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Abstract: With the growth of cloud services, many companies have begun to persist and make

their data available through services such as Data as a Service (DaaS) and Database as a Service

(DBaaS). The DaaS model provides on-demand data through an Application Programming Inter-

face (API), while DBaaS model provides on-demand database management systems. Different

data sources require efforts to integrate data from different models. These model types include

unstructured, semi-structured, and structured data. Heterogeneity from DaaS and DBaaS makes it

challenging to integrate data from different services. In response to this problem, we developed

the Data Join (DJ) method to integrate heterogeneous DaaS and DBaaS sources. DJ was described

through canonical models and incorporated into a middleware as a proof-of-concept. A test case

and three experiments were performed to validate our DJ method: the first experiment tackles data

from DaaS and DBaaS in isolation; the second experiment associates data from different DaaS and

DBaaS through one join clause; and the third experiment integrates data from three sources (one

DaaS and two DBaaS) based on different data type (relational, NoSQL, and NewSQL) through two

join clauses. Our experiments evaluated the viability, functionality, integration, and performance

of the DJ method. Results demonstrate that DJ method outperforms most of the related work on

selecting and integrating data in a cloud environment.
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1 Introduction

Digitally stored data has grown exponentially, with an estimated 175 Zettabytes in 2025
[Reinsel et al. 2018]. Currently, internet data traffic exceeds five billion gigabytes per day
[Internet Live Stats 2020]. This amount of data, distribution, availability, and plurality
makes the aggregation of data a new challenge. Cloud computing minimizes some of
these requirements by providing services with high availability. Cloud computing also
facilitates the publication and distribution of data [Mell and Grance 2011].

Cloud computing is a ubiquitous network of on-demand services, composed of appli-
cations, platforms, and hardware in a hierarchical model. Usually, a cloud is described in
three levels: (i) Infrastructure as a Service (IaaS); (ii) Platform as a Service (PaaS); and
(iii) Software as a Service (SaaS) [Mell and Grance 2011, Armbrust at al. 2010]. Based
on these levels, cloud providers enhanced other service models, such as Data as a Service
(DaaS) and Database as a Service (DBaaS) [Li et al. 2012, Zheng et al. 2013]. These two
data-based models are conceptually different [Zheng et al. 2013]. DaaS provides data on
demand through interfaces based on Web Services Description Language (WSDL) or
Representational State Transfer (REST) [Barros et al. 2018], such as Brazilian Open Data
Portal1 and DATA.GOV2. DBaaS provides Database Management Systems (DBMSs) for
organizations to store, access, and manipulate their databases [Zheng 2018]. Examples
of DBaaS are ClearDB3 (based on MySQL), ElephantSQL4 (based on PostgreSQL),
and BD Cosmos5 (based on NoSQL). Table 1 presents some differences between both
service models.

Feature DaaS DBaaS

Goal Provide data on-demand Provide DBMS on-demand

Access Mode API Specific Drivers

Data Model Re-

turned

Semi-structured and un-

structured

Semi-structured and structured

Authentication Optional Required

Query Language Based on REST or

WSDL

Relational (SQL) or specific

(NoSQL) languages

Table 1: Some differences between DaaS and DBaaS models [Zheng et al. 2013, Zheng
2018, Hacigumus et al. 2002, Li et al. 2012]

The DaaS and DBaaS services aim to provide data and DBMS on-demand, respec-
tively. DaaS obtains the data by anAPI (Application Programming Interface), and DBaaS
receives the data by employing specific drivers. Both returns are in semi-structured data.
Authentication is optional in DaaS and mandatory in DBaaS. Finally, the query language
depends on the data model.

Several organizations persist their data through DaaS and DBaaS models, such as
governments and institutions (public and private). These data need to interact and be

1 http://dados.gov.br/
2 https://www.data.gov/
3 http://w2.cleardb.net/
4 https://www.elephantsql.com/
5 https://azure.microsoft.com/services/cosmos-db/
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available for access by users/applications uniform and transparently. For instance, when
two companies merge and they need to aggregate data from different sources, their
information may be heterogeneous (schema, syntax, semantics, data types, data formats,
and data constraints). This problem is common due to the lack of standards between
applications and data sources (DaaS and DBaaS) [Colomb and Orlowska 1995]. Our
approach integrates DaaS and/or DBaaS at a syntactic level from heterogeneous sources
for SaaS transparently.

Despite the fact that integration and interoperability have similar objectives (enable
the common use of data), in our opinion, they have some relevant differences. Interop-
erability is the ability of multiple systems to work together, ensuring communication
between services and exchanging information effectively and efficiently. Integration
describes the mechanism by which multiple systems can communicate. Moreover, inte-
gration is one solution to achieves interoperability among systems [Gravina et al. 2017].
Since a single cloud service is unlikely to meet the full requirements of an enterprise [Li
et al. 2013], integration and interoperability are essential tasks in modern applications.

