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Abstract: In 2018, Mikolov et al. [Mik+18] introduced the positional language model, which
has characteristics of attention-based neural machine translation models and which achieved
state-of-the-art performance on the intrinsic word analogy task. However, the positional model is
not practically fast and it has never been evaluated on qualitative criteria or extrinsic tasks. We
propose a constrained positional model, which adapts the sparse attention mechanism from neural
machine translation to improve the speed of the positional model. We evaluate the positional and
constrained positional models on three novel qualitative criteria and on language modeling. We
show that the positional and constrained positional models contain interpretable information about
the grammatical properties of words and outperform other shallow models on language modeling.
We also show that our constrained model outperforms the positional model on language modeling
and trains twice as fast.
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“Words do not mean, people do.” [Wri08]1 Introduction

Word representations of shallow log-bilinear language models (LBLs) such as word2vec
[Mik+13a; Mik+13b] and fastText [Boj+17] have found many applications in natural
language processing (NLP) including word similarity, word analogy, and language
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modeling [Boj+17; ASN21] as well as word sense disambiguation [CLS14; ASN21],
text classification [Kus+15; Nov+20a], semantic text similarity [CD17], and information
retrieval [Nov+20b, Section 4]. Recently, Devlin et al. [Dev+18] introduced the deep
attention-based language model BERT, which has redefined the state of the art for eleven
NLP tasks and turned LBLs to a baseline. Independently, Mikolov et al. [Mik+18] have
introduced the positional LBL, which resembles attention-based language models and
which has reached state-of-the-art performance on the intrinsic word analogy task.

Clark et al. [Cla+19] also showed that ensembling LBLs with BERT improves
performance on the dependency parsing task compared to either LBLs or BERT alone,
which has reinvigorated the fading interest in LBLs. Although surprising, the results
of Clark et al. [Cla+19] are supported by cognitive psychology: Kahneman [Kah11]
describes the human mind as an interplay of two systems: the fast, intuitive, and emotional
System 1, and the slow, effortful and logical System 2. Peters et al. [Pet+06] have shown
that systems 1 and 2 are mutually supportive and that System 1 adapts to new and more
challenging tasks by coaching System 2 to take over its more menial tasks. If we treat
Kahnemann’s systems 1 and 2 as a metaphor for LBLs and BERT, the results of Clark
et al. [Cla+19] seems natural.

In our paper, we describe the relationship between the attention mechanism and the
positional LBL of Mikolov et al. [Mik+18], and we propose our constrained positional
LBL that adapts the attention sparsification techniques of Dai et al. [Dai+19], Child et al.
[Chi+19], Beltagy, Peters, Cohan [BPC20], and Zaheer et al. [Zah+20] for LBLs. We
also develop three novel qualitative criteria, which we use to evaluate the positional and
constrained positional LBLs in addition to the extrinsic language modeling task.

The rest of our paper is structured as follows: In Section 2, we describe the dense and
sparse attention mechanisms, and we relate them to the positional LBL of Mikolov et al.
[Mik+18] and our proposed constrained positional LBL. In Section 3, we describe our
experimental setup and propose three novel qualitative evaluation measures. In Section 4,
we discuss the results of our experiments. We conclude in Section 5 by summarizing
our results and suggesting directions for future work.

2 Models

In this section, we describe the dense attention mechanism and we relate it to the
positional LBL. Additionally, we describe attention sparsification techniques and we use
them to develop our proposed constrained positional LBL.

2.1 Attention

In this section, we describe the purpose of attention in neural machine translation (NMT),
and we describe sparsification techniques that make attention computationally tractable.

2.1.1 Dense attention

Early neural machine translation used encoder-decoder models, where an encoder
recurrent neural network (RNN) would first read and encode a source sequence into a
fixed-length context vector and a decoder RNN would then produce a translated target
sequence from the context vector [SVL14; Cho+14b]. Due to the context vector’s fixed
length, translation performance would deteriorate for longer sequences [Cho+14a]. To
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enable the translation of longer source sequences, Bahdanau, Cho, Bengio [BCB16]
equipped the decoder with a dense attention mechanism. Instead of having a single
encoded vector for the entire source sequence, the dense attention would construct a
different context vector for each target word. Here, the context vector would be a weighted
average of the encoder’s hidden states, where the weights would be trained to relate
relevant source words to the target word.

