
Journal of Universal Computer Science, vol. 28, no. 1 (2022), 27-53
submitted: 15/3/2021, accepted: 15/11/2021, appeared: 28/1/2022 CC BY-ND 4.0

SoREn, How Dynamic Software Update Tools Can Help
Cybersecurity Systems to Improve Monitoring and Actions

Sébastien Martinez
(Université Gustave Eiffel, IFSTTAR, France

sebastien.martinez@telecom-bretagne.eu)

Christophe Gransart
(Université Gustave Eiffel, IFSTTAR, France

https://orcid.org/0000-0003-4781-8654, christophe.gransart@univ-eiffel.fr)

Olivier Stienne
(Université Gustave Eiffel, IFSTTAR, France

olivier.stienne@univ-eiffel.fr)

Virginie Deniau
(Université Gustave Eiffel, IFSTTAR, France

https://orcid.org/0000-0002-8802-911X, virginie.deniau@univ-eiffel.fr)

Philippe Bon
(Université Gustave Eiffel, IFSTTAR, France

philippe.bon@univ-eiffel.fr)

Abstract: Because stopping a service to apply updates raises issues, Dynamic Software Updating
studies the application of updates on programs without disrupting the services they provide. This
is acheived using specific mechanisms operating updating tasks such as the modification of the
program state. To acheive transparency, Dynamic Software Updating systems use pre-selected
and pre-configured mechanisms. Developers provide patches that are transparently converted to
dynamic updates. The cost of such transparency is often that applied patches cannot modify the
general semantic of the updated program. Allowing dynamic modification of the general semantic
of a running program is rarely considered.

In the context of protection of communications between moving vehicles and uncontrolled infras-

tructure, SoREn (Security REconfigurable Engine) is designed to be dynamically reconfigurable.

Its semantics can transparently be modified at runtime to change the security policy it enforces.

Administrators can supply new policies to trigger a reconfiguration, without developing new

components. This paper details and discusses the design of SoREn, its meta-model linked to

cybersecurity business concepts and its automatic reconfiguration calculator allowing transparent

application of reconfigurations.

Keywords: dynamic software updating, dynamic reconfiguration, quiescence, security
Categories: D.2.7, D.2.10

DOI: 10.3897/jucs.66857

https://orcid.org/0000-0003-4781-8654
https://orcid.org/0000-0003-4781-8654
https://orcid.org/0000-0002-8802-911X
https://orcid.org/0000-0002-8802-911X

28 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

1 Introduction

Today’s world expects software systems to be available at every moment, whether the
system provides critical services like airport traffic control management or whether
its downtime would cause user discomfort like a computer operating system forcing
a reboot for updating. Updating running software systems becomes a critical issue
as it requires the system to be restarted, causing downtime and loss of state as well
as financiary losses. As a consequence, fixing errors and patching vulnerabilities is
often postponed, leaving software unprotected. Dealing with service disruption induced
by regular updating processes requires cautious planning of maintenance operations.
They are often planned during known periods of low usage, imply the duplication of
services and rotation of the services to be patched and rebooted. Dynamic Software
Updating (DSU) addresses this issue and focuses on methods for applying updates
without disrupting provided services. DSU systems embed mechanisms for updating
running applications (e.g. transform their state, replace obsolete code with its newest
version) [Giuffrida and Tanenbaum, 2010]. Many of these mechanisms are detailed in
the literature, each having specific needs and properties. A given mechanism may be
well suited for a specific type of application or update while being incompatible with
other types of application or update. Each DSU system embeds a few mechanisms well
suited to its targets (i.e. programming language, type of application, type of update) and
use them for every update. This approach allows transparent usage of dynamic updating
as little developer interaction is required to apply dynamic patches. However it usually
restricts possibilities for updates, often to the point that updates can only fix errors and
security flaws without modifying the general semantic of the original program. When
discussing dynamic updates, transparency usually means that a patch developed through
usual software maintenance processes is applied to a running program without requiring
specific adaptation of the patch. When using dynamic updates mainly to fix errors and
security flaws, this definition of transparency is pertinent since fixing a security flaw
requires developer intervention. When using dynamic updating to make the semantic of
a program evolve, not requiring the systematic intervention of developers and allowing
administrators with a more general knowledge of the program to specify its modifications
using only business concepts would simplify the evolution of the program. The amount
of work necessary to dynamically update the program would be significantly reduced
and the adaptability of the program would increase significantly.

In the context of the SECOURT [LAMIH, 2020] project addressing the security
of communications between vehicles and ground stations, this paper presents SoREn
(Security REconfigurable Engine), a meta-model based platform which semantic can be
dynamically modified through high level specification, with little developer intervention.
Vehicles move in an uncontrolled environment communicating using wireless uncon-
trolled infrastructure. Their communications need to be protected from attacks and to
adapt to their changing environment (e.g. use the available communication medium).
SoREn is designed for such embedded systems. It detects attacks or changing conditions
and reacts according to policies specified by administrators. To respond to the needs
of the vehicle, the policies enforced by the platform should be dynamically modifiable,
allowing change of policy while vehicles are moving, and their specification should be
possible by administrators without requiring the intervention of developers. Note that
because vehicles are not expected to be in perpetual communication with a ground control
station, the decision module of the platform cannot be centralized in a ground station,
regulating the decisions of each vehicle. The decision module needs to be embedded
in the vehicle itself. As a result, several vehicles using the same security policy could

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 29

behave differently according to their environment. SoREn is designed to be flexible
and transparently modifiable. It should be possible to implement enforced policies with
as little restrictions as possible and it should be possible to reconfigure the platform
so that it enforces these new policies with as little developer intervention as possible.
Developers should only be required for the development of new software components.

This papers presents SoREn, focusing on two contributions of the platform : a meta-
model based design providing flexibility for the implementation of new policies and
an automatic reconfiguration calculation system providing transparency for dynamic
updates. Both contributions are interlinked. The meta-model defines general constraints
on the possible configurations, allowing the selection of DSU mechanisms suited for
every update and simplifying the calculation of reconfigurations. Section 2 presents
related work in the field of security systems and dynamic updating platforms. Section 3
presents the meta-model of SoREn. It details the links between the meta-model and cyber-
security business concepts and how it facilitates high-level specification of configurations.
Section 4 discusses the issues of dynamic updating and how they are addressed in SoREn.
It discusses the DSU mechanisms used in the platform. Section 5 presents an operational
semantic designed for the specification of the automatic reconfiguration calculator of
SoREn. Section 6 discusses the implementation of SoREn and presents an experiment,
validating the pertinence of the design of SoREn. Section 7 discusses the contributions
of the paper and section 8 concludes the paper.

2 Related works

SoREn is a dynamically reconfigurable platform detecting attacks and triggering re-
sponses to them. It combines several features of Security Information and Event Man-
agement (SIEM) systems, Intrusion Detection Systems (IDS) and DSU platforms.

In a general cybersecurity framework like [Malatji et al., 2019], two parts are present:
the social dimension and the technical dimension. In this context, SoREn is the technical
element. However, we introduce also the social dimension in our work with business
concepts into a meta-model. So SoREn can be integrated into a general cybersecurity
framework. [Buccafurri et al., 2015] proposes a processing approach to achieve cyberse-
curity compliance assessment. This approach is one step before the content of this paper
where we discuss the technical achievement of our system.

Initially, SIEM systems were designed to collect event logs from a variety of sources
and perform real-time aggregation and correlation to detect attacks or confirm alerts
from sensors such as IDS[Sourcefire, 2020, OISF, 2020, Zeek, 2020]. SIEM alerts are
technical sets of information, including targeted or compromised systems, as well as
attacking sources. Alerts define a level that may be either the technical impact or the
priority or both. Then information shared by SIEM systems mostly targets cyber security
experts.

A host-based intrusion detection system (HIDS) is a software application that mon-
itors a single host and the events occurring within that host for malicious activities. It
analyses data such as log files, system calls, file accesses, user or application behaviour
on the host on which it is operating, and generates alerts once an intrusion has been
detected. Being restricted to one host provides a reliable and precise analysis to determine
what processes and users are involved in a particular intrusion.