In this paper, we present Data Join (DJ) method, a solution for joining data regardless
of the service (e.g., DaaS and DBaaS) and model (e.g., relational, key-value). Differently
from our related work, the DJ method joins cloud services data regardless of the data
model. Our method recognizes relational, document-based NoSQL, NewSQL, and semi-
structured models (e.g., JSON, CSV, and XML). Few works provide cloud solutions
respecting their sources to avoid inconsistency. Other studies afford integration by the
adoption of a data standard format, which is not our case as we let each client (SaaS) and
data provider (DaaS) deal with its own format. This transparency minimizes the effort of
synchronization and consistency of distributed data in cloud services. Our significant
contributions are: (i) a solution to integrate data among different DaaS and DBaaS; (ii)
a transparent and unified method to access different DaaS and DBaaS through SQL,
NoSQL, and NewSQL queries; (iii) a lightweight formal description of our method based
on trees and key-values, and (iv) an in-depth description of how our method performs
the different join clauses.

Our approach performs data join between two or more data services. For this, our DJ
method: (i) receives the data in different formats; (ii) transforms the data into metadata;
and (iii) associates the data collected (by DaaS/DBaaS) with the attributes defined in the
query. Rescue systems [Barros et al. 2016], Data Lake systems [Fang 2015], and clinical
systems [Jayaratne et al. 2019] have a single repository that stores and integrates data in
a way that is significantly different from our approach. We deal with data directly from
the sources, avoiding obsolete and inconsistent data treatment.

We incorporated our method into a middleware for DaaS and SaaS (MIDAS), and we
performed some experiments (functionality, performance, and overhead). In the first ex-
periment, we performed the same query 100 times in different DaaS and DBaaS, varying
the number of instances to 100, 1,000, and 10,000. The second experiment performed
three different queries, 100 times each, with a combination of two heterogeneous DaaS
and DBaaS, measuring response time. We use (i) one Relational DBaaS, (ii) one NoSQL
DBaaS, (iii) one NewSQL DBaaS, and (iv) one DaaS to perform joins among different
data sources. Finally, the third experiment performed three different queries, 100 times
each, integrating three different datasets: one DaaS and two DBaaS.

The remainder of this paper is organized as follows: Section 2 describes the current
version of MIDAS; Section 3 describes the model of our approach; Section 4 presents a
proof of concept, incorporating our method into a middleware; Section 5 presents some
experiments and results; Section 6 presents related works; and Section 7 summarizes our
conclusions and identifies areas for further study.
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2 The Current MIDAS

The MIDAS with DJ method architecture is depicted in Figure 1. This novel approach is
composed of eight components:

– Query Decomposer receives a SQL or NoSQL query sent from a SaaS and decom-
poses it into an array;

– Query Builder builds a query based on REST for DaaS (or DBaaS);

– Dataset Information Storage (DIS) stores the attribute information about DaaS
(or DBaaS);

– Crawler keeps DIS up-to-date;

– Mapping6 simulates DBaaS with characteristics of a DaaS and forwards the query
to a dataset;

– Join6 receives the data and connects it according to fields/attributes described in
join clause (SQL join or NoSQL references clause);

– Filtering filters and sorts the data as requested by SaaS; and

– Formatter formats the data for the model requested by SaaS.

DJ method increases two new components to MIDAS: Mapping and Join. The
Mapping component (i) simulates a DBaaS with characteristics of a DaaS, (ii) identifies
the data source of query, and (iii) forwards the query to the respective DaaS or DBaaS.
This component provides an access interface that obtains DBaaS data through a process
that is similar to obtain DaaS data through REST request.Mapping component allows
MIDAS to query DBaaS and DaaS similarly. This component identifies the dataset to
which the query refers (DaaS or DBaaS) and then it forwards the query to the data service.

The Join component is triggered only when a SaaS submits a query with a join clause.
Upon receiving the data, this component connects the data according to the fields/at-
tributes described in join clause (SQL join or NoSQL references). As this component
runs through all data, its complexity is O(n2).

Besides these two components, DIS component was also modified. The new DIS
component stores credentials information from data services. We include a set of at-
tributes for each data service: (i) driver: generic interface describing a specific service
provider implementation; (ii) host: machine location; (iii) port: port of communication;
(iv) database: name of the database; (v) username: username for authentication; (vi) pass-
word: user password for authentication; (vii) charset: characters coding on the database;
and (viii) from: name of the dataset, e.g., table and document.

Other components (Query Decomposer, Query Builder, Crawler, Filtering, and For-
matter) runs similar as previous version [Ribeiro et al. 2019].

6 New component increased by DJ method into MIDAS
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Figure 1: Overview of MIDAS with our DJ method

3 Model of DJ method

This section describes our method in canonical models. A canonical model [Schreiner
et al. 2015] is an universal data model composed of trees and key-values. Although it
is a generic model, our work adapted canonical models because they can define and
represent different data models, e.g., DaaS and DBaaS.