Following the success of dense attention in NMT, Cheng, Dong, Lapata [CDL16]
proposed to use the dense attention mechanism directly in the long-short-term memory
(LSTM) cells of RNNs: Instead of computing the current memory and hidden state
using the previous memory and hidden state alone, the current memory and hidden
state would be computed as weighted averages of all previous memories and hidden
states. Dense attention would act as a random-access memory mechanism, enabling
the LSTM to recall long-range memories. Later, Vaswani et al. [Vas+17] proposed the
Transformer architecture, which successfully replaced recurrence by the vertical stacking
of dense attention, and which has been shown to be a Turing-complete [PMB19] universal
approximator [Yun+20].

2.1.2 Sparse attention

Since the dense attention mechanism learns weights for all pairs of source and target
words, its space complexity is O(n2) in the source sequence length. Several sparse
attention architectures have been proposed in literature to enable the translation of longer
source sequences by making the space complexity O(n).

Child et al. [Chi+19] proposed the Sparse Transformer architecture, which factorized
the dense attention using p separate attention heads to learn onlyO(n · p

√
n)weights. They

showed that the resulting model could use larger context sizes and achieved significantly
better results than Transformers on density modeling tasks.

Following the success of Sparse Transformers, Beltagy, Peters, Cohan [BPC20]
proposed the Longformer architecture, which reduced the number of attention weights
to O(n) and achieved significantly better results than Transformers on multiple long
document tasks including question answering, coreference resolution, and classification.

Finally, Zaheer et al. [Zah+20] proposed the BigBird architecture. Like Longformers,
BigBird also used O(n) weights. Unlike Longformers, BigBird has been shown to be a
Turing-complete universal approximator. Although attention enabled the recollection of
long-range memories, sparse attention made it computationally tractable to do so.

2.2 Log-bilinear language models

In this section, we propose our constrained positional model that learns word repre-
sentations while taking into account morphology and the mutual positions of words.
When modeling positions of words, we only use a sparse subset of word vector features,
following the hypothesis of Bach [Bac12] that only a fraction of a word’s meaning
depends on the narrow context of a paragraph, whereas the rest of its meaning is either
fixed or depends on a broader context.

We first present the general word2vec model of Mikolov et al. [Mik+13a] andMikolov
et al. [Mik+13b], followed by the subword fastText model of Bojanowski et al. [Boj+17],
and the positional model of Mikolov et al. [Mik+18]. Finally, we propose our constrained
positional model together with its theoretical foundations, computational benefits, and its
close relation to the sparse attention mechanism described in Section 2.1.2.



184 Novotný V., Štefánik M., Ayetiran E.F., Sojka P., Řehůřek R.: When FastText Pays . . .

2.2.1 General model

Mikolov et al. [Mik+13a] introduced the continuous bag of words (CBOW) model,
which learns word representations by predicting a masked word wt from its context
Ct = wt−c, . . . , wt−1, wt+1, . . . , wt+c, where c is window size and w1, . . . , wT is the
training corpus:

argmin
θ

[
L(θ) = −

T∑
t=1

log Pr(wt | Ct;θ)
]
. (1)

To estimate Pr(wt | Ct), Mikolov et al. [Mik+13b] used a simplified variant of the noise
contrastive approximation [GH12], which they called negative sampling:

Pr(wt |Ct)=σ(s(wt, Ct))
∏

n∈NCt

σ(−s(n,Ct)), (2)

where σ is the logistic function x 7→ 1/1+e−x, NCt
is a set of negative examples n for

context Ct, and s(wt, Ct) is a scoring function that measures how well the masked word
wt matches the context Ct:

s(wt, Ct) = u
T
Ct
· vwt ,uCt =

1

|Ct|
∑
w∈Ct

uw. (3)

Here, uw ∈ RD is the input vector of the context word w, vwt
∈ RD is the output vector

of the masked word wt, uCt is the context vector and D is the number of word vector
features, which is usually in the low hundreds.

Li [Li92] has shown that if we order wordsw(i) by their decreasing relative frequencies
fw(i)

in a corpus, then fw(i)
exhibits a power law:

fw(i)
=

c

iα
, where c ≈ 0.1 and α ≈ 1. (4)

This law, originally proposed for English by Zipf [Zip32], shows that most words in our
training corpus will only represent a small subset of our vocabulary. By the end of the
training, CBOW will have overfit the input and output vectors of the few most frequent
words, whereas it will have underfit the input and output vectors of most other words.

To equalize the number of training samples for vocabulary words, Mikolov et al.
[Mik+13b] discard corpus words with the following probability:

Prdiscard(wt) = max
(
0, 1−

√
r
fwt

)
, (5)

where the low-pass threshold r ensures that rare words wt with fwt
≤ r are never

discarded.

2.2.2 Subword model

The CBOW model only learns representations for words that are present in the training
corpus. Additionally, vectors for different inflectional forms of a word share no weights,
which delays training convergence for morphologically rich languages.
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mew bark

unlike₁

dogs₂
cats₃

mew bark

dogs₃
cats₂

Figure 1: The subword (left) and positional (right) models with their input (blue), context
(orange), and output (green) vectors for the sentences “Unlike dogs, cats 〈masked

word〉.” and “Unlike cats, dogs 〈masked word〉.” with two masked words: mew and bark.

In response, Bojanowski et al. [Boj+17] have extended CBOW by modeling subwords
instead of words: The input vector uw for a word w become a sum of the input vectors
ug for the subwords g ∈ Gw of w:

uw =
∑
g∈Gw

ug. (6)

2.2.3 Positional model
In many sentences, the position of context words influences their syntactic function,
which is important for predicting the masked word. Consider the following two sentences,
which produce an identical context vector uCt despite the different masked words:
1. Unlike dogs, cats 〈masked word〉. 2. Unlike cats, dogs 〈masked word〉.
If the context Ct is large, distant words only introduce noise to the context vector uCt .

To better adapt to these situations, we would like to have separate input vectors uw,p
for different positions p ∈ P of a context word w:

uCt =
1

|P |
∑
p∈P

uwt+p,p. (7)

See also Figure 1. Since this would increase the size of the vocabulary by a factor of
|P | = 2c, Mikolov et al. [Mik+18] proposed the positional weighting:

uwt+p,p = uwt+p
� dp, (8)

Here,dp ∈ RD′ , p ∈ P are positional vectorswithD′ = D features and� : RD×RD →
RD is the Hadamard vector product.

Technically, the positional model may seem different from dense attention: Positional
vectors change the input vectors of context words, so that the vectors better reflect the
relationship between the masked word and the context words given their relative positions.
In contrast, dense attention relates each target word in the translated sequence to relevant
context words in the source sentence. However, they both serve the same purpose: to
make the context vector for a given masked/target word more meaningful.

Compared to the subword model, the positional model more than doubles the training
time, since we need to compute the Hadamard product and for each gradient update of
an input vector uw ∈ RD, we also need to update the weights of a positional vector
dp ∈ RD. The model can benefit from larger contexts Ct, but the training time scales
linearly with the context window size c, which makes the model even more expensive.
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Mikolov et al. [Mik+18] used the positional model to improve the state-of-the-art
accuracy on the English word analogy task by 5%. This demonstrates the importance of
relating different positions of a sentence when creating its representation.

2.2.4 Constrained positional model

According to the hypothesis of Bach [Bac12], the meaning of most words is partially
fixed and partially dependent on the narrow context of a paragraph as well as the broader
context that includes the conversational setting, the time and location of an utterance,
and salient common ground, which may or may not be captured in the text:

To hold that certain terms are context sensitive is not to deny that they have
dictionary meanings. The claim is not that their meanings vary with the context.
It is that their (standing) meanings determine their contents as a function of
contexts of their use. After all, we wouldn’t look words up in the dictionary if they
didn’t have (fairly) stable meanings. [...] Indeed, two different kinds of context
are involved. Narrow context consists of matters of objective fact to which
the determination of the semantic contents of certain expressions are sensitive.
Broad context is the conversational setting, the mutual cognitive context or
salient common ground. It includes the current state of the conversation (what
has just been said, what has just been referred to, etc.), the physical situation (if
the parties are face to face), salient personal knowledge, and relevant broader
common knowledge.

For example, consider the following sentence:
– Fruit flies like 〈masked word〉.

The sentence admits at least two interpretations:
1. what a fly likes (adj-noun-verb-〈mask〉), 2. how fruit flies (noun-verb-prep-〈mask〉).
Some masked words, such as “moisture”, satisfy only the first interpretation. Others,
such as “a vegetable”, satisfy both interpretations.

Let us now rearrange the sentence as follows:
– 〈Masked word〉 flies like fruit.

The rearranged sentence only admits the second interpretation. The masked words still
include “a vegetable” but no longer “moisture”.

To better adapt to these situations, context vectors uCt
should contain two types of

features:
1. D′ narrow-context-dependent features that take the positions of context words into

account and inhibit the prediction of moisture in the rearranged sentence, and
2. D −D′ fixed and broader-context-dependent features that disregard the positions of

context words and encourage the prediction of “a vegetable” in both sentences.
Since CBOWdoes not model the broader context, we cannot distinguish between fixed and
broader-context-dependent features. However, we can reduce broader-context-dependence
with diachronic CBOW [Yao+18].

