
 Journal of Universal Computer Science, vol. 28, no. 7 (2022), 671-707
submitted: 4/5/2021, accepted: 20/4/2022, appeared: 28/7/2022 CC BY-ND 4.0

Pattern Language as Support to Software Measurement
Planning for Statistical Process Control

Daisy Ferreira Brito
(Ontology and Conceptual Modeling Research Group (NEMO)

Computer Science Department, Federal University of Espírito Santo, Vitória – ES, Brazil
https://orcid.org/0000-0002-1089-4883, dfbrito@inf.ufes.br)

Monalessa P. Barcellos

(Ontology and Conceptual Modeling Research Group (NEMO)
Computer Science Department, Federal University of Espírito Santo, Vitória – ES, Brazil

https://orcid.org/0000-0002-6225-9478, monalessa@inf.ufes.br)

Gleison Santos
(Graduate Program on Information Systems

Federal University of the State of Rio de Janeiro, Rio de Janeiro – RJ, Brazil
https://orcid.org/0000-0003-0279-0440, gleison.santos@uniriotec.br)

Abstract: The growing interest of organizations in improving their software processes has led
them to aim at achieving high maturity, where statistical process control (SPC) is required. One
of the challenges involved in performing SPC is selecting measures suitable for it. Measures used
in SPC can be found in the literature and can be reused by organizations, but the information is
dispersed, not favoring reuse. From measures suggested in the literature or used in practical
experiences, it is possible to identify patterns that can be used to support organizations in
measurement planning. Patterns can be organized as pattern languages, which favor reuse and
contribute towards increasing productivity. In this work, from the results of a systematic mapping
and a survey, we identified measurement planning patterns in the Goal-Question-Metric format
and organized them in a Measurement Planning Pattern Language (MePPLa). MePPLa was
created by following a Systematic Approach for creating Measurement Planning Pattern
Languages (SAMPPLa), also defined in this work. This paper presents SAMPPLa, MePPLa and
the main results of a study carried out to evaluate MePPLa. The results showed that using
MePPLa is viable and useful to aid in software measurement planning. Mainly, MePPLa
contributes to increasing productivity when creating a measurement plan and the quality of the
resulting measurement plan.

Keywords: Software Measurement, Statistical Process Control, Measure, Pattern Language,
Measurement Planning
Categories: D.2.8
DOI: 10.3897/jucs.68237

1 Introduction

The need to develop more robust and complex software to meet organizations' and
people’s needs has contributed to increasing the interest of software organizations in

672

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

software process improvement (SPI). There are several standards and maturity models
that support SPI implementation. Some of them, such as the Capability Maturity Model
Integration for Development (CMMI-DEV) [CMMI Institute 2018] and the Reference
Model for Brazilian Software Process Improvement (MR-MPS-SW) [Santos et al.
2015], propose an SPI implementation in levels. At the highest levels (e.g., CMMI-
DEV levels 4 and 5 and MR-MPS-SW levels B and A), a more mature way of
measurement is required and involves the use of statistical process control (SPC).

SPC employs statistical methods to monitor, control, and increase the knowledge
of a process, enabling improving its behavior [López et al. 2018]. One of the difficulties
software organizations face in implementing SPC is to define measures suitable for it
[Barcellos et al., 2013]. In the literature, several works present measures that can be
used in SPC initiatives, and they can be reused by organizations intending to carry out
SPC. However, selecting which measures are helpful in a specific context is not trivial
because the information is dispersed and non-structured, making access difficult, effort-
demanding, and inefficient sometimes. Software measurement programs often fail due
to bad decisions on what should be measured [Tahir et al. 2018a].

From a set of measures used in SPC initiatives, it is possible to identify some
patterns of measures used to monitor certain measurement goals and to analyze the
behavior of specific processes. A pattern encapsulates knowledge and can be
understood as a successful solution to a problem [Greenfield et al. 2004]. In this work,
we refer to measurement planning pattern as the encapsulated knowledge representing
a measure related to a process and that can be used to support monitoring a certain goal.
Hence, in this work, a measurement planning pattern presents a solution to the problem
of selecting suitable measures to be included in a measurement plan according to the
goals to be achieved/monitored.

Patterns can be organized into pattern languages (PLs), which represent patterns
and their relationships and also define a process that guides pattern selection and use.
In the 70s, Christopher Alexander [Alexander et al. 1977] presented a PL for towns,
buildings, and construction. Inspired by Alexander’s work, software practitioners and
researchers have organized solutions related to software as patterns since the 1990s.
The PLs structure primarily aims at making knowledge easily applicable [Jörg and
Frederik 2007]. Therefore, the use of PLs favors reuse and, consequently, contributes
towards improving productivity. In addition, since a PL provides a mechanism for
selecting patterns (e.g., a flow that guides the user in pattern selection), even users
without much knowledge of the problem domain can be directed towards the solution
[Falbo et al. 2013].

It is important to point out that although PLs are often associated with programming
and design activities, they have been adopted to support other activities in Software
Engineering. Moreover, a more flexible meaning has been assigned to the term pattern,
making it broader than the original Christopher Alexander's architectural patterns.
Quirino et al. (2018) conducted a study that found 64 PLs supporting different Software
Engineering activities and including various patterns, with different representations,
abstraction levels, and purposes, such as design patterns, process patterns, architectural
patterns, analysis patterns, ontology patterns, instructional patterns, interaction
patterns, among others.

Considering the benefits provided by PLs, we argue that they can be useful in the
software measurement planning context. For example, they can assist organizations in

 673

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

elaborating measurement plans through the reuse of measurement planning patterns
related to processes and containing goals, information needs, and measures. In other
words, organizations planning their measurement programs can reuse measures already
used in the past, considering their goals and software processes to be submitted to SPC.
For instance, an organization with the goal of improving test coverage and that wants
to submit the Testing process to SPC aiming at high maturity could reuse the solution
adopted by other organizations that submitted the Testing process to SPC to achieve
the same goal (e.g., a measurement planning pattern containing the measure test
coverage rate).

Therefore, inspired by the PL notion, we developed a Measurement Planning
Pattern Language (MePPLa) that helps organizations elaborate measurement plans
suitable for SPC. In MePPLa, each pattern is a solution comprising a measurement goal,
a process to be submitted to SPC, and measures to analyze the process behavior and
monitor the referred goal. Thus, each pattern is a solution to analyze the behavior of a
specific process considering a particular goal. The patterns were identified based on the
results of a survey that investigated measures used in SPC in practice and a systematic
mapping study that investigated measures used in SPC initiatives reported in the
literature [Brito et al. 2018]. These studies provided a set of measures (related to
software processes and goals) that have been used by organizations implementing SPC.
By analyzing the measures, we identified some that have been used recurrently. Thus,
we defined measurement planning patterns based on them and organized the patterns
in a PL.

MePPLa is the main contribution of this paper. Currently, it comprises 28 patterns,
of which 12 are related to the Project Management process, six are related to the Coding
process, and ten are related to the Testing process. It was created by following a
Systematic Approach for creating Measurement Planning Pattern Languages
(SAMPPLa), also defined in this work. MePPLa can help organizations create
measurement plans aiming at SPC, and it can be continuously evolved. SAMPPLa, in
turn, can be used to evolve MePPLa and define other measurement planning PLs. This
paper presents MePPLa and SAMPPLa. By describing SAMPPLa, we show how we
developed MePPLa and how it can be evolved to address other processes and provide
new patterns to be more comprehensive and satisfy the needs of different organizations.
Considering that each organization has particularities and different realities, MePPLa
can constantly be evolving. SAMPPLa will be helpful in this matter.

In a previous work [Brito et al. 2017] we introduced MePPLa by showing its
patterns related to the Testing process and presenting the results of MePPLa preliminary
evaluation. In this paper, we extend the initial contribution by (i) providing more
background on software measurement and SPC; (ii) adding a new section about the
studies conducted to investigate measures used in SPC; (iii) introducing SAMPPLa, the
approach we defined and followed to create MePPLa; (iv) extending MePPLa
presentation by discussing what was done in each activity of SAMPPLa to develop
MePPLa and presenting fragments of MePPLa related to the Project Management and
Coding processes; (v) presenting results of a new study performed to evaluate MePPLa;
(vi) making available a new version of MePPLa specification and MePPLa Tool, the
computational tool that supports MePPLa use; and (vii) improving the discussion of
related work.

This paper is organized as follows: Section 2 provides the background for the paper

674

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

talking about software measurement, SPC, and pattern languages; Section 3 concerns
the adopted research method; Section 4 regards the studies carried out to investigate
measures used in SPC, whose results were used as a basis to develop MePPLa; Section
5 presents SAMPPLa; Section 6 presents MePPLa and MePPLa Tool, a computational
tool developed to support the use of MePPLa; Section 7 addresses the experimental
study carried out to evaluate MePPLa; Section 8 discusses related work; and Section 9
presents our final considerations.

2 Background

2.1 Software Measurement and Statistical Process Control

Software measurement is essential to characterize, evaluate, predict and improve
software products, processes, and resources [Tahir et al. 2018b]. It is the continuous
process of defining, collecting, and analyzing data about software processes and
products to understand and control them and supply meaningful information for their
improvement [Solingen and Berghout 1999]. Research on software measurement
continues to be a hot topic today. Although the benefits of using software measurement
are well known, problems in their practice are still ongoing [Tekin et al. 2020].

To perform software measurement, an organization must initially plan it. Based on
its goals, the organization must define which entities (processes, products, and so on)
are to be considered for software measurement and which of their properties (e. g., size,
cost, time, etc.) are to be measured. The organization must also define which measures
are to be used to quantify those properties. For each measure, an operational definition
should be specified, indicating, among others, how the measure must be collected and
analyzed. Once planned, measurement can start. Measurement execution involves
collecting data for the defined measures, storing and analyzing them. Data analysis
provides information for decision-making, supporting the identification of appropriate
actions. Finally, the measurement process and its products should be evaluated to
identify potential improvements [McGarry et al. 2002 and ISO/IEC/IEEE 2017].

Depending on the organization's maturity level (or on the maturity level of the
organization’s specific processes), software measurement is performed in different
ways. There are some standards and models that help evaluate the organization’s
maturity level. For example, CMMI [CMMI Institute 2018] is a model that describes
guidelines for the definition and implementation of software processes aiming at
software process improvement. In CMMI, practices from several areas, such as Project
Management, Product Engineering, and Process Management, are present.
Organizations that implement processes adherent to CMMI practices can show the
market that they can deliver quality products and services within a predictable
timeframe and cost.

CMMI establishes six maturity levels. At level 0 (Incomplete), the work is done
randomly, i. e., at this level, the work may or may not get completed. At level 1 (Initial),
the work done is unpredictable and reactive. At this level, although the work gets
completed, it is often delayed and over budget. At level 2 (Managed), works are
managed on the project level. Projects are planned, performed, measured, and
controlled. Level 3 (Defined) is considered more proactive and less reactive than the
previous levels. Organization-wide standard processes are defined, providing guidance

 675

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

across projects, programs, and portfolios at this level. Finally, maturity levels 4
(Quantitatively Managed) and 5 (Optimizing) are considered high maturity levels. At
level 4, the organization is data-driven with quantitative performance improvement
objectives that are predictable and align to meet the needs of internal and external
stakeholders. At level 5, the organization is focused on continuous improvement and is
built to pivot and respond to opportunity and change. At this level, the organization’s
stability provides a platform for agility and innovation [CMMI Institute 2018].