A network-based intrusion detection system (NIDS) is a standalone hardware device
that monitors network traffic for particular network segments or devices to identify
malicious activities such as denial of service attacks, port-scans or even attempts to crack

30 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

into computers. It consists of a set of single-purpose sensors placed at various points in
a network to inspect the data packets from all devices that reside inside its local area
network, management server, console, and optionally database server. There are two
primary data sources for a network-based intrusion detection: network packets and flows.

SoREn provides interfaces for sensors and detection, following the general principle
of an IDS, while embedding information management of threats and watched system
status, as SIEM systems. To allow dynamic reconfiguration, SoREn uses dynamic
software updating mechanisms as other DSU platforms.

Dynamic Correspondence Proxyfication [Gregersen and Jørgensen, 2009] (DCP) is a
framework using in place proxies to handle relinking of Java classes when updating com-
ponents. When a component is updated, the classes it shares with other components are
replaced by proxies to their newer version. DCP lazily migrates the state of components :
the state of a component is migrated at the moment it is used.

Afpac [Buisson et al., 2006, Aldinucci et al., 2005] is a framework for distributed
components. They can dynamically change their algorithms when ordered by their
internal decider enforcing a specific policy and collecting data on the execution and its
environment through monitors. Afpac embeds a distributed protocol for determining
a best suited update point in the execution where all threads of the component can be
updated without causing inconsistency.

In [Cavalcante et al., 2015], Cavalcante et al. provide support for dynamic updates in
the π-ADL language. π-ADL is an Architecture Description Language (ADL) allowing
software architects to define programmed reconfigurations, i.e. reconfigurations forseen
at design time. Reconfigurations are handled by decomposing the system, installing,
uninstalling or swapping the components and composing the system according to its new
configuration. Cavalcante et al. useπ-ADL to define the architecture of a floodmonitoring
system and give a method for transforming π-ADL architectures into Go [Meyerson,
2014] source code.

The K42 operating system [Appavoo et al., 2003, Baumann et al., 2005] uses dy-
namic reconfiguration for updating its components and adapting its configuration to
contextual needs. For example, a component implementing an algorithm best suited for
sequential accesses to a resource as a file can be replaced by another component best
suited for parallel accesses when more than one application need to access the resource.
Appavoo et al. also describe how dynamic reconfiguration can be used for monitoring
security threats with little cost. The operating system could embed broad-based mon-
itoring components that would be replaced by more precise components whenever an
anomaly is detected.

Components of K42 handle transactions invoked by short-lived threads. Whenever a
reconfiguration is requested, monitor components are attached to each replaced compo-
nent and prevents new threads to invoke new transactions. When all ongoing transactions
are completed, the component is replaced and the monitor allows new transactions.

Several platforms providing DSU capabilities for component based software can be
found in the literature. However, software reconfiguration specification using high-level
concepts is one originality of SoREn.

3 A meta-model suited for high-level specification of policies

To ensure simple dynamic updates ordered by high-level instructions, the updating
process must be transparent and the running platform, its code and its state must be
expressible through high-level concepts. Users wanting to dynamically modify the

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 31

platform should be able to express new security policies without needing to consider
DSU issues and only using concepts as close as possible to their business. That means
that security policies should be expressed using, for instance, the concepts of threat and
detection rather than concepts specific to the implementation of the platform. In the rest
of this paper, underlined words refer to specific concepts of the presented work. Words
written in italics refer to concepts from the domains of security or dynamic software
updating. In both cases, the concepts are defined as they appear in the paper and are only
emphasised when clarification is needed in some sections.

To handle dynamic updates transparently, mechanisms should be pre-selected and
installed in the platform. They will be used for each update and as a consequence should
be well suited for any future update. But future updates cannot be predicted and no DSU
mechanism is well suited for every possible update. The platform and its updates should
be subjected to constraints ensuring that for any update respecting these constraints, the
pre-selected mechanisms are well suited. In SoREn, these constraints take the form of a
meta-model specifying how every version of the platform should be modeled. According
to that meta-model, the platform architecture is component oriented and key components
are stateless. Component oriented architecture simplifies the management of updates as
any update can be designed as the installation, the removal or the swapping of components.
This architectural choice ensures a well defined update unit (i.e. the most basic modifiable
element), easy to manipulate at high level. Stateless components require less mechanisms
when removed or swapped as their state does not need to be managed. Both constraints
indicate the mechanisms to be used for modifying a running platform : they should be
component oriented and do not need to consider state management.

Meta-model Platform model Running platform
specifies specifies

Generic business concepts Business concepts

expressing

Security Policy

Dynamic update
refined into translated into

linked expresses modifies

Figure 1: Relations between meta-model, platform model and running platform

Specifying the component oriented architecture with a meta-model enables the speci-
fication of a running platform using business concepts. Meta-types defined in SoREn
are linked to business concepts. Defining a component type at model level is similar to
defining specific cases from the business concepts. Specifying a configuration of the
platform is similar to defining the security policy it should enforce. Figure 1 presents
the relations between the meta-model and the business concepts. The meta-model of
SoREn is linked to generic business concepts that are refined into business concepts, used
to express the security policy. Expressing a security policy using business concepts is
equivalent to specifying a platform model using the meta-model. The expressed security
policy can then be translated to a dynamic update that will make the running platform
comply to the model it expresses.

We distinguish two kinds of generic business concepts : action concepts, concerning
actions taken by the running platform and information concepts, concerning information

32 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

Meta-types Generic Business concepts Example

Probe Raw data Measured Signal/Noise Ratio by a
Wi-Fi card

Measure Information the source of an authentication at-
tempt

Detector High level information processing an intrusion detection system
Situation Threat a deauthentication attack
Decider Decision or enforced rule a rule to switch between networks
Response Reaction a IP address block request
Actuator Modify the behavior of the system a firewall
Part Asset status the current protocol being used

Marker meta-type
Component meta-type

Table 1: Business concepts and meta-types in SoREn

accessible and used by the platform. The meta-model of SoREn specifies component
meta-types linked to the action concepts and marker meta-types linked to the information
concepts. Markers are objects present in the platform encoding information on the
platform global state, the systems it watches and their environment. Table 1 lists the
meta-types defined in the SoREn meta-model and their associated generic business
concepts. It gives a real-life example for each generic business concept. Figure 2 gives an
example of instantiation of the meta-model and its associated generic business concepts
into a reconfiguration. Its only depicts the instantiation process for the Probe andMeasure
meta-classes as the instantiation of other meta-classes would work in a similar way. The
Probe andMeasure meta-classes are linked to the Raw Data and Information generic
business concepts. The Authentication Attempt and Attempt Source business concepts
are instantiation of the generic business concepts and are combined to express a policy
for watching authentication attempts. In SoREn, these business concepts take the form of
Probe and Measure types Network Monitor and Ip Address. Assuming the platform was
enforcing no previous policy, translating the policy into a reconfiguration boils down to
listing components and marker types to be installed.

