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Abstract: This paper investigates regular expressions which in addition to the standard operators

of union, concatenation, and Kleene star, have lookaheads. We show how to translate regular

expressions with lookaheads (REwLA) to equivalent Boolean automata having at most 3 states
more than the length of the REwLA. We also investigate the state complexity when translating

REwLA to equivalent deterministic finite automata (DFA).
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1 Introduction

As regular expressions paved their way into everything from programming languages to
databases, the standard notion was enriched with several constructs. To accommodate
this, many implementations have resorted to using algorithms based on backtracking,
which has the weakness that matching takes exponential time (in the length of the input
string) in the worst case unless potentially memory expensive memoization techniques
are added to backtracking matchers [Davis 2019]. Consequently, not only did this create
a gap between regular expressions in theory and practice, but gave rise to security
vulnerabilities when misused in practice [Staicu and Pradel 2018; Davis et al. 2018].

Arguably, the most common difference between how regular expressions are used in
practice, in contrast to how they have been studied, is the fact that more often than not
regular expressions are used in submatching mode. That is, programmers use them to
find the first submatch, from the left, in an input string (often iterating this procedure).
This point of view is complicated by the lookahead extension (typically implemented
using backtracking), making it possible to supply a lookahead expression at any point
in a regular expression, describing in addition to the conditions enforced by the regular
expression (without the lookaheads) the constraint that the lookahead expression should
match (or fail to match) a prefix of the remainder of the input string.

It is important to note that once we consider regular expressions in submatching mode,
where it might be possible for a regular expression to return more than one submatch
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starting at a given position in an input string, that a disambiguation policy, such as the
commonly used greedy (used in Perl-compatible engines, the standard example being
PCRE [Hazel 2015]) or the less often encountered posix policy [Stallman 2008], be
specified in order to select one of these possible submatches.

The combination of submatching with lookaheads causes regular expressions to
have an influence on the possible suffixes beyond the returned submatch. Thus, regular
expressions with lookaheads describe what gets matched and what is left over after the
submatch. In many regular expression engines, (?=r) and (?!r) denote the positive
and negative lookahead of r, respectively.

Lookaheads are also used in parsing expression grammars (PEGs) [Ford 2004], and
in [Chida and Kuramitsu 2017] Linear PEGs, a subclass of PEGs that parse regular
languages, is defined, demonstrating a close link between PEGs and regular expressions
with lookaheads (REwLA). Several automata-based regular expression engines (such
as those found in RE2, Rust, and Golang) do not support lookahead assertions, claiming
that they do not support constructs for which only backtracking solutions are known to
exist [Cox 2010]. Although we are not aware of regular expression engines with support
for lookaheads that is not based on a backtracking algorithm, the results presented here
can be directly applied to implement such an engine.

Lookaheads are zero-length assertions (i.e. they do not consume characters in the
input string) that specify what should or should not follow the current position in the
input string. Consider for example the regular expression [0-9]+(?=U). On input 123
the match fails, since 123 is followed by ε and not the character U. On input 123U we
match 123 with remainder U, and on input 123U12 we match 123 with remainder U12.
We thus consider this regular expression with lookahead U, to describe the language of
one or more digits followed by strings starting with U as lookahead. This concept of
describing what gets matched and what should follow a given match, is formalized in
the notion of a lookahead language.

The anchors ^ and $ are used to force the regular expression to match from the
beginning and match all the way to the end of the input string, respectively. We ignore
the ^ anchor, assuming all matches start from the beginning of the input string instead
of skipping a prefix (the shortest possible), i.e. we assume that all regular expressions
begin with the anchor symbol ^ (which we do not indicate). The reason for ignoring ^
follows from the observation that the submatching behavior of two regular expressions
with lookaheads are equivalent, whether we check equivalence when both expressions
are forced to match from the beginning of an input string, or both are allowed to skip a
prefix (the shortest possible) before (possibly) succeeding with a sub or full match. To
see this, let E and F be regular expressions not starting with ^. If ^E and ^F matches
identical prefixes of any string, then E and F will certainly match identical substrings
of any given string and vice versa. But in contrast, for the anchor $ we have that if E
and F denotes ^(?=ab)a$ and ^(?=ac)a$ respectively, then both expressions match
no string, since a$ forces strings that could be matched to be only the symbol a, whereas
the lookaheads require at least two symbols. However, if E′ and F ′ denote ^(?=ab)a
and ^(?=ac)a respectively, then E′ matches the first symbol of a string when it is a,
but only when a is directly followed by a suffix starting with a b, whereas F ′ match a
first symbol if it is an a directly followed by a suffix starting with c.

REwLA were originally formalized by Morihita [Morihita 2012], and in the follow-
up [Miyazaki and Minamide 2019] it was shown that a REwLA of size n can be

converted into DFA with at most (22
n

+ 1) states, and asymptotically at least 22
Ω(

√
n)

states in the worst case. The lower bound 22
Ω(

√
n)

is obtained by using the common
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strategy (in these cases) of considering the language where when going back k symbols
from the right of a word, we get a specific symbol, and then expressing k, which is
required to be a product of distinct primes, by using intersection of languages and thus
using a number of symbols (in the REwLA) that is the sum of the prime factors of k
in order to describe k. It is interesting to compare DFA state complexity of REwLA
to that of regular expressions that are extended by intersection and complement, where
we have that it is not bounded from below by an elementary function [Stockmeyer and
Meyer 1973].