At initial maturity levels (such as CMMI levels 2 and 3), measurement consists
mainly of collecting data from projects and comparing them with their corresponding
planned values. At high maturity levels (such as CMMI levels 4 and 5), it is also
necessary to carry out SPC to understand the processes’ behavior, determine their
performance in previous executions, and predict their performance in current and future
projects, verifying if they are capable of achieving the established goals [Barcellos et
al. 2013].

SPC uses a set of statistical techniques to determine if a process is under control
from a statistical point of view. A process is under control if its behavior is stable, i.e.,
if its variations are within the expected limits, which are calculated based on historical
data. The behavior of a process is described by data collected for measures that
characterize the process [Florac and Carleton 1999].

A process under control has repeatable behavior. Consequently, it is possible to
predict its performance in future executions and thus prepare achievable plans and
continuously improve the process. On the other hand, a process that varies beyond the
expected limits is called an unstable process. The causes of these variations (the so-
called special causes) must be investigated and addressed by improvement actions
aiming at stabilizing the process. Once the processes are stable, their levels of variation
can be established and sustained, making it possible to predict their results. Thus, it is
also possible to identify the processes capable of achieving the established goals and
the processes failing to achieve them. In this case, actions that change the process to
make it capable must be carried out. Stabilizing critical processes is a practice of high
maturity organizations or organizations aiming to achieve the highest maturity levels
[Florac et al. 2000 and Caivano 2005].

In the literature, there are several works addressing software measurement. One of
the best known is GQM (Goal-Question-Metric) [Basili et al. 1994]. GQM represents
a systematic approach for tailoring and integrating goals to software processes,
products, and quality perspectives of interest, based upon the needs of projects and the
organization. To put it simply, GQM states that, from goals, it is possible to identify
information needs that can be met by measures. By following this idea, organizations
can derive information needs from their goals and define measures to meet them.

Some ISO standards deal with the software measurement process or software
measures. For example, ISO/IEC/IEEE 15939 (2017) is devoted to the measurement
process and defines the activities and tasks necessary to implement that process. It also
describes a measurement information model that links information needs to measurable
entities and attributes required to meet them. Other ISO standards specify quality
characteristics that can be used to define software measures. For example, ISO/IEC
9126 (2001) specifies characteristics related to software internal and external quality
and quality in use. In turn, ISO/IEC 25020 (2007) provides information about
measuring characteristics and sub-characteristics of the quality model defined in

676

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

ISO/IEC 25010 (2011).
Another relevant work related to measurement is the Practical Software and

Systems Measurement (PSM) [McGarry et al. 2002]. PSM was created to help develop,
operate, and continuously improve measurement programs. Its process provides
experience-based guidance on defining and implementing a measurement process for a
software project. There is also the PSM CID [PSM/NDIA/INCOSE 2021], which
provides recommendations focusing on the measurement of continuous iterative
development (CID), including common information needs and measures that are
effective for evaluating CID approaches. The information needs address team, product,
and enterprise perspectives to provide insight and drive decision-making.

Some works in the literature focus on SPC for software processes. For instance,
Florac et al. (1999) discuss how characteristics of software products and processes can
be measured and analyzed using SPC techniques so that the behavior of the processes
that produce the software products can be managed, predicted, controlled, and
improved to achieve business and technical goals. Another well-known approach for
process improvement based on process performance measurement and SPC is Six
Sigma. It focuses on improving customer satisfaction through defect prevention and
elimination, consequently improving organizational processes. It is composed of a set
of tools involving the measurement of process performance and frameworks for
improvement. Its best-known frameworks are DMAIC (Define, Measure, Analyze,
Improve, Control) and DFSS (Design for Six Sigma). DMAIC is used to improve
existing processes and products, and DFSS is used to design new products and
processes [Siviy et al. 2005].

Tarhan and Demirörs (2006) present an approach to assess the suitability of
software processes and measures for starting SPC implementation using control charts.
The approach includes guidance to identify rational samples of a process as well as to
select process measures. Razmochaeva et al. (2019) discuss the main aspects of
statistical management of quality control processes. A comparative analysis of the
existing software for statistical management systems is carried out. The advantages and
disadvantages are noted, and the applicability of each of the systems in the problem of
process automation is formed. At last, Maisikeli (2020) utilized a statistical process
control approach to monitor, track and evaluate whether a changed process is stable or
not and discover situations where the process is in or out of kilter.

2.2 From Patterns to Pattern Languages

In the literature, there are several pattern definitions. In a very generic way, Coplein
(1998) defines a pattern as “the thing and the instructions for making the thing”.
According to Greenfield et al. (2004), patterns are vehicles for encapsulating
knowledge. They make it possible to capture what must be done to solve a given
problem. Ferdinandi (2002), in turn, defines a pattern as any reusable template based
on experience that can be used to guide the creation of a solution to a problem or need
in a specific context. For Kamthan (2007), a pattern is a reusable entity representing
knowledge and experience aggregated by an expert in solving a recurring problem in a
domain. Tešanovic (2005) refers to patterns as effective means of communication that
help bring order into the chaos by representing best practices, proven solutions, and
lessons learned that aid in software engineering activities. Although different, in
general, the definitions converge to define a pattern as a solution to a recurrent problem.

 677

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Hence, before using a pattern, it is necessary to recognize an opportunity to apply
it.

In this work, we are aligned to a broader view of what a pattern is. We consider a
pattern the way that something is often done or repeated to solve a given problem or
need. For example, measures frequently and successfully used to monitor a particular
goal can be viewed as a pattern to solve the problem of monitoring that goal. Notice
that the main principle behind a pattern remains: reuse a successful solution and not
reinvent the wheel.

Many patterns found in the literature are related to others. Still, most fail to explain
how patterns can be combined to form solutions to larger problems than those treated
by each pattern individually [Buschmann et al. 2007]. Pattern Languages can be used
to solve this issue. In Software Engineering, a pattern language (PL) is a network of
interrelated patterns that defines a process for systematically solving problems related
to software engineering [Greenfield et al. 2004]. A PL must indicate problems that may
arise in the domain of interest and inform possible solutions to them by suggesting one
or more patterns to solve each problem [Falbo et al. 2013].

Visual notations can be used to represent PLs graphically. The purpose of adopting
graphical notations is to overview the patterns and their relationships, contributing
towards a holistic understanding of the PL and assisting in pattern selection [Quirino et
al. 2017]. Quirino et al. (2017) proposed a cognitively rich visual notation named OPL-
ML (Ontology Pattern Language Modeling Language) to represent PLs in the Ontology
Engineering domain. Although it was proposed to represent ontology PLs, OPL-ML is
based on Software Engineering works. The authors argue that it can also be applied to
represent PLs in other domains.

There are several works in the literature proposing PLs in the Software Engineering
domain. However, only a few have been proposed to support software measurement,
such as [Nikelshpur 2011] and [Braga et al. 2012]. Nikelshpur (2011) presents some
best practices of software estimation in the form of nine patterns. Although the author
claims that the patterns compose a pattern language, the sense of connection among the
patterns is not clear. Braga et al. (2012), in turn, proposes a PL for estimates in agile
projects. The PL consists of eight process patterns that can help agile teams to perform
estimates for agile software projects.

3 Research Method

We adopted a research method that followed the Design Science Research (DSR)
paradigm. DSR concerns extending human and organizational capabilities by creating
new artifacts in context [Hevner et al. 2004 and Hevner 2007]. The artifacts are
designed to interact and improve something in that context [Wieringa, 2014]. DSR is
an interactive process that considers three cycles of related activities: Relevance,
Design, and Rigor [Hevner 2007].

The Relevance Cycle starts the research and defines the problem to be addressed,
the research requirements, and the criteria to evaluate the results [Hevner 2007]. The
problem we addressed is the difficulty software organizations face when planning
measurement for SPC, especially when selecting the measures to be used. This problem
is reported in the literature (e.g., [Grossi et al. 2014, Kitchenham et al. 2007, Tarhan
and Demirors 2006, Tarhan and Demirors 2008, Tarhan and Demirors 2012, Schots et

678

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

al. 2014]) and has also been perceived by the authors in practical settings (particularly
by one of the authors, who has worked implementing and evaluating maturity models
in software organizations for more than 15 years. Aiming to understand the state-of-
the-art on measures used in SPC initiatives, we investigated the literature through a
systematic mapping study [Brito et al. 2018]. We also surveyed Brazilian practitioners
to obtain information from the practice, asking them to inform the measures they have
employed in SPC [Brito et al. 2018]. From the studies’ results, we perceived: (i)
prevalence of defect-related measures; (ii) lack of concern with relations between
measures; (iii) lack of approaches to support measure selection; and (iv) lack of
operational definitions for the measures.

Considering the problem, the gaps identified from the studies, and the benefits of
using PLs reported in the literature, we noticed that using a measurement planning PL
could help organizations develop measurement plans for SPC. Thus, we decided to
propose a PL with this purpose. We used the results from the studies mentioned above
as a source for patterns identification. We established as main requirements that the PL
should (i) provide patterns to aid in elaborating measurement plans for SPC, (ii) be able
to guide users on selecting patterns to be included in a measurement plan, (iii) represent
the relationships between measures, and (iv) be graphically represented. As criteria for
results evaluation, the viability of using the PL and its usefulness should be considered.

The Design Cycle refers to the development and evaluation of artifacts or theories
to solve the identified problem [Hevner 2007]. To reach our objective, we developed
MePPLa, a PL to support measurement planning aiming at SPC. The patterns of
MePPLa were identified from the systematic mapping and survey [Brito et al. 2018]
results. To support the use of MePPLa, we developed a tool. To evaluate MePPLa, we
carried out two experimental studies where participants used MePPLa and provided
their perceptions about it. To create MePPLa, we defined SAMPPLa, an approach to
guide the creation and evolution of PLs to measurement planning aiming at SPC.

Finally, the Rigor Cycle refers to knowledge use and generation. Rigor is achieved
through the adequate application of existing foundations and methodologies. A
knowledge base is used to support the research, and the knowledge generated by the
research contributes to the growth of the knowledge base [Hevner 2007]. The main
theoretical foundations are secondary studies (systematic mappings in particular),
software measurement, SPC, PLs, experimental study, and survey. The main
contributions to the knowledge base are: (i) MePPLa, which can support organizations
in measurement planning for SPC and can be evolved to incorporate new patterns and
processes; (ii) SAMPPLa, which can be used to evolve MePPLa or create new
measurement planning PLs; (iii) the systematic mapping [Brito et al. 2018], which
consolidates information about measures used in SPC initiatives, providing a panorama
of the research topic and indicating possible future research; (iv) the survey conducted
with practitioners [Brito et al. 2018], providing information about measures that have
been used in SPC initiatives in Brazilian organizations; and (v) MePPLa Tool, the tool
developed to support the use of MePPLa.

Figure 1 summarizes the key information related to the DSR cycles in this research.

 679

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Figure 1: Overview of the DSR cycles in this work (based on [Hevner 2007])

As stated before, in this paper, we focus on presenting MePPLa and SAMPPLa.
For that, in the next section, we provide a general view of the studies carried out to
identify measures used by software organizations when implementing SPC. As we
explained before, we used the studies’ results to develop MePPLa.