In the positional model, D = D′. Therefore, no word vector features are either
fixed or broader-context-dependent. To represent the parts of a word’s meaning that
are fixed or dependent on the broader context, we propose to constrain the number of
positionally-dependent features as follows:

0 < D′ � D. (9)
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We define the constrained Hadamard vector product � : RD × RD′ → RD, D′ < D:

uwt+p
� dp = uwt+p

� [dp

D−D′ times︷ ︸︸ ︷
1 1 . . . 1]. (10)

When D′ is small, the constrained positional model can reach the speed of the
subword model while modeling both the fixed and the context-dependent parts of a
word’s meaning. The model can benefit from larger contexts Ct without making the
computational complexity of training impractical, which is also the purpose of the sparse
attention mechanism.

3 Experimental setup
In this section, we describe our baseline, the initialization of weights, the hyperparameter
and parameter optimization, the qualitative evaluation measures, the extrinsic NLP tasks
used for performance estimation, and our training corpora.

3.1 Baseline
In our experiments, we compare our constrained positional model against the subword
and positional models described in Section 2.2. For the subword model, we use the
implementation in Gensim 3.8.3 [ŘS10]. Since no public implementation of the positional
model exists, we release our own implementation as a free open-source software library.1

3.2 Initialization
For the general model, we follow the implementation of Bojanowski et al. [Boj+17] and
we initialize the features ui of the input word vectors uw as i.i.d. r.v.’s with continuous
uniform distribution:

uw = (u1, . . . , uD), ui ∼ U
(
± 1

D

)
. (11)

We initialize the output word vectors vwt
to zero. For the subword model, we initialize

the input subword vectors ug as in (11) and we also initialize the output subword vectors
vg to zero.

For the positional model, Mikolov et al. [Mik+18] do not describe the initialization
of either the input subword vectors ug or the positional vectors dp. Since no public
implementation exists either, we initialize the features ui of ug and the features dj of dp
as i.i.d. r.v.’s with the square-root normal distribution N 0.5(µ, σ2) of Pinelis [Pin18]:

ug = (u1, . . . , uD),dp = (d1, . . . , dD′),

ui ∼ dj ∼ N 0.5(µ, σ2), µ = 0, σ2 =
1

3D2
.

(12)

See also Appendix A, where we show two other initialization options for the positional
model, discuss their properties, and show their practical effect on the training of the model.

For the constrained positional model, we initialize the first D′ features of ug and dp
as in (12) and the other D −D′ features of ug and dp as in (11).
1 https://github.com/MIR-MU/pine

https://github.com/MIR-MU/pine
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3.3 Optimization

In this section, we describe which hyperparameters of the subword, positional, and con-
strained positional models we set according to previous work and which hyperparameters
we optimized using the English word analogy task. We also describe how we train the
model parameters θ.

3.3.1 Hyperparameters

For the subword, positional, and constrained positional models, we use the following hy-
perparameter values of Mikolov et al. [Mik+18], which give state-of-the-art performance
on the English word analogy task: We store subwords of size 3–6 in a vocabulary backed
by a hash table with bucket size 2 · 106. We discard words with less than 5 occurrences in
the corpus and we equalize the number of training samples with the low-pass threshold
r = 10−5. We use D = 300 features in the input and output subword vectors. For the
negative sampling loss, we use |NCt | = 10 negative samples. For the backpropagation
of the loss function L, we use the initial learning rate γ0 = 0.05.

For the subword, positional, and constrained positional models, we optimize the
context window size c, because unlike the subword model, the positional model should
benefit from larger contexts. For the constrained positional model, we optimize the
number of positional features D′ to find the proper ratio between the fixed, narrow-
context-dependent, and broader-context-dependent parts of a word’s meaning. To find
the optimal hyperparameter values, we maximize a model’s accuracy on the English
word analogy task [Mik+13b] using Sequential Model-Based Optimization with the
Tree-structured Parzen Estimator. Like Grave et al. [Gra+18], we restrict the vocabulary
for word analogies to the 2 · 105 most frequent words in the training corpus.