Our contributions are (i) showing how to translate REwLA into alternating (and
Boolean) automata, and (ii) various state complexity results when converting REwLA
to equivalent DFA, improving results by [Miyazaki and Minamide 2019] (for all but
REwLA of length 1 or 2).

The outline of the paper is as follows. Next, we introduce the necessary definitions
and notation, which is followed by a section describing how to translate REwLA into
alternating automata which gets converted into Boolean automata having at most three
more states than the length of the corresponding REwLA. This is followed by [Section
4], where we give various state complexity results. After this, we provide some empirical
results followed by our conclusions.

2 Definitions and Notation

Let Σ be a finite alphabet, ε the empty string, Σε = Σ ∪ {ε} and |w| be the length of w,
in particular, |ε| = 0. We denote the empty set by ∅. For any set A, let 2A be the power
set of A.

A lookahead language is a subset of Σ∗ × Σ∗, which describes what is matched and
what follows subsequently. For example, the language {(ab, c)} contains the string “ab”,
if it is followed precisely by “c”. Concatenation of lookahead languages is defined as
R · S = {(xy, z) | (x, yz) ∈ R, (y, z) ∈ S}. It is shown in [Miyazaki and Minamide
2019] that lookahead languages form a monoid under concatenation, with unit element
I = {ε} × Σ∗, and that concatenation for R,S ⊆ I (which is equivalent to intersection
in this case) is commutative and idempotent. The Kleene star operator is defined for
lookahead languages in terms of concatenation and union as usual, with R∗ =

⋃∞
i=0 R

i,

assuming R0 = I and Rn+1 = Rn ·R.
Next, we define lookahead assertions. As in [Miyazaki and Minamide 2019], we

adopt the notation of PEGs [Ford 2004]. PEGs is a formalism consisting of a set
of rules for recognizing strings in a language, and syntactically they look similar to
context-free grammars, but they have a different interpretation and are closer to how
string recognition tends to be done in practice by a recursive descent parser. As in PEGs,
&R and !R denote positive and negative lookaheads, respectively. We define the positive
lookahead of a lookahead language R, denoted by &R, as {ε} × {xy | (x, y) ∈ R}.
The positive lookahead operator satisfies the following relationships: &(&R) = &R,
&(R∪ S) = &R∪&S, and if R ⊆ I , then &(R · S) = R ·&S. We define the negative
lookahead of a lookahead languageR, denoted as !R, by {ε}×(Σ∗ \ {xy | (x, y) ∈ R}).
Positive and negative lookahead operators are related as follows: &R = !(!R).

Definition 1. The set of regular expressions with lookaheads over the alphabet Σ,
denoted as REwLA(Σ) (or simply REwLA if Σ is clear from the context), is defined
inductively as follows, where r1 and r2 denote REwLA already defined:
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(i) ∅, the empty language; (ii) ε, the empty string; (iii) a, for a ∈ Σ; (iv) (r1 | r2); (v)
(r1 · r2); (vi) (r∗1); (vii) (!r1).

For r ∈ REwLA(Σ), let ‖r‖ denote the number of symbols from Σ that occur in r.
We refer to ‖r‖ as the length of the REwLA r.

Remarks.
1. For r ∈ REwLA, (&r) denotes (!(!r)).
2. Although character classes, for example [A-Z] (denoting any letter in the uppercase

alphabet in the English language) or \d (denoting any digit) should be considered
from a practical point of view, we (beyond in some examples) leave considerations
dealing with large alphabet sizes as future work, although we do use the metachar-
acter “.” as an abbreviation for a1| · · · |an, where Σ = {a1, . . . , an}. We should
point out that it is easy to verify that our state complexity results extend to the case
where we allow character classes and count a character class as contributing one
to the length of a REwLA.

3. Regular expressions are defined as usual, i.e. as in the definition above forREwLA,
but without allowing !r1 (and &r). The set of regular expressions over the alphabet
Σ is denoted byReg(Σ) or simplyReg ifΣ is clear from the context. We thus regard
Reg ⊂ REwLA.

4. Regular expressions set in typewriter font are examples of the Java syntax, which
is mostly similar to other libraries. See [Davis et al. 2019] for an examination of
how portable regular expressions are between programming languages.

Definition 2. The matching semantics of REwLA is defined by the function
B : REwLA −→ Σ∗ × Σ∗, which maps REwLA to languages with lookaheads. The
function B is defined inductively as follows:
(i) B(∅) = ∅; (ii) B(ε) = I; (iii) B(a) = {a}×Σ∗; (iv) B((r1 | r2)) = B(r1)∪B(r2);
(v) B((r1 · r2)) = B(r1) · B(r2); (vi) B((r∗)) = B(r)∗; (vii) B((!r)) = !B(r).

Example 1. In this example we show how to use lookaheads to describe the intersections
of regular languages, by using both Java regular expression syntax and PEGs notation.
The regular expression r given by

(?=.*[a-zA-Z])(?=.*\d)(?=.*[!@#$(),:;]).{8,}$

can be used to validate passwords (on a web server) that satisfy each of the following
conditions: (i) a password contains at least one letter from [a-zA-Z], at least one digit,
and at least one of the specified special symbols (these three conditions are validated
individually by each of the three lookahead expressions), and (ii) should have a minimum
length of eight, as encoded by the subexpression .{8,}, the only part of the expression
not in a lookahead (often called the “main” part). By making use of PEGs notation, we
can write this regular expression as the REwLA

&(.*[a-zA-Z])&(.*\d)&(.*[!@#$(),:;]).{8,}$

if we extend ourREwLA notation to allow the subexpressions [!@#$(),:;] and .{8,}.
By making use of lookahead expressions and preceding these expressions by .*, we
instruct the lookahead expression to match any character until it starts matching the
expressions following the .* expression. Given that a lookahead expression will only
assert conditions and not consume any characters, the only subexpression in r consuming
characters is the “main” part. All three lookahead expressions and the “main” part of
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r each describe a regular language. A password is valid if a prefix of the password is
in the language described by each of the lookaheads, and if it is matched by the “main”
part of r.