4 Investigation of Measures applied to SPC

Considering that we were interested in identifying measures used successfully in SPC
implementation and represent them as patterns that can be reused by organizations
aiming to implement SPC, we investigated measures that have been used in SPC
initiatives for software processes. The investigation consisted of a systematic mapping
of the literature and a survey with Brazilian practitioners [Brito et al. 2018]. According
to Kitchenham and Charters (2007), a systematic mapping study is a type of literature
review designed to provide an overview of a research area or research topic and helps
identify gaps that can be addressed in future research. It is performed by following a
rigorous research protocol. We chose this approach to investigate the literature aiming
to reduce bias, increase coverage and ensure the repeatability of the study.

To investigate the literature, we applied the following search string to six digital
libraries (IEEE Xplore, ACM Digital Library, Springer Link, Engineering Village, Web
of Science, Science Direct, and Scopus): (“statistical process control” OR “SPC” OR
“quantitative management”) AND (“measurement” OR “measure” OR “metric” OR
“indicator”) AND (“software”).

The selection of the publications was performed in five steps. In the first step, we
obtained 558 publications after running the search string in the digital libraries. In the
second step, we removed duplications. In the third step, we analyzed the title, abstract,
and keywords of the resulting 318 publications considering the following inclusion (IC)
and exclusion (EC) criteria: (IC1) the publication addresses SPC in software processes

680

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

and measures used in SPC; (EC1) the publication does not have an abstract (EC2) or is
just an abstract; and (EC3) the publication is a secondary study, a tertiary study, a
summary, or an editorial. Then, we read the full text of resulting 84 publications. We
considered the following additional criteria: (IC2) the publication presents measures
for SPC in software processes or presents cases involving SPC in which the measures
used are cited; (EC4) the publication is a copy or an older version of an already selected
publication; (EC5) the publication is not written in English; (EC6) the publication’s full
text is not available. After this step, we reached 39 studies. In the last step, to increase
coverage, we performed snowballing, i.e., we analyzed the references of the selected
publications looking for the ones able to provide evidence for the study. In this step, we
added 11 publications, reaching a total of 50 publications.

After selecting the publications, we extracted and recorded data about the measures
cited in the publications, the processes to which they are related, and the goals
monitored by them. As a result, we identified 12 processes, 45 goals, and 82 measures.

After the mapping study, to complement the results, we applied a questionnaire to
professionals from Brazilian organizations, aiming to identify processes, goals, and
measures they have used in SPC. The participants were professionals with experience
in implementing or appraising SPC practices in Brazilian software organizations. Five
measures, five goals, and seven related processes were identified based on the
participants' answers.

After excluding the duplicated elements between the two studies, we have, as a
result, 84 measures, 15 processes, and 47 goals used in SPC. Table 1 presents some of
the found goals, while Table 2 presents a fragment of the resulting measures and related
processes and goals. The formulas presented in Table 2 were extracted from the
publications. Thus, they reflect the way the measure is calculated according to the
source publication. Measures preceded by * were used in initiatives involving
standards/maturity models. Measures preceded by ° were used in initiatives not
involving standards/maturity models. In Table 2, when a measure is related to a
process/goal, it means that at least one publication cited the measure related to the
process/goal. In Table 1, we kept the goals id established during the study. The full
results of the studies can be found in [Brito et al. 2018].

ID Goal ID Sub-goal

G01 Assess and monitor the
maintenance process - -

G03
Estimate and control

defects, effort, and schedule
of the testing process

- -

G04 Evaluate process quality
effectiveness

G04.3 Evaluate peer review effectiveness

G04.4 Manage the effectiveness of defect removal
activities

G05 Improve product quality

G05.1 Improve defect detection to reduce the number
of delivered defects

G05.2 Improve software process effectiveness

G05.4 Increase customer satisfaction (by managing
defects)

G05.8 Reduce requirements volatility

 681

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

G08 Monitor process efficiency G08.1 Evaluate coding efficiency

G09 Reduce operational costs

G09.1 Improve productivity
G09.2 Minimize rework
G09.3 Monitor project cost and schedule
G09.5 Improve estimation and planning

G10 Understand software
processes performance G10.3 Understand project management process

performance
G15 Win the market competition G05 Improve product quality

Table 1: Some goals (and sub-goals) found in the studies

Measures Processes Goals
*Cost performance index (budget cost for

performed work / actual cost for performed work) Project Management G09.3

*Duration estimation accuracy
(actual duration / estimated duration) Project Management G09.1; G09.5;

G10.3; G15
*Effort estimation accuracy

(actual effort / estimated effort) Project Management G09.1; G09.5;
G10.3; G15

*Productivity (effort/product size)

Maintenance,
Requirements

Analysis, Design,
Coding, Testing

G01; G03;
G09.1; G05.2;

G08; G10

*Delivered defect density (defects detected after
product release/product size) Testing G05; G05.1

*Defect removal effectiveness (by Requirements
Development, Design, Coding, and Testing)

(number of removed defects in requirements (or
design, coding, and testing) /number of detected

defects)

Coding, Design,
Requirements
Development,

Testing

G04.4

*Percentage of high severity defects identified in
testing (number of high severity defects identified
in testing/total number of detected defects *100)

Review, Testing G09.1; G05.4;
G09

*Rework percentage (rework effort/total effort
*100)

Requirements
Analysis, Design,

Coding, and Testing
G09.2; G10

*Requirements change rate (number of changed
requirements /total number of requirements)

Requirements
Management G05.8

*Review effectiveness (number of defects
detected in reviews/total number of defects) Review G04.3

Table 2: Some measures, processes, and goals found in the studies

5 SAMPPLa: Systematic Approach for Creating Measurement
Planning Pattern Languages

SAMPPLa consists of a process that guides the creation or evolution of PLs to assist in
measurement planning for SPC. It is composed of two activities, Develop Source for

682

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Extracting Patterns and Develop Pattern Language. We defined SAMPPLa as a
systematic process to be followed so that we could develop MePPLa. It can also be
used to evolve MePPLa and to create other pattern languages that aim to aid
measurement planning. Although SAMPPLa provides a systematic process to be
followed, it is worth pointing out that when performing some of SAMPPLa steps, a lot
of tacit knowledge and judgment may be necessary. Next, we provide an overview of
SAMPPLa activities. In Section 6, we discuss and exemplify the execution of each of
them, showing results produced when developing MePPLa.

5.1 Develop Source for Extracting Patterns
The first step in creating a PL is to obtain a source from which the patterns that will
compose the PL can be extracted. In SAMPPLa, a pattern comprises a process to be
submitted to SPC, a measurement goal related to the process, and measures to analyze
the process behavior and monitor the goal. This activity is thus responsible for obtaining
a set of processes, goals, and measures from which measurement planning patterns will
be extracted. Figure 2 details this activity, which is broken down into a further six. In
Figures 2 and 3, we adopt the UML activity diagram notation. Thus, the black circle
represents the start point. Yellow rounded rectangles represent activities. An icon in the
bottom right corner means that the activity is complex (i.e., it has sub-activities). White
rectangles refer to artifacts. Arrows connecting artifacts to activities indicate which
artifacts are used as input or produced as an output of each activity. Arrows connecting
activities represent workflows, denoting the order in which the activities must be
performed. Finally, a black circle inside a white circle limited by a black line represents
the endpoint.

Figure 2: Detailing of Develop Source for Extracting Patterns

The source development starts with the Define Pattern Language Purpose and
Application Context activity, which defines what the PL will be created for (e.g., to
support measurement planning towards SPC to meet CMMI level 4 and 5 requirements)

 683

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

and where it will be applied (e.g., CMMI level 3 organizations that wish to implement
SPC practices). This information delimits the scope of the pattern language, and the
next activities will be performed based on it.

Next, one must Select Processes that will be addressed in the PL. Thus, in this
activity, one can select any software process that can be submitted to SPC, such as
Requirements Development, Inspection, Testing, etc. Two basic guidelines are useful.
The first is based on the criticality of the process [SOFTEX 2021, CMMI Institute
2018]. That is, selected processes must be relevant to achieve organizations’ goals (e.g.,
Testing is a critical process because it directly affects the product quality). The second
concerns the process size and frequency of execution [Barcellos et al. 2013, Florac and
Carleton 1999]. Smaller processes, which are performed several times during a project
and whose data collection is more frequent, favor reaching a meaningful data set and
support decision-making along with their execution in the projects. It is important to
note that this decision is directly related to the PL purpose and application context. For
example, if the PL aims to aid in the statistical control of processes that deal with
defects, then defect-related processes such as Testing and Verification should be
selected.

Once the processes are selected, it is necessary to Identify a Set of Measurement
Goals and Measures related to the Processes, which consists of gathering goals and
measures related to the processes addressed in the PL. The goals and measures can be
obtained from measurement repositories, literature, practical experiences, etc.
containing goals and measures used in SPC. The operational definition of the measures
should also be captured if they are available. To establish the set of measurement goals
and measures resulting from this activity, one should: (i) extract the elements
(measurement goals and measures) as they are recorded in the input sources; (ii) look
for equivalences between the elements; (iii) represent equivalent elements in a unique
way; and (iv) represent all relationships between the identified elements.

Next, the set of goals and measures must be analyzed to Select Measurement Goals
for SPC and Select Measures for SPC. In these activities, the goals and measures
previously gathered are analyzed, and goals and measures suitable for SPC are selected.
These activities are necessary to assure the quality of the patterns that will be further
extracted because goals and measures obtained in the previous activity may not be
appropriate to SPC. Thus, only goals and measures useful for SPC must be selected.
Some requirements can be considered to evaluate the suitability of measures for SPC
[Barcellos et al. 2013, Tarhan and Demirors 2006, Tarhan and Demirors 2008]. For
example, the measure must be aligned to organizational or project goals; the measure
must be able to support decision making; the measure must be able to support software
process improvement; the measure must be related to a critical process; the measure
must be able to characterize process behavior; the measure must have appropriate
granularity level (i.e., it should allow a frequent analysis of process behavior, as well
as obtaining enough data to SPC); the measure must be correctly normalized (if
applicable). Other requirements can be found in [Barcellos et al. 2013].

Finally, it is necessary to Review/Refine Processes, Measurement Goals and
Measures for SPC, which consists of refining/adjusting the selected elements
(processes, goals, and measures) to ensure that they serve as a basis for pattern
extraction. The purpose is to produce a set of processes, goals, and measures with good
reuse potential. One can, therefore, for example, decompose goals to make their

684

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

relationship with measures more direct. Similarly, processes can be broken down into
subprocesses to make their relationship with goals and measures more direct. Measures
can also be adjusted to fit the considered processes and goals better. The relations
between the elements also must be reviewed since some relations may not have been
captured until then. Moreover, the refinements made in some elements may imply new
relations between them.

5.2 Develop Pattern Language
Once the source from which the patterns will be extracted is defined, the PL can be
developed. Figure 3 shows this activity in detail.

