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Abstract: In today’s competitive business environments, organizations increasingly need to

model and deploy flexible and cost effective business processes. In this context, configurable

process models are used to offer flexibility by representing process variants in a generic manner.

Hence, the behavior of similar variants is grouped in a single model holding configurable elements.

Such elements are then customized and configured depending on specific needs. However, the

decision to configure an element may be incorrect leading to critical behavioral errors. Recently,

process configuration has been extended to include Cloud resources allocation, to meet the need

of business scalability by allowing access to on-demand IT resources. In this work, we propose

a formal model based on propositional satisfiability formula allowing to find correct elements

configuration including resources allocation ones. In addition, we propose to select optimal con-

figurations based on Cloud resources cost. This approach allows to provide the designers with

correct and cost-effective configuration decisions.
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1 Introduction

Configurable business process models offer the possibility of representing similar pro-
cesses with common and variable components. Thanks to this flexibility, companies
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dispose increasingly of a wide range of design options. These options are easily created
by altering values of variable components. These variable components, namely config-
urable elements, can be configured as per the organizational specific requirements within
each company. For instance, to produce variants of the same group of business process
models, the process designer has the possibility to select components to integrate in the
model and skip components that are deemed irrelevant.

Running a business process within a company implies taking into consideration
underlying exploitation costs mainly virtual resources. On-demand cloud computing
solutions were conceived to offer companies flexible and highly available and scalable
infrastructures, therefore allowing control over induced business turnover. In this context,
two issues arise: (i) the configurable elements may have many configuration options with
complex interdependencies between them. Undertaking the task of correctly deciding
and applying manually the correct configuration is a tedious and a highly error-prone
exercise. Correct configuration is defined here as the set of options selected that generate
a process variant that runs without structural and execution errors.(ii) Deciding which
cloud resource description is optimal for a certain business process relies on a number of
considerations amongst which : the particular need of the process in order to be efficient
and available during execution-which depends mainly on the structure of the variant
process, the price offer of the cloud solution, and other constraints that would steer the
optimization.

Hence, a mathematical model is needed to formulate the optimization problem.
Previous research has addressed these two issues from various angles, e.g., [Rosemann
and Van der Aalst 2007, Recker et al. 2005, Hallerbach et al. 2010, Kumar and Yao
2012] tackle the complexity of the design phase of a process model, while in [GröNer et
al. 2013, Assy and Gaaloul 2016, Asadi et al. 2014, La Rosa et al. 2009], authors suggest
guiding configuration and supporting domain-based constraints. Some other approaches
are more concerned about ensuring the correctness of the configuration as in [van der
Aalst et al. 2010, Hallerbach et al. 2009]. In overall, these approaches suffer from the
state space explosion problem and forsake the costs incurred by BP deployment and the
configuration of the required resources of this deployment.

In this paper, we use the satisfiability problem (SAT) to address these issues by
improving the efficiency of business processes configuration and properly identify
the cloud resources requirements. During the last two decades, SAT has undergone
a very important development in terms of SAT (propositional satisfiability) solvers.
These solvers consist in deciding whether a formula is satisfiable or not. Research in
this area has led to the advent of modern SAT solvers capable of solving problems
containing millions of variables. This resolution efficiency allowed this technology to
be exported to other application areas. Indeed, several problems arising from classic
planning, cryptography, product configuration, etc. were encoded to SAT. Thanks to the
advance in SAT resolution, SAT solvers are recently becoming the tool for tackling more
and more practical problems. SAT considers Boolean function to study truth assignments
(assignments of 0 or 1 to variables where the value 1 means a statement is true). Several
works employed SAT in a number of applications to solve domain specific problems
and hence obtained interesting results.

In our previous work [Ait Wakrime et al. 2019], we proposed a translation rules of a
configurable business process into a SAT model to generate all correct configurations.
This translation allows to formalize the different configurable and non-configurable
connectors of business processes to the corresponding SAT formulas. Thereafter, the
minimalistic SAT solver Minisat is used to generate all models that represent all correct
configurations. The present work proposes an extension of [Ait Wakrime et al. 2019].
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We analyze and verify the configurable business process models and we optimize the
cost of deploying these processes in a cloud environment. The proposed optimization
yields the best cloud resource configuration that best fits tenants’ requirements while
minimizing the global cost. To achieve this purpose, we define a model that supports
configurable business process (control-flow) and cloud resource allocation (resource-
flow). Our model is based on a SAT-based formal approach, exactly on Weighted
Partial MinSAT (WPMinSAT), that allows to generate all correct configurations of
a configurable process model including the required cloud resources. These correct
options help and assist the process designer to easily identify correct process variants. In
addition, our approach allows to select the optimal cloud resource configuration. