effort as detecting these differences without tool support. Thus,
in this case a manual effort is necessary, equivalent to that existent in Domain
Engineering, when there are legacy software products using different modeling
notations and programming languages.

In addition, we can identify groups of activities that: (i) are in a level of detail
(granularity) that makes it easy for them to be used in future definitions; (ii) are
potentially relevant for collecting measures and having their behaviour analysed; (iii)
already have data from their enactment collected, so that is possible to use this data to
analyse their behaviour (for guiding their selection). Groups of activities with the
described characteristics could become process components as well. Once again,
considering the definition performed at LENS, all macro-activities originated process
components. It was done because those elements were considered to be at a good
granularity level, and also because of the existence of measurement data associated to
them. This step was performed recursively, and when necessary more specific
components were also created.

1779Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

As an alternative to the approach just described, which can be considered reactive
since it is based on past events, a proactive approach can also be adopted, aiming at
anticipating future needs. Thus, we have to search for process elements from the
legacy processes that have good reuse potential, even if they have not yet suffered
variation. It is possible that variation has not happened yet due to the fact that the
required definitions and guidance information were not available. At LENS we
identified some of these opportunities. For instance, activities related to calculating
the size of the software led to abstract components, with at least two related concrete
components: one to use Function Points and another one to use Use Case Points.

It is important to highlight that information from legacy activities or from other
kinds of legacy process elements that originated process components must be
considered on its definition. Thus, information such as measures, entry and exit
criteria, required and produced work products, among others, have to be adapted to
become suitable not only to a single activity, but to the defined component as a whole.

Moreover, it is expected that within some time, actions that were once performed
in a certain way (and that probably originated a concrete component) may be
modified. Thus, a more general abstract process component can be created and the
previous concrete component can become one of the variants of the newly created
abstract component. Therefore, the first componentization can continuously evolve
from constant software process improvement.

To summarize, we suggest some questions that, when positively answered, can
make a legacy process element (e.g. activity, macro-activity, subprocess, etc) from the
organizational standard process to become a process component: (i) Is it in such a
level of detail (granularity) that it may be easily reused later? (ii) Is it potentially
relevant for collecting measures and having its behaviour analysed? (iii) Does it
already have data collected from its enactment, so that it is possible to use this data to
analyse its behaviour (to guide its selection)? (iv) Has it already been modified
(tailored) to be used on projects? (i) Even if not already modified to be used on
projects, does it have a good potential to be performed in different ways? It is
important to mention that these questions are guidelines that have to be interpreted by
process engineers. Since the answers can be influenced by each particular situation in
which the approach is used, the supporting tools do not support this analysis. Once
these decisions are made, the resulting process components can be defined using the
supporting tools, as described in Section 7. These guidelines are provided as
knowledge related to the enactment of the “Define Process Components” task.

The next step aims at characterizing the defined process components using
process features. Through these features it is possible to establish several kinds of
traceability to process components. Process features constrain which components can
be chosen throughout process definition.

One of the main sources of information to define process features is obtained
from the standard processes tailoring guidelines. These guidelines establish in which
scenarios each adaptation (tailoring) may be performed. Thus, it is possible to define
process features that represent the different ways a process can be tailored and
associate them to the process components that should or should not be selected if the
feature is selected. In Figure 5 it is possible to see some tailoring guidelines, some
process features that could be originated by them, and the relations among features
and process components. The analysis of the tailoring guidelines and their mapping

1780 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

into process features is supported only through guiding information that is available
during the enactment of “Define Process Features”, since this interpretation is
essentially human. Once again, our supporting tools provide the means to define
process features, but the way they are modeled is dependent on the users of the
approach, although we provide guidance on how it could be done.

Figure 5: An example of the use of standard processes tailoring guidelines to define
process features

It is also important to consider the main characteristics possessed by the legacy
processes and make this knowledge explicit through process features as well. For
instance, the processes of LENS are adherent to Level E of MPS.BR. Therefore, we
can associate process components originated from these processes to process features
such as: Adherence to MPS.BR Level E, Adherence to MPS.BR Level G (a lower
level), Adherence to CMMI-DEV Level 2 (which is a subset of MPS.BR Level E),
etc. Thus, it is important to register the features the legacy process already had.
Depending on the way features are used, it is possible to associate process
components to other kinds of process features, such as: disciplines (e.g. project
planning, requirements), development techniques and methods (e.g. function point
analysis, inspections), and development paradigms (e.g. structured, object oriented).
A checklist with a set of possible process features and their respective kind based on
common process characteristics can be used to support feature identification, so that
no characteristic from legacy process is forgotten.

Some organizations, such as LENS, already have a set of factors that has to be
considered while characterizing a software project and this information is used to
tailor its processes. Examples of these factors are: development paradigm being used,
application domain, and also factors related to the problem, product, or project. This
set of factors is also a great source of information to define process features.

Once process components are defined and classified to the organization, it is
important to consider different alternatives to structure, relate, and order these
components, so that they can be used to derive processes. To do so, software process
lines can be used. To define a process line, a top-down approach is suggested,
beginning from the establishment of the skeleton that the processes derived from it
will have. Good starting points are lifecycle models used in the organization. Each
different model can be considered a different process line (or at least a first step to
define a more complex process line), in which the relationships among components
and the order of their execution will be already defined.

1781Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

During software process line definition it is also important to consider the
standard processes tailoring guidelines. These guidelines can support the
determination of the optional elements and variation points of the process line. The
different adaptations to the standard processes performed so far can also be used. It is
important to note that process features definition and process line definition can be
performed concurrently, since one step can complement the execution of the other.

The last step comprises a review performed by the relevant stakeholders.
Candidate process components, features and process lines are reviewed before being
added to the reusable process repository. Guidelines to accept reusable elements may
be defined and used. The reviewers must agree that the candidate items are relevant
and adequate for being reused. The approved items may finally be included into the
repository and then become available to be used by the organization to define
processes from them.