3.3.2 Parameters

Following Bojanowski et al. [Boj+17], we optimize the model’s parameters θ by stochas-
tic gradient descent over one epoch with the loss function L(θ) presented in (1) and with
a linear decay of the learning rate γt from γ0 to zero:

γt = γ0 ·
(
1− t

T

)
. (13)

We optimize the parameters in parallel using the HogWild lock-free approach of Recht
et al. [Rec+11] with 8 Intel Xeon X7560 2.26GHz CPU cores. Since the optimization
problem (1) is not sparse w.r.t. the positional vectors dp, most of which are updated at each
training step, HogWild is less appropriate for the positional and constrained positional
models than for the general and subword models. For all models, we report training times.

3.4 Qualitative evaluation

In this section, we propose qualitative evaluation measures, which we use to show the
properties of the positional and constrained positional models. See also Appendix B,
where we show how our proposed measures relate to the conditional probability Pr(wt |
Ct) from (2).
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3.4.1 Masked word prediction

For the example sentences Ct of the positional and constrained positional models from
Section 2.2, we show masked words wt in the descending order of the conditional
probabilities Pr(wt | Ct) from (2).

3.4.2 Importance of positions

For each position p, we show the min-max-scaled `2-norm ‖dp‖ of the positional vector
dp, which measures the importance of position p for predicting masked words.

Additionally, we cluster the D′ features dp,j of the positional vectors dp. For each
cluster J and a position p, we show the mean absolute value 1/|J| ·

∑
j∈J |dp,j |, which

measures the importance of position p according to cluster J .

3.4.3 Importance of context words

For clusters J and context words w, we use the mean absolute value 1/|J| ·
∑
j∈J |uw,j |

to measure the importance of context words w using cluster J , where uw,j are the
features of the input vector uw for w. For each cluster J , we show context words whose
importance is maximized by J .

3.5 Performance estimation

In this section, we describe the extrinsic language modeling task, which we used to
estimate the performance of the input word vectors uw produced by the subword,
positional, and constrained positional models.

3.5.1 Language modeling

For language modeling, we use a recurrent neural network (RNN) with the following
architecture:
1. an input layer mapping a vocabulary V of words w to their frozen input vectors uw,
2. two hidden layers with D = 300 LSTM units,
3. a fully-connected linear layer of size |V |, and
4. a softmax output layer that computes a probability distribution over the vocabulary
V using tied weights [IKS17].
We evaluate our language model on the English datasets2 introduced by Botha,

Blunsom [BB14] and we report the validation and test perplexities. We use the same
preprocessing and data splits as Botha, Blunsom [BB14].

To train the RNN, we use stochastic gradient descent over 50 epochs, negative
log-likelihood loss, dropout 0.5, batch size 40, and an initial learning rate 20 that is
divided by 4 after each epoch with no decrease of validation loss. We clip gradients with
`2-norm above 0.25.
2 http://bothameister.github.io/

http://bothameister.github.io/
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Figure 2: Word analogy accuracy of the subword and positional models trained with
different context window sizes c.

3.6 Datasets

For hyperparameter optimization, parameter optimization, qualitative evaluation, and
performance estimation, we use the 2017 English Wikipedia dataset3 over a single epoch
as our training corpus. The dataset contains 14.3GiB of raw text.

We preprocess our dataset by lower-casing and by tokenizing to longest sequences
of Unicode characters with the word property. After tokenization, our dataset contains
2,423,655,228 words.

4 Results

In this section, we show and discuss the results of hyperparameter and parameter
optimization, qualitative evaluation, and performance estimation.

4.1 Optimization

Table 1 shows that the positional and constrained positional models benefit from larger
contexts compared to the subword model. This is further evidenced by Figure 2, which
shows that the accuracy of the subword model steadily declines as the window size
increases, whereas the positional model can cope with window sizes up to 40.

Table 1 also shows that the reduction of positional dimensionality D′ halves the
training time of the constrained positional model compared to the positional model.
Figure 3 shows that the reduction of positional dimensionality also improves the accuracy
of the constrained positional model compared to the positional model.
3 https://github.com/RaRe-Technologies/gensim-data (release wiki-english-20171001)

Model c D′ Training Time
Subword 5 1 hour and 11 minutes
Positional 15 300 4 hours and 12 minutes
Constrained positional 15 60 2 hours and 5 minutes

Table 1: The optimal context window sizes c and numbers of positional features D′, and
training times in hours for the subword, positional, and constrained positional models.

https://github.com/RaRe-Technologies/gensim-data
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Figure 3: Word analogy accuracy of the constrained positional model trained with

different numbers of positional features D′.