Figure 3: Detailing of Develop Pattern Language

The development of a PL begins with the Extract Measurement Planning Patterns
activity, which consists of analyzing the set of processes, measurement goals, and
measures resulting from the previous activity, aiming to identify measurement planning
patterns. A measurement planning pattern can be related to one or more processes and
follows the GQM format [Basili et al. 1994]. This way, it includes a measurement goal,
questions that indicate information needs that must be met, and measures that meet the
information needs. Each measure must have an operational definition suitable for SPC.
If the measure does not have an operational definition, it must be defined. If it already
exists (i.e., if it was obtained from the sources of measures), it should be analyzed and
adjusted to be suitable for SPC when necessary. Useful information about operational
definitions of measures for SPC can be found in [Barcellos et al. 2013]. SAMPPLa
provides a template to define a pattern (to be shown later), and it indicates which
information should be provided when establishing an operational definition.

Once the patterns are identified, it is possible to Build Pattern Language. In line
with Quirino et al.’s (2017) proposal for representing pattern languages, in this activity,
the models referring to the structural and behavioral perspectives of the PL must be
elaborated, adopting the visual notation defined by Quirino et al. (2017). This activity
is broken down into Develop Structural Model, which produces a model presenting the
patterns that compose the PL and the structural relationships between them (e.g.,
dependence and composition), and Develop Behavioral Model, which produces a
model that represents the process to be followed to apply the patterns. Information on
how to build these models can be found in [Quirino et al. 2017].

After creating the PL, it is time to Evaluate Pattern Language, verifying if it can
achieve its purpose. For that, one can, for instance, verify if the patterns are truly related
to identified processes, if they are described satisfactorily (e.g., if the information is
clear enough so that other people can use the pattern), if the measures are able to

 685

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

monitor the goals they are related to, and if other patterns are needed). It is also
necessary to verify if the PL representation is correct (e.g., if the notation was correctly
used) and if the relationships established in the structural and behavioral models are
correct and consistent (e.g., if the flows in the behavioral models are consistent with
the dependencies in the structural model). Some ways to evaluate the PL are through
peer reviews, where experts evaluate the created PL to identify problems and
opportunities for improvement, and experimental studies, where a group of people uses
the PL and provides feedback on its usability and usefulness. If needed, adjustments
should be made in the PL by returning to previous activities. Finally, it is necessary to
Make Pattern Language Available. The PL can be made available through a textual
specification. However, to enhance the use of the PL, it is suggested to provide a
computational tool.

6 MePPLa: Measurement Planning Pattern Language

We followed SAMPPLa to develop MePPLa. Next, we present MePPLa, by describing
results produced when we performed each of the SAMPPLa activities. The evaluation
of MePPLa is addressed in Section 7.

Define Pattern Language Purpose and Application Context - MePPLa is a PL with
the purpose of helping measurement planning for SPC. The application context of
MePPLa encompasses organizations that intend to submit processes to SPC. That
includes, for example, CMMI-DEV level 3 or MR-MPS-SW level C organizations
wanting to implement SPC practices to achieve the high maturity levels and
organizations intending to evolve the processes addressed by MePPLa to the highest
levels in the continuous view of CMMI-DEV.

Select Processes - Considering the established purpose and application context, and the
results of the systematic mapping study and the survey that investigated processes,
goals, and measures used in SPC in software organizations [Brito et al. 2018], we
selected the Project Management, Coding and Testing processes as the ones to be first
treated in MePPLa. The Coding and Testing processes were both identified in the
survey and the literature, with the Testing process being the most cited in both studies.
The Project Management process, in turn, was identified only in the literature. Still,
since it is considered a suitable process for SPC because it is usually a critical process
and executed in all projects, it was also selected to be treated in MePPLa. Due to the
PL purpose and application context, the decision considered that in the first steps to
implement SPC practices aiming at high maturity, organizations should include a
process covering management aspects, a process related to development, and a process
addressing quality aspects [CMMI Institute 2018]. Although there are other suitable
processes (e.g., Inspection, Requirements Development), for pragmatic reasons, we
needed to select the processes to be addressed first. Others can be added in the future.

Identify a Set of Measurement Goals and Measures related to the Processes - The set
of measurement goals and measures related to the processes was also extracted from
the systematic mapping and survey [Brito et al. 2018]. As a result of these studies, 84
measures, 15 processes, and 47 goals used in SPC were identified (an extract of the
results was shown in Section 4). For the development of MePPLa, we considered the

686

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

goals and measures related to the Project Management, Coding, and Test processes.

Select Measurement Goals for SPC & Select Measures for SPC - We analyzed the
measurement goals and measures and selected the goals and measures related
adequately to Project Management, Coding, and Testing processes. For example, in the
set of goals and measures obtained from the studies, the goal “Improve defect detection
to reduce the number of delivered defects” was related to the Coding process. However,
this goal is not related to this process because Coding does not deal with defect
detection. Therefore, we did not select that goal. The measure “defect removal
effectiveness” was related to the Testing process. However, they are not truly related
because the Testing process is not responsible for removing defects. Therefore, we did
not select this measure. When selecting the measures, we also considered some of the
requirements defined in [Barcellos et al. 2013] (e.g., the ones cited in Section 5), which
can be used to evaluate the suitability of a measure for SPC.

Review/Refine Processes, Measurement Goals and Measures for SPC - The set of
processes, goals, and measures obtained in the previous activities was reviewed and
adjusted to serve as a basis for pattern extraction. Concerning goals, we broke down
general goals into specific goals, which could be individually considered for pattern
identification. For example, from the “Monitor project cost and schedule” goal, we
defined “Monitor project cost” and “Monitor project schedule” goals. This way, it
would be possible to identify patterns related to cost and schedule separately. As for
the measures, from specific measures with a lower potential of reuse, we defined
general measures. For example, from the “code size estimation accuracy” and “file
estimation accuracy” measures, we defined the “size estimation accuracy” measure.
Concerning the processes, some of them were broken down into subprocesses. For
example, Project Management was broken down into Project Planning and Project
Monitoring, and Defect Fixing was identified as a subprocess of Coding. After all the
refinements are performed, the resulting set of processes, measurement goals, and
measures is the source of patterns that will be used as an input of the following activity.
Table 3 presents a fragment of the results of this activity, containing elements
associated with the Coding process. The goals associated with the Defect Fixing
subprocess are identified by (*).

Process: Coding

Goals Measures
Control variation in coding processes;

Improve product quality; Evaluate
process quality effectiveness;

Understand software processes
performance; Monitor process quality;

Verify quality goals achievement;
Reduce defects in the products

Defect density (number of detected defects/product
size)

Improve productivity Rework (effort spent on rework/ product size)
Productivity (effort / product size)

Reduce cost due to poor quality
performance

Cost of poor quality in the code (cost of correcting
internal failure + cost of correcting external failure)

Cost of code quality (cost of appraisal + cost of
defect prevention + cost of correcting internal
failure + cost of correcting external failure)

 687

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Reduce injected defect (*); Manage
defect injection distribution in

different kinds of activities

Defect injection rate (by phase) (number of injected
defects/number of removed detected defects)

Manage the effectiveness of defect
removal activities (*)

Defect removal effectiveness (number of removed
defects in requirements (or design, coding, and

testing) /number of detected defects)

Understand and predict product
quality; Win the market competition

Defect injection rate (by phase) (number of injected
defects/number of removed detected defects)

Defect density (number of detected defects/product
size)

Monitor process performance Productivity (effort / product size)

Table 3: Extract of the refined elements associated with the Coding process

Extract Measurement Planning Patterns - Once the source for patterns extraction
was defined in the last activity, we analyzed it and identified the patterns of MePPLa.
In this activity, we also established operational definitions appropriate to SPC for the
measures included in the patterns. As stated earlier, in MePPLa, each pattern is a
solution related to a process and comprising a measurement goal, information needs,
and measures. The problem that the pattern seeks to solve is monitoring the
achievement of that goal and the behavior of the related process. For example, we
identified the “Defect Fixing Effectiveness” pattern (related to the Coding process),
which is associated with the goal "Improve defect fixing effectiveness." That means
that the pattern proposes as a solution containing the measure defect fixing
effectiveness, whose data collection and analysis will help characterize the behavior of
the Coding process and monitor whether that goal is being achieved.

During patterns identification, we took some actions aiming to define patterns
suitable for the MePPLa application context. For instance, we disregarded goals that
are too general (e.g., “Win the market competition” and “Understand software
processes performance”) since using goals that are too general is not a good practice
when implementing SPC [CMMI Institute 2018]. It would be preferable to define
performance and quality measurement goals to be monitored by using SPC techniques
[CMMI Institute 2018]. As for the measures, we did not consider the ones with less
potential to reuse (e.g., the ones related to very specific contexts).

For the Project Management process, we extracted patterns related to project
planning and project monitoring and control. For the first, we identified patterns to deal
with estimates considering different granularities. We extracted patterns related to
effort, duration, and cost estimates for activity, phase, and process. Thus, when using
MePPLa, the user can choose which granularities he/she wants to consider in the
measurement plan. For the Coding process, we identified patterns containing measures
related to productivity, defect density and rework. As for the Test process, we extracted
patterns related to delivery defects, detected defects, and effort spent on test activities.

To refine the alignment between processes and related patterns, we broke down
some processes. The selected processes were decomposed considering the measures
related to them and our knowledge of software processes (two of the authors are very
experienced in software process reference models and standards). The Project
Management process was broken down into Project Planning and Project Monitoring
and Control, and the Testing process into Test Preparation and Test Execution. It is

688

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

worth mentioning that, although we did not use process models such as CMMI-DEV
and standards such as ISO/IEC/IEEE 12207 (2017), they could be used as a basis to
decompose processes. Table 4 presents a fragment of the results produced in this
activity. It shows goals and measures identified to compose the patterns related to the
Coding process. The goals associated with the Defect Fixing subprocess are identified
by (*).

Process: Coding
Measurement Goals Measures

Improve coding productivity Productivity (effort / product size)
Improve product quality Defect density (number of detected defects/product size)
Improve coding quality Rework (effort spent on rework/ product size)

Improve product reliability Mean time between failures
(Sum of time between failures/(number of failures -1))

Improve defects fixing
effectiveness (*)

Defect removal effectiveness
(number of removed defects in requirements (or design,

coding, and testing) /number of detected defects)

Reduce injected defects (*)

Defect injection rate (by phase)
(number of injected defects/number of removed detected

defects)

Table 4: Elements selected to compose patterns related to the Coding process

For each pattern identified, a detailed description was established, including the
operational definition of each measure. Appendix A shows, as an example, the
description of the “Defect Fixing Effectiveness” pattern. For simplification reasons, we
omitted pieces of information regarding the operational definition of base measures.

According to Barcellos et al. (2013), to enable consistent measurements, ideally,
the operational definition of a measure used in SPC should include name, description,
mnemonic, measurable property, measurable entity, scale values, measurement unit,
formula, measurement procedure, measurement responsible, measurement periodicity,
measurement moment, measurement analysis procedure, measurement analysis
responsible, measurement analysis periodicity, and measurement analysis moment (for
base measures that compose derived measures and are not directly analyzed, it is not
necessary to provide information about measurement analysis). Considering that
MePPLa contains patterns to be used by different organizations, there are pieces of
information that cannot be predefined and, thus, are not included in the pattern's
description. They must be completed when applying a pattern (i.e., when including it
in a measurement plan). For these pieces of information, the pattern provides some
guidelines (shown in Appendix A in italics and delimitated by << >>) aiming to help
organizations complete the operational definition of the selected measures. To
exemplify a pattern description completely filled out when applied, Appendix B shows
the description of the “Defect Fixing Effectiveness” pattern filled out by an SPC
professional to a specific organization.