As described throughout the text, the bottom-up approach described here has been
already successfully used to define reusable processes at LENS. Moreover, it was also
used to make the processes of a CMMI-DEV Level 3 Brazilian organization reusable,
which was considered by the organization a first step to properly select subprocesses
(process components) that would be statistically controlled [Florac and Carleton,
1999]. Therefore, we have already some indication that this approach can be
successfully used to define processes for reuse, considering existing legacy processes.
However, we still intend to use it in different contexts (e.g., to make the processes
defined by COPPE/UFRJ SPIO reusable) in order to better evaluate it. The reusable
process elements defined at LENS will be important in its initiative to achieve
MPS.BR Level A, since higher maturity levels have specific requirements related to
process definition, as described by sub-objective 3, in Section 1.

5.2 Top-Down Approach to Define Reusable Process Elements

As mentioned earlier, sometimes an organization or SPIO need to define reusable
processes, but does not have legacy processes available to address the specific
situation, but has a well defined set of requirements for the processes to be defined. In
this context, a top-down approach is suggested. Figure 6 shows the main steps of this
approach. We consider its main and final goal is to define software process lines
(SPLs). However, throughout SPL definition, other reusable elements may need to be
defined as well.

Figure 6 Top-Down Approach to Define Reusable Process Elements

1782 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

This top-down approach was also already used to define a SPL focused on
acquisition processes, as described in [Barreto et al., 2010]. As mentioned in Section
1, COPPE/UFRJ is a SPIO in Brazil. Several organizations have already requested
COPPE/UFRJ the definition of software acquisition processes. These organizations
usually have difficulties to map the possible acquisition scenarios to software
processes. Thus, COPPE/UFRJ has decided to create a SPL focusing on these
processes, to model their commonalities and variabilities and also take advantage of
the reuse opportunities. The requirements of the SPL were defined by a software
acquisition specialist, based on COPPE/UFRJ previous experiences, on a literature
search focusing on acquisition processes, and also on maturity models and standards
[Barreto et al., 2010].

First, considering that the set of requirements that has to be addressed is
available, we need to map them to process features. These features will guide the
definition or selection of the other elements. In other words, we have to define the
scope of the SPL, similarly to “Process Line Scoping” of Ambrust et al. [2009],
establishing which situations are going to be treated with the future SPL and to model
these situations as process features. Figure 7 exemplifies this step. As mentioned
earlier, this kind of interpretation is essentially human, and therefore we do not
provide a tool to perform this mapping between requirements and features. However,
this knowledge can be stored as descriptive information of the feature being created.

Figure 7 Defining Process Features

Considering the SPL defined by COPPE/UFRJ, 37 process features were created
and grouped in process feature kinds. Features definition was based on the
requirements defined for the SPL, considering maturity models, characteristics of the
target organizations, and several specific needs of acquisition processes. For instance,
“Compliance with maturity models” was considered a process feature kind, with the
features “CMMI – Level 2” and “MPS.BR – Level F” associated. “Suppliers
Selection” was also considered a feature kind, with the features “Suppliers chosen
from a list of previously authorized suppliers” and “Suppliers chosen considering
technical and commercial criteria” associated.

Once the scope is established, it is necessary to define (or select, if already
available) the process elements that will be used to provide the features that were
selected in the first step. Thus, we need to identify what will be common to each
process derived from the process line and what will be the varying parts. The common
parts can be modeled as concrete components, while to deal with the varying parts we
define abstract components describing the generalized expected behavior. Each

1783Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

abstract component that is put into the process line become a variation point, and
needs variant components to realize them. Therefore, we need to define or select
concrete components to represent all the necessary process variants. Once the
required process components are available, we need to map them to the process
features selected on the first step, so that it will be possible to know which variant to
use depending on the selected feature, during SPL derivation. It is important to
guarantee that there are variants to be associated with each one of the possible defined
features. In the SPL defined by COPPE/UFRJ, 28 process components were defined
in this step to comply with the selected process features. This step was performed in
several iterations, together with the next step Structure and Characterize SPL.

The next step is to actually structure and characterize the SPL. We have to define
interactions among the selected components and also choose what components will be
optional in the SPL. The structure of the generated processes, including the
connections among the elements has to be defined. We can also map process features
directly to the SPL, to explicit in which situation this process line can be selected or
not. If there is already a SPL similar to the one that is needed, instead of starting a
new SPL from scratch, we can derive the existing SPL to define the new one. At the
end of this step, a first version of the SPL is ready.

A last step was also introduced to check if the defined SPL seems to be adequate
to fulfill its requirements. During this review, the relevant stakeholders of the
organization will use their experience and tacit knowledge to verify the components
used, the set of process features, the sequencing of the components, the available
variants, among others, trying to agree on the best possible solution. To perform this
step we provide a checklist that can be used to guide the review. The checklist is
comprised of 24 questions about the process features, components, and the process
line defined, such as: Were the defined process features adequately grouped into
process feature kinds? Are the defined process features in an adequate level of detail?
Are there sufficient variant concrete components for each abstract component? Are
the interfaces among process components being respected in the SPL? At
COPPE/UFRJ, a senior process engineer that coordinates the SPIO performed the
review. Some change requests were made, comprising inconsistencies among
components, inadequate granularity of some components, and also the description of
some elements that was not clear. This step was fundamental to try to guarantee the
quality and adequacy of the defined SPL. During the definition of the SPL, some of
the discussed steps can be performed more than once, since the process engineer can
find out better ways of modeling something that has already been done.

As described earlier, the top-down approach has already been successfully used in
a real scenario [Barreto et al., 2010]. Although processes have not yet been derived
from the SPL, we hope this will happen soon. Aiming at learning from the use of the
approach, we asked the participants (the process engineer responsible for defining the
SPL and the one responsible for reviewing it) to fill in a form about their impressions
on the benefits and difficulties of using the proposed approach. The participants
mentioned that the approach was suitable to model the several variabilities that exist
on software acquisition processes and also to explicit knowledge, including lessons
learned from domain experts. Moreover, the use of the defined concepts was
considered adequate to clearly model processes and their variability. Some
improvement opportunities were also suggested, such as the realization of a small

1784 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

training session on the concepts of the approach prior to its first use (due to some
initial difficulties noticed) and some suggestions regarding the addition of more
information to describe process components. These suggestions are being analyzed
and will be important to improve our approach.

It is important to mention that the top-down approach may be expensive, since it
may demand a great effort in order to consider the needs of not one, but of several
processes that could be defined. The bottom-up approach tends to be cheaper, since
most of the processes are already defined, and only need to be adapted. Therefore, it
is necessary to carrefully define the scope of the reusable elements to be defined, so
that the initial effort is compensated through their reuse. Although SPIOs seem to
have a greater reuse potential than development organizations, and therefore they may
experience more benefits, it is also expected that development organizations can take
advantage of this kind of approach, as also shown by [Armbrust et al., 2009] using a
similar top-down approach.

Our research group is still working on the definition of SPLs for particular
situations. Therefore, we believe we are going to have more feedback from the use of
this approach in the near future.

6 A Survey on the Expected Benefits and Difficulties on Software
Process Reuse

After the definition of the main concepts of our approach and also the usage of some
parts of it, as described in Section 5, we needed additional information to better
choose our next steps. Since the main potential users of our approach are process
engineers, i.e., professionals that are responsible for defining software processes, we
wanted to capture their expectation regarding the benefits and difficulties related to
the main software process reuse concepts being used in this work (i.e., software
process components, software process lines, and process features). It was necessary to
investigate which are the expected benefits of each parts of our approach. For
instance, if process engineers expect to improve the quality of their defined processes,
do all the reuse approaches (process components, process lines, and features) have
similar significance? In addition, it was also necessary to determine the way to
proceed with our research that better addresses the most relevant concerns of our
potential users. For instance, we could develop supporting tools, certify process
components, or investigate psychological aspects, among others, in order to properly
address the expected difficulties mentioned by our potential users.

Furthermore, if software processes are software too, as stated by Osterweil
[1987], it is expected that software processes reuse and software products reuse have
similar expected benefits and difficulties. For instance, if “diminish rework” is an
expected benefit for software products reuse, it may also be expected for software
processes reuse. The same may apply to difficulties, such as “inadequate supporting
tools”. So, in order to capture the opinions of process engineers, a subset of the main
expected benefits and difficulties for product reuse initiatives were adapted to the
context of software processes and considered. In this context, in order to get the
opinions that we wanted and also check the similarities between software process

1785Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

reuse and software product reuse, we planned and executed a survey with the
following goal:

To analyze the answers of the survey with the purpose of characterizing the
expected level of benefits and difficulties expected from process reuse approaches
with respect to similarities with common software product reuse expected benefits
and difficulties from the point of view of the researcher in the context of
experienced process engineers.

The selection of subjects was based on their experience on software process
definition. In order to gain more confidence on the results, we chose to have a reduced
number of specialists rather than hundreds of inexperienced participants. Thus, the set
of subjects was composed by 23 experienced process engineers from both industry
and academia. Considering academic degree, 8 (35%) participants hold Ph.D. degree,
10 (44%) hold M.Sc. degree, and 5 (21%) hold B.Sc. degree. 9 (39%) worked only in
industry, 7 (30%) worked only in academia, and 7 (30%) worked in both
environments. Moreover, there were participants from 7 different academic
institutions and from 12 different organizations from the industry. There were
participants from 7 different states of Brazil, comprising all its regions. Considering
all these aspects, we believe that our set of subjects can be considered comprehensive,
even with only 23 participants.

The survey asked subjects to rank the expected benefits and difficulties of
software reuse approaches according to the following Likert interval scale levels:
high, medium, low, and none, and mapped respectively to 3, 2, 1, and 0. Participants
also rated their experience on software process definition, software process
implementation (deployment), software products reuse, and software process reuse
according to this Likert scale. Table 1 summarizes the experience levels of the
subjects. It is possible to note that the participants are more experienced on processes
than on reuse (which represents more adequately the potential users of our approach),
and that even experienced process engineers have less experience on process reuse,
which means process reuse has not been accomplished very often even by
experienced process engineers. We also collected their experience in years. As an
example, considering the professionals with high level of experience on software
process definition, the average experience in years was approximately 10 years, while
the professionals with medium level of experience on software process definition, the
average experience in years was around 4 years.

Level of
Experience

Software
Process

Definition

Software Process
Implementation

Software
Product
Reuse

Software
Process Reuse

High 13 13 00 01
Medium 10 08 11 11
Low 00 02 11 11
None 00 00 01 00

Table 1 Histogram of the survey participants experience level

Table 2 summarizes the expected benefits from the adoption of each process
reuse approach considering all the participants. The results presented in this table are:

1786 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

mode (in bold) followed by mean (μ) and standard deviation (σ). The benefits listed
were adapted from some of the most common software product reuse expected
benefits [Lim, 1994; Mili et al., 1995; Prieto-Diaz, 1993; Pfleeger, 2001], but
considering software process definition (e.g. diminish rework on process definition).

It is possible to note, after analyzing Table 2 that a high level of benefits is
expected from the use of each process reuse approach in regard to the great majority
of the listed common software product reuse benefits. Moreover, we can see that the
highest benefits are expected from the use of software process lines, considering it
had the highest mode and mean values together with the lowest standard deviation.
Among the expected benefits listed, “Improve quality” had the lower level of
expectation, although it was also high. It is probably due o the fact that only
experienced process engineers were considered. The results show that there is an
indication that these common expected benefits from product reuse are really also
expected from process reuse. Moreover, there is an indication that process engineers
really consider that using the described approaches can bring great benefits for
process definition activities. In addition, since process lines were the most promising
approach, we need to focus even more on the support and guidance to use software
process lines. Furthermore, although results obtained are close to each other, Table 2
gives us some indication on what are the most relevant approaches to be used in order
to achieve each of the expected benefits. For instance, if the main goal of the adoption
of process reuse is to diminish rework, according to these process engineering
specialists, software process lines are more useful than process components alone,
which are more useful than software process features. Therefore, it is possible to
prioritize the approaches to be used, depending on the expected benefits.