Definition 1 (mDJ) mDJ (Figure 2) is a tuple mDJ = (mDictionary, mMapping,
mData,mJoin), where:mDictionary is the canonical model of DIS,mMapping is
the canonical model for identifying queries,mData is the canonical model that maps
DBaaS (or DaaS) return(s), andmJoin is the canonical model that maps the join clause.

Figure 2: mDJ canonical model
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Definition 2 (mDictionary) The canonical model of DIS (mDictionary) is a tuple
mDictionary = (Nroot, DSERV ICES), where: Nroot is the model identification
name, and DSERV ICES is the set of data service models (dservice set).

Definition 3 (dservice) The canonical model that represents the i-th dataset (dservice
∈ DSERV ICES) is a tuple dservice = (Nrootdservice

,KEY S), where:Nrootdservice

is the name of the dataset, and KEY S is a predefined set of keys for each dataset,
in which KEY S = {domain, search_path, query, filter, sort, limit, dataset, records,
fields, amount, format, credentials}. Keys are defined for each dataset. The setKEY S
is between 2 and 12 keys (i.e., 2 ≤ keys ≤ 12). The service needs to specify at least a
domain (virtual address to be located) and a dataset (dataset identifier). In these cases,
KEY S contains two keys (KEY S = {domain, dataset}). The remaining options for
keys can be either mandatory or optional, depending on the data.

Definition 4 (key) A key (key ∈ KEY S) consists of dataset information and it is
defined as key = (Nrootkey

, INFO), where: Nrootkey
names a specific attribute of

a dservice (keys.Nrootkeys ∈ KEY S), and INFO is a set of information (info)
about the key attribute. Thus, for all keys, there is a corresponding info.

For each dataset, the following attributes are defined:

– domain: address of a data service;

– search_path: address complement;

– query: project data;

– filter: filter information;

– sort: sort attribute;

– limit: amount data returned;

– dataset name of the dataset;

– records: required when only data are necessary (no extra information);

– fields: attributes of a dataset;

– amount: maximum number of data in a source;

– format: data format options; and

– credentials: set of credentials for authentication.

Definition 5 (info) An information info (info ∈ INFO) is a tuple info = (Nrootinfo
,

DATA), where: DATA is a set of data of the i-th attribute, and Nrootinfo
defines a

specific information or attribute of a key (info.Nrootinfo
∈ INFO). Information info

can be empty, atomic or multivalued. If 6 ∃keys, then 6 ∃info.

Definition 6 (data) A data (data ∈ DATA) corresponds to a data point referring to
info, in which data can be empty (DATA = ∅) or binary (DATA = {dataIinfo,
dataVinfo}), where: dataIinfo is an information info, and dataVinfo is a value of
info.
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For instance,mDictionary of two sets of data (dset1 and dset2) is shown in Figure 3:
(i) the main node consists of an identifier of the model; (ii) each node in dservice level
stores the name of each dataset; and (iii) nodes in info level store information about
key level, immediately above. The dataset dset1 stores information about people in a
MongoDB in the domain of the Federal University of Bahia (http://ufba.br). The model
presents information about domain, credentials, filters, among other elements.

Figure 3: Example of mDictionary canonical model

Definition 7 (mMapping) The canonical modelmMapping is defined bymMapping
= (Nroot, PARAMS), where: Nroot is the identification name of the dataset, and
PARAMS is the set of parameters (param set) to map the attributes and query operations
to DaaS (or DBaaS). There is one mMapping for each integrate dataset.

Definition 8 (param) Each parameter (param ∈ PARAMS) is a tuple param =
(Nrootparam , V ALUES), in which: Nrootparam is the name of the query clause, where
param ={dataset, fields, where, order, limit}, and V ALUES is a set of values of
each clause.

Definition 9 (value) A value (value ∈ V ALUES) represents information for each
clause of the query. Depending on the param, value can be empty, atomic or multivalued.
Thus, V ALUES = ∅ or V ALUES = {value1, value2, . . . , valuew}, where: valuei
is the i-th value and w is the number of values in V ALUES set.
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Figure 4 shows an example ofmMapping. The first level presents the main node
with the dataset identifier. The nodes in the param level consist of the query clauses,
and the last level nodes (value) contain the param level information. Figure 4 shows
an example of a possible result for the following SQL query:

SELECT name, age, id
FROM dset1
WHERE age > 8
ORDER BY name
LIMIT 10

where: dataset is the attribute of FROM , fields are the attributes of SELECT ,
where is the attribute ofWHERE (where clause conditions), order is the attribute of
ORDER BY , and limit is the attribute of LIMIT .

Figure 4: Example of a mMapping canonical model

Definition 10 (mData) The mData canonical model is a tuple mData = (Nroot,
F IELDS), where: Nroot is the identification name of the dataset, and FIELDS is
the set of attributes of the returned data (field set).