4.2 Masked word prediction

Table 2 shows that the positional model predicts:

Pr(mew | C1
t ) > Pr(bark | C1

t ), (14)
Pr(mew | C2

t ) < Pr(bark | C2
t ). (15)

This matches our expectations and indicates that the model’s context vectors contain
narrow-context-dependent features that take the positions of context words “dogs” and
“cats” into account.

Table 2 also shows that the constrained positional model predicts:

Pr(moisture | C3
t ) > Pr(moisture | C4

t ), (16)
Pr(vegetable | C3

t ) ≈ Pr(vegetable | C4
t ). (17)

This indicates that the model contains not only narrow-context-dependent features that
take the position of “moisture” into account, but also fixed and broader-context-dependent
features that disregard the position of “a vegetable”.

4.3 Importance of positions and context words

Figure 4 shows that in the positional and constrained positional models, the importance
of positions p ∈ [−2; 2] sharply decreases with their distance from the masked word.
This shows that one of the basic functions of positional weighting is the attenuation of
distant context words.

In the positional model, the importance of positions p 6∈ [−2; 2] increases with their
distance from the masked word and even exceeds the importance of position p = −2 in
the distant left context p < −12. In the constrained positional model, the importance
of positions p 6∈ [−2; 2] is almost constant. Below, we will explain the cause of this
difference using cluster analysis.

Figure 5 shows that in the positional model, the features of positional vectors fall
into three main clusters: The two smaller clusters, which we call antepositional and
postpositional, and the bigger cluster, which is missing from the constrained positional
model and which we call informational.

The antepositional and postpositional features increase the importance of positions p in
anteposition (−2,−1) and in postposition (1, 2) of the masked word, respectively. Context
words whose importance is maximized by antepositional features include “in”, “for”, and
“coca”. Context words whose importance is maximized by postpositional features include
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C1
t = “Unlike dogs, C2

t = “Unlike cats,
cats 〈masked word〉.” dogs 〈masked word〉.”

# Prediction # Prediction
1 cats 1 kennels
2 spayed 2 cats
3 kennels 3 puppies
... ...1820 mew (100%)
... 4065 bark (99.9%)

5581 bark (99.7%)
...

... 5623 mew (99.8%)

(a) Positional model

C3
t = “Fruit flies C4

t = “〈Masked
like 〈masked word〉.” word〉 flies like fruit.”

# Prediction # Prediction
1 fruit 1 fruit
2 flies 2 insects
3 insects 3 flies
... ...246 vegetable (99.9%)
... 259 vegetable (99.9%)

9036 moisture (69.6%)
...

... 33465 moisture (42.8%)

(b) Constrained positional model

Table 2: Masked words wt predicted by the positional and constrained positional models
for four example sentences. For selected words, we also show the conditional probability

P (wt | Ct) in parentheses.

−15 −12 −2 0 2 15

Position p

0.0

0.1

0.5
1.0

[0
;1

]-
sc

al
ed
‖d
p
‖

Positional
Constrained

Figure 4: The importance of different positions p for predicting masked words in the
positional and constrained positional models.

“ago”, “else”, and “cola”. The number of antepositional and postpositional features in
the positional model is 76, which is close to the D′ = 60 positional features selected for
the constrained positional model by hyperparameter optimization. This indicates that the
highest task performance is reached when only antepositional and postpositional features
remain.

The informational features increase the importance of positions p 6∈ [−2; 2]. Levy,
Goldberg [LG14] showed that context words with large input vectors have high self-
information. We believe that the purpose of informational features is to amplify distant
self-informational context words that indicate the general topic of a sentence. Context
words whose importance is maximized by informational features include “finance”,
“sports”, and “politics”. In the constrained positional model, informational features dp,j
are effectively replaced by ones, which is close to what the positional model has learnt.

4.4 Language modeling

Figure 6 shows that the positional and constrained positional models consistently
outperform the subword model during the training of RNN language models. Figure 6
also shows that RNN language models have converged and that training for more epochs
would not have improved their perplexity.
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Figure 5: The importance of different positions p for predicting masked words in the
positional (top) and constrained positional (bottom) models according to different

clusters J of positional features. For each cluster J , we show its size |J | in parentheses.
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Figure 6: Validation perplexities at different epochs of RNN language models that use
subword, positional, and constrained positional models as their lookup tables.

Table 3 shows that the constrained positional model produces word vectors that are
better suited for initializing the lookup tables of RNN language models than the subword
and positional models.