The meta-model of SoREn defines meta-types and how they interact with each other.
In a platform, components are connected to a core module through which they communi-
cate with by the mean of markers. Figure 3 details the interaction between components
and markers. Components of meta-type Probe (called “probes” in the following) get infor-
mation from watched systems and their environment. They produce measures (markers
of meta-typeMeasure) registering that information. Detectors (components of meta-type
Detector) analyze measures present in the platform core and process them according to
their inner semantic (e.g. recognize patterns, check thresholds). If a detector detects a
threat, it generates a situation (marker of meta-type Situation) registering all information
about that threat (e.g. date of detection, concerned assets). Deciders (components of
meta-type Decider) analyze situations and parts. Parts are markers of meta-type Part
representing the state of a given asset. While other markers only register information
and are deleted from the platform when they become irrelevant, parts persist in the
platform core and are synchronized to the assets they represent. Their state changes
whenever the state of their associated asset changes. Using information collected by
analyzing parts and situations, deciders may trigger the creation of responses (markers of
meta-type Response) according to their inner semantic. Responses register requests for

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 33

«Meta-Class»
Probe

Network Monitor

monitor1: Network
Monitor

instance of

instance of

«Meta-Class»
Measure

IP Address

192.168.1.45

instance of

instance of

«Generic Bus. Concept»
Raw Data

«Generic Bus. Concept»
Information

«Business Concept»
Authentication Attempt

«Business Concept»
Attempt Source

Install monitor1
Install IP Address

SoREn

Meta-model/Generic Business concepts

Platform model/Policy : ”watch authentication attempts”

Running platform/Reconfiguration

Figure 2: Relation between platform model and business concepts

reactions and contain all information relevant to these reactions. Creating a response in
the platform core triggers all installed actuators (components of meta-type Actuator). If
one installed actuator can handle the requested reaction in the conditions detailed in the
response, that actuator follows its inner semantic to act on the watched systems and/or
their environment. If the action of the actuator impacts any asset associated to a part
in the platform core, the state of that part is modified to represent the new state of that
asset. Measures are never deleted from the platform. A measure indicates information
received at a given time and date. Situations and responses are deleted when obsolete.
They indicate a current threat or a requested action and delete when the threat is passed or
when the requested action is complete. Responses are managed by a handler responsible
for the triggering of the appropriate actuators. When a response is created, the handler
looks up an installed actuator that can handle the response and triggers it. Parts are not
produced by components. They are installed once and their state evolves in synchro-
nization with their associated assets until they are uninstalled. The distinction between
markers and components in the meta-model ensure a stateless design for components and
distinguishes the purpose of both components and markers. Markers indicate what the
platform “knows” on the watched systems and their environment. An external observer
analyzing the markers present in the core platform would get an overview of the watched
systems, their state, the threats they are subject to and what action is being taken as a
response. Components indicate what the platform “can do”. An external observer analyz-
ing the installed components would get an overview of the security policy enforced by
the platform.

The meta-model detailed in this section treats components as black boxes of which
only inputs and outputs are known. Components are weakly constrained, allowing more
possibilities for their inner semantics and ensuring flexibility of the platform.

4 Dynamic updating issues

This section discusses the selection and the configuration of DSU mechanisms embedded
in SoREn. It presents the main issues of dynamic updates and how they are addressed in
SoREn.

34 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

Measures

Parts

Situations

Handler

Response

Platform core

Probe Detector

DeciderActuator

provides

analyzes
creates

analyzes

creates

manages

triggers

System

Environment

impacts

probes

Figure 3: Interactions between markers and components according to the meta-model of

SoREn

4.1 Update unit and update management

As presented in section 3, the architecture of SoREn is component oriented to simplify
dynamic updating. Any update of a running platform can be modeled as operations
on components. The smallest part of SoREn that can be modified through dynamic
updating is either a component or a marker type. Because there is a strong dependency of

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 35

components on the marker types they handle, updating a marker type requires updating
all components handling it. By definition of an update unit (i.e. the smallest part of a
program that can be updated), the update unit of SoREn is a component or a marker
type. However, since every update includes modifications on at least one component,
the update unit can be considered as being one component for simplification purposes.

Dynamic updates on the running platform are managed by a manager module em-
bedded in the platform core. This module embeds a thread executing update operations
concurrently with the general execution of the platform. Updates are applied sequentially,
preventing the simultaneous application of two updates. Parallel application of two
updates modifying a same element in an incompatible way (e.g. one update deletes a
field used by the other) raises the issue of choosing which modification should be applied
while the other is discarded. That issue is not addressed in SoREn and is out of the scope
of this paper.

4.2 Alterability and update life-cycle

Updates follow a straightforward life-cycle centered on the detection of alterability. A
given program is in a state of alterability [Martinez et al., 2015] for a given update if
the update can be applied to program without causing unwanted behavior (e.g. crash of
the program, manipulation of inconsistent data). The state of alterability of a program
can be detected by watching alterability criteria which are conditions on the state of a
program. Several alterability criteria are defined in the literature [Vandewoude et al.,
2007, Ghafari et al., 2012]. Selecting suited alterability criteria for a given program
and a given update is a central issue of dynamic updating. In SoREn, the alterability of
running platforms is detected using the quiescence of modified components, as defined
by Kramer and Magee [Kramer and Magee, 1990]. In a component oriented architecture,
a component is quiescent if :

(Condition 1) it is not engaged in a transaction

(Condition 2) it will not initiate new transactions

(Condition 3) no transaction engaging the component will be initiated by other compo-
nents

A quiescent component can be safely removed or modified from the system. The
system is therefore in a state of alterability for any update concerning that component
alone.

In SoREn, probes, detectors and deciders periodically engage transactions by them-
selves. As a consequence, condition (3) is always satisfied for components of these
meta-types. The quiescence of these components can be achieved by suspending them
after they complete a transaction (satisfying conditions (1) and (2)). Transactions en-
gaging actuators are initiated by the response handler embedded in the platform core,
when response markers of the appropriate type are created. As a consequence, condition
(2) is always satisfied for actuators. Condition (3) can be satisfied by suspending the
creation of response markers handled by the actuator. The quiescence of actuators can
be achieved by suspending the creation of associated responses and waiting for any
engaged transaction to finish (satisfying condition (1)). New components to be installed
in the platform are always quiescent because they are engaged in no transaction and no
transaction will be initiated until the components are installed.

36 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

When an update is requested, the update manager guides the execution of the platform
towards its alterability state by suspending concerned probes, detectors and deciders
after they complete their current transaction and by suspending the creation of response
markers handled by concerned actuators. When every component concerned by the
update is quiescent, the platform is alterable and the update is applied.

Life-cycle of updates in SoREn considers others criteria than alterability criteria.
In some cases, even if the platform is alterable, we may not want to apply an update.
When a situation marker is present in the platform, we need all components and marker
types necessary for handling the situation. Probes are needed for providing up-to-date
information. Detectors are needed to detect possible changes in the situation. Deciders
are needed to analyze that situation and actuators are needed to respond to that situation.
Before guiding the platform to alterability, the update managers checks that the update
does not remove components needed by the platform. If the platform needs components
removed by the update, the update is postponed to a later moment. This step of the update
life-cycle is detailed in section 5

4.3 Data updating

Because components are stateless, the only data concerned by updates in SoREn are
the markers present in the platform. Because of the strong link between components
and marker types, component updates are likely to affect markers. A newly installed
component may produce markers of a new type that should be installed. The removal
of a component may cause a type of marker to be unecessary. In SoREn, new marker
types are automatically installed along components that require them, and marker types
required by no components are uninstalled when no marker of their type is present in
the platform. Even if an update modifies a marker type, SoREn treats that update as the
installation of a new marker type. Modifying an installed marker type implies modifying
all markers of that type which raises issues if that modification extends the information
held by the markers. In that case, the update developper needs to specify how to treat
that information extension when converting oudated marker to their new type (e.g. add
void fields, use default values). Because we want to limit intervention by developper
during updates, we chose to consider the modification of a marker type as the addition
of a new marker type. This choice has little impact on updates. Because markers have
a short life span in the platform, oudated markers are rapidly replaced by markers of
the new type. Situations and responses are eventualy deleted and measures become old
enough that no detectors analyze them. Because each part type has only a few instances
in the platform, parts and part types are treated as components during installation. Part
types are installed and instanciated or uninstalled when explicitely requested.

5 Automatic reconfiguration

To change the configuration of a running platform, administrators supply a configuration
specifying several scenarios. That configuration is a combination of scenarios detailing
policies enforced by the platform. The configuration is parsed and translated into update
instructions submitted to the plaform update manager. This section details how scenarios
are specified and presents an operational semantic for calculating an update from a
supplied configuration.