Definition 11 (field) Each field (field ∈ FIELDS) is a tuple field = (Nrootfield
,

REC), where: Nrootfield
identifies each field, and REC is a set of data records (rec),

in which the field can be either empty or atomic.

Definition 12 (rec) A record rec (rec ∈ REC) represents all information of a field,
following the same order as data received (top-down). The number of rec is equal to the
number of tuples returned. Thus, rec = {tuple1, tuple2, . . . , tupleq}, where: tuplei is
the i-th tuple for each rec of field and q is the amount of tuples returned.

For instance, Figure 5 presents amData canonical model: the main node identifies
the data source, and subtrees are formed by the field identifier node (field) and the data
returned (rec). This canonical model is an example of data return (Table 2) in response to
query: dataset = ``dset1", fields = {``name", ``age", ``id"}, where = ``age > 8",
order = ``name", and limit = 3.
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Figure 5: Example of mData of a query to dset1 dataset

dset1

name age id

Dan 10 87546

John 9 67835

Marie 12 80964

Table 2: Example of returned data

Definition 13 (mJoin) mJoin is a tuple mJoin = (Nroot, JC), where: Nroot is the
name that identifies the dataset, and JC is the set of distinct values of the join condition
(jc set) in the corresponding relationship.

Definition 14 (jc) An information jc (jc ∈ JC) consists of a value that join condition
admits in the corresponding relation. For such, jc is a tuple jc = (Nrootjc , DJ), where:
Nrootjc is the name that identifies jc value, and DJ is a set of join data (dj set) with all
attributes in jc.

Definition 15 (dj) A data join dj (dj ∈ DJ) contains all the information of the same
tuple that jc is a part of, following the relationship’s order of occurrence (from left to
right). The number of dj ∈ DJ reflects directly on the number of tuple attributes, thus
dj = {a1, a2, . . . , an}, where: ai is the i-th attribute for each dj, and n is the number of
tuples a ∈ dj.

As an example, it can be assumed that both sets presented in Table 3 result from the
following query (q):

SELECT dset1.name, dset1.age, dset2.address
FROM dset1 LEFT OUTER JOIN dset2 ON dset1.id = dset2.client_id
LIMIT 5

Breaking down q, it is assumed that: q.SELECT = {dset1.name, dset1.age, dset2.ad-
dress}; q.FROM = dset1; q.JOIN = {dset1.id = dset2.client_id}; and q.LIMIT =
5. This query results in twomMappings: dset1 and dset2 (Figure 6). In this case, each
mData canonical model is shown in Figure 7.
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dset1 dset2

name age id address client_id

Dan 10 87546 Street A 67835

John 9 67835 Street C 87546

Marie 12 80964 Street D 87546

. . . . . . . . . . . . . . .
namen agen idn addressn client_idn

Table 3: Example of returned data

Figure 6: Example of mMapping with a join clause between two datasets

Figure 7: Example ofmData canonical models of Table 3

When preparing for a join clause, the values in the relationship are retained for later
aggregation. The first step is to separate the values from the relationship (jc) from the
other values (Figure 8(a)). Afterwards, it is assumed that: (i) lch(p) is a function that
results in the last child of a p node; (ii) ch(p) is a function that results in the contents of
the first child of p node; and (iii) con(p1, p2) is a function that connects p1 node to p2
node. Join clauses are performed as follows:

1. For left join:

(a) ∀jc1 ∈ ch(dset1) and ∀jc2 ∈ ch(dset2), then con(lch(dset1.jc1), ch(dset2.
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jc2)), when ∀jc1 = jc2 (Figure 8(b));

(b) ∀jc1 /∈ q.SELECT , con(dset1, ch(dset1.jc1)) and remove jc1 (Figure 8(c)).

2. For right join:

(a) ∀jc1 ∈ ch(dset1) and ∀jc2 ∈ ch(dset2), then con(lch(dset2.jc2), ch(dset1.
jc1)), when ∀jc1 = jc2;

(b) ∀jc2 /∈ q.SELECT , con(dset2, ch(dset2.jc2)) and remove jc2.

3. For inner join:

(a) ∀jc1 ∈ ch(dset1), if jc1 /∈ ch(dset2) then remove jc1;

(b) ∀jc2 ∈ ch(dset2), if jc2 /∈ ch(dset1) then remove jc2;

(c) ∀jc1 ∈ ch(dset1) and ∀jc2 ∈ ch(dset2), then con(lch(dset1.jc1), ch(dset2.
jc2)), ∀jc1 = jc2 and ∀jc2 = jc1;

(d) ∀jc1 /∈ q.SELECT , con(dset1, ch(dset1.jc1)) and remove jc1.