5 Conclusion and future work

In our work, we have related the attention mechanism from NMT to the positional
language model of Mikolov et al. [Mik+18] and adapted the attention sparsification
techniques of Zaheer et al. [Zah+20] to develop our constrained positional model.

Subword Positional Constrained positional
Test perplexity 360.91 347.52 343.13

Table 3: Test perplexities of RNN language models that use subword, positional, and
constrained positional models as lookup tables. Best result is emphasized.
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We have shown that our constrained positional model is 2× faster to train and more
accurate at modeling English than the positional model. Future work should focus at the
quantitative evaluation on language modeling in languages other than English and on
other extrinsic NLP tasks, both alone and together with deep language models.

Furthermore, we have developed three novel qualitative evaluation measures and
we used them to show that the positional vectors in English positional and constrained
positional models serves two distinct roles: They allow the use of larger context sizes
and they determine the grammatical properties of words. Future work should investigate
the role of positional vectors in languages other than English.
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A Initialization of the positional model
In this appendix, we expand on Section 3.2 by describing three initialization options for
the positional model. We discuss the properties of the initialization options and their
practical effect on the training of the model.

A.1 Identity positions and vanilla subwords
To keep the effective learning rate of the positional model the same as in the subword
model, it is sufficient to keep the distribution of the context vector uCt

the same as in
the subword model. To achieve this, we initialize the input subword vectors ug as in (11)
and the positional vectors dp to one. Intuitively, the training starts with no positional
weighting and the positional vectors are learnt later. In practice, dp � ug, causing the
gradient ∇ug

L to explode for D > 600 soon after the training has begun. This leads to
numerical instability and the model parameters θ tend to NaN as the training continues.

A.2 Positions same as vanilla subwords
The simplest option is to initialize both the input subword vectors ug and the positional
vectors dp as in (11). In practice, this decreases the variance of the context vector uCt in
the positional model compared to the subword model:

Var
[ 1

|Ct|
∑
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g∈Gw
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]
=

1

|Ct|2
∑
w∈Ct
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(
Var[ug � dp] = E

[
u2
g

]
� E

[
d2p
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.

See also Figure 7. The decrease in Var[uCt
] decreases Var[∇L] and therefore it also

decreases the effective learning rate of the positional model. As D increases, the context
vector uCt

quickly tends to zero due to Var[ug � dp] = 1/9D4.
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or

Figure 7: Probability densities of feature values in the input subword vectors ug , the
positional vectors dp, and their product ug � dp with the positions same as vanilla
subwords initialization to U(±1/D), D = 1. Since Var[ug]� Var[ug � dp], the

effective learning rate of the positional model is smaller than in the subword model.

or

Figure 8: Probability densities of feature values in the input subword vectors ug , the
positional vectors dp, and their product ug � dp with the initialization to
U0.5(0, a), a = 2. For our use, we would need U0.5(±1/D) instead.

or

Figure 9: Probability densities of feature values in the input subword vectors ug , the
positional vectors dp, and their product ug � dp with the positions same as subwords
initialization to the square-root normal distribution N 0.5(0, σ2), σ2 = 1/3D2, D = 1.
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Figure 10: The variances Vark[ug � dp] for the feature values in the product ug � dp
of the input subword vectors ug and the positional vectors dp with the initialization to
the square-root normal distribution N 0.5(0, σ2), when we approximate the infinite

sequence (an)∞n=0 in the definition of N 0.5 by first k + 1 elements (an)kn=0.

A.3 Positions same as subwords

To keep the effective learning rate of the positional model the same as in the subword
model and to avoid exploding gradients, it is sufficient to keep the distribution of the
context vector uCt

the same as in the subword model and to initialize both the input
subword vectors ug and the positional vectors dp from the same distribution. We could
achieve this by initializing the features ui of ug and the features dj of dp as i.i.d. r.v.’s
with the square-root distribution U0.5(±1/D) such that ui · dj ∼ U(±1/D). Although an
approximation of U0.5(0, a) using the β-distribution is known [Rav18], see Figure 8, it
does not extend to U0.5(±1/D), so we need another approach.

Assuming the context Ct is sufficiently large, then by the central limit theorem, the
features of the context vector uCt in the subword model have the normal distribution
N (µ, σ

2
/|Ct|), where µ=E[U(±1/D)]=0, σ2=Var[U(±1/D)]= 1/3D2. To achieve the

same distribution with the positional model, we initialize the features ui of ug and
the features dj of dp as i.i.d. r.v.’s with some continuous distribution X such that
E[ui · dj ] = µ and Var[ui · dj ] = σ2. In our initialization, we use as X the square-root
normal distributionN 0.5(µ, σ2) of Pinelis [Pin18], see Figure 9. The continuous uniform
U(± 4√3/

√
D) is also an option.