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 37

Probes :
- DeauthProbe : /path/to/probe
Detectors :
- DeauthAttackDetector : /path/to/detector ,

detect = 5, reset = 3
Deciders :
- WiFiSwitcher : /path/to/decider
Actuators :
- WiFiController : /path/to/actuator
Parts :
- TransmissionProtocol : /path/to/part_type
Links :
- DeauthProbe to DeauthAttackDetector with

DeauthenticationFrame
- DeauthAttackDetector to WiFiSwitcher

with DeauthAttack
- WiFiSwitcher to WiFiController with

DisableWiFi , EnableWiFi

Figure 4: Example of scenario

5.1 Defining a scenario

A scenario lists components that should be installed and specifies the configuration
of each components. It also details links between installed components : for each pair
of components that exchange information, the scenario lists the marker types they use
to communicate. A scenario is the equivalent of one security policy. One configuration
regroups one or more scenarios, the partition of the configuration into scenarios is left to
administrators discretion provided each scenario is independent from the other. Each
scenario must contain the dependencies of the components it lists. Figure 4 presents an
example of scenario handling deauthentication attacks ofWiFi communications. Note that
parts are treated as components, as indicated in section 4. Only the names of the marker
types are specified in scenarios. Full specification of marker types (e.g. fields, default
values) are embedded in component types manifests. Each component type is associated
with a manifest specifying dependencies, handled marker types and instructions for
instantiating and installing components.

5.2 Calculating reconfiguration operations

A configuration can be formally defined as a set of Scenarios which in turn can be
formally defined as a set of components and links.

Definition 5.1 (Links and scenarios) A Link specifies exchanges of information be-
tween two components types τC and τ ′C . It lists all markers typesMT i through which
the components of the two types exchange information.

L = {τC, τ ′C, {MT 0, ...,MT k}}

A scenario is a set of components (instances of component types), combined with a
set of links. The components in S are instances of the components types listed in the links
of S.

S = {{C0, ...,Ck}, {L0, ...,Lj}}

38 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

Assuming {S0, ..., Sk} is the configuration of the running platform, when a new
configuration {S′0, ..., S′j} is supplied by administrators, the reconfiguration process

assumes that all components and marker types listed in the old configuration should be
uninstalled and all components and marker types listed in the new configuration should
be installed. If the configurations have no common element, this is a fair assumption.
If they share similarities, the reconfiguration process should takes these similarities
into account to avoid uninstalling then installing a same element under another name
or with different parameters. To address that issue, we define an operational semantic
for reducing the initial term Remove S0 t0, ...,Remove Sk tk , Add S′0 t

′
0, ...,Add S

′
j t

′
j .

Figure 5 details the grammar of that semantic.

Configuration update term

tc ::= Add S t | Remove S t | tc , t′c
Scenario update term

t ::= add e | remove e | renameC n | modifyC n0 v0 ... nk vk
| link e S | relink e S S′ | t t′ | ⊥

Context (scenario)

C ::= t [·] | [·] t
Context (configuration)

Cc ::= t0c ... t
k
c [·] t′c

0
... t′c

j

e : an element (marker type, component)
n : a name (element name or element parameter name)
v : a value (element parameter value)
C : a component

Figure 5: Grammar of the update semantic

Before simplification, the term is divided into blocks. Subterms that have common
elements are grouped into blocks according to the following rule : if tc and t

′
c contain sce-

nario update terms concerning (respectively) elements e and e′ (e.g. tc = Add S add e
, t′c = Remove S′ remove e′), tc and t

′
c are grouped in a block if any of the following

requirements are verified :

1. e and e′ are identical : they have the same type, name and parameters (noted e = e′)

2. e and e′ are different only by name (noted diff(e, e′) = n)

3. e and e′ are different only by parameters (noted diff(e, e′) = n1v1, ..., nkvk)

4. e and e′ are different only by name and parameters (noted diff(e, e′) = n, n1v1, ..., nkvk)

Alterability criteria

A ::= True | no {s0, ..., sk} | A&A′ | quiescence C

s : a situation type

C : a component

Figure 6: Grammar for alterability criteria

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 39

t c
−→

t′ c

e
=

e′

C
c
[A
d
d
S
C
[a
d
d
e]

,
R
e
m
o
v
e
S
′
C

′ [
r
e
m
o
v
e
e′
]]

−→
C
c
[A
d
d
S
C
[r
e
li
n
k
e′
S
′
S
]
,
R
e
m
o
v
e
S
′
C

′ [
⊥

]]
1

d
if
f
(C

,
C

′)
=

n
0
v 0

,
..
.
,
n
k
v k

C
c
[A
d
d
S
C
[a
d
d
C
]
,
R
e
m
o
v
e
S
′
C

′ [
r
e
m
o
v
e
C

′]
]
−→

C
c
[A
d
d
S
C
[r
e
li
n
k
C

′
S
′
S
m
o
d
if
y
C

′
n
0
v 0

..
.n

k
v k
]
,
R
e
m
o
v
e
S
′
C

′ [
⊥

]]
2

d
if
f
(C

,
C

′)
=

n

C
c
[A
d
d
S
C
[a
d
d
e]

,
R
e
m
o
v
e
S
′
C

′ [
r
e
m
o
v
e
C

′]
]
−→

C
c
[A
d
d
S
C
[r
e
li
n
k
C

′
S
′
S
r
e
n
a
m
e
C

′
n
]
,
R
e
m
o
v
e
S
′
C

′ [
⊥

]]
3

d
if
f
(C

,
C

′)
=

n
,
n
0
v 0

,
..
.
,
n
k
v k

C
c
[A
d
d
S
C
[a
d
d
e]

,
R
e
m
o
v
e
S
′
C

′ [
r
e
m
o
v
e
C

′]
]
−→

C
c
[A
d
d
S
C
[r
e
li
n
k
C

′
S
′
S
r
e
n
a
m
e
C

′
n
m
o
d
if
y
C

′
n
0
v 0

..
n
k
v k
]
,
R
e
m
o
v
e
S
′
C

′ [
⊥

]]
4

e
=

e′

C
c
[A
d
d
S
C
[a
d
d
e]

,
A
d
d
S
′
C

′ [
a
d
d
e′
]]

−→
C
c
[A
d
d
S
C
[a
d
d
e]

,
A
d
d
S
′
C

′ [
li
n
k
e
S
′]
]
5

e
=

e′

C
c
[A
d
d
S
C
[r
e
li
n
k
e
S
′′
S
]
,
A
d
d
S
′
C

′ [
a
d
d
e′
]]

−→
C
c
[A
d
d
S
C
[r
e
li
n
k
e
S
′′
S
]
,
A
d
d
S
′
C

′ [
li
n
k
e
S
′]
]
6

F
ig
u
re

7
:
R
ed
u
ct
io
n
s
ru
le
s
fo
r
th
e
si
m
p
li
fi
ca
ti
o
n
o
f
b
lo
ck
s

40 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

t
`

A

a
d
d
e
`

T
r
u
e

1
li
n
k
e
`

T
r
u
e

2
r
e
li
n
k
e
S
S
′
`

T
r
u
e

3
⊥

`
T
r
u
e

4
r
e
m
o
v
e
C

`
q
u
ie
sc
e
n
c
e
C

5

r
e
n
a
m
e
C
n

`
q
u
ie
sc
e
n
c
e
C

5
m
o
d
if
y
C
n
0
v 0

..
.n

k
v k

`
q
u
ie
sc
e
n
c
e
C

6
e
is
n
o
t
a
c
o
m
p
o
n
e
n
t

r
e
m
o
v
e
e
`

T
r
u
e

5

t
`

A
t′

`
A

′

t
t′

`
A
&
A

′
6

t c
`

A

t
`

A
A
d
d
S
t
`

A
7

t
`

A
si
tu
a
ti
o
n
s(
S
)
=

{s
0
..
.s

k
}

R
e
m
o
v
e
S
t
`

n
o
{s

0
,.
..
,s

k
}&

A
8

t
`

A
t′

`
A

′
S
>

S
′

A
d
d
S
t
,
R
e
m
o
v
e
S
′ t

′
`

A
&
A

′
9

t
`

A
t 0

`
A

0
..
.

t k
`

A
k

S
>

S
′ 0
,
..
.,

S
>

S
′ k

A
d
d
S
t
,
R
e
m
o
v
e
S
0
t 0
,
..
.,
R
e
m
o
v
e
S
k
t k

`
A
&
A

0
&
..
.&

A
k

1
0

t c
`

A
t′ c

`
A

′
t c
≯

t′ c

t c
,
t′ c

`
A
&
A

′
1
1

si
tu
a
ti
o
n
s(
S
)
:
si
tu
at
io
n
s
m
ar
k
er
s
h
an
d
el
d
b
y
sc
en
ar
io

S

S
y
m
m
et
ri
c
v
er
si
o
n
s
o
f
ru
le
s
9
an
d
1
0
sw

it
ch
in
g
o
rd
er
o
f
te
rm

s
ar
e
n
o
t
p
re
se
n
te
d
.