Build Pattern Language - Once the patterns were defined, we used OPL-ML
[Quirino et al. 2017] and developed models for graphically representing MePPLa. As
said in Section 2, although OPL-ML was proposed to represent OPLs, it was based on
Software Engineering works. Its authors state that it can be used (with adjustments, if

 689

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

needed) to represent pattern languages in general. To represent MePPLa, we made an
adjustment in OPL-ML notation by including a construct to represent the "correlation"
relation between patterns, indicating patterns whose measures are correlated, but the
patterns are not dependent. Originally, OPL-ML represents only dependency and
composition relations.

According to OPL-ML, a PL must have the structural and behavioral perspectives
separately represented. Thus, MePPLa is composed of two types of models, the
structural model, which represents the patterns and the structural relations between
them, and the behavioral model, which describes the process for selecting the patterns.

The structural model provides information about structural relations, especially
useful during measurement analysis since they reveal related measures and goals that
impact others. This model can also be useful in measurement planning by helping to
identify which patterns can be selected for a better analysis of goals achievement and
identification of causes that may be interfering with it. Figures 4 and 5 present the
structural model containing patterns related to the Project Management process and
Coding process, respectively.

In MePPLa, two types of structural relations are used. Dependency (referred to in
the figures by the requires construct) indicates when a pattern requires the application
of another pattern. Correlation (referred to in the figures by the is correlated to
construct) indicates patterns whose measures are correlated, but the patterns are not
dependent. In MePPLa, when a pattern is correlated to another, it means that although
a pattern does not depend on another, the measure contained in one pattern may
influence values of the measure contained in the other. Thus, it is recommended to
apply both to reach a deeper data analysis.

As Quirino et al. (2017) suggest, patterns can be organized into groups. In MePPLa,
patterns were grouped considering the processes and sub-processes to which they relate.
We used the name of the process related to the pattern group to name it. Thus, the
pattern groups represent the processes addressed by MePPLa. Inside each pattern
group, there are patterns related to the process the pattern group represents. For
example, in Figure 4, all patterns are related to the Project Management process. Inside
the group, patterns are sub-grouped according to the sub-process they relate to. For
example, in Figure 4, Schedule Performance and Cost Performance are related to
Project Monitoring and Control.

As shown in Figure 4, there are dependency relationships between patterns
related to cost and duration estimates and between patterns related to duration and effort
estimates. For example, Activity Cost Estimate Accuracy has a relationship of
dependency with Activity Duration Estimate Accuracy, since, to estimate the cost of an
activity, it is necessary first to estimate its duration. There are also correlation
relationships between patterns. For example, in Figure 4, Activity Effort Estimate
Accuracy is correlated to Size Estimate Accuracy because effort and size are related to
each other, but it is not necessary to estimate first the product size to estimate the effort
of an activity. The patterns from the Coding group are also related by correlation
relationships (see Figure 5). For example, the pattern Product Defect Density is
correlated to the pattern Coding Quality since the quality of the coding process can
impact the product defect density. Still, the application of the Product Defect Density
pattern does not depend on the application of the Coding Quality pattern (hence there
is no dependency relation between them).

690

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Figure 4: Structural model of the Project Management Pattern Group

During MePPLa development, the structural model was helpful for us to develop
the behavioral model since the structural model indicates the dependencies that must
be considered in the flows that guide pattern selection. For example, if the structural
model shows that pattern B depends on pattern A, pattern A must be applied first in the
behavioral model. Moreover, the relations presented in the structural models are useful
to analyze data. For example, Coding Productivity is correlated to Coding Quality. I.
e., when analyzing data about the former, one should also analyze data about the latter
because productivity may be decreasing because there are too many problems in the
code. Although the patterns are not dependent on each other (thus, in the behavioral
model, it is not mandatory to apply both patterns), the structural model shows that it is
possible to reach a deeper analysis when both are applied.

Figure 5: Structural model of the Coding Pattern Group

Once the structural model related to each process was defined, the behavioral
model was developed. The behavioral model (or process model) has two formats: the
black-box format, which provides a general view of the PL from the behavioral
perspective, and the detailed format, which provides a detailed view of the PL process,
containing the flows that guide pattern applications. Both formats must be understood

 691

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

as a process to be followed step by step from an entry point to an endpoint. Figure 6
shows the behavioral model of MePPLa in the black-box format.

Figure 6: MePPLa behavioral model in the black-box format

In the black-box format, it is possible to see the processes treated in MePPLa, since
the pattern groups refer to the processes addressed by MePPLa. As the name suggests,
it is impossible to visualize the patterns and flows within each group in the black-box
format. We developed a detailed behavioral model for each pattern group (i.e., for each
process), presenting the group’s internal content, i.e., its patterns and flows between
them. Figures 7 and 8 show the detailed behavioral model related to Coding and Project
Management, respectively. The detailed behavioral model of Testing can be found in
[Brito et al. 2017].

Figure 7: Behavioral model of the Coding Pattern Group

692

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Figure 8: Behavioral model of the Project Management Pattern Group

The detailed behavioral models are consistent with the structural models. Thus, the
patterns are grouped according to the processes and sub-processes to which they relate.
Patterns are connected by flows to guide users in pattern selection, respecting the
relationships between the patterns defined in the structural model (e.g., if in the
structural model a pattern A depends on a pattern B, in the behavioral model, the user
is guided to apply B before A). To navigate the model, the user must choose an entry
point according to the measurement goal to be considered in the measurement plan. For
example, in Figure 8, if the measurement goal “Improve project planning and
estimates” is to be included in the measurement plan, the user should start the
navigation from EP1. If this measurement goal is not relevant and “Improve project
schedule and cost performance” is, the user should start the navigation from EP2. Note
that if the user begins the navigation from EP1, he/she will also be guided towards the
patterns related to “Improve project schedule and cost performance,” and, by following
the flows, he/she can decide if they are relevant or not. From an entry point, the user
must follow the flows and select the patterns according to the goals that he/she wants
to treat in the measurement plan. The goals are presented in the entry points and the
decision nodes so that the user can decide which relevant goals he/she wants to create.
When a pattern is applied, its description is to be included in the measurement plan.

To use MePPLa, the organization must have established its business goals, the
processes related to them and selected which of these processes will be submitted to
SPC. Thenceforth, the organization can use MePPLa to select, for each process, the
patterns to be included in the measurement plan. It is worth pointing out that, in the
software process improvement context, it is only possible to apply SPC to analyze the
behavior of defined processes (i.e., processes established in the organization and
executed in the projects). In this sense, organizations can only select to submit to SPC
processes that they have already defined.

 693

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Make Pattern Language Available - In this activity, a textual specification containing
the structural and behavioral models of MePPLa and a detailed description of each
pattern was developed. MePPLa specification is available in the form of a document.1
After creating MePPLa specification, we developed a tool (MePPLa Tool)2 to support
its use. Figure 9 shows a screenshot of the MePPLa Tool.

Figure 9: A screenshot of MePPLa Tool

The tool allows the user to navigate the MePPLa behavioral models and select the
patterns he/she wants to include in the measurement plan. As a result, a file containing
the detailed descriptions of the selected patterns (see example in Appendix B) is
produced. This file can be exported in MSWord format. The information recorded in
the file can be extracted and included in the organization's measurement plan, or the
organization can edit the file (for example, by adding business goals) and turn it into a
measurement plan. When the user selects a pattern, its description is included in the
measurement plan file, and the pattern is colored green. When applying a pattern, the
user has access to the pattern description and can complete information that depends on
the organization context (the pieces in italics and delimitated by << >> in Appendix A).
Moreover, the user can look at the structural models to see the structural relations
between the patterns.

1 MePPLa specification is available at
http://nemo.inf.ufes.br/wp-content/uploads/MeiSE/MePPLaSpecification.pdf
2 MePPLa Tool is available at http://dev.nemo.inf.ufes.br:8180/MPPL/login.faces

694

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

7 MePPLa Evaluation

MePPla evaluation was performed through peer reviews and experimental studies. At
first, two external researchers with knowledge and practical experience in software
measurement and SPC evaluated MePPLa specification through peer review. Based on
this first evaluation, we improved MePPLa and developed MePPLa Tool. Then, we
conducted two studies to evaluate whether MePPLa is useful to software measurement
planning for SPC and whether its use is feasible. The first study [Brito et al. 2017]
involved four participants (three professionals and one graduate student). Based on the
study results and participants' feedback, we improved MePPLa and MePPLa Tool.
After the improvements, we carried out the second study, which involved six
professionals and is described as follows.

7.1 Study Planning and Execution
Using the GQM approach [Basili et al. 1994], the study goal is formalized as Analyze
MePPLa, with the purpose of evaluating the PL, with respect to its usefulness in
software measurement planning aiming at SPC and feasibility of use, from the point of
view of software measurement professionals, in the context of software projects. To
analyze the results, we considered the following indicators: (i) adequacy of the result
obtained from the use of MePPLa; (ii) MePPLa usefulness; and (iii) benefits provided
by MePPLa.

The instrumentation used in the study consisted of three forms, a document and
one computational tool: (i) a consent form, in which participants declared to accept to
participate in the study; (ii) a form to characterize the participants’ profile, aiming to
obtain information about the participants' knowledge and experience in software
measurement, SPC and pattern languages; (iii) MePPLa specification; (iv) a
questionnaire to capture the participants’ perceptions about MePPLa; and (v) MePPLa
Tool, which was used by the participants to create measurement plans taking real
scenarios into account.

The procedure adopted in the study consisted of sending to the participants the
MePPLa specification, a link to access MePPLa Tool, and a document containing
information about how to proceed to use and evaluate MePPLa. The participants were
asked to create a measurement plan for at least one organization that aimed to submit
some of its processes to SPC as a step to achieve higher maturity levels in models such
as CMMI-DEV or MR-MPS-SW. Based on the instructions provided in the document,
participants used MePPLa Tool, looked at MePPLa specification if they needed,
evaluated MePPLa, and then answered the questionnaire.

The questionnaire3 included questions related to MePPLa's usefulness, adequacy
of the result obtained from the use of MePPLa, quality of the produced result, and
productivity of the measurement planning activity when supported by MePPLa. The
questionnaire contained multiple-choice questions and a discursive question. For
multiple-choice questions, participants were asked to justify the given answer. The
discursive question aimed at the general evaluation and improvement of MePPLa.

3 The questionnaire used in the study is available at https://forms.gle/bsGrrHBysz5QZ3Yr9

 695

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

The study participants were six professionals with experience in software
measurement and SPC implementation or evaluation in software organizations (CMMI-
DEV and MR-MPS-SW appraisers or implementers). One participant declared medium
practical experience and knowledge of software measurement and SPC, and five
declared high practical experience and knowledge of software measurement and SPC.
As for PLs, two participants declared medium experience, one declared little
experience, and three reported that the use of MePPLa would be their first experience
with PLs.

7.2 Results and Discussions
Next, we present the main results and discussions related to each of the three indicators
used in the study.