In general, suppose we have two regular expressions r1 and r2, then the regular
expression (?= r1$)(?= r2$).*$ (where the subexpression .* matches any string),
represents the intersection of the languages described by r1 and r2. One can similarly
encode the negation of a (language described by a) regular expression using a negative
lookahead.

Lemma 3. For r ∈ REwLA, B((&r)) = &B(r).

Proof. The result follows by noting that &r denotes !(!r), the identity &B(r) = !(!B(r))
and observing that B(!(!r)) = !(!B(r)).

Definition 4. The language of r ∈ REwLA, denoted L(r), is defined as {x | (x, ε) ∈
B(r)} (which is a regular language).

Note for r, r′ ∈ REwLA, B(r) = B(r′) implies L(r) = L(r′), but the converse
obviously does not hold in general. Also, we refer to B(r) as the lookahead language of
r.

Remark 1. For r ∈ REwLA we define the following additional iterative operators.
The optional match (r?) abbreviates (r | ε), and the positive closure (r+) abbreviates
(rr∗).

The end of string anchor “$” asserts that we are at the end of the input and can thus
only match ε followed by ε. The “$” expression can be represented by “!.” and we have
that B($) = {ε} × {ε}. Furthermore, B(r$) = L(r)× {ε}.

Next, we define alternating automata (AFA)—a generalization of the standard notion
of nondeterministic automata. Nondeterminism provides a computing device with the
power of existential choice. The dual of such a device has universal choice and AFA have
both existential and universal choice. Alternation was studied in [Kozen 1976; Chandra et
al. 1981] in the context of Turing machines and in [Brzozowski and Leiss 1980; Chandra
et al. 1981] for finite automata. In general, the transition function of an AFA on a given
alphabet symbol from a given state, can be an arbitrary Boolean function over states.
Based on our use cases, we consider the following two classes of automata (with our
version of AFA contained in the class of Boolean automata, as usual, once we apply the
ε-removal procedure described later): (i) AFA (with ε-transitions) having a single initial
state and a transition function making use of Boolean formulas in the transition function
which can be represented as a conjunction or disjunction over states, with all transitions
from a given state making use of either only conjunction or only disjunction, and (ii)
Boolean automata (without ε-transitions) where we replace the initial state by an arbitrary
Boolean formula, and where we make use of arbitrary Boolean formulas over Q in the
transition function. We denote by B(Q) the set of Boolean formulas over Q, inductively
defined as usual with negation (“not”), conjunction (“and”), disjunction (“or”), over Q
as variables, plus the constants true and false, all defined as usual. Let B+(Q) ⊂ B(Q)
denote the monotone (or positive) Boolean functions over Q, i.e. Boolean formulas not
making use of negation. For any Boolean formulas f, g ∈ B(Q) and q ∈ Q let fJq ← gK
denote the formula resulting when replacing all occurrences of q in f with a copy of
the formula g. In cases where the distinction is unimportant we often identify Boolean
formulas representing equivalent Boolean functions and use the terminology Boolean
formulas and Boolean functions interchangeably.
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Our definition of AFA is complicated by the inclusion of epsilon transitions. These
are not usually included in definitions of AFA or Boolean automata, notably they are
not considered in any of the papers listed above. They are however very helpful when
compositionally constructing AFA from REwLA, as we will do in the next section.

Definition 5. An alternating finite automaton (AFA), with Q being the disjoint union of
Q∃ and Q∀, is a tuple A = (Q∃, Q∀,Σ, q0, δ, F ), where:
(i) Q∃ is the finite set of existential states; (ii) Q∀ is the finite set of universal states;
(iii) Σ is the input alphabet; (iv) q0 ∈ Q is the initial state; (v) δ : Q× Σε → 2Q is the
transition function; (vi) F ⊆ Q is the set of final states.

For a Boolean automaton the state set is simply Q (there are no distinguished
existential or universal states), we replace q0 ∈ Q by q′0 ∈ B(Q), and the transition

function δ : Q× Σε → 2Q by δ′ : Q× Σ→ B(Q).

To simplify our discussion, we assume that if there is a transition on epsilon from a
given state in an AFA, then there are no transitions on alphabet symbols from this state.

Next, we define the language accepted by an AFA in terms of accepting runs. We
begin with a preliminary definition to handle ε-transitions.

Definition 6. Let A = (Q∃, Q∀,Σ, q0, δ, F ) be any AFA. The forall epsilon closure of
a set of states P ⊆ Q, denoted C∀(P ), is the smallest set such that P ⊆ C∀(P ) and
{q′ | q ∈ C∀(P )∩Q∀, (q, ε, q

′) ∈ δ} ⊆ C∀(P ). Further, the full epsilon closure of P is

the smallest set of sets CF (P ) ⊆ 2Q, such that C∀(P ) ∈ CF (P ), and for P ′ ∈ CF (P ),
q ∈ P ′ ∩Q∃, and (q, ε, q′) ∈ δ, we have ((P ′ \ {q}) ∪ C∀({q′})) ∈ CF (P ).