F
o
r
si
m
p
li
ci
ty
p
u
rp
o
se
s,
ru
le
1
0
u
se
s
sy
n
ta
ct
ic
su
g
ar
n
o
ta
ti
o
n
s.

F
ig
u
re

8
:
In
fe
re
n
ce

ru
le
s
to

ca
lc
u
la
te
a
lt
er
a
b
il
it
y
cr
it
er
ia

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 41

Each block is simplified using the reduction rules of figure 7. If an element e′ is
uninstalled through the uninstallation of a scenario and replaced by an identical element
e from a new scenario, that element is kept installed in the platform and relinked to the
new scenario (Rule 1). If e′ only differs from e by name or parameters, e′ is relinked
to the new scenario and modified to become identical to e (Rules 2 through 4). The
reduction rules also handle the duplication of elements. If two scenario S and S′ install two
identical elements, respectively e and e′, only e is installed and linked to S′, preventing
the duplication of elements in the platform (Rule 5). If the installation of a scenario S
relinks an element e to it while an identical element e′ is installed by a different scenario
S′, e is linked to S′ and e′ is not installed (Rule 6).

After simplification, each blocks is transformed into one update. As a consequence,
one reconfiguration requested by the administrator can be decomposed into several
independent updates. This allows a faster application of these updates and a faster
fulfillment of the reconfiguration requested. Indeed, smaller update have less restrictive
alterability criteria which are easier to satisfy. The update terms of each block specify
the operations of the update. Adding alterability criteria to a block provides enough
information to achieve a full specification of the update. Figure 6 presents the grammar
for alterability criteria and figure 8 details inference rules for deducing alterability criteria
from update terms. Note that alterability criteria include security criteria discussed in
section 4. A scenario cannot be removed while situations it handles are present in the
platform. Rules 1 through 6 detail how quiescence criteria are deduced from scenario
update terms. The removal, the renaming and the modification of a component require
that component to be quiescent. Other operations do not produce alterability criteria
because the platform is always alterable for them. Rules 7 through 11 detail how security
criteria are deduced from configuration update terms. Removing a scenario requires
the absence of situations handled by it (Rule 8). Adding a scenario does not have such
requirements (Rule 7). In some situations, one scenario is removed to be replaced by a
new scenario extending it. The new scenario may be an update of the removed scenario,
replacing components by updated versions or even add new components to handle more
marker types. In this case, situations handled by the older version can be handled by both
scenarios in a same maner and the presence of such situations should not prevent the
application of the update.

We consider the extension of a scenario by another. A scenario S extends a different
scenario S′ if the general semantic of S′ is included in the semantic S. i.e. S extends S′

if through the modification of components parameters, S′ is included in S. Such general
semantic is encoded in the links of scenarios. Links specify the marker types handled by
the scenario and how the components of the scenario interact with each other through
markers. Two scenarios sharing the same links only differ by the configuration of their
components. We define scenario extension using scenario links.

Definition 5.2 (Link extension) A link extends another if it includes the exchange of
information specified by the other link.

Let L = {τ0C , τ1C , {MT 0, ...,MT k}} and L′ = {τ ′0C, τ ′
1
C, {MT ′

0, ...,MT ′
n}} be

two links.
L extends L′ if {MT ′

0, ...,MT ′
n} ⊂ {MT 0, ...,MT k} . We note L > L′.

Definition 5.3 (Scenario extension) A scenario S extends another scenario S′ if all the
links of S′ are extended by links of S. We note S > S′.

S > S′ ⇔ ∀L′ ∈ S′,∃L ∈ S s.t. L > L′

42 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

We note S ≯ S′ if there is no extension relation between S and S′ (neither S extends
S′ nor S′ extends S). We extend that notation to configuration update terms and note
tc ≯ t′c if there is no extension relation between any of the scenarios present in the terms
tc and t

′
c.

tc ≯ t′c ⇔ ∀S ∈ tc,∀S′ ∈ t′c, S ≯ S′

Rules 9 through 11 of figure 8 uses the scenario extension relations to infer alterability
criteria when combining configuration update terms. Rule 9 precises that no criteria on
the presence of situations are added when extending a scenario. Rule 10 extends that
inference to the extension of several removed scenarios by one new scenario. The new
scenario includes the general semantic of each removed scenario. Rule 11 specifies that
when no scenario extension is involved, alterability criteria add themselves when two
configuration update terms are combined.

5.3 Discussion on reconfiguration calculation

The principal issue when calculating a reconfiguration is the calculation of alterability
criteria. A simple solution would be to add the quiescence of all uninstalled or modified
components and the absence of any situation handled by a removed scenario while
applying the whole reconfiguration as a single update. It is however not satisfying as it
could cause higher delays in the application of the update. The probability of meeting all
alterabilty criteria at the same time decreases while the number of criteria increases. For
that reason we decided to divide each reconfiguration into independent updates and to
have these updates as small as possible. Splitting the original configuration term into
block allows such division while preventing unnecessary operations like installing a
component that was just uninstalled.

By design, SoREn treats components as black boxes which inputs and outputs are
markers. The semantic of a scenario lies in the marker types it handles and through
which components. Marker types are the building blocks of that semantic. Defining the
concept of scenario extension allows the detection of unchanging parts of the semantics
of a platform during a reconfiguration and the simplification of alterability criteria. The
update instructions may uninstall a scenario and install a new one while keeping the
semantic of the former in the platform. Using links, we can detect such situation by
detecting when an uninstalled scenario is replaced by an extension of itself. An update
extending a scenario can be applied even if situations handled by the scenario are present
in the platform. For that update, alterability criteria concerning the absence of situations
are unnecessary.

The exclusion of parts from the links is not a problem. Parts are inner representations
of assets of the watched systems and do not bring more meaning in the scenario semantic
than response types and actuators. Indeed, parts do not specify the actions the scenario
takes, response types do. Parts do not specify how these actions are handled, actuators
do. Including parts in the links of a scenario would only add redundant information.

6 Implementation and experimentation

We implemented SoREn in Python, using the Pymoult library [Martinez et al., 2015]
for the DSU features of the platform. To test the design of SoREn and the automatic
reconfiguration calculation presented in this paper, we implemented components and
markers for two scenarios and used the two scenarios to test a platform reconfiguration.

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 43

6.1 Platform core and base classes

The platform core is build around a central class providing interfaces for the installed
components, allowing them to access the markers present in the platform core and to
create new markers. That central class is linked to classes handling the internal database,
the application of updates and the management of the configuration. The platform
core embeds a MongoDB document oriented database, storing measures, situations and
responses. Any data structure can be stored in the database provided it is converted into
a dictionary’s (also called document). Document oriented databases are well suited for
SoREn because the data model do not need to be defined beforehand.

Figure 9 presents a simplified class diagram of SoREn. Linked to the Platform
class (fulfilling the role of entry point of the platform), the Configuration and
ReconfigurationInterpretor classes respectively hold the curent configuration of
the platform and handle reconfigurations. Base classes are defined for each components
and marker meta-types. Each component or marker type inherits from these base classes.
For instance, to define a new Probe type, one must create a new class inheriting from the
Probe class embedded in SoREn. Marker types can be defined simply by providing a
text specification of their fields. At runtime, that specification is read by the platform and
supplied to one of the MetaMeasure, MetaSituation or MetaResponse classes that
will generate a child class of the appropriate base class. These three special classes are
defined in SoREn using python meta-classes. In Python, meta-classes inherit from the
basic Python class type and are instantiated into classes (whereas regular classes inherit
from the the basic Python class object and are instantiated into objects). Because Python
meta-classes are handled as regular classes, the meta-classes associated to the marker
meta-types are depicted as regular classes in figure 9. When reconfiguring the platform,
the text specification of marker types is provided in the manifest file of the installed
components. Supplied components are paired with a manifest file specifying component
type specific parameters and the specification of each marker type they handle. Because
parts are usually more complex, they cannot be generated the same way as other marker
types. They may have methods implementing synchronization with the watched system,
preventing them from being simply instantiated using a meta-class. For this reason, Part
types must be defined as a new class inheriting from the Part base class, as if they where
component types.