Adequacy of the result obtained from the use of MePPLa - The use of MePPLa
results in a set of measurement goals, information needs, and measures (with
operational definition) related to processes to be submitted to SPC. As previously said,
this set of information can be included in an existing measurement plan or can be used
to produce a new plan by adding complementary information (e.g., business goals) not
provided by the patterns.

Three participants (50%) reported that the result was adequate, and three (50%)
participants considered it partially adequate. The participants who considered the
results adequate indicated relevant and adequate information to the measurement plan.
Moreover, they highlighted that when using MePPLa Tool, exporting and editing the
document containing all the selected patterns is important to elaborate an appropriate
measurement plan for a specific organization. On the other hand, the participants who
considered the results partially adequate justified that they needed further information
to fill out the operational definitions of the measures contained in the patterns.
Concerning this issue, since the patterns defined in MePPLa are to be used by several
organizations, some information cannot be predefined because they depend on the
organization to which the measurement planning is developed. For these pieces of
information, the pattern provides guidelines to help organizations to complete the
operational definition. Considering the participants’ feedback, we have improved some
guidelines.

MePPLa usefulness - Five participants (83%) considered MePPLa useful or very
useful. However, although considering the patterns useful to define the measurement
plan, one participant reported being neutral. He informed us that he had some difficulty
understanding the diagrams at the first moment. The other participants state that
MePPLa is useful because it incorporates several aspects that need to be considered
when using SPC, helps in choosing suitable measures, provides visibility of the
processes to which they are related, and provides a basic structure for the measurement
plan.

Benefits provided by MePPLa - Three participants (50%) considered that
MePPLa contributes to the reuse of measures and measurement goals, being aligned
with “favoring reuse,” which is one of the expected benefits of using PLs. However,
the other three participants (50%) considered that MePPLa contributes only partially.
When using MePPLa Tool, they reported that after editing a pattern added to a
measurement plan, the changes were not saved to be reused when the pattern was added
to another measurement plan (the changes were saved only in the measurement plan

696

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

being created). Thus, when they added the pattern to another measurement plan, they
needed to edit it again. It is important to notice that this limitation refers to MePPLa
Tool and not to MePPLa itself. This limitation of the MePPLa Tool also impacted the
participants' perceptions of the use of MePPLa to improve productivity. Most
participants (four out six, 66.7%) reported that using MePPLa made the measurement
planning activity much more productive or more productive. However, two participants
(33.3%) were neutral and justified their answer in the tool limitation to save changes
made in applied patterns. The tool limitation can be easily solved by enabling the users
to save new versions to the patterns they change. Thus, when adding a pattern to a
measurement plan, the user can choose to add its original version defined in MePPLa
or a version he/she has created by editing information in the original pattern.

Three participants (50%) considered MePPLa very easy or easy to use, and three
(50%) reported the difficulty degree to use MePPLa as neutral. For these participants,
the most significant difficulty was understanding the symbols that make up the
structural and behavior models of the pattern language.

Four participants (66.7%) highlighted that MePPLa contributed to the quality of
the measurement plan since it reuses previous experiences and consolidated GQM-
based patterns. However, two participants (33.3%) founded that MePPLa contributed
only partially to the quality of the measurement plan because it addresses only three
processes, and if the organization needs to add measures related to other processes,
quality is not ensured. Concerning that, the quality of the content to be added to the
measurement plan after using MePPLa is out of the scope of MePPLa. As for the
number of processes treated by MePPLa, new processes can be addressed. Currently,
we are adding patterns related to the Review process.

By analyzing the results and comments made by the participants, we noticed that

some cited limitations refer to the supporting tool (MePPLa Tool) and not to MePPLa
itself. These limitations can be easily addressed by improving the tool. However, we
also noticed that half of the participants reported some difficulty understanding the
visual notation used, which the first study participants have not reported. In MePPla,
we have adopted OPL-ML [Quirino et al. 2017], a modeling language proposed to
represent Ontology Pattern Languages. This kind of PL is used by ontology engineers,
who are very familiar with conceptual modeling and Unified Modeling Language
(UML). OPL-ML reuses UML constructs; thus, it is easy for ontology engineers to
understand OPL-ML constructs and diagrams. The study results suggest that
measurement professionals may not be very familiar with UML constructs or
conceptual models and, thus, following diagrams inspired by UML activity diagrams
may introduce some difficulty. We believe that this difficulty could be minimized by
improving MePPLa Tool for the user to be automatically guided flow by flow through
the behavioral models.

Although the participants have reported some limitations, considering the results
as a whole, we understand that the study provided preliminary evidence that MePPLa
is useful, provides benefits in terms of quality and productivity, and produces adequate
results. However, some improvements are needed, and some threats must be considered
together with the results.

 697

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

7.3 Threats to Validity
Next, we discuss some threats to the study results by following the classification
defined in [Wöhlin et al. 2000].

The main threat to the study results refers to the reduced number of participants
and little profile variety. This threat affects external and conclusion validity. The former
refers to the ability to repeat the same behavior with different groups, while the latter
is related to the ability of the study to generate conclusions.

There are also important threats affecting the construct validity, which regards the
relationship between the study instruments and participants and the theory being tested.
In this context, participants may have given answers that do not reflect reality due to
personal expectations. To minimize this threat, we informed the participants that the
study did not represent any type of personal assessment nor aims to evaluate MePPLa.
The questionnaire used in the study may also have been a threat. The questions may not
have been easily understood by the participants or not enough to capture the
participants' perceptions. Moreover, there may have been biases in the drafting of the
questions. Another important threat is that the participants provided feedback about
MePPLa before using the measurement plans produced during the study. In addition,
the use of the supporting tool to evaluate MePPLa is also a threat. By using the tool,
participants evaluated not only MePPLa but also aspects related to the tool itself. The
two last cited threats affect not only construct validity but also conclusion validity.

Finally, regarding internal validity, which is related to the ability of a new study to
repeat the behavior of the current study with the same participants and objects, there is
the threat of communication and sharing of information among participants. To
minimize this threat, we sent the instruments to the participant's email so that he/she
could individually do the evaluation. All these threats limit the generalization of results,
and therefore they should be considered as preliminary results that cannot be
generalized.

8 Related Work

In Section 2.1, we mentioned some works addressing software measurement. When
compared to [Florac et al. 1999, ISO/IEC 2001, McGarry et al. 2002, Siviy et al. 2005,
Tarhan and Demirörs 2006, ISO/IEC 2007, ISO/IEC 2011, ISO/IEC/IEEE 2017], our
proposal presents similarities and differences. As for similarities, all works concern
software measurement, and some of them [Florac and Carleton 1999, ISO/IEC 2007]
provide measures that organizations can reuse when creating measurement plans.
However, only MePPLa organizes the measures in a visual representation aiming at
favoring reuse in a process and goal-oriented approach that helps measurement
planning. Furthermore, MePPLa has a supporting tool (MePPLa Tool) that aids in
elaborating measurement plans, contributing to improving productivity and quality.

Concerning GQM [Basili et al. 1994], while it guides on how to identify measures
by considering information needs (questions) derived from goals, MePPLa provides a
“ready” solution based on the GQM format. As a result, from its goals, the organization
selects measurement planning patterns containing information needs and measures
(with operational definition) to monitor the goals. In practice, when using GQM, the
organization has the method to follow but does not have the goals, information needs,

698

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

and measures to be added to its measurement plan. By using MePPLa, the organization
has a method to follow (given by a behavioral model) and the goals, information needs,
and measures that can be added to the organization’s measurement plan.

We also have presented in Section 2.2 two works proposing pattern languages
related to software measurement [Nikelshpur 2011 and Braga et al. 2012]. Comparing
these works with MePPLa, some important differences can be highlighted: (i) the PLs
proposed by Nikelshpur (2011) and Braga et al. (2012) do not address SPC; (ii) the
patterns of these PLs provide guidelines for project planning and estimation, while
MePPLa provides patterns based on the GQM format and their use helps measurement
planning aiming at SPC; (iii) the patterns of the PLs do not define measures either
provide an operational definition of measures; (iv) the PLs do not use a cognitively rich
visual notation (the PL proposed by Nikelshpur (2011) is not even graphically
represented), while MePPLa uses OPL-ML [Quirino et al. 2017] and separates the
structural and behavioral perspectives of the PL.

9 Conclusion

The importance of SPC for the software industry has increased due to the interest of
organizations in achieving high maturity [Fernandez-Corrales et al. 2013]. The use of
SPC enables understanding the processes’ behavior and predicting their performance
[Razmochaeva et al. 2019]. Considering that one of the main difficulties organizations
face when implementing SPC is selecting appropriate measures [Tarhan and Demirors
2006, Tarhan and Demirors 2008, Barcellos et al. 2013, Schots et al. 2014], we propose
using a PL to support measurement planning for SPC. As we argued before, in this
work, we adopt a broader view of what a pattern is.

This paper presented MePPLa (Measurement Planning Pattern Language),
developed using a systematic approach named SAMPPLa (Systematic Approach for
creating Measurement Planning Pattern Languages), also defined in this work. MePPLa
provides measurement planning patterns that help organizations create measurement
plans by navigating behavioral models that guide patterns selection and usage.
Moreover, the measurement patterns provided by MePPLa were extracted from studies
that investigated measures used in practical SPC initiatives. MePPLa has a supporting
tool (MePPLa Tool), which was also presented in this paper. Our goal with the work
addressed in this paper is to bring an alternative way to represent, access, and reuse
knowledge in the form of measurement planning patterns organized in a pattern
language.

MePPLa is aimed to support measurement planning. Therefore, we point out that
it should be used in the context of a broader measurement process that covers planning,
data collection, and analysis (e.g., as suggested in ISO/IEC/IEEE 15539).

Although MePPLa was built to be used aiming at SPC, it can also be used (with
some adjustments in operational definitions of measures) in software measurement in
general. Moreover, although SAMPPLa was created to develop/evolve pattern
languages to support measurement planning aiming at SPC, it can be adapted to
disregard SPC particularities and guide the creation of PLs with different purposes, as
for software measurement in general.

MePPLa can continuously evolve (e.g., new patterns can be added). In its current
version, MePPLa includes only patterns extracted from the systematic mapping of the

 699

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

literature and the survey [Brito et al. 2018]. As future work, MePPLa’s patterns can be
refined, and new patterns can be extracted from other studies (e.g., by analyzing
measurement repositories of different organizations). Moreover, different patterns can
be related to the same process but to different development approaches (e.g., plan-drive,
agile). Therefore, the patterns’ format can be improved considering the Goal-Question-
Indicator-Metric (GQ(I)M) [Park et al. 1996] format.