That is, C∀(P ) is the set resulting when starting from P and inductively adding any
state reachable on an ε-transition from a ∀-state already in P , while CF (P ) contains the
∀-closure for every way to take any number (including zero) of ε-transitions from an

∃-state in a set in CF (P ). We denote by CF (P ) the set of non-empty sets obtained by
deleting states with epsilon outgoing transitions from the sets in CF (P ). We assume

that CF ({q}) 6= ∅ for all states q, to avoid having to define acceptance for the situation
of having a state q′ reachable after having read an input word, being such that all states
reachable from q′ on ε-transitions, having (only) epsilon outgoing transitions.

A run of an AFA A = (Q∃, Q∀,Σ, q0, δ, F ) on a string w = a1 . . . an is a sequence
of non-empty sets of states Q0, Q

′
0, . . . , Qn, Q

′
n ⊆ Q∃ ∪Q∀ which fulfill the following

conditions.
– As a base case Q0 = {q0}.
– For each i the set Q′

i is in the full epsilon closure of Qi, i.e. Q
′
i ∈ CF (Qi).

– Finally, Qi+1 corresponds to (one way of) reading the symbol ai+1 when in the
states Q′

i. Specifically, Qi+1 is the smallest set containing the states dictated by
• if q ∈ Q′

i ∩Q∀ then δ(q, ai+1) ⊆ Qi+1, or
• if q ∈ Q′

i ∩Q∃ then some q′ ∈ δ(q, ai+1) is in Qi+1.
A run Q0, Q

′
0, . . . , Qn, Q

′
n is accepting if Q′

n ⊆ F .
We remove ε-transitions from an AFA and convert AFA to Boolean automata as

follows. We begin by removing all states from Q having (only) epsilon outgoing transi-
tions, replacing δ by δ′ : Q × Σ → B+(Q), and replacing q0 with q′0 ∈ B+(Q). Next

we describe how to obtain q′0 and δ′. For P ⊆ Q, let C
B

F (P ) be the Boolean formula
overQ obtained by replacing each P ′ ∈ CF (P ) by the conjunction over the states in P ′,

and then taking the disjunction over all conjuncts obtained for each P ′ ∈ CF (P ). We

obtain q′0 by taking C
B

F ({q0}). Similarly, δ′(q, a) is the disjunction or conjunction over
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C
B

F ({q′}), for all q′ ∈ δ(q, a), depending on if q is an existential or universal state. Once
we have a Boolean automaton with δ′ making use only of positive Boolean formulas writ-
ten in disjunctive normal form, we generalize the definition of a runQ0, Q

′
0, . . . , Qn, Q

′
n

by making each Qi a formula, and each Q′
i is a way of choosing a single conjunction

from Qi (so Q′
i implies Qi). A straightforward argument can be used to verify that

the accepted language is not altered when applying the described ε-transition removal
procedure.

Acceptance of strings by Boolean automata can also be considered from the point of
view described next. We start with the initial Boolean formula, and then use the transition
function that maps pairs of states and input symbols to Boolean formulas. As the input
is read (from left to right), the automaton “builds” a Boolean formula, starting with the
formula q′0, and on reading an input symbol a ∈ Σ, replacing every q ∈ Q in the current
formula by δ′(q, a), i.e. the formula f turns into the formula fJ{q ← δ′(q, a) | q ∈ Q}K.
The input is accepted if the formula f constructed on reading the whole input is such that
fJ{q ← true | q ∈ F}KJ{q′ ← false | q′ ∈ (Q \ F )}K evaluates to true (i.e. simplifies
to true as no variables remain). When converting a Boolean automaton to an equivalent
(minimal) DFA, we identify Boolean formulas with states of the DFA, with equivalent
Boolean formulas (i.e. Boolean formulas defining the same Boolean function) being
identified with the same state. In the case where we consider only formulas from B+(Q),
we thus obtain an upper bound on the number of states of the equivalent minimal DFA,
of D(n) states, where n is the number of states in the corresponding Boolean automaton,
andD(n) being the nth Dedekind number, since the nth Dedekind number is the number
of monotone Boolean functions on n variables ([Kleitman 1969] and [Sloane 1964]).

Note thatD(n) < 2n
n

for n ≥ 1, with 2n
n

being an upper bound on the number of states
in the minimal DFA obtained when converting an arbitrary Boolean automaton with n
states to a DFA.

3 Automata Construction for REwLA

In this section, we develop a translation from REwLA to finite automata by applying a
bottom-up technique similar to [Thompson 1968], but producing an AFA (with “and”
and “or” states) as the result. As we make use of standard Boolean automata and DFA
in this section, we need a string representation of lookahead languages. We thus define
three slightly different encodings of lookaheads as strings.

Definition 7. For a lookahead language L over the alphabet Σ, we define the following
string encodings:
– The # string encoding is the string language {u#v | (u, v) ∈ L} where we assume

# /∈ Σ.
– The∼ string encoding, used in [Miyazaki andMinamide 2019], is the string language
{uṽ1 · · · ṽk | (u, v) ∈ L, v = v1 · · · vk where vi ∈ Σ for each i} over the alphabet
Σ ∪ Σ̃, where Σ̃ is Σ with each symbol decorated with a tilde and assumed to be
disjoint from Σ.

– The null string encoding is the string language {uv | (u, v) ∈ L}. This case is
discussed in Remark 2.