Reconfiguration calculation is handled in the ReconfigurationInterpretor class
that implements the internal representation of the platform configuration and an interpreter
based on the reduction rules detailed in section 5. This module provides an interface class
linked to the central class of the platform core. An internal representation of the platform
current configuration is kept in the module to help the calculation of reconfigurations.
When a new configuration is supplied to the platform (in the format of a structured
YaML file), it is parsed and transformed into an internal representation of the wanted
configuration. Both internal representations of the old and the new configuration are
used to build the original term Remove S0 t0, ...,Remove Sk t0 , Add S′0 t

′
0,

...,Add S′j t
′
j that will be simplified. After calculation of alterability criteria, an update

object (instance of a Pymoult update class) is created for each block. Update objects are
then sent to the update manager (instance of the Pymoult UpdateManager class), which
handles their application.

Figure 10 presents a deployment diagram of SoREn. The platform runs on a server
providing a Linux environment embedding Python capabilities. Components are also
deployed on that server. Probes, parts and actuators are linked with embedded parts of
the watched system to collect data, synchronize their state and trigger action. In this

44 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

Figure 9: SoREn simplified class diagram

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 45

«device»

Server

«execution environment»

Linux + Python

Platform Core

Probe

Detector Decider

Actuator

SoREn

«device»

Embedded Probe

«device»

Embedded Actuator

Watched System

«device»

Subsystem

Part

Figure 10: SoREn Deployement diagram

figure, the server running SoREn is outside of the watched system. However, it would
be possible to embed that server inside the watched system.

6.2 Experimentation on the case of a scenario extension

To validate the pertinence of SoREn, we implement components for a case study implying
a scenario extension with two objectives :

1. showing that the meta-model of SoREn allows the design of security policies

2. showing that the reconfiguration protocol of SoREn allows simple and fast reconfig-
urations

We adress the case of a vehicle communicating wirelessly with a ground infrastructure
via Wi-Fi or 4G protocols. By default, the vehicle uses the Wi-Fi protocol but is the target
of deauthentication attacks : attackers send false deauthentication frames to the vehicle
to disrupt communication or as a preliminary to man-in-the-middle attacks [Sethuraman
et al., 2019]. When such attacks happen, we want the vehicle to switch to the 4G protocol
until Wi-Fi can be safely used again.

Assuming the vehicle embeds a SoREn platform, we design and implement a sce-
nario that fulfills this requirement. As depicted by figure 11, we define component types

46 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

Core

DeauthProbe

MediumSwitcher

DeauthDetector

DeauthDecider

DeauthMeasure

DeauthAttack

SwitchMedium

Medium

Figure 11: Deauthentication attack scenario

DeauthProbe, DeauthDetector, DeauthDecider and MediumSwitcher of respec-
tive meta-types Probe, Detector, Decider and Actuator. We also define marker types
DeauthMeasure, DeauthAttack, SwitchMedium and Medium of respectivemeta-types
Measure, Situation, Response and Part. The Medium part installed by this scenario repre-
sents the communication medium used by the vehicle (Wi-Fi or 4G). It has one attribute
which value can be switched to Wi-Fi or to 4G . Responses of type SwitchMedium
express requests for the medium to be switched. Markers of that type have one field :
the medium to which communications should be switched (Wi-Fi or 4G). Situations of
type DeauthAttack indicate that a deauthentication attack has been detected. Markers
of that type have one field : the date of detection. Measures of type DeauthMeasure
indicate the date a deauthentication frame was received. Markers of that type have
one field : the frame reception date. Components of type DeauthProbe analyze all
received frames and generate a measure of type DeauthMeasure whenever a deauthenti-
cation frame is received. Components of type DeauthDetector read DeauthMeasure
measures and generate a situation of type DeauthAttack whenever more than a pre-
defined number nt

f of deauthentication frame have been received during a predefined

time period ∆t
f . They remove DeauthAttack situations from the platform when less

than nr
f deauthentication frame have been received during ∆r

f . n
t
f , n

r
f , ∆

t
f and ∆r

f

are parameters defined in the scenario that specifies the installation of the compo-
nents. Components of type DeauthDecider generate a response of type SwitchMedium
with field value 4G whenever a DeauthAttack is created and the Medium part is set
to Wi-Fi. They generate a SwitchMedium response with filed value Wi-Fi when no
DeauthAttack is present in the platform and the Medium part is set to 4G. They also
delete response markers of type SwitchMediumwhen the requested response is no longer
needed (e.g. the DeauthAttack situation that triggered the generation of the response
marker is deleted before any actuator handled the requested response). Components of
type MediumSwitcher handle responses of type SwitchMedium and change the proto-
col used by the vehicle. They also set the Medium part to the proper value and delete
before deleting the response marker after completing the requested task.

We implement the components and configure the platform with that scenario, setting
values nt

f = 5,∆t
f = 200ms, nr

f = 2,∆r
f = 200ms. We read frames from a file

containing Wi-Fi frames captured using Wireshark [Wireshark, 2020] during a lab
experiment reproducing a Wi-Fi deauthentication attack. The setup for the experiment
was an attack computer sending deauthentication frames to a target computer connected
to a Wi-Fi hotspot.

We assume the vehicle is on service and the platform is running. We discover that,

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 47

Core

DeauthProbe

JammingProbe

MediumSwitcher

SecReinforcer

DeauthDetector

JammingDetector

MediumDecider

DeauthMeasure

EVM

DeauthAttack

JammingDetector

Jamming
SwitchMedium

ReinforceSec

Medium

AppLayer

Figure 12: Deauthentication and Jamming attack scenario

with our scenario, the vehicle is vulnerable to the jamming of 4G communications. We
decide that the vehicle should switch back to Wi-Fi if 4G communications are jammed.
If a deauthentication attack is detected and 4G communications are jammed, we decide
the vehicle should use Wi-Fi and used reinforced protocols at application layer to defend
itself in the case of a man-in-the-middle attack. We define an extension on the scenario
as depicted by figure 12.

4G Communications [European Telecommunications Standards Institute, 2010] use
OFDM modulation and the quality level of the received 4G signal can be measured by
the Error Vector Magnitude (EVM). EVM is commonly used to assess the quality of
digital communication signals. It expresses as a percentage the difference between an
expected symbol and the symbol actually received. The maximum permissible EVM
to ensure sufficient quality of the communication depends on the modulation coding
scheme. We consider the QPSK modulation which allows a 17.5% maximum EVM. We
define the EVM measure type with one field containing the value of the EVM measured
by the probes of type JammingProbe. Detectors of type JammingDetector read the
EVM measures and produce a situation of type Jamming when the measured EVM is
above 17.5% for more that ∆j . Like DeauthAttack situations, Jamming attack have
one field : the date of detection of the situation. We also define a new type of decider for
requesting responses according to the previous description. If a deauthentication attack is
detected, MediumDecicer deciders generate a SwitchMedium response requesting the
medium to be switched to Wi-Fi. If a jamming attack is detected, the deciders generate
SwitchMedium response requesting the medium to be switched to 4G. If both attacks
are detected, the deciders generate a SwitchMedium and a ReinforceSec responses
requesting the medium to be switched to Wi-Fi and the application layer to use reinforced
security protocols. A new type of actuator is defined to handle the reinforcement of appli-
cation layer security and the AppLayer part type is defined to represent the application
layer security protocols.