Expected Benefit /
Process Reuse
Approach

Software Process
Components

Software Process
Lines

Software Process
Features

Increase
productivity

High
μ = 2.61
σ = 0.58

High
μ = 2.78
σ = 0.52

High
μ = 2.61
σ = 0.66

Diminish rework High
μ = 2.57
σ = 0.59

High
μ = 2.74
σ = 0.62

High
μ = 2.52
σ = 0.73

Improve quality Medium
μ = 2.39
σ = 0.58

High
μ = 2.48
σ = 0.79

High
μ = 2.48
σ = 0.73

Diminish
costs/effort

High
μ = 2.48
σ = 0.67

High
μ = 2.65
σ = 0.57

High
μ = 2.48
σ = 0.67

Diminish time
required to perform
the activity

High
μ = 2.43
σ = 0.66

High
μ = 2.65
σ = 0.57

High
μ = 2.48
σ = 0.67

Table 2 Expected benefits from software process reuse

1787Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

Table 3 summarizes the expected difficulties from the adoption of each process
reuse approach. The results presented in this table are also: mode (in bold) followed
by mean (μ) and standard deviation (σ). The difficulties listed were adapted from
some of the most common software product reuse expected difficulties [Sherif and
Vinze, 2003; Mili et al., 1995; Prieto-Diaz, 1993; Pfleeger, 2001], but considering
software process definition.

Expected Difficulty /
Process Reuse
Approach

Software
Process

Components

Software
Process Lines

Software
Process

Features
Difficulty to identify,
retrieve and modify
reusable elements

Medium
μ = 2.04
σ = 0.71

Medium
μ = 1.91
σ = 0.67

Low
μ = 1.52
σ = 0.67

Insufficient quality of
the reusable elements

Medium
μ = 1.82
σ = 0.73

Low
μ = 1.73
σ = 0.83

Medium
μ = 1.59
σ = 0.73

Existence of
psychological, legal
or economic barriers

Medium
μ = 1.83
σ = 0.78

Medium
μ = 1.78
σ = 0.80

Medium
μ = 1.74
σ = 0.81

Necessity to create
reuse incentives

High
μ = 2.09
σ = 0.85

Medium
μ = 1,96
σ = 0.77

Low
μ = 1.83
σ = 0.83

High adoption
(deployment) cost

Medium
μ = 1.91
σ = 0.73

Medium
μ = 2,13
σ = 0.63

Medium
μ = 1.96
σ = 0.64

Inadequate
supporting tools

Medium
μ = 2.26
σ = 0.69

High
μ = 2.52
σ = 0.59

High
μ = 2.48
σ = 0.67

Table 3 Expected difficulties from software process reuse

It is possible to note, after analyzing Table 3, that the level of difficulties
expected from the use of each process reuse approach is lower than the level of
benefits expected from them. However, the difficulties from product reuse also seem
to apply to software process reuse. We can see that the “Inadequate supporting tools”
is the biggest concern of the participants. This result shows us we really have to
provide adequate supporting tools; otherwise process reuse is expected to be seriously
threatened. It is also possible to see that the use of process features seems to have a
smaller potential to bring difficulties to process definition. Maybe, this is due to the
fact that process features goal is exactly to simplify and provide high level selection
of process components. These results were very important to give us more confidence
on the next steps of our research. For instance, if insufficient quality of the reusable
elements were the most relevant difficulty, we would have to work more on the
quality of the reusable elements, providing some kind of certification for them, for
example. However, according to the obtained results, we decided to focus on the
development of the supporting environment, described in Section 7. This is worth to
notice that this technical aspect was considered more relevant than other non-

1788 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

technical aspects by the process engineering specialists. This may be due to the fact
that process reuse is a young discipline if compared to product reuse, which dates
from 1968 [MCIlroy, 1968]. Probably, process reuse still needs comprehensive tool
support to be able to face other non-technical issues in the future.

Considering the results presented on Table 2 and Table 3 together, if software
process lines are the most promising approach and inadequate support tools is the
great concern, software process line supporting tools deserve special attention.

In order to learn more from our results, we also grouped the results in three
different groups: (i) participants from the industry; (ii) participants from the
academia; and (iii) participants from both industry and academia. We analyzed the
obtained results when considering each group alone in comparison to the results
considering all the participants, using the average. In general, in regard to the
expected benefits, results in each group were very similar to the ones considering all
participants. The biggest difference was found in the academia professionals group,
which considered that software process components is about 10% less beneficial to
“Increase productivity”, “Diminish rework”, and “Improve quality”.

On the other hand, when analyzing the expected difficulties, there was a more
significant difference. In general, the group from the industry considered the
difficulties more relevant then the group from the academia, while the group from
both had similar results to the ones of the group from the industry. The group from the
academia considered “Insufficient quality of the reusable elements” from 18% to 35%
less relevant for all reuse approaches, probably considering they would be able to
create reusable elements with the adequate quality level. However, the same group
considered “Existence of psychological, legal, or economic barriers” 18% and 23%
more relevant respectively for process components and process features. The group
from the industry considered “Difficulty to identify, retrieve and modify reusable
elements” 16% more relevant considering both process lines and process features; and
“Insufficient quality of the reusable elements” from 5% to 15% more relevant in all
the reuse approaches.

These results can be an indication that participants from the industry are more
worried about the practical aspects of process reuse, such as supporting mechanisms
or the quality of the elements. This may be related to the varying level of expertise
expected from the professionals that are supposed to perform these activities in the
industry, where there is probably a bigger need for support and guidance. It can also
be an indication that the participants from the academia are more worried about non-
technical aspects of process reuse, like psychological barriers. It may be related to
their understanding that in several other disciplines, such as project management or
even software products reuse, usually the main problems are related to non-technical
aspects.