4. For full join:

(a) ∀jc1 ∈ ch(dset1) and ∀jc2 ∈ ch(dset2), con(dset1, dset2.jc2);

(b) ∀jc1 /∈ q.SELECT , con(dset1, ch(dset1.jc1)) and remove jc1.

Figure 8: Example ofmJoin steps (left join)
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We are aware that there is no native support for the join clause in NoSQL queries, in
contrast to SQL and NewSQL queries. MIDAS loads data from NoSQL data sources, and
then the middleware deals internally with the reference clauses involving these data. Our
method performs the reference clause without problem for two reasons. First, MIDAS
with DJ recognizes queries from document-based NoSQL, for instance, the lookup clause
from MongoDB. Second, when MIDAS with DJ receives an SQL or document-based
NoSQL query, the Query Decomposer module decomposes the query into a specific
MIDAS format, enabling MIDAS to deal with Relational/NewSQL and NoSQL queries.
Therefore, both SQL or document-based NoSQL queries are treated equally after Query
Decomposer.

Figure 9 shows howMIDASwith DJ translates SQL and NoSQL (MongoDB) queries
without a join clause into the specific MIDAS format. MIDAS receives the request from
SaaS and then translates the query into a specific format. MIDAS analyzes the query
statements and maps the clauses to instances according to the data model. After Query
Decomposer, all outputs are identical.

Figure 9: Steps of MIDAS

We emphasize that DaaS and DBaaS are accessed from a URL according to the
service API [Ribeiro et al. 2019]. MIDAS translates SQL or NoSQL query into one or
more URLs, depending on the existence of a join clause.
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4 Proof of Concept

As a proof of concept, our method was integrated into a middleware to interoperate SaaS
and heterogeneous DaaS/DBaaS. We incorporate our DJ method into MIDAS since we
have access to the middleware source code and this allows us to improve and evaluate
features using the existing framework.

Figure 10 presents the execution flow of MIDAS with our DJ method. The process
starts with a SQL or NoSQL query by the Query Decomposer. The query is decomposed
into an array that identifies the projection, data set, joins, filters, sort, and limit. Query
Builder receives this array and it accesses DIS to obtain the information to construct
queries. Mapping selects the service (DaaS or DBaaS) and checks for authentication. If
the requested service is a DBaaS,Mapping recognizes the query parameters and converts
them into an API of the specific databases (Relational, NoSQL, or NewSQL). Services
are then accessed to obtain the data sets. Finally, Filtering component filters and sorts
the data, and Formatter component formats and sends these data to SaaS.

Figure 10: Execution flow of MIDAS with our DJ method

An example of the process executed by MIDAS with DJ method starts with SaaS
sending a query as follows:

SELECT people.name, people.age,
places.street, places.number, places.city

FROM people LEFT JOIN places
ON people.id = places.person_id

WHERE people.city = "New York"
ORDER BY people.age
LIMIT 3

Query Decomposer groups the query parts as shown in Figure 11. Query Builder
component checks the information about the dataset in data dictionary (DIS). This
information is stored in a JSON file, as shown in Figure 12.
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Figure 11: Query Decomposer output example

Figure 12: DIS example

As a way of validating mDictionary canonical model, Figure 13 describes the infor-
mation displayed in DIS.

Query Builder builds the request from the query. Since the information is from two
datasets, results are obtained through two distinct data requests. Results of Query Builder
are:

i) http://dpe.com/resource/?people&$select=name,age,id&$order=age

ii) http://127.0.0.1/?dataset=places&fields=street,number,city,id_people&q=city=
“New York”.

After constructing the requests, they are forwarded to Mapping. This component
identifies the dataset from the URL (Uniform Resource Locator) parameter. When a URL
is input with the domain http://127.0.0.1 (e.g., http://127.0.0.1/ ?dataset=places...),Map-
ping recognizes a DBaaS. When Mapping identifies a DaaS, the request is sent directly.
When it identifies a DBaaS, the URL is fragmented into parameters and transformed into
a query, which is sent to different DBaaS models. The function parameters are described
in the mMapping canonical model presented in Figure 14.

Before sending the query to DBaaS, Mapping collects information about access
credentials which were forwarded by Query Builder. These credentials are used to
authenticate access to the database.
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Figure 13: Example of mDictionary canonical model for Figure 12

Figure 14: mMapping model describing the parameters in Mapping
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The last step of Mapping is to transform the decomposed parameters from the URL
into a query. The following example is about a NoSQL DBaaS based on MongoDB,
using the driver credentialmongodb. The result is:

db.places.find(
{

"city", "New York"
},
{

"street": 1,
"city": 1,
"number": 1,
"people_id": 1

}
)

in which the emphasized words are equivalent to parameters in standard function of
Mapping as described in Figure 14.

At this stage, queries are sent to DaaS and DBaaS. The two mData results are
depicted in Figure 15. This representation omits the heterogeneities of data models that
our approach eliminates.