We implement the components and define the extended scenario, setting values
nt
f = 5,∆t

f = 200ms, nr
f = 2,∆r

f = 200ms and ∆j = 3s. As for the previous
scenario, we use the captured frames and use EVM readings recorded during a lab
experiment reproducing a jamming attack. Using a CMW500 device as eNodeB and
a Huawei dongle as User Equipment, we used the setup depicted on figure 13. The

48 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

eNodeB

(CMW500)

UE

Jammer

Downlink

Uplink

Figure 13: Jamming of uplink 4G signals

jammer attacks uplink signals from the User Equipment (i.e. the watched system) and the
CMW500 measures the EVM of these signals. After measuring the EVM of jammed and
non-jammed uplink signals, we construct a trace of measured EVM with one measure
each 200ms, including jamming and non jamming periods. The JammingProbe probes
replays that trace, creating EVM measures, assuming symmetry of the setup : downlink
signals are jammed and the UE measures the EVM of theses signals. An alternative to
EVM measurement would be measure the BLER (Block Error Rates) of signals which
can be done at MAC layer. How this can be done is out of the scope of this paper.

We supply a configuration with the extended scenario to the running platform config-
ured with the previous scenario and examine its behavior, checking that attacks are well
handled and the reconfiguration is correctly applied. Figures 14 and 15 presents the logs
produced by the platform during the reconfiguration. At t0, the platform is configured
with the simple deauthentication attack scenario. A deauthentication attack is detected
and a situation is created. As a reaction, the decider creates a response at t0 + 0.074s
requesting the comunication medium to be switched to 4G. The responsed is handled
by the actuator at t0 + 0.077s and completed at t0 + 1.08s but when the medium is
switched to 4G, the deauthentication attack is over. The decider requests the medium
to be switched back to Wi-Fi at t0 + 1.109s which is completed at t0 + 2.125s. The
reconfiguration of the platform is requested at t0 + 142.295s, during a deauthentication
attack. Because the reconfiguration extends the installed scenario, the update is imedi-
ately applied and the new scenario is completely installed at t0 + 12.707s. The newly
installed decider named mediumdecider requests the medium to be switched back to
Wi-Fi at t0 + 147.807s when the deauthentication attack is over. At t0 + 270.477s, a
deauthentication attack is detected and a response is created to request the medium to
be switched to 4G. At t0 + 270.839s, a jamming attack on 4G communication and the
decider, noticing the vehicle is curently using Wi-Fi, generates a response requesting
the reinforcement of application layer security. When the deauthentication attack is over
at t0 + 271.356s, the decider cancels the reinforcement of application layer security.
Because mediumswitcher was already engaged on the switching of protocols, the de-
cider could not cancel the switching of the medium to 4G when the jamming attack was
detected. As a consequence, the decider immediately requests the medium to be switched
back to Wi-Fi right after it is set to 4G. To test the application of a reconfiguration not
extending scenario, we request a reconfiguration of the platform to the previous scenario
at t0 + 356.766s while a Jamming situation is present in the platform. Because the new
configuration does not handle Jamming situations, the application of the reconfiguration
is delayed until t0 + 377.656s, when the jamming attack is over. At t0 + 377.658s, the
platform has been sucessflly reconfigured two times, without disrupting the handling of
deauthentication and jamming attacks.

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 49

t0 Situation DeauthAttack triggered
t0+0.074s Response SwitchMedium requested with parameters

I target=4G
t0+0.077s Response SwitchMedium requested at t0+0.074s

I handled by mediumswitcher
t0+0.855s Situation DeauthAttack triggered at t0 solved
t0+1.078s System Medium switched to 4G
t0+1.080s Response SwitchMedium requested at t0+0.074s

I completed
t0+1.109s Response SwitchMedium requested with parameters

I target=Wifi
t0+1.120s Response SwitchMedium requested at t0+1.109s

I handled by mediumswitcher
t0+2.121s System Medium switched to Wifi
t0+2.125s Response SwitchMedium requested at t0+1.109s

I completed
t0+141.713s Situation DeauthAttack triggered
t0+141.822s Response SwitchMedium requested with parameters

I target=4G
t0+141.825s Response SwitchMedium requested at t0+141.822s

I handled by mediumswitcher
t0+142.295s System Reconfiguration requested
t0+142.702s DSU Decider mediumdecider uninstalled successfully
t0+142.703s DSU Part applayer installed successfully
t0+142.703s DSU Measure type EVM installed successfully
t0+142.703s DSU Situation type Jamming installed successfully
t0+142.703s DSU Response type ReinforceSec installed

I successfully
t0+142.703s DSU Probe evmsenser installed successfully
t0+142.704s DSU Detector jammingdetector installed

I successfully
t0+142.704s DSU Decider wirelessdenialdecider installed

I successfully
t0+142.707s DSU Actuator securityreinforcer installed

I successfully
t0+142.826s System Medium switched to 4G
t0+142.828s Response SwitchMedium requested at t0+141.822s

I completed
t0+147.598s Situation DeauthAttack triggered at t0+141.713s

I solved
t0+147.807s Response SwitchMedium requested with parameters

I target=Wifi
t0+147.814s Response SwitchMedium requested at t0+147.807s

I handled by mediumswitcher
t0+148.818s System Medium switched to Wifi
t0+148.822s Response SwitchMedium requested at t0+147.807s

I completed
t0+169.824s Situation Jamming triggered
t0+212.039s Situation Jamming triggered at t0+169.824s solved
t0+270.477s Situation DeauthAttack triggered
t0+270.698s Response SwitchMedium requested with parameters

I target=4G

Figure 14: Platform trace (part 1)

50 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

t0+270.703s Response SwitchMedium requested at t0+270.698s
I handled by mediumswitcher

t0+270.839s Situation Jamming triggered
t0+270.920s Response ReinforceSec requested with parameters

I target=reinforce
t0+270.922s Response ReinforceSec requested at t0+270.920s

I handled by securityreinforcer
t0+271.356s Situation DeauthAttack triggered at t0+270.477s

I solved
t0+271.578s Response ReinforceSec requested at t0+270.920s

I cancelled
t0+271.706s System Medium switched to 4G
t0+271.709s Response SwitchMedium requested at t0+270.698s

I completed
t0+271.791s Response SwitchMedium requested with parameters

I target=Wifi
t0+271.793s Response SwitchMedium requested at t0+271.791s

I handled by mediumswitcher
t0+272.795s System Medium switched to Wifi
t0+272.798s Response SwitchMedium requested at t0+271.791s

I completed
t0+284.406s Situation Jamming triggered at t0+270.839s solved
t0+332.680s Situation Jamming triggered
t0+356.766s System Reconfiguration requested
t0+374.929s Situation Jamming triggered at t0+332.680s solved
t0+377.656s DSU Part applayer uninstalled successfully
t0+377.657s DSU Measure type EVM uninstalled successfully
t0+377.657s DSU Situation type Jamming uninstalled

I successfully
t0+377.657s DSU Response type ReinforceSec uninstalled

I successfully
t0+377.657s DSU Probe evmsenser uninstalled successfully
t0+377.657s DSU Detector jammingdetector uninstalled

I successfully
t0+377.657s DSU Decider wirelessdenialdecider uninstalled

I successfully
t0+377.657s DSU Actuator securityreinforcer uninstalled

I successfully
t0+377.658s DSU Decider mediumdecider installed successfully
t0+420.386s Situation DeauthAttack triggered
t0+420.555s Response SwitchMedium requested with parameters

I target=4G
t0+420.559s Response SwitchMedium requested at t0+420.555s

I handled by mediumswitcher
t0+421.560s System Medium switched to 4G

Figure 15: Platform trace (part 2)

7 Discussion and Future work

SoREn was designed in the context of the SECOURT project focusing on vehicles. As a
consequence, the design of SoREn is specifically targeted at embedded systems evolving
in an uncontrolled environment. The meta-model of SoREn is well suited for handling
threats in that context but may be less suited in more general contexts. For example,
companies usually deploy detection software on their computers and centralize decision
on a different server. The decentralized nature of SoREn, having each protected system
running their own detection/decision/reaction system, would incur drastic changes in

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 51

the practices of such companies. For that reason, although the pertinence of SoREn was
validated for a specific context, discussion of the general pertinence of SoREn would
require more experimentation in the future. Automatic update calculation takes advantage
of the restrictive meta-model of SoREn. Automatically calculating reconfiguration of
more generic systems that are not subjected to such restrictions would be more complex.
Indeed, with no a priori knowledge on updates, selecting well suited mechanisms for
applying all future updates would be a complex task. A probably easier solution would
be to select the used mechanisms at each update, implying that a tool or a person selects
the mechanisms. The reconfiguration system of SoREn shows that dynamic updates
can be made easier by the definition of a restrictive meta-model for applications. Future
work addressing that observation would help understand the impact of the restrictiveness
of the meta-model and the model of an application on the automatic calculation of its
dynamic updates.