Finally, we acknowledge surveys are a limited approach, since it considers only
people’s opinion on a subject and the opinions may not be necessarily correct. To try
to alleviate this threat, only professionals that had already performed process
definition activities on real environments and that possessed deep theoretical
knowledge were asked to participate. Moreover, the wrong interpretation by the
subjects about what has been asked through the survey could also threaten the validity
of the study. To deal with this threat we have added explanatory tables into the survey
form in order to precisely define: (i) how to rate subjects’ experience, exemplifying

1789Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

each possible value; (ii) how to rate the expected benefits and difficulties; (iii) a
description of each considered reuse approach, with examples; and (iv) a description
of each benefit and difficulty listed.

We ran a pilot version of the survey with two subjects, in order to determine
whether they would have difficulties, and then we sent the survey for the remaining
subjects. We also considered the risk of the subjects’ lack of interest in the study,
since some of the participants could execute the study in an uncompromised way.
They could also give false opinions, worried about how the results would be used. To
deal with these risks, we clearly stated the goals of the study and explained that
results would be used anonymously only in the context of an academic research, and
thus honest opinions were wanted. Moreover, we also made the survey simple, so that
a subject would take no longer than 15 minutes to answer it. We also avoid insisting
with the subjects to return the surveys, in order to avoid uncompromised responses.
With regard to external validity, i.e., the possibility to generalize these results to
different contexts, we tried to consider a comprehensive sample, with participants
from industry and academia, from different institutions, and from different locations.
However, we are not able to generalize the results to different contexts, and further
research is still necessary, for example, for different countries.

 In addition to the results of the survey, we consider that results from other
researches being done [Armbrust et al., 2009; Washizaki, 2006b] on similar topics are
also indications that process reuse techniques bring benefits to process definition.
Moreover, the survey is not the only mean to evaluate our approach. The use of the
approach in real environments has already brought good benefits for users and for the
improvement of the approach itself. We are still going to use the approach on several
other real environments in order to constantly evolve it. We will repeat the survey in
the future trying to evaluate benefits and difficulties observed from the use of our
approach. Thus, we will be able to evaluate if the expected benefits are being
provided specifically by our approach and whether the expected difficulties are being
properly addressed.

7 An Environment to Support Software Process Reuse

To accomplish systematic process reuse without supporting tools may be a very
difficult task. One of the difficulties often mentioned, related to software product
reuse, is the lack of adequate support mechanisms. In the context of process reuse the
same difficulties are expected. As we presented in Section 6, in the point of view of
experienced software process engineers, the lack of adequate supporting tools was the
difficulty with higher probability to threaten process reuse, among the difficulties
considered. Thus, in order to allow process reuse to happen we developed a software
process reuse environment. It supports the main steps of our approach and is detailed
in Figure 8. Therefore, this environment is actually the support of the approach
described in this paper and implements the concepts and activities described.

At the center of Figure 8 it is possible to see the reusable process repository,
which was already described earlier in Section 4. To implement it we used a relational
database that models all the concepts described in Section 3, among others.

At the left-hand side of Figure 8 it is possible to see the domain engineering
activities (definition for reuse) that are accomplished by the most experienced process

1790 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

engineers, who make their knowledge explicit through the definition of reusable
process elements, as described in Section 5. Actually, this domain engineering
process corresponds to the steps described in Figure 4 and Figure 6, except for the
verification activities, that are performed through checklists.

Continuing on Figure 8, at its right-hand side it is possible to see the application
engineering activities (definition with reuse) that can be accomplished even by less
experienced process engineers, since knowledge acquired from the most experienced
process engineers is already available to be reused by them. Thus, process engineers
can derive new process lines from the existing ones, so that more specific variant
process lines are available. They may also define processes from the available process
lines. Process definition based on a process line consists in choosing a concrete
variant at each variation point and in defining if the optional elements are going to be
present in the resulting process or not.

Figure 8 An Environment to Support Software Process Reuse

Once a process is defined, it can be enacted on projects. Projects team execute the
process of the project and contribute to the reusable repository through the collection

1791Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

of measures, lessons learned, process improvement requests, among others, as
mentioned earlier.

Other important element of our environment is Process Broker (as shown in
Figure 8), which is responsible for managing the communication among reusable
process repositories. This communication can happen among software process
implementation organizations (SPIOs), among software development organizations,
and among software development organizations and SPIOs, as show in Figure 3.
Process Broker externalizes the structure of a reusable repository through the
definition of a XML Schema. Thus, elements can be exported in the established
format, and have to be in the same format to be imported.

Once the overall characteristics of our environment were described, we provide a
guiding example of how our supporting tools could be used in order to make it easier
to understand. Therefore, let us define an exemplary situation where a group of five
organizations gets in touch with COPPE/UFRJ. Their goal is to achieve CMMI-DEV
Level 2 as a first step in their software process improvement initiatives. They do not
have previously defined processes, and do not perform several practices required by
the model. So, they want COPPE/UFRJ to help them on the definition of a process, on
training to correctly enact the process, and on mentoring during the process
enactment. We are focusing only on the process definition related activities. Since
COPPE/UFRJ will need to define similar processes, it can take advantage from
software process reuse, and may define and use a SPL. Doing so, it tends to be easier
to define the processes for the five organizations and, in addition, it tends to be even
easier to define processes in the future for other organizations that require similar
processes (which is a very likely situation). Thus, let us consider that COPPE/UFRJ,
acting as a SPIO, chose to use the top-down approach, described in Section 5.2.

The first step consists in the definition of the process features to be used. Since all
organizations want to comply with CMMI Level 2, this is an important feature to be
considered. Moreover, let us assume also that the organizations use or will use
different project estimates techniques. For instance, one organization wants to use the
project manager experience to support its estimates. A second organization is having
problems with its estimates, and wants to try another technique. Since use cases play a
central role in the way this second organization develop software and they have
already been trained on Use Case Points, they want their estimates based on this
technique. The other organizations, however, have Function Points certified
professionals, and thus want to use it to estimate projects. Due to that, it is possible to
notice three other features, based on the way estimates are going to be performed.
Figure 9 shows how process features can be defined using our supporting tools.