Figure 15: Example of two mData: people and place

Since SaaS sent a query with the join clause, Join component is trigger. This com-
ponent then checks which join clause to perform. Results are described by mJoin in
Figure 16.

Finally, Filtering and Formatter components remove the unusual data and format
the result as requested by SaaS. Formats currently available by MIDAS are JSON, CSV,
and XML.

The next section describes a set of experiments to evaluate our approach.
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Figure 16: mJoin result from mData (Figure 15)

5 Evaluation

We performed three experiments to evaluate our method. These experiments aim to
validate the (i) overhead caused by DJ method and (ii) performance of data join. The
first experiment compares queries with and without a join clause. Results measure the
response time between SaaS and data services. In the second experiment, we perform
a query with only one join clause to integrate two different data services. The third
experiment compares queries with more than one join clause to integrate three different
data services.

The first experiment aims to analyze the overhead of MIDAS with DJ when accessing
DaaS/DBaaS. In this experiment, we performed a query directly to the data services and
then we compared these results with the query performs through MIDAS with D method.
The same query was sent: (i) 100 times directly to DaaS/DBaaS, and (ii) 100 times to
DaaS or DBaaS through MIDAS with our DJ method. Queries returned 100, 1,000, and
10,000 records.

The second experiment evaluates the overheadwith a join clause between two datasets.
For this, we performed 100 queries on (i) two DaaS, (ii) two DBaaS, and (iii) one DaaS
and one DBaaS. Returned data was not limited.

In the third experiment, we performed the join clauses on three datasets: (i) one DaaS,
one Relational DBaaS, and one NoSQL DBaaS; (ii) one DaaS, one NoSQL DBaaS, and
one NewSQL DBaaS; (iii) one DaaS, one Relational DBaaS, and one NewSQL DBaaS;
and (iv) one Relational DBaaS, one NewSQL DBaaS, and one NoSQL DBaaS.

Although MIDAS recognizes NoSQL query languages from different formats due to
the Query Decompose module’s generalization, we experimented with document-based
NoSQL. From such type of NoSQLs, we chose the most employed document-based
NoSQL7, which is MongoDB.

7 According to https://db-engines.com/en/ranking, last accessed: February 23, 2021
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We performed all tasks with native functions. The execution time measure was
restricted to the overload of our algorithm. No external tools were used to avoid any
interference in our evaluation process.

5.1 Our Case Study

We developed MIDAS with DJ method using open source technologies in Heroku Cloud
Platform8. The CloudApplication Platform of Heroku consists of a complete development
environment.

Our SaaS instance was developed through a web application that queries MIDAS
with DJ method. Our cloud instance has one CPU core, 512MB of RAM, and lim-
ited storage. This application is hosted in the Heroku Cloud and it can be accessed by
https://midastests.herokuapp.com/. This SaaS performs queries with and without join
clause applied to different DaaS and DBaaS models.

5.2 Experiments and Results

Datasets used in the experiments are provided by three different DaaS providers (NYC
Open Data9, DATA.NY.GOV10, and OpenDataSoft11):

– D1: Transportation Sites, with 13,7 thousand instances and 18 attributes;

– D2: Health and Hospitals Corporation (HHC) Facilities, with 78 instances e 6
attributes; and

– D3: NYC Wi-Fi Hotspot Locations, with 3,179 instances and 29 attributes.

We choose these datasets because they have an intersection attribute that contains
related information: zip code attribute.

With respect to DBaaS, the same datasets D1, D2, and D3 were persisted in three
different DBaaS providers:

– DB1: mLab
12 based on MongoDB (NoSQL);

– DB2: ClearDB
13 based on MySQL (relational); and

– DB3: Hetzner
14 based on MemSQL (NewSQL).

5.2.1 Experiment 1

Our first experiment analyzed the overhead through a single DaaS and DBaaS. We
performed a query 100 times, successively, varying the number of results (100, 1,000,
and 10,000) for each source. The datasets were DB1, DB2 and DB3. The average response
time (in seconds) is shown in Figure 17.

8 https://www.heroku.com/
9 https://goo.gl/mVLdDh

10 https://goo.gl/Au5GtQ
11 https://goo.gl/gC4wnz
12 https://www.mlab.com/
13 http://w2.cleardb.net
14 https://hetzner.com/
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Figure 17: Average response time (X-axis) for each DaaS or DBaaS (Y-axis)

Figure 17 depicts how the number of returned data impacts the response time. In
some cases, the time difference for 100 and 1,000 instances is minimal. On the other
hand, when increasing from 1,000 to 10,000 instances, the response time increased more
than double. When analyzing the MIDAS with DJ method overhead, we obtained the
following results: (i) DB2 was 23.34% faster without MIDAS; (ii) DB1 was 23.93%; and
(iii) DB3 was 102.79%. In the D1 test no overhead occurred, since the middleware was
0.29% faster. This occurs because communication between our cloud and DaaS provider
has high latency and this reflects directly on the response time.