The definition of N 0.5 by Pinelis [Pin18] contains an infinite sequence (an)∞n=0:

N 0.5(µ, σ2) = ε ·e
∑∞

n=0 an ·
√
σ+
√
µ, an =

1

4
· ln
(
1+

1

max(1, n)

)
− Gn

2n+ 1
, (19)

where (Gn)∞n=0 are i.i.d. r.v.’s with Gamma(1/2, 1) distribution and ε is a Rademacher
r.v. independent of all Gn. Since limn→∞ an = 0, we can approximate

∑∞
n=0 an by its

first k + 1 elements, but we need guarantees about E[ui · dj ] and Var[ui · dj ]. We can
see that E[ui · dj ] = µ for any k:

E[ui] = E[dj ] = E[ε] · E
[
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· E[
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σ] + E[
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µ] = 0 · E
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e
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· E[
√
σ] +

√
µ =
√
µ,E[ui · dj ] = E[ui] · E[dj ] = (

√
µ)2 = µ. (20)
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We will denote the variance for a given k as Vark:

Vark[ui] = Vark[dj ] = Var
[
ε · e

∑k
n=0 an ·

√
σ +
√
µ
]

=
( k∏
n=0

E[ean ]2 + Var
[ k∏
n=0

ean
])
· σ,

Vark[ui · dj ] = 2µ · Vark[ui] + Vark[ui]2.

(21)

In our initialization, we approximate
∑∞
n=0 an by

∑k
n=0 an, k = 9. As we show in

Figure 10, this guarantees E[ui · dj ] = µ, Var[ui·dj ]/σ2 ∈ (0.95; 1].

B Qualitative evaluation measures

In this appendix, we expand on Section 3.4 by showing how the proposed qualitative
evaluation measures relate to the conditional probability Pr(wt | Ct) from (2). For a
fixed set of negative samples NCt , Pr(wt | Ct) is a strictly increasing transformation of
the scoring function s(wt, Ct) from (3). Without loss of generality, our proofs will focus
on s(wt, Ct) rather than on Pr(wt | Ct).

B.1 Importance of positions

All else being constant, the `2-norm ‖dp‖ is an asymptotic upper bound on |s(wt, Ct)|:

|s(wt, Ct)| = |uTCt
· vwt

| = 1

|P |
· |(uwt+p

� dp)Tvwt
+ . . . | (22)

≤ 1

|P |
· (‖uwt+p‖ · ‖dp‖ · ‖vwt‖+ ‖ . . . ‖), |s(wt, Ct)| ∈ O(‖dp‖).

All else being constant,
∑
j∈J |dp,j | is also an asymptotic upper bound on |s(wt, Ct)|:

|s(wt, Ct)| = |uTCt
· vwt | =

1

|P |
·
∣∣∣∑
j∈J

uwt+p,j · dp,j · vwt,j + . . .
∣∣∣ (23)

≤ 1

|P |
·
(∑
j∈J
|uwt+p,j | · |dp,j | · |vwt,j |+ | . . . |

)
, |s(wt, Ct)| ∈ O

(∑
j∈J
|dp,j |

)
,

where uwt+p,j are features of the input vectoruwt+p
for the context wordwt+p at position

p and vwt,j are features of the output vector vwt
for the masked word wt.

B.2 Importance of context words

All else being constant,
∑
j∈J |uw,j | is an asymptotic upper bound on the expected

absolute difference E|s(wt, Ct) − s(wt, C ′t)| for a fixed context word w and random-
valued masked words wt and contexts Ct, C ′t, where w is at position p1 in Ct and at
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position p2 in C ′t:

E|s(wt, Ct)− s(wt, C ′t)|

=
1

|P |
·
∑

wt,Ct,C′t

∣∣∣∑
j∈J

uw,j · (dp1,j − dp2,j) · vwt,j + . . .
∣∣∣ · Pr(wt, Ct, C ′t)

≤ 1

|P |
·
∑

wt,Ct,C
′
t

j∈J

|uw,j | · |(dp1,j−dp2,j) ·vwt,j | ·Pr(wt, Ct, C ′t)+ | . . . | ·Pr(wt, Ct, C ′t),

E|s(wt, Ct)−s(wt, C ′t)| ∈ O
(∑
j∈J
|uw,j |

)
. (24)
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