Once process features are defined, it is necessary to define the process
components that will fulfill those features. So, let us consider a small portion of the
SPL being defined: a portion that aims to plan the process of a project, plan the
project itself, and assess the quality of the produced work products. Therefore,
following our approach, COPPE/UFRJ experienced process engineers chose to create
8 process components. The first component, “Plan the Process”, was considered by
the process engineers as a component that will not suffer variation. So, it was defined
as a concrete component and will be included in the 5 derived processes exactly as
defined. The component “Establish Project Estimates” was defined as an abstract
component, since this component can be instantiated in a process in three different

1792 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

ways, through the choice of one of its three concrete varying components, which also
had to be defined (“Use Case Points”, “Function Points”, and “Experience-based”). In
order to make the example simpler, let us consider that the remaining process
components were all concrete components: “Generate Project Plans”, “Review and
Obtain Commitment with Project Plan” and “Assess Work Product Quality”. Figure
10 illustrates how process components can be defined using our tool.

Figure 9 Process Features Listing and Adding Using the Support Tool

Figure 10 Adding a Process Component Using the Support Tool – Basic Data

In order to define each component, process engineers had to define: their
indentifier, kind (concrete or abstract), name, description, entry and exit criteria,
organization that defined it, process role responsible for its enactment (e.g., project
manager), entry and exit parameters (i.e., required and produced work products),

1793Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

other process roles that participate in its enactment, tools that support its enactment,
and measures that can be collected during its enactment. Moreover, if a component is
a variant of another, the abstract component from which it is a variant has to be
identified. The component has also to be mapped to the process features that it
complies and also to the ones that conflict with it. Some of these fields do not appear
in Figure 10, since the screen shown has to be scrolled down for some of them to
appear, and some are included in the other tab panels (process features, variation and
measures). Furthermore, their internal architecture can also be defined (its support is
similar to the one presented in Figure 11).

The next step focus on structuring and characterizing the SPL. In our example,
COPPE/UFRJ structured the SPL as shown in Figure 11 through our supporting tool.
We can see that the component “Assess Work Product Quality” was considered
optional, while all the others were defined as mandatory elements of the SPL. The last
step includes a review of the defined reusable elements. This review is not supported
by our tools, and a checklist is provided to guide the review. As a result of this
review, the previously defined elements can be changed or removed, and new ones
may be necessary. After that, the definition for reuse step is finished.

With this SPL, the SPIO COPPE/UFRJ would be able to derive different process,
depending on the selected process features for each particular situation. Moreover,
through the use of process broker, the SPIO is able to send new process elements to
the organizations, and the organizations is be able to send back data related to the
enactment of the components. Using this data, the SPIO could update process
components performance data in order to use it during process definition, since
components should be chosen based on their past behavior.

Figure 11 Structuring a Process Line Using the Support Tool

Since software process lines (SPLs) are the most promising approach and
inadequate support tools is the great concern, considering the survey presented on
Section 6, SPLs supporting tools deserved special attention. To address it in our
approach, we are providing better supporting tools to SPLs definition and use. There
are not many works on the literature focusing on tools to support SPLs. Therefore, we
are focusing on providing the functionalities that are needed, but considering also
usability issues and knowledge that has to be available. We are using rich internet

1794 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

applications [Preciado et al., 2005] technology to make it easier for the users to
interact with software process lines, as shown in Figure 11.

Although there are some other tools that also aim at achieving process reuse
[WebApsee, 2010; Rational, 2010; EPF, 2010] they do not use the concept of
software process line or process features, which are central aspects of our tool.
Therefore, a comparison with these tools would not be adequate.

The reuse environment described in this section already has its first version
implemented, although it is still being improved. Process Broker component has also
a functional version already. Its current version has a XML Schema defined, import,
and export functionalities available. We have already used the environment in real
contexts to define the reusable elements using top-down and bottom-up approaches,
as described in Section 5. We also are going to use it on every process definition
opportunity that we have hereafter. Furthermore, as mentioned earlier, our research
group is working on the definition of SPLs for particular situations. Therefore, the
environment will also be used to perform these definitions, although these definitions
are yet at an early stage. We also are going to use it to define the new versions of the
processes of LENS, since the organization is aiming at achieving higher maturity
levels and processes need to be improved. In addition, at LENS we have already
identified the need for a software process line to consider the differences among
software projects requested by the industry and software projects that are developed
in the context of academic research.

8 Conclusions

This paper presented a software process definition approach based on reuse
techniques. Our main contributions are: (i) the adaptations made to use some reuse
concepts in our approach (Section 3); (ii) the considered reuse scenarios, i.e., software
process implementing organizations, software process development organizations,
and software processes (Section 4); (iii) the steps that should be followed to define the
reusable elements and how to perform them, including usage experiences (Section 5);
(iv) the results of a survey on the expected benefits and difficulties from the adoption
of the reuse approaches being used (Section 6); and (v) an environment to support
process reuse, including the overall structure, some of the available tools, and the
development status (Section 7).

We believe it is possible to expect similar benefits and difficulties from the
adoption of software process reuse techniques, when compared to software product
reuse techniques, as shown in Section 6. We also believe that these benefits may be
provided by our approach, although some of these difficulties may also need to be
addressed. Moreover, we believe that through our approach, organizations could take
more advantage from the reuse opportunities that happen on different contexts, as
described in Section 4.

As mentioned in the introduction, we believe that if knowledge belonging to
experienced process engineers could be made explicit, formalized, and available to
other professionals, it would probably be possible to reuse this knowledge in an
effective way. Results of the presented survey indicate that experienced process
engineers do consider that these goals could be achieved through the use of process
components, features, and process lines. Therefore, since our approach and tools

1795Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

provide means to define these reusable elements and (re)use them, we believe our
work is able to achieve the mentioned goals.