Example 2. Consider the lookahead word (aab, bacb) ∈ L, where L is a lookahead
language over Σ. When using the # string encoding we obtain the string aab#bacb, the
∼ string encoding gives us the string aabb̃ãc̃b̃, and finally the null encoding the string
aabbacb.
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“main” automaton
#

Σ

the “main tail”

#
{#} ∪ Σ

lookahead

#
{#} ∪ Σ

lookahead

#
{#} ∪ Σ

(nested) lookahead

∀

ε

ε

∀

ε

ε

∀

ε

ε

Figure 1: The structure of the alternating finite automata A(r) constructed from a
REwLA r by the procedure described in [Section 3].

In this section we construct automata which match the # string encoded language
of a REwLA. As we will see it is straightforward to convert this to either of the other
two encodings. The automaton constructed to accept the # string encoding of a language
matched by a REwLA will be of the form shown in [Fig. 1] (when all lookaheads are
positive lookaheads). Specifically, the automaton consists of a “main” part and one
subautomaton for each lookahead subexpression. In [Fig. 1], r has three lookaheads,
where one is nested within one of the others. Every ∀ (“and”) state (note that we denote
“or” states as blank circles) has precisely two outgoing edges, both labeled ε. The first
stays inside the current subautomaton and the other is the unique transition entering the
subexpression corresponding to the lookahead. The “main” subautomaton is responsible
for matching the part of the expression not contained in any lookahead, with the addition
that where the expression would accept, the “main” subautomaton instead reads a single
# and then reads any #-free suffix (this part of the “main” subautomaton is called the
“main tail”). In contrast, in the lookaheads every “or”-state, without epsilon outgoing
transitions, has a self-loop labeled # and contain no other #-labeled transitions (i.e. if a
lookahead subautomaton accepts a string w then it also accepts a string v derived from
w by adding and removing any number of instances of the symbol #). As will be pointed
out later in this section, subautomata for negative lookaheads have a different structure
than the lookahead subautomata in [Fig. 1] in terms of which states are respectively
“and” and “or” states, and also in terms of which states are accepting.

Remark 2. It is important to keep in mind that the real-world use-case will have no
# marker or ∼ string encoding. Rather the expression is matched against a full string,
where the main and lookahead parts are initially undistinguished. This is a problem
for [Miyazaki and Minamide 2019], as changing the ∼-encoding to a null encoding
(by replacing ã by a for a ∈ Σ, on a transition in the corresponding DFA) makes the
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DFA constructed non-deterministic, requiring another round of determinization and can
thus only be used to establish a triple-exponential bound on the state complexity. As
our construction first produces an AFA, one can simply replace the #-labeled transition
in the main tail by an ε-transition (and remove the other #-labeled loops), and in a
practical implementation it will be straightforward to extract a potential # position from
an automaton run.

The null encoding being important in practice, and the ∼-encoding preexisting,
raises the question of what the motivation for the # encoding is. It is used here as a
standin for a finitely decorating transducer; a string transducer which adds a constant (in
our case precisely one) number of symbols to its output to indicate a simple kind of parse.
Specifically, here the transducer would take a null-encoded string as input and produce
a #-encoded string as output, adding a single symbol to indicate the end of the main
match. Much of this work overlaps with the idea of captures in regular expressions, in
effect a parse that records which substrings are last matched by a subexpression, which
is well modelled by a finitely decorating transducer, e.g. as in [Berglund et al. 2018].
Such simple transducers have many attractive properties (drawing upon the theory
of transducers with origins [Bojańczyk 2014]) which can be leveraged for parsing
algorithms. While fully developing these ideas are beyond the scope of this paper, we
work with the # string encoding to make it possible in the future to incorporate these
concepts.

We will from here inductively define the alternating finite automaton that accepts
the string language which is the # encoding of the lookahead language matched by a
given REwLA, by defining the effect each operation has on the AFA constructed for
the subexpressions involved. For any REwLA r let A(r) denote the AFA constructed
for r by this procedure. From here let r1 and r2 be two REwLA for which A(r1) and
A(r2) have been inductively constructed, with the automata being schematically drawn
as follows:

r2
#

Σ

A(r2)

r1
#

Σ

A(r1)

Main tails will often be removed when constructing a new automaton from one or two
subautomata, but the newly constructed automaton will always have a unique main tail.

3.1 Terminal symbols

The AFA A(a) for the expression a consisting of a single terminal symbol a ∈ Σ is
constructed as follows. The epsilon transition from the initial state is included to ensure
consistency, i.e. all constructed AFA will have only epsilon outgoing transitions from
their respective initial states.

ε a #
Σ

3.2 Union

For any REwLA r1 and r2 the AFA A(r1 | r2) is constructed as follows.
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ε

ε

r1

r2

ε

ε

#
Σ

Note here that this is schematically almost the same as union in a Thompson construction,
with the change that the main tail of r1 and r2 is cut off and a new common main tail is
added (keeping the tail unique). Further, remember that A(r1) and A(r2) may contain
lookaheads, which contain final states and have associated “and” states, but the union is
only concerned with the initial and main tail states.

3.3 Concatenation

For any REwLA r1 and r2 the AFA A(r1 · r2) is constructed as follows.

ε εr1 r2
#

Σ

Thus, we remove the main tail of A(r1) and replace the #-transition in the main tail
of A(r1) with an ε-transition to the initial state of A(r2). Note that this construction
is not applicable to AFA concatenation in general, since we do nothing to any number
of final states which correspond to lookaheads inside A(r1) and A(r2). The REwLA
concatenation definition indeed operates in this way, adding a suffix language only to
the main part of A(r1), and this is also fortunate, as AFA concatenation in general will
in some cases cause an exponential blowup [M. Hospodár and G. Jirásková 2018]!