Platform configurations are expressed as a list of scenario to be installed, which in turn
are expressed as a list of component and marker types to be installed. As shown in table 1,
the proximity between component and marker meta-types with business concepts allows
a higher level of specification for configuration, but an even higher level of expression for
configuration should be targeted. Platform administrators should be able to reconfigure
platform using only business concepts, without considering components andmarker types.
This goal could be reached by specifying an ontology for the specification of security
policies and linking that ontology to the component and marker types. Administrators
would use the ontology when specifying a configuration and an extended version of the
reconfiguration interpreter would calculate the scenarios to be installed.

8 Conclusion

This paper presented SoREn, a reconfigurable platform enforcing security policies for
communicating vehicles. It detailed its meta-model centered on four stateless meta-types
of components exchanging information through objects name markers. Component and
marker meta-types are associated with high level business concepts to facilitate the
expression of configuration. The reconfiguration engine, calculating the update tasks to
be executed from a supplied configuration, was also presented. The operational semantic
on which the engine is based was detailed. The paper showed the pertinence of the
design of SoREn for expressing security policies, enforcing them and for applying
dynamic updates without requiring administrators to write updating code or provide any
specification on the used update mechanisms.

The example presented and discussed in this paper shows the pertinence of Dynamic
Software Updating topics in the study of safety and security issues. DSU techniques
allow security systems designs to be more reactive to new needs emerging from changes
of context by enabling dynamic reconfigurations. High level specification of updates
also increase the reactivity of security systems. Indeed, it allows administrators to order
the reconfiguration of the system without needing to develop specific updating code. The
time between the reporting of new needs and the effective application of the required
update is reduced. Security systems would be updated sooner, leaving security issues
unaddressed for a shorter time.

The source code of SoREn is released under the GPL License. Its source code and
the code of the components used in the experimentation presented in section 6 can be
downloaded on its repository : https://bitbucket.org/smartinezgd/soren.

https://bitbucket.org/smartinezgd/soren

52 Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ...

References

[Aldinucci et al., 2005] Aldinucci, M., André, F., Buisson, J., Campa, S., Coppola, M., Danelutto,
M., and Zoccolo, C. (2005). Parallel program/component adaptivity management. In International
Conference ParCo, NIC Series.

[Appavoo et al., 2003] Appavoo, J., Hui, K., Soules, C. A. N., Wisniewski, R. W., Silva, D. D.,
Krieger, O., Auslander, M. A., Edelsohn, D., Gamsa, B., Ganger, G. R., McKenney, P. E., Os-
trowski, M., Rosenburg, B. S., Stumm, M., and Xenidis, J. (2003). Enabling autonomic behavior
in systems software with hot swapping. IBM Systems Journal, pages 60–76.

[Baumann et al., 2005] Baumann, A., Kerr, J., Silva, D. D., Krieger, O., and Wisniewski, R. W.
(2005). Module hot-swapping for dynamic update and reconfiguration in k42. In In 6th
Linux.Conf.Au.

[Buccafurri et al., 2015] Buccafurri, F., Fotia, L., Furfaro, A., Garro, A., Giacalone, M., and
Tundis, A. (2015). An analytical processing approach to supporting cyber security compliance
assessment. In Proceedings of the 8th International Conference on Security of Information and
Networks, SIN ’15, page 46–53, New York, NY, USA. Association for Computing Machinery.

[Buisson et al., 2006] Buisson, J., André, F., and Pazat, J.-L. (2006). Afpac: enforcing consistency
during the adaptation of a parallel component. Scalable Computing : Practice and Experience.

[Cavalcante et al., 2015] Cavalcante, E., Batista, T., and Oquendo, F. (2015). Supporting dynamic
software architectures: From architectural description to implementation. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pages 31–40.

[European Telecommunications Standards Institute, 2010] European Telecommunications Stan-
dards Institute (2010). Lte; evolved universal terrestrial radio access (e-utra); user equipment (ue)
radio transmission and reception.

[Ghafari et al., 2012] Ghafari, M., Jamshidi, P., Shahbazi, S., and Haghighi, H. (2012). An
architectural approach to ensure globally consistent dynamic reconfiguration of component-based
systems. In Proc of the 15th Symposium on Component Based Software Engineering, CBSE, pages
177–182.

[Giuffrida and Tanenbaum, 2010] Giuffrida, C. and Tanenbaum, A. (2010). A taxonomy of live
updates. In Proceedings of the 16th Annual Conference of the Advanced School for Computing
and Imaging.

[Gregersen and Jørgensen, 2009] Gregersen, A. R. and Jørgensen, B. N. (2009). Dynamic update
of java applications—balancing change flexibility vs programming transparency. Journal of
Software Maintenance and Evolution: Research and Practice.

[Kramer and Magee, 1990] Kramer, J. and Magee, J. (1990). The evolving philosophers problem:
Dynamic change management. IEEE Trans. Softw. Eng.

[LAMIH, 2020] LAMIH (2015, accessed November 30 of 2020). Cyber-sécurité
dans les systemes communicants pour les transports. https://www.uphf.fr/LAMIH/fr/
cyber-securite-dans-les-systemes-communicants-pour-les-transports.

[Malatji et al., 2019] Malatji, M., Von Solms, S., and Marnewick, A. (2019). Socio-technical
systems cybersecurity framework. Information & Computer Security, 27(2):233–272.

[Martinez et al., 2015] Martinez, S., DAGNAT, F., and Buisson, J. (2015). Pymoult : On-line
updates for python programs. In ICSEA 2015 : 10th International Conference on Software
Engineering Advances.

[Meyerson, 2014] Meyerson, J. (2014). The go programming language. IEEE Software,
31(5):104–104.

[OISF, 2020] OISF (2020, accessed November 30 of 2020). Suricata, open source ids. http:
//www.suricata-ids.org.

https://www.uphf.fr/LAMIH/fr/cyber-securite-dans-les-systemes-communicants-pour-les-transports
https://www.uphf.fr/LAMIH/fr/cyber-securite-dans-les-systemes-communicants-pour-les-transports
http://www.suricata-ids.org
http://www.suricata-ids.org

Martinez S., Gransart C., Stienne O., Deniau V., Bon P.: SoREn, HowDSU Tools ... 53

[Sethuraman et al., 2019] Sethuraman, S. C., Dhamodaran, S., and Vijayakumar, V. (2019). In-
trusion detection system for detecting wireless attacks in ieee 802.11 networks. IET Networks,
8(4):219–232.

[Sourcefire, 2020] Sourcefire (2020, accessed November 30 of 2020). Snort, open source network
intrusion prevention and detection system. http://www.snort.org/.

[Vandewoude et al., 2007] Vandewoude, Y., Ebraert, P., Berbers, Y., and D’Hondt, T. (2007).
Tranquility: A low disruptive alternative to quiescence for ensuring safe dynamic updates. IEEE
Transactions on Software Engineering.

[Wireshark, 2020] Wireshark (2020 (accessed Novembre 30, 2020)). Wireshark website. https:
//www.wireshark.org/.

[Zeek, 2020] Zeek (2020, accessed November 30 of 2020). Zeek tool. https://zeek.org/.

http://www.snort.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://zeek.org/

	Introduction
	Related works
	A meta-model suited for high-level specification of policies
	Dynamic updating issues
	Update unit and update management
	Alterability and update life-cycle
	Data updating

	Automatic reconfiguration
	Defining a scenario
	Calculating reconfiguration operations
	Discussion on reconfiguration calculation

	Implementation and experimentation
	Platform core and base classes
	Experimentation on the case of a scenario extension

	Discussion and Future work
	Conclusion