The main limitations of this work are related to the supporting environment,
which is in its first version, and some features are still being developed, such as the
software process line derivation. We intend to alleviate this problem in the next few
months, since the environment is in constant evolution. Moreover, in the next
versions, Process Broker component will manage which elements can be exchanged
by which repositories, establishing exchange policies and access rules. Process Broker
will also define some plug-ins in order to make it possible the exchange of data from
repositories with different structures. We also could not use all the aspects of our
approach yet, since some tools are under development.

We intend to run a complementary study of the survey described in Section 6 in
order to check if the expected benefits and difficulties are going to be present in our
approach specifically. Moreover, we will also perform other kinds of experiments to
quantitatively evaluate the results of the use of our approach in regard to aspects such
as: time spent, rework, quality of the process, etc, when compared to ad-hoc process
reuse or no process reuse approaches. We will start planning these studies in the next
few months. We also want to improve our support on process features, defining and
being able to handle more complex rules among them to better derive SPLs, and also
on configuration management of the reusable elements.

Acknowledgements

We would like to thank the students at COPPE/UFRJ and UFF, the survey
participants, and the anonymous reviewers for their valuable contributions to this
work. Moreover, we would like to thank CNPq and FAPERJ for their financial
support.

References

[Acuña et al., 2000] Acuña, S. T., Antonio, A., Ferré, X., López, M. and Maté, L.: "The
Software Process: Modelling, Evaluation and Improvement"; In: CHANG, S. K. (ed.)
Handbook of Software Engineering and Knowledge Engineering, 1st ed, World Scientific
Publishing Company, Singapore (2000).

[Armbrust et al., 2009] Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. and
Ocampo, A.: "Scoping Software Process Lines"; Software Process: Improvement and Practice,
14, 3 (2009), 181-197.

[Barreto et al., 2010] Barreto, A., Duarte, E., Rocha, A. R. and Murta, L.: "Supporting the
Definition of Software Processes at Consulting Organizations via Software Process Lines"; 7th
International Conference on the Quality of Information and Communications Technology,
Porto, Portugal, (2010), Accepted for publication.

[Barreto et al., 2008] Barreto, A., Murta, L. and Rocha, A. R.: "Software Process Definition: a
Reuse-based Approach"; XXXIV Conferencia Latinoamericana de Informática (CLEI'08),
Santa Fe, Argentina, (2008), 409-419.

[Bosch, 2000] Bosch, J.: "Design and use of software architectures: adopting and evolving a
product-line approach"; 1st, Addison Wesley Professional, New York, United States (2000).

1796 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

[Chrissis et al., 2006] Chrissis, M. B., Konrad, M. and Shrum, S.: "CMMI: Guidelines for
Process Integration and Product Improvement"; 2nd, Addison-Wesley, New York, USA (2006).

[Clements and Northrop, 2001] Clements, P. and Northrop, L.: "Software product
lines:practices and patterns"; Addison-Wesley Professional, (2001).

[EPF, 2010] EPF: "Eclipse Process Framework" [Online], Available:
http://www.eclipse.org/epf/ [Accessed 12/05/2010].

[Fadila and Mohamed, 2009] Fadila, A. and Mohamed, A. N.: "Reusing heterogeneous
software process models"; 14th IEEE ISCC'2009, Sousse, Tunisia, (2009), 291-294.

[Ferreira et al., 2008] Ferreira, A. I. F., Santos, G., Cerqueira, R., Montoni, M., Barreto, A.,
Rocha, A. R., Barreto, A. S. and Cabral, R.: "ROI of Software Process Improvement at BL
Informática – SPI is Really Worth It"; Software Process Improvement and Practice, 13, 04
(2008), 311-318.

[Florac and Carleton, 1999] Florac, W. A. and Carleton, A. D.: "Measuring the Software
Process"; 1st, Addison-Wesley, Reading, United States (1999).

[Franch and Ribó, 2002] Franch, X. and Ribó, J.:"Supporting Process Reuse in
PROMENADE", Departament de Llenguatges i Sistemes Informàtics, Universitat Politécnica
de Catalunya, (2002).

[Fuggetta, 2000] Fuggetta, A.: "Software process: a roadmap"; Conference on The Future of
Software Engineering, Limerick, Ireland, (2000), 25-34.

[Fusaro et al., 1998] Fusaro, P., Visaggio, G. and Tortorella, M.: "REP - ChaRacterizing and
Exploiting Process Components: Results of Experimentation"; Working Conference on Reverse
Engineering, IEEE Computer Society, Honolulu, United States, (1998), 20-29.

[Garg et al., 2003] Garg, A., Critchlow, M., Chen, P., Westhuizen, C. V. d. and Hoek, A. v. d.:
"An Environment for Managing Evolving Product Line Architectures"; International
Conference on Software Maintenance, Amsterdan, Netherlands, (2003), 358-367.

[Gary and Lindquist, 1999] Gary, K. A. and Lindquist, T. E.: "Cooperating Process
Components"; COMPSAC'99, Phoenix, United States, (1999), 218-223.

[Hollenbach and Frakes, 1996] Hollenbach, C. and Frakes, W.: "Software Process Reuse in an
Industrial Setting"; 4th ICSR, Orlando, USA, (1996), 22-30.

[ISO/IEC-15504, 2003] ISO/IEC-15504:"Information Technology – Software Process
Assessment", Parts 1-9, The International Organization for Standardization and the
International Electrotechnical Commission, (2003).

[Jaufman and Münch, 2005] Jaufman, O. and Münch, J.: "Acquisition of a Project-Specific
Process"; Product Focused Software Process Improvement, Oulu, Finland, (2005), 328-342.

[Johnson, 1997] Johnson, R. E.: "Frameworks = (components + patterns)"; Communications of
the ACM, 40, 10 (1997), 39-42.