3.4 Kleene closure

Finally, among the classic regular expression operators, for any REwLA r1 the AFA
A(r∗1) is constructed as follows.

ε εr1
#

Σ

ε

ε

Thus, we again mimic the Thompson construction and ignore the final states in looka-
heads.

3.5 Lookahead

Although it follows from Definition 2 and Lemma 3 that it is not required to consider
positive lookahead, we discuss this case to simplify the explanation of the construction
of the negative lookahead case. For any REwLA r1 we construct A(&r1) by building
the following AFA.
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∀
ε #

Σ

r′1ε

{#} ∪ Σ

The r′1 subautomaton is derived from A(r1) by adding a #-labeled self-loop to each
“or”-state which is not a state with epsilon outgoing transitions and which does not have
a #-labeled self-loop, ensuring the invariant noted in [Fig. 1] that when a lookahead
subautomaton accepts a string, it will accept every string derivable by just adding or
removing # symbols. Furthermore, the #-transition on the main tail in A(r1) is replaced
by an ε-transition in the lookahead subautomaton in A(&r1). The leading initial state is
somewhat extraneous, but ensures all AFA have an “or” state as its initial state.

3.6 Negative lookahead

Finally, for any REwLA r1 the automatonA(!r1) is constructed by building the follow-
ing AFA.

∀
ε #

Σ

r′′1∀ε

{#} ∪ Σ

In this case, r′′1 is the negation of r′1 with r′1 as in the positive lookahead construction
above (i.e. w ∈ L(r′′1 ) if and only if w /∈ L(r′1)). As is well known [Chandra et al.
1981] (although this argument should be extended to also allow for ε-transitions) one
can negate the alternating finite automaton r′1 in linear time by first making r

′
1 complete

by adding a sink reject state, and then without adding any additional states or transitions
replacing each “or”-state with an “and”-state, and vice versa, and making each non-final
state final, and vice versa. Note since states in the lookahead of the AFA for A(&r1)
and A(!r1), with a self-loop on {#} ∪ Σ, only have the self-loop as outgoing transition,
in does not matter if we regard these states as a universal or existential.

Theorem1. For anyREwLA r we havew ∈ L(A(r)) if and only ifw = u#v for some
(u, v) ∈ B(r) (as in Definition 2). That is to say, the AFA construction is correct.

Proof. We prove this by structural induction on the expression r, but rather than enumer-
ate every case (as they are very similar) we demonstrate some key cases and leave the
remainder as an exercise to the reader. Note thatA(r) accepts only strings with precisely
one #, as the “main” part accepts only such strings (and is in a logical conjunction, i.e. a
series of “ands”, with the lookahead parts), and specifically that all the lookahead parts
do not care about # symbols, staying in the same state (after possibly taking ε-transitions)
upon reading one.

Start by noting that B(a) = {a} × Σ∗, and that A(a) (as shown in the “terminal
symbol” case) accepts precisely this language (by reading a, reading #, then looping on
Σ in an accepting state).

Next, we consider the lookahead case. By definition B(&r1) = {(ε, xy) | (x, y) ∈
B(r1)}, so we need to show thatL(A(&r)) = {#xy | x#y ∈ L(A(r1))}. The lookahead
construction does precisely this:
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1. If x#y is accepted by A(r1) then the new “main” part in A(&r1) matches #Σ∗

and the new lookahead will match #xy, not caring about the marker moving (as
lookaheads by construction do not “care” about the # symbol at all).

2. In the other direction, if A(&r1) matches #x (note that the # is always leading by
construction) then A(r1) matches y#z for some yz = x. This is the case as the
lookahead subautomaton in A(&r1) is A(r1) made not to care about # symbols.
As a final example case, we consider concatenation. By definition if (x, yz) ∈ B(r1)

and (y, z) ∈ B(r2) then (xy, z) ∈ B(r1 · r2). As such we need to prove that if x#yz ∈
A(r1) and y#z ∈ A(r2) then xy#z ∈ A(r1 · r2). This is the case as x#yz ∈ A(r1)
means thatA(r1) reaches the main tail after reading x, and the concatenation construction
attaches this state (of A(r1) before the main tail) to the initial state in A(r2), which then
goes on to reach its main tail after y, read a # and accept z looping on its final state. From
the perspective of the lookahead subautomata in A(r1) and A(r2), they accept the same
suffix of xyz (and yz) as before the concatenation, ignoring the fact that # has moved,
since lookaheads ignore all # markers by construction.

The arguments for the remaining cases (union and negative lookahead) follow the
same structure and can be easily derived by the reader.

4 State Complexity Considerations

The alternating finite automaton construction of [Section 3] establishes upper bounds on
the state complexity of REwLA, depending on the string encoding used (recall Defini-
tion 7). By using this construction, we begin by considering the number of states required
in Boolean automata (obtained by removing states with epsilon outgoing transitions from
A(r)) for REwLA r, before moving on to state complexity for DFA constructed from
REwLA (obtained by converting Boolean automata to DFA).

Theorem2. A Boolean automaton, using only monotone Boolean functions in its transi-
tions function and accepting the language of a REwLA r, can be constructed with at
most ‖r‖+ 1 states for the null string encoding, and at most ‖r‖+ 2 and ‖r‖+ 3 states
respectively for the ∼ and # string encodings.

Proof. First we give an argument for the # string encoding case. We argue inductively
over the various constructions given in the previous section. The induction assumption
is that in addition to ‖r‖ states, we need the following three special states: (i) a non-
accepting state having only a # outgoing transition (to a state of type (ii)), (ii) an accepting
state having a self-loop on Σ, and (iii) possibly an accepting state having a self-loop on
{#} ∪ Σ.