We compared ZQL [Xu et al. 2016] with our results because this is the only with sim-
ilar experiments. Although their computational power is more significant than provided
by Heroku in our experiments, our performance is better. For instance, their response
time for 10,000 instances of RDBMS in MySQL is about 2 seconds, while our method is
about 0.72 seconds. We do not consider the number of dataset attributes since ZQL does
not provide this information. Additionally, our DJ method addresses with data formatting,
in contrast to ZQL.

5.2.2 Experiment 2

This experiment evaluates overhead when integrating two datasets. Response time was
estimated by performing data join between two different DaaS and DBaaS models in
distinct clouds. Data sources was integrated based on zip code attribute, in which it is
represented in D1 and D2 by the attribute zip and zip_code, respectively. For this, we
perform:

– 100 queries with join clause for two DaaS providers (D1 e D2);

– 100 queries with join clause for two DBaaS providers (DB1 e DB2); and
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– 100 queries with join clause for one DaaS provider (D1) and one DBaaS provider
(DB1).

Figure 18 shows the response time of each query. Each query on average was:

– 36.87± 6.66s for queries on two DaaS;

– 27.22± 13.97s for queries on two DBaaS; and

– 32.84± 18.13s for queries on one DaaS and one DBaaS.

Figure 18: Response time (Y-axis) for each query (X-axis) on cloud

Some of our results have a high standard deviation. We observed that this was due
to DBaaS access. Conversely, we realize that the shortest average response time is
associated with DBaaS. Analyzing step-by-step, we noticed that the communication
between MIDAS with DJ and data service is responsible for this abnormal performance.
We also observed that the time for DBaaS to return to a request is higher than the
response for the previous requests. This unexpected response time may have occurred
due to service overload or network latency between MIDAS with DJ and the service. We
performed the queries locally with the same data sets to avoid external interference, such
as network latency. The results are shown in Figure 19.

The experiment shows that in local queries, the standard deviation and the average
response time are smaller compared to the cloud queries. These results demonstrates
the impact of external communication among services caused by network latency or
overhead of data services.

5.2.3 Experiment 3

Our third experiment evaluates integration and overhead among more than two data
services. We presented the response time to integrate data on three different DaaS and
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Figure 19: Response time (Y-axis) for each query (X-axis) locally

DBaaS from heterogeneous clouds. Queries contain both inner and left join clauses.
Data was integrated through the zip code attribute, represented in D1, D2 and D3 by the
attribute zip, zip_code, and postal_code, respectively. For this, we performed:

– 100 queries with join clause for D1, DB2, and DB1;

– 100 queries with join clause for D1, DB1, and DB3;

– 100 queries with join clause for D1, DB2, and DB3; and

– 100 queries with join clause for DB1, DB2, and DB3.

Figure 20 depicts the response time of each query. Each mean is described as follows:

– 44.57± 8.19s for D1, DB2, and DB1;

– 52.02± 8.43s for D1, DB1, and DB3;

– 42.34± 8.99s for D1, DB2, and DB3; and

– 35.19± 6.27s for DB1, DB2, and DB3.

Results show that integrating DaaS has a longer response time than integrating DBaaS.
This fact is expected because DBaaS models are based on DBMS models, while DaaS is
a service without any prior recommendations nor rigorous study. The number of datasets
and time are directly proportional. However, queries with DB1, DB2, and DB3 have time
very similar to experiment 2.
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Figure 20: Response time (Y-axis) for each query (X-axis)

5.3 Methodological concerns

Possible concerns regarding our methodology:

– only left, right, inner and full outer join are recognized in our DJ method;

– lookup clause (MongoDB queries) recognized in our DJ method allows only basic
functions;

– the computational effort of the MIDAS with DJ and increased data are directly
proportional;

– all DaaS and DBaaS must be included in DIS;

– in case of the failure of DaaS or DBaaS during the query, MIDAS with DJ method
may return an error or not return data;

– a join clause is performed only when there is an equality condition between two
attributes; and

– SaaS application needs a brief understanding of data attributes before perform a
query.

The next section positions our paper with respect to our related works.

6 Related Work

Although there is much literature in the area of data join, specific work on cloud environ-
ments has not been thoroughly provided, as far as we know. Most of the recent related
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works deal with problems in other areas (e.g., medical area). Despite the complexity
involving integration, some authors have proposed solutions similar to our approach.

[Jayaratne et al. 2019] propose an open data integration platform for patient, clinical,
medical, and historical data persisted into multiple health information systems. Their
focus is on patient-centered care to provide heterogeneous medical information. However,
they need to synchronize their data, and they only use a relational database to persist
them, which differs from our approach.

[Park and Moon 2015] propose a solution for heterogeneous DBaaS that shares
medical data from different institutions. Unlike our approach, their data follows the Health
Level Seven (HL7) standard, minimizing efforts related to heterogeneity. Moreover, the
authors do not present or discuss data join.