Research on software measurement continues to be a hot topic today. Although the
benefits of using of software measurement are well known, problems in their practice
are still ongoing [Tekin et al. 2020]. We consider that by providing the knowledge in a
structured way and a support tool to reuse it in the creation of measurement plans, this
work brings contributions to the state of the art (knowledge capture and structuring)
and to the state of the practice (tool to support the creation of measurement plans).
Currently, much value has been given to information obtained from the analysis of data
collected throughout the software development process. Based on this information it is
possible to make decisions aimed at improving software products and processes. For
useful information to be obtained, meaningful data must be available, that is, it is
necessary to measure what really matters to the organization. In this sense, MePPLa
contributes by assisting in identifying measures to data aligned to the organization's
goals aimed at software process improvement. Moreover, one of the difficulties
organizations face when moving from initial process maturity levels to high maturity
levels (e.g., from CMMI levels 2 and 3 to CMMI levels 4 and 5) is related to software
measurement, because if the measures adopted by the organization are not suitable for
SPC when it starts the practices to achieve levels 4 or 5, the organization needs to define
new measures and collect new data to be used in SPC. Achieving the amount of data
needed to properly apply SPC techniques demands time and effort that can be
minimized if the organization defines measures suitable for SPC beforehand. MePPLa
helps in this matter by providing measures that have already been successfully used in
SPC by other organizations. By reusing the measures (i.e., by applying the
measurement planning patterns), an organization can define measurement plans
suitable for SPC since level 3 and, in this way, when the organization starts the level 4
practices, it has already collected data to perform SPC, which contributes to decrease
the time necessary to achieve levels 4 or 5.

Among the limitations of this work, we can highlight the MePPLa evaluation,
which consisted of peer review by two researchers and two studies involving ten
participants. Although the evaluation performed so far has not included a case study in
a software organization, the studies’ participants are professionals who have worked
mainly as implementers or appraisers of process maturity models (CMMI, MPS BR
and ISO) and, as such, have acted in several organizations. Defining measurement plans
to implement SPC in software organizations aiming at high maturity is part of their
jobs. Thus, they have the capacity (knowledge and experience) needed to evaluate
MePPLa. Hence, Even though the studies performed so far are limited and more robust
evidence are still needed, the obtained preliminary are an indication of MePPLa
usefulness. Another limitation regards SAMPPLa evaluation, as it has only been used
by its creators to define MePPLa and by one more researcher to extend MePPLa by
adding the Review process (an ongoing work supervised by the first and second
authors).

As future work, we intend to improve MePPLa Tool considering the study results,
carry out a case study to evaluate MePPLa better, evolve MePPLa to treat other

700

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

processes, and include different patterns. As said above, we are currently working on
adding patterns related to the Review process to MePPLa. We also plan to evaluate the
use of SAMPPLa by third parties in a case study to evolve MePPLa by considering
other sources and processes.

Finally, creating a PL involves a lot of judgment and tacit knowledge. For example,
it may not be simple to identify the suitable elements to compose the source for pattern
extraction or to extract fine patterns. This is a limitation of our approach. To help with
this matter, we intend to define guidelines for SAMPPLa activities to better guide the
users in creating or evolving PLs.

References

[Alexander et al. 1977] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-
King, I., and Angel, S.: “A pattern language”; Oxford University Press, USA (1977).

[Barcellos et al. 2010] Barcellos, M. P., Falbo, R. A., Rocha, A. R.: “Establishing a well-founded
conceptualization about software measurement in high maturity levels”; Proc. 7th Int. Conf. on
the Quality of Information and Communications Technology, Porto, Portugal (2010), 467–472.

[Barcellos et al. 2013] Barcellos, M. P., Falbo, R. A., Rocha, A. R.: “A strategy for preparing
software organizations for statistical process control”; J. of the Brazilian Comp. Society, 19, 4
(2013), 445–473, https://doi.org/10.1007/s13173-013-0106-x.

[Basili et al. 1994] Basili, V. R., Rombach, H. D., Caldiera, G.: “Goal Question Metric
Paradigm”; Encyclopedia of Software Engineering, USA: John Wiley & Sons, Inc. (1994).

[Braga et al. 2012] Braga, M. R. R., Bezerra, C. I. M., Monteiro, J. M., Andrade, R.: “A pattern
language for agile software estimation”; Proc. of the 9th Latin-American Conf. on Pattern
Languages of Programming, Natal, RN, Brazil (2012).

[Brito et al. 2017] Brito, D. F., Barcellos, M. P., Santos, G.: “A Software Measurement Pattern
Language for Measurement Planning aiming at SPC”; 16th Brazilian Symposium on Software
Quality, RJ, Brazil (2017).

[Brito et al. 2018] Brito, D. F., Barcellos, M. P., Santos, G.: “Investigating measures for applying
statistical process control in software organizations”; J. of Software Engineering Research and
Development, Springer Berlin Heidelberg, 6, 10 (2018).

[Buschmann et al. 2007] Buschmann, F., Henney, K., Schimdt, D.: “Pattern-oriented Software
Architecture: On Patterns and Pattern Language”; John Wiley & Sons Ltd (2007).

[Caivano 2005] Caivano, D.: “Continuous Software Process Improvement through Statistical
Process Control”; Proc. of the Ninth European Conference on Software Maintenance and
Reengineering, (2005), 288-293, doi: https://doi.org/10.1109/CSMR.2005.20.

[CMMI Institute 2018] CMMI Institute: “CMMI for Development”; Version 2.0, Carnegie
Mellon University, Pittsburgh (2018).

[Coplein 1998] Coplien, J. O. “Software design patterns: common questions and answers”; In:
The patterns handbook: Techniques, strategies, and applications 13 (1998): 311.

[Falbo et al. 2013] Falbo, R. A., Barcellos, M. P., Nardi, J. C., Guizzardi, G.: “Organizing
ontology design patterns as ontology pattern language”; Proc. of ESWC (2013), Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 7882 (2013), 61–75.

[Ferdinandi 2002] Patricia L. F. “A Requirements Pattern: Succeeding in the Internet Economy”;
Addison Wesley (2002).

 701

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

[Fernandez-Corrales et al. 2013] Fernandez-Corrales, C., Jenkins, M., Villegas, J.: “Application
of Statistical Process Control to Software Defect Metrics: An Industry Experience Report”; 7th
ACM/IEEE Int. Symp. on Empirical Soft. Engineering and Measurement, (2013), 323–331.

[Florac and Carleton 1999] Florac, W. A., Carleton, A. D.: “Measuring the Software Process:
Statistical Process Control for Software Process Improvement”; Addison Wesley, Boston (1999).

[Florac et al. 2000] Florac, W. A., Carleton, A. D., Barnard, J. R.: “Statistical Process Control:
Analyzing a Space Shuttle Onboard Software Process”; IEEE Software, 17, 4 (2000), 97–106.

[Greenfield et al. 2004] Greenfield, J., Short, K., Cook, S., Kent, S. “Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools”, John Wiley & Sons,
Canada (2004).

[Grossi et al. 2014] Grossi, L., Calvo-Manzano, J.A., Feliu, T.S.: “High-maturity levels:
achieving CMMI ML-5 in a consultancy company”, J. Softw. Evol. and Proc., 26 (2014), 808–
817.

[Hevner et al. 2004] Hevner, A., March, S., Park, J., Ram, S.: “Design Science in Information
Systems Research”; MIS Q. 28 (2003), 75–105. https://doi.org/10.2307/25148625.

[Hevner 2007] Hevner, A. R. A.: “Three Cycle View of Design Science Research”; Scandinavian
Journal of Information Systems, 19, 2 (2007), 87–92.

[IEEE/ISO/IEC 2017] IEEE/ISO/IEC 12207: “ISO/IEC/IEEE International Standard - Systems
and software engineering -- Software life cycle processes”; (2017).

[ISO/IEC/IEEE 2017] ISO/IEC/IEEE 15939: “Systems and software engineering —
Measurement process”; (2017).

[ISO/IEC 2001] ISO/IEC 9126-1: “Software engineering — Product quality — Quality model”;
(2001).

[ISO/IEC 2007] ISO/IEC 25020: “Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Measurement reference model and guide”; (2007).

[ISO/IEC 2011] ISO/IEC 25010: “Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models” (2011).

[Jörg and Frederik 2007] Jörg, F. and Frederik, B.: “Pattern Languages: An approach to manage
archetypal engineering knowledge”; Guidelines for a Decision Support Method Adapted to NPD
Processes (2007).

[Kamthan 2007] Kamthan, P.: “A Perspective on Software Engineering Education with Open
Source Software”; International Journal of Open Source Software and Processes, 4, 3 (2012), 13-
25.

[Kitchenham and Charters 2007] Kitchenham, B., Charters, S.: “Guidelines for performing
systematic literature reviews in software engineering”; EBSE 2007-001. Keele University and
Durham University Joint Report, UK (2007).

[Kitchenham et al. 2007] Kitchenham, B., Jeffery, D. R., Connaughton, C.: “Misleading metrics
and unsound analyses”; IEEE Software, 24, 2 (2007), 73-78.

[López et al. 2018] López, P., Mabe, J., Etxeberria, L., Gorritxategi, E.: “Iterative Prototyping
Methodology for the Development of Innovative and Dependable Complex Embedded Systems
Through SPC&KPI Techniques”; In: PROFES (2018). Lecture Notes in Computer Science,
Springer, Cham, 11271 (2018), 65–80, https://doi.org/10.1007/978-3-030-03673-7_5.

[Maisikeli 2020] Maisikeli, S. G.: “Tracking Stability of Software Evolution Using Statistical
Process Control Limit”; Seventh International Conference on Information Technology Trends
(ITT), (2020), 156-160. https://doi.org/10.1109/ITT51279.2020.9320782.

702

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

[McGarry et al. 2002] McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J. and Hall
F.: “Practical Software Measurement: Objective information for decision makers”; Addison
Wesley, Boston, USA (2002).

[Nikelshpur 2011] Nikelshpur, D.: “The Art of Software Estimation Pattern Language”; 18th
Conf. on Pattern Languages of Programs (PLoP), Portland, Oregon, USA (2011).

[Park et al. 1996] Park, R. E., Goethert, W. B., Florac, W. A.: “Goal-Driven Software
Measurement–A Guidebook”; Software Engineering Institute Carnegie Mellon University.

[PSM/NDIA/INCOSE 2021] PSM/NDIA/INCOSE: “Practical Software and Systems
Measurement Continuous Iterative Development Measurement Framework – Part 1”; Version
2.1 (2021), available at https://www.psmsc.com/CIDMeasurement.asp, accessed in oct. 2021.

[Quirino et al. 2017] Quirino, G. K. S., Barcellos, M. P., Falbo, R. A.: “OPL-ML: A Modeling
Language for Representing Ontology Pattern Languages”; In: Advances in Conceptual
Modeling. ER 2017. Lecture Notes in Computer Science, Springer, Cham, 10651 (2017),

[Quirino et al. 2018] Quirino, G. K. S., Barcellos, M. P., Falbo, R. A.: “Visual notations for
software pattern languages: a mapping study”; Proc. of the 32ndI Brazilian Symposium on
Software Engineering (2018), https://doi.org/10.1145/3266237.3266266.

[Razmochaeva et al. 2019] Razmochaeva, N. V., Semenov, V. P., Bezrukov, A. A.:
“Investigation of Statistical Process Control in Process Automation Tasks”; 22nd Int. Conference
on Soft Computing and Measurements (SCM), St. Petersburg, Russia (2019), 248-251.

[Santos et al. 2015] Santos, G., Prikladnicki, R., Conte, T., Rocha, A. R., Travassos, G. H.,
Franco, N., Weber, K. C.: “Towards Successful Software Process Improvement Initiatives:
Experiences from the Battlefield”; In: Americas Conf. on Information Systems (AMCIS), (2015).

[Schots et al. 2014] Schots, N., Rocha, A., Santos, G.: “A Body of Knowledge for Executing
Performance Analysis of Software Processes”; In Proc. of the 26th Int. Conf. on Software
Engineering & Knowledge Engineering (SEKE 2014), Vancouver, Canada (2014), 560-565.