We begin by making sure the statement holds for the base case where we consider the
AFA for a REwLA consisting of a single alphabet symbol (with no lookaheads), and then
remove the initial state, since it has only an epsilon outgoing transition. Thus, for the base
case we need a single state and two more states (of types (i) and (ii) respectively) for the
main tail. Next we consider the inductive case where a Boolean automaton is constructed
for a REwLA of a union, concatenation, Kleene closure, lookahead or negative lookahead,
given Boolean automata are already constructed for the subexpressions used by any
of these operators, and assuming that the Boolean automata for these subexpressions
satisfy the inductive hypothesis. After applying the constructions outlined in the previous
section for the various operators, we remove states with epsilon outgoing transitions.
Note that a non-accepting state with a self-loop on {#}∪Σ, is a sink reject state, and can
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simply be removed with all transitions going to it. Also, states (i) and (ii) are required
for the main tail, and state (iii) in the construction of lookaheads. All states of type (iii)
can be merged into a single state this type, and there will be only one state of each of the
types (i) and (ii).

In using the constructed Boolean automaton for the # string encoding, we construct
the Boolean automaton for the null string encoding by using the automaton for the #
string encoding, replacing # on transitions by ε (except #-loops which we simply remove),
and observing that this will make it possible to remove state (i) and merge states (ii)
and (iii). A similar procedure is used for the ∼ string encoding, except that we add to
transitions in lookaheads and negative lookaheads also ∼ versions of alphabet symbols,
which will have the effect that we can no longer merge states (ii) and (iii) as in the null
string encoding case, since where the one will have a loop on Σ, the other will have a
loop on Σ ∪ Σ̃.

It is interesting to observe that in contrast to regular expressions with intersection and
negation, REwLA do not suffer from non-elementary state complexity when converted
to DFA, although they do contain a form of intersection and negation.

Our upper bound in the next theorem, for the ∼ string encoding case should be

compared to the upper bound of 22
‖r‖

+ 1, given in [Miyazaki and Minamide 2019].

Recall that D(n) denotes the n-th Dedekind number, with D(n) < 22
n

for n ≥ 1. The
value of D(n) is only known for 0 ≤ n ≤ 8 [Sloane 1964], and using these values for
D(2), D(3) and D(4), we obtain that the bound by [Miyazaki and Minamide 2019] is
better for ‖r‖ = 1 or 2, where ours (stated in the next theorem) is better from 3 onwards.

This can be seen by noting that (22
3

+ 1) > D(4) and observing that from the definition

of Dedekind numbers follows thatD(n+1) ≤ D(n) ·D(n) (whereas 22n+1

= 22
n ·22n ),

since we can obtain all monotone Boolean functions on (n+1) variables from the product
of the monotone Boolean functions that always exclude the (n+ 1)st variable from the
sets of states in its domain with those monotone Boolean functions that always include it
in its sets of states. Also, when considering the number of states for the three types of
non-equivalent REwLA of size 1, i.e. a, !a and &a, we obtain that the optimal upper
bound for ‖r‖ = 1 for the null, ∼ and # string encodings are 3, 3 and 4 respectively,
where our bounds in the next theorem are 3, 6 and 20 respectively. Using these precise
bounds for the case ‖r‖ = 1 in combination with the argument used in the proof of
the next theorem, we obtain that the bound in the previous theorem is tight for the null
encoding case, but it could be off by 1 in the ∼ and # cases.

Theorem3. A minimal (complete) DFA accepting the encoding of the lookahead lan-
guage matched by a REwLA r has a number of states bounded from above as follows,
depending on the string encoding used: (i) D(‖r‖) for null, (ii) D(‖r‖+ 1) for ∼, and
finally, (iii) D(‖r‖+ 2) for the # string encoding.

Proof. We apply to the result of the previous theorem the observation that when con-
verting Boolean automata to equivalent DFA, we may regard the states of the DFA as
Boolean formulas over the states of the original Boolean automaton (with equivalent
Boolean formulas being identified). We can ignore a sink accept state in the Boolean
automaton, since it corresponds to the Boolean formula True (and similarly for a sink
reject state, although sink reject states are already excluded from the result of our pre-
vious theorem). Furthermore, since we do not make use of negation in the transition

functions of our Boolean automata, we have Dedekind numbers (instead of 22
‖r‖

) in our
bounds.
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Remark 3. In [Miyazaki and Minamide 2019] an asymptotic lower bound for DFA

state complexity of 22
Ω(

√
‖r‖)

when converting REwLA to DFA, when using the ∼
string encoding, is given. The class of examples constructed (in their Section 3.6) has no
negative lookaheads, so it also provides an asymptotic lower bound for the case without
negative lookaheads. While their lower bound class of examples is constructed for the ∼
string encoding, the construction forces all lookahead words (u, v) to have v = ε, so
the construction works the same for the null string encoding and requires one additional
state for the # string encoding. We offer no improvement on this lower bound here.

To wrap-up this section we parameterize REwLA over the non-negative integers.
Our next definition is inspired by the definitions and results from [Keeler and Salomaa
2020]. This definition and the following theorem also generalizes the reason for why
better DFA state complexity is possible for the password example from the introduction,
compared to the general case as stated in Theorem 3. We state the next definition and
final theorem of this section, only for the # string encoding case. The fact that the next
definition only applies to the # string encoding case follows from the fact that A(r)
accepts the # string encoding of tuples in B(r).