[Barros et al. 2016] present an integration environment to solve emergency events,
called RESCUE. The objective is to integrate data from heterogeneous sources through
ontologies. Differently from our approach, RESCUE stores data from multiple sources
into a single repository to integrate them. We use data pulled directly from the sources,
without storing them in a temporary repository. This minimizes the risk of inconsistency.

Both studies in [Sellami et al. 2014] and [Xu et al. 2016] provide an API and a
middleware, respectively, to manage different relational and NoSQL databases. These
authors do not perform data join as we do in this study. [Ma et al. 2017] proposed
to extract data from heterogeneous sources, integrate them, and transform them into
graph instance data. Even though they integrate data automatically into a graph database,
different from our approach, we let the data in their sources, minimizing inconsistencies
and synchronization tasks.

Solutions for data interoperability using multiple systems are somewhat Data Lake
[Fang 2015]. This concept consists of a single repository that stores data sets in different
formats. Data Lake-based systems require both high storage space and require substantial
efforts to integrate and refine data. [Kadadi et al. 2014] present other challenges to
providing data integration and interoperability. However, authors do not mention Data
Lake concern. Contrarily to Data Lake, our approach accesses data directly from the
source.

Considering that the whole data integration process can be very complex and consists
of three main tasks, Schema Matching, Entity Resolution, and Data Fusion [Dong and
Srivastava 2015], results are combined to produce an integrated view of distributed data.
Each of these tasks has been the subject of various studies in last years and several
solutions have been proposed. However, given the recent advances in how data is pub-
lished and the broadly use of cloud environments, new solutions for data integration and
interoperability systems are still needed.

The most similar work is summarized by [Ribeiro et al. 2019]. The authors achieve
interoperability between SaaS and DaaS/DBaaS through middleware MIDAS 1.9. Unlike
our work, MIDAS 1.9 is limited to two DaaS and/or DBaaS. We improve their work by
expanding the type of join clause and integrating more than two datasets. Due to our DJ
method, from now on MIDAS (i) recognizes structured and semi-structured data, (ii)
supports DaaS and DBaaS, (iii) integrates data with more than two datasets, (iv) supports
different join clause, e.g., right, left, inner and full, (v) is independent of domain; and,
(vi) avoids inconsistent data.

Table 4 presents the main differences between the related work and our approach.
We employed eight comparison criteria:

(a) Recognizes structured data: ability to collect and manipulate structured data, e.g.,
tables;
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(b) Recognizes semi-structured data: ability to collect and manipulate semi-structured
data, e.g., JSON and CSV;

(c) DaaS support: ability to access and collect data from DaaS;

(d) DBaaS support: ability to access and collect data from DBaaS;

(e) Data join: ability to join data of different formats;

(f) Joins more than two datasets: ability to join data from more than two datasets in a
single query;

(g) No specific domain: solution does not mention a specific domain, e.g., health field;
and

(h) Types of joins: ability to perform different types of joins, e.g. left, full join, among
others.

Related Work / Criteria (a) (b) (c) (d) (e) (f) (g) (h)

[Jayaratne et al. 2019] X X X

[Park and Moon 2015] X X

[Barros et al. 2016] X X X **

[Sellami et al. 2014] X X X X

[Xu et al. 2016] X X X X

[Fang 2015] X X X X* X* X

[Ribeiro et al. 2019] X X X X X

Our DJ method X X X X X X X X

* Requires manual effort to develop data integration

** Not specified

Table 4: Major differences between related work and DJ method

Contrary to our related work, the DJ method performs different types of joins to
integrate cloud data services, regardless of the data model and the number of data sources.
Our solution recognizes structured (e.g., table) and semi-structured (e.g., JSON, CSV,
and XML) data, DaaS, and DBaaS. Additionally, the DJ method supports relational,
NewSQL, and document-based NoSQL models. Our method is domain independent.

7 Conclusions and Future Work

Our method integrates data from heterogeneous sources through a merge between DaaS
andDBaaSmodels. The DJmethod accesses, obtains, and integrates data directly from the
source. By collecting data at runtime, our method avoids the use of extra computational
resources for storage and prevents obsolete/inconsistent data collection.

To complete our research, we describe our approach to canonical models. Each
canonical model describes a (part of) MIDAS component. We considered four join
clauses: left, right, inner, and full join. As proof of concept, we integrated our DJ method
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into MIDASmiddleware. Our evaluation consisted of three experiments with and without
data join.

The results show that our DJ method into MIDAS middleware requires minimal
knowledge to collect and integrate data between different DaaS and DBaaS. Therefore,
our approach for data join advances the state-of-the-art with regards to interoperability.

In the future, we intend to continue adding and improving features. In particular,
we aim to (i) optimize our algorithm and (ii) incorporate semantics in the mapping and
integrating components.
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