[SIVIY et al. 2005] Siviy, J., Penn, M. L., Harper, E., 2005.: “Relationship Between CMMI and
Six Sigma”; Technical Note, CMU/SEI-2005-TN-005, (2005).

[Softex 2021] "MPS.BR-Melhoria de Processo do Software Brasileiro, Guia Geral". In:
http://www.softex.br/mpsbr (Portuguese only).

[Solingen and Berghout 1999] Solingen, R., Berghout, E.: “The Goal/Question/Metric Method:
a practical guide for quality improvement of software development”; New York: McGraw-Hill
Publishing Company (1999).

[Tahir et al. 2018a] Tahir, T., Rasool, G., Mehmood, W., Gencel, C.: “An Evaluation of Software
Measurement Processes in Pakistani Software Industry”; IEEE Access, 6 (2018), 57868-57896.

[Tahir et al. 2018b] Tahir, T., Rasool, G., Noman, M.: “A Systematic Mapping Study on Software
Measurement Programs in SMEs”; e-Informatica Soft. Engineering J., 12, 1 (2018), 133–165.

[Tarhan and Demirors 2006] Tarhan, A., Demirors, O.: “Investigating suitability of software
process and metrics for statistical process control”; Software Process Improvement, 4257 (2006),
88–99.

[Tarhan and Demirors 2008] Tarhan, A., Demirors, O.: “Assessment of Software Process and
Metrics to Support Quantitative Understanding”, Lecture Notes in Computer Science, 4895
(2008), 102-113.

[Tarhan and Demirors 2012] Tarhan, A., Demirors, O.: “Apply quantitative management now”,
IEEE Software, 29 (2012), 77-85.

 703

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

[Tekin et al. 2020] Tekin, N., Kosa, M., Yilmaz, M., Clarke, P., Garousi, V.: “Visualization,
Monitoring and Control Techniques for Use in Scrum Software Development: An Analytic
Hierarchy Process Approach”; In: EuroSPI (2020). Communications in Computer and
Information Science, Springer, 1251 (2020), https://doi.org/10.1007/978-3-030-56441-4_4.

[Tešanovic 2005] Tešanovic, A. "What is a pattern." Dr. ing. course DT8100 (prev.
78901/45942/DIF8901) Object-oriented Systems (2005).

[Wieringa 2014] Wieringa, R.: “Design Science Methodology for Information Systems and
Software Engineering”; Springer Heidelberg, ISBN 978-3-662-43839-8, (2014).

[Wheeler and Chambers 2010] Wheeler, D. J., Chambers, D. S.: “Understanding Statistical
Process Control”; 3rd ed. Knoxville - SPC Press (2010).

[Wöhlin et al. 2000] Wöhlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.:
“Experimentation in Software Engineering: An Introduction”; The Kluwer International Series
in Software Engineering, Kluwer Academic Publishers (2000)

704

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Appendix A

Defect Fixing Effectiveness
Name: Defect Fixing Effectiveness
Process/Sub-process: Coding / Defect Fixing
Goal: Improve defect fixing effectiveness.
Information Needs: What is the defect fixing effectiveness?
Measures: Defect Fixing Effectiveness, Number of Fixed Defects, Number of Defects.
Operational Definition of Measures:

Derived Measure Defect Fixing Effectiveness
Mnemonic DFE
Description Measure used to quantify the defect fixing effectiveness, which is given by the ratio

between the number of fixed defects and the number of detected defects.
Measurable
Entity

Defect Fixing Sub-process

Measurable
Property

Effectiveness

Scale Value Positive real numbers accurate to two decimal places.
Measurement
Unit

-

Formula DFE = (NFD / ND)
Measurement
Procedure

Calculate the defect fixing effectiveness using the formula for calculating the
measure, considering the same product (or portion of product) for both measures in
the formula.

Measurement
Periodicity

<<A frequency (e.g., weekly or biweekly) should be established for data collection.
The frequency should enable several measurements during the same project, so it is
possible to obtain the amount of data suitable for SPC. >>

Measurement
Responsible

<<Indicate the role responsible for collecting data for the measure. It is
recommended that the measurement responsible is the data provider >>

Measurement
Moment

<<Indicate the moment at which data collection and recording should be
performed. The moment of collection should be an activity of the project process or
an organizational process.>>

Measurement
Analysis
Procedure

For process behavior analysis (organizational context):
- Represent in control chart values collected for the measure in several projects.
- Obtain the process control limits and analyze the process behavior:

(i) If the values pass the stability tests, the process is deemed stable, and a baseline
can be established. Stability tests [Wheeler and Chambers 2010]: Test 1: There is
at least one point outside 3σ; Test 2: there are at least two out of three successive
points at the same side and more than 2σ from the central limit; Test 3: there are
at least four out of five successive points at the same side and more than 1σ from
the central limit; Test 4: There are at least eight successive points at the same side.
(ii) If the values do not pass the stability tests, the process is unstable. It is
necessary to investigate the special causes, identify corrective actions and execute
them.

Note: If there is a baseline already established for the process, it is necessary to
verify if a new baseline needs to be established. << Inform when a new baseline
should be established (e.g., frequency or criteria to be considered, such as the
range difference considering the previous baseline)>>
For quantitative project management (project context):
- Represent in control chart values collected for the measure in the project.
- Analyze the process behavior considering the organizational behavior expected
for it (i.e., using the process baseline as reference).

(i) If the values pass the stability tests considering the process baseline as a
reference, then the process behaves according to the behavior expected for it in
the organization.

 (ii) If the values do not pass the stability tests considering the process baseline as a
reference, then the process did not behave according to the behavior expected for it

 705

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

in the organization. It is necessary to investigate the causes, identify corrective
actions and execute them.

Analysis
Periodicity

<<Indicate the periodicity based on a time period (e.g., fortnightly) or on an
amount of new data collected (e.g., each four new values collected). Different
periodicities can be established to analyze data in the project and the organizational
contexts.>>

Analysis
Responsible

<<Indicate the role responsible for analyzing data collected for the measure>>

Analysis Moment <<Indicate the moment at which data analysis should be performed. The moment
of analysis should be an activity of the project process (to analyze data in the project
context) or data of an organizational process (to analyze data in the organizational
context).>>

Base Measure 1 Number of Fixed Defects
Mnemonic NFD
Description Measure which quantifies the number of defects fixed in a product.
Measurable
Entity

Defects Fixing Sub-process

Measurable
Property

Performance

Scale Value Positive real numbers.
Unit of
measurement

-

Measurement
Procedure

Obtain the number of detected defects that were fixed.

(…) (…)
Base Measure 2 Number of Defects
Mnemonic ND
Description Measure which quantifies the number of defects in a product.
Measurable
Entity

Software

Measurable
Property

Product quality

Scale Value Positive real numbers.
Unit of
measurement

-

Measurement
Procedure

Obtain the number of defects in the product.

(…) (…)
Related Patterns: Product Defect Density

Table A1: Description of the Defect Fixing Effectiveness Pattern

706

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

Appendix B

Defect Fixing Effectiveness

Name: Defect Fixing Effectiveness
Process/Sub-process: Coding / Defect Fixing
Goal: Improve defect fixing effectiveness.
Information Needs: What is the defect fixing effectiveness?
Measures: Defect Fixing Effectiveness, Number of Fixed Defects, Number of Defects.
Operational Definition of Measures:
Derived Measure Defect Fixing Effectiveness
Mnemonic DFE
Description Measure used to quantify the defect fixing effectiveness, which is given by the

ratio between the number of fixed defects and the number of detected defects.
Measurable
Entity

Defect Fixing Sub-process

Measurable
Property

Effectiveness

Scale Value Positive real numbers accurate to two decimal places.
Measurement
Unit

-

Formula DFE = (NFD / ND)
Measurement
Procedure

Calculate the defect fixing effectiveness using the formula for calculating the
measure, considering the same product (or portion of product) for both measures
in the formula.

Measurement
Periodicity

Weekly

Measurement
Responsible

Software Architect responsible for prioritizing bug fixing activities.

Measurement
Moment

Data collection must occur every Monday, considering the data available the
week before. Data collection must comprise all test executions performed in each
project the week before. The measurement data of each project must be available
before the project’s follow-up meeting, usually held every Monday afternoon. The
measurement data of all projects must be available before the organizational
measurement analysis meeting held on the first Wednesday of the month.

Measurement
Analysis
Procedure

For process behavior analysis (organizational context):
- Represent in control chart values collected for the measure in several projects.
- Obtain the process control limits and analyze the process behavior:

(i) If the values pass the stability tests, the process is deemed stable, and a
baseline can be established. Stability tests [Wheeler and Chambers 2010]: Test
1: There is at least one point outside 3σ; Test 2: there are at least two out of
three successive points at the same side and more than 2σ from the central limit;
Test 3: there are at least four out of five successive points at the same side and
more than 1σ from the central limit; Test 4: There are at least eight successive
points at the same side.
(ii) If the values do not pass the stability tests, the process is unstable. It is
necessary to investigate the special causes, identify corrective actions and
execute them.

Note: If there is a baseline already established for the process, it is necessary to
verify if a new baseline needs to be established. A new baseline can be established
at each three months.
For quantitative project management (project context):
- Represent in control chart values collected for the measure in the project.
- Analyze the process behavior considering the organizational behavior expected
for it (i.e., using the process baseline as reference).

(i) If the values pass the stability tests considering the process baseline as a
reference, then the process behaves according to the behavior expected for it in

 707

Brito D.F., Barcellos M.P., Santos G.: Pattern Language as Support to Software ...

the organization.
 (ii) If the values do not pass the stability tests considering the process baseline as
a reference, then the process did not behave according to the behavior expected
for it in the organization. It is necessary to investigate the causes, identify
corrective actions and execute them.

Analysis
Periodicity

Data analysis of each project must be performed weekly, every Monday.
Data analysis of the performance of all organization processes must be
performed every two months.

Analysis
Responsible

In the scope of each project, the Software Architect is responsible for prioritizing
bug fixing activities.
In the scope of the organization, the leader of the Software Process Expert Group
is responsible for analyzing the organizational performance of each process
suitable to SPC.

Analysis Moment Data analysis of each project must be performed before the project’s follow-up
meeting.
Data analysis of the performance of all organization processes must be
performed during the Software Process Expert Group meeting, held every two
months.

Base Measure 1 Number of Fixed Defects
Mnemonic NFD
Description Measure which quantifies the number of defects fixed in a product.
Measurable
Entity

Defects Fixing Sub-process

Measurable
Property

Performance

Scale Value Positive real numbers.
Unit of
measurement

-

Measurement
Procedure

Obtain the number of detected defects that were fixed.

(…) (…)
Base Measure 2 Number of Defects
Mnemonic ND
Description Measure which quantifies the number of defects in a product.
Measurable
Entity

Software

Measurable
Property

Product quality

Scale Value Positive real numbers.
Unit of
measurement

-

Measurement
Procedure

Obtain the number of defects in the product.

(…) (…)
Related Patterns: Product Defect Density

Table B1: Description of the Defect Fixing Effectiveness Pattern filled out by an SPC
consultant for a specific organization (information in italics was filled out by the

consultant when applying the pattern to create the measurement plan for the
organization)