Definition 8. A REwLA r is m-universally bounded if every input string accepted by
A(r) can be accepted by a runQ0, Q

′
0, . . . , Qn, Q

′
n such that we havemax0≤i≤n |Q′

i| ≤
m.

That is, we can check string acceptance while keeping track of at mostm states after
epsilon closure in each intermediary step (which means A(r) can be implemented such
that it nondeterministically rejects any run which features more thanm states without
this changing the accepted language).

Note that all REwLA r arem-universally bounded withm equal to the number of
states in A(r) not having epsilon outgoing transitions.

Example 3. The password example in the introduction, here in PEGs notation,

&(.*[a-zA-Z])&(.*\d)&(.*[!@#$(),:;]).{8,}$

is 4-universally bounded, given that this REwLA begins with three positive lookaheads,
followed by a main part, and thus at any step a run will contain (at most) one state from
each of the three positive lookaheads and one state from the main part. In general, a
REwLA with k positive lookaheads, with none of the lookaheads in a Kleene star, will
be (k + 1)-universally bounded, since at any step a run will contain at most one state
from each of the k lookaheads and one state from the main part.

In the final result of this section we state the DFA state complexity form-universally
bounded REwLA.

Theorem4. A minimal (complete) DFA accepting the # string encoding of an m-
universally bounded REwLA r with k lookaheads, has a number of states bounded

from above by 2
∑m

i=1 (
‖r‖+k+2

i ).

Proof. This result follow from the definition of m-universally boundedness and the
argument used in the proof of Theorem 2, to obtain that we need (‖r‖+ k + 2) states
in A(r) without epsilon outgoing transitions, if we do not merge the accept states in
lookaheads with loops on Σ ∪ {#}, as is done in the proof of Theorem 2. Thus, for NFA
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state complexity, at most
∑l

i=1

(‖r‖+k+2
l

)
states is required, since we have

(‖r‖+k+2
i

)
number of choices for a set of i states at each step of a run, and therefore the DFA state

complexity is at most 2
∑m

i=1 (
‖r‖+k+2

i ) states.

5 Empirical Results

Although we implemented our REwLA to AFA algorithm in Java, by extending an
existing symbolic automata package [D’Antoni 2015], we focus in this short section on
how often the features studied in this paper are used by developers.

We used the polyglot regular expression (with lookahead) corpus of [Davis et al.
2019], consisting of 537,806 REwLA from 8 different programming languages. Of the
8 programming languages, 6 support lookaheads. Of the 505,455REwLA that belong to
programming languages that support lookaheads, positive lookaheads occurred in 1.28%
of REwLA, while negative lookaheads occurred in 1.23% of the REwLA. Of these
12,665 REwLA that contain lookaheads, lookaheads used in a nested fashion occurred
in only 1.38% of them. Furthermore, we found that in 92% of these 12,665 REwLA,
lookaheads were not contained in Kleene starred (or plus) subexpressions (empirically
motivating them-universally bounded restriction studied at the end of Section 4).

As far as we know, every previous empirical regular expression study solely focused
on regular expressions in the context of full matching. To better understand how regular
expression libraries are used and whether substring matching is used in practice as
often as we think, we analyzed the usage of the java.util.regex package of 68,164
Java projects obtained through RepoReaper, which provides a curated list of GitHub
projects. Of the 68,164 projects, the java.util.regex package was used in 13,608 of
them. Of the 39,264 regular expressions analyzed, 27.66% were used in the functions
String.matches and Pattern.matches, that perform complete matching. We found
that 11% of the REwLA that were compiled using Pattern.compile and then used
to find a submatch, were enclosed in the full matching anchors (^..$). Whether this
was intentional or not is obviously unknown. Furthermore, we found that 47% of the
REwLA were used for submatching and that for 11.22% of these, repeated submatching
was performed.

6 Conclusions and Future Work

We showed how to translateREwLA into AFAwith ε-transitions followed by an epsilon
removal procedure to obtain Boolean automata without ε-transitions from the AFA. The
Boolean automata consist of a number of states that is at most 1, 2, or 3 more, depending
on the string encoding used, than the length of the correspondingREwLA. Our subclass
of Boolean (and alternating) automata, in contrast to Boolean automata in general,
behaves well under our definition of concatenation (i.e. the size of the concatenated
Boolean automaton is the sum of the sizes of the two individual Boolean automata).

For future work, we will investigate REwLA in the context of large alphabet sizes,
i.e. showing how to extend REwLA to the symbolic case, and also consider additional
occurring features found in regular expression matching libraries (in conjunction with
lookaheads), such as lookbehinds. Furthermore, we will consider the addition of the
greedy disambiguation policy toREwLA, which at a minimumwill partition a lookahead
string matched by a REwLA in a unique way in its main and lookahead parts. Our state
complexity result when converting REwLA into DFA, as stated in Theorem 3, deserves
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further investigation to see if we can improve on these bounds. Additionally, if we could
remove one state from the Boolean state complexity result of Theorem 2 in the case of
the ∼ string encoding (and perhaps also in the # string encoding case), then after using
the result from Theorem 2 in the proof of Theorem 3, we will end up with a result in
Theorem 3 that is better than the corresponding result from [Miyazaki and Minamide
2019], even in the two remaining cases where ‖r‖ = 1 or 2. Of course, these two cases
can be handled separately in an exhaustive way by considering all possible REwLA
of lengths 1 and 2. Finally, we would like to focus in more detail on the investigation
started in the last part of [Section 4] onm-universally bounded REwLA.
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