[Jørgensen, 2000] Jørgensen, H. D.: "Software Process Model Reuse and Learning"; Process
Support for Distributed Team-based Software Development, Orlando, USA, (2000), 726-731.

[Kellner, 1996] Kellner, M. I.: "Connecting Reusable Software Process Elements and
Components"; 10th International Software Process Workshop, Dijon, France, (1996), 8-11.

[Lim, 1994] Lim, W.: "Effects of reuse on quality, productivity, and economics"; IEEE
Software, 11, 5 (1994), 23-30.

1797Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

[Lobsitz, 1996] Lobsitz, R. M.: "A Method for Assembling a Project Specific Software Process
Definition"; Hawaii International Conference on System Sciences (HICSS), Hawai, United
States, (1996), 722-730.

[Madhavji, 1991] Madhavji, N. H.: "The process cycle"; Software Engineering Journal, 6, 5
(1991), 234-242.

[MCIlroy, 1968] MCIlroy, M. D.: "Mass Produced Software Components"; Software
Engineering, Report on a conference sponsored by the NATO Science Committee, Garmisch,
Germany, (1968), 88-98.

[Mili et al., 1995] Mili, A., Mili, F. and Mili, A.: "Reusing Software: Issues And Research
Directions"; IEEE Transactions on Software Engineering, 21, 6 (1995), 528-562.

[Montoni et al., 2008] Montoni, M., Santos, G., Vasconcelos, J., Figueiredo, S., Cabral, R.,
Cerdeiral, C., Katsurayama, A. E., Lupo, P., Zanetti, D. and Rocha, A. R.: "Application of the
SPI-KM Approach to Support the Implementation of the MPS Model in Small and Medium-
Sized Enterprises in Brazil"; Software Quality Professional Journal, 11, 1 (2008), 34-45.

[OMG, 2008] OMG:"SPEM - Software Process Engineering Metamodel"; v2.0 ed, Object
Management Group, (2008).

[Osterweil, 1987] Osterweil, L.: "Software Processes Are Software Too"; International
Conference on Software Engineering, Monterey, USA, (1987), 2-13.

[Perry, 1996] Perry, D. E.: "Practical Issues in Process Reuse"; 10th International Software
Process Workshop, Dijon, France, (1996), 12-14.

[Pfleeger, 2001] Pfleeger, S.: "Software Engineering: Theory and Practice"; 2nd, Prentice Hall,
(2001).

[Preciado et al., 2005] Preciado, J., Linaje, M., Sanchez, F. and Comai, S.: "Necessity of
methodologies to model rich Internet applications"; Seventh IEEE International Symposium on
Web Site Evolution (WSE 2005), Budapest, Hungary, (2005), 7-13.

[Prieto-Diaz, 1993] Prieto-Diaz, R.: "Status report: software reusability"; IEEE Software, 10,
03 (1993), 61-66.

[Rational, 2010] Rational: "Rational Method Composer" [Online], Available: http://www-
01.ibm.com/software/awdtools/rmc/ [Accessed 12/05/2010].

[Reis et al., 2001] Reis, R. Q., Reis, C. A. L. and Nunes, D. J.: "Automated Support for
Software Process Reuse Requirements and Early Experiences with the APSEE model";
International Workshop On Groupware, Darmstadt, Germany, (2001), 50-57.

[Rombach, 2005] Rombach, H. D.: "Integrated Software Process and Product Lines";
International Software Process Workshop, Beijing, China, (2005), 83-90.

[Ru-Zhi et al., 2005] Ru-Zhi, X., Tao, H., Dong-Sheng, C., Yun-Jiao, X. and Le-Qiu, Q.:
"Reuse-Oriented Process Component Representation and Retrieval"; International Conference
on Computer and Information Technology, Shangai, China, (2005), 911-315.

[Santos et al., 2007] Santos, G., Montoni, M., Vasconcelos, J., Figueiredo, S., Cerdeiral, C.,
Katsurayama, A. E., Lupo, P., Zanetti, D. and Rocha, A. R.: "Implementing Software Process
Improvement Initiatives in Small and Medium-Size Enterprises in Brazil"; 6th International
Conference on the Quality of Information and Communications Technology, Lisbon, Portugal,
(2007), 187-198.

1798 Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

[Sherif and Vinze, 2003] Sherif, K. and Vinze, A.: "Barriers to adoption of software reuse A
qualitative study"; Information & Management, 41, 2 (2003), 159-175.

[Simidchieva et al., 2007] Simidchieva, B. I., Clarke, L. A. and Osterweil, L.: "Representing
Process Variation with a Process Family"; International Conference on Software Process,
Minneapolis, Estados Unidos, (2007), 109-120.

[SOFTEX, 2009] SOFTEX: "MPS.BR - Brazilian Software Process Improvement, General
Guide:2009" [Online]; SOFTEX - Association for Promoting the Brazilian Software
Excellence, Available: http://www.softex.br/mpsBr/_guias/default.asp [Accessed 07/02/2009
2009].

[Sutton and Osterweil, 1996] Sutton, S. M. and Osterweil, L.: "Product families and process
families"; International Software Process Workshop, Dijon, France, (1996), 109-111.

[Ternité, 2009] Ternité, T.: "Process lines: a product line approach designed for process model
development"; 35th Euromicro SEAA, Patras, Greece, (2009), 173-180.

[Washizaki, 2006a] Washizaki, H.: "Building Software Process Line Architectures from
Bottom Up"; PROFES'06, Amsterdam, Netherlands, (2006a), 415-421.

[Washizaki, 2006b] Washizaki, H.: "Deriving Project-Specific Processes from Process Line
Architecture with Commonality and Variability"; IEEE International Conference on Industrial
Informatics, Singapore, (2006b), 1301-1306.

[WebApsee, 2010] WebApsee: "WebAPSEE - Flexible Process Management" [Online],
Available: http://sourceforge.net/projects/webapsee/ [Accessed 12/05/2010].

1799Barreto A.S., Murta L.G.P., Cavalcanti da Rocha A.R.C.: Software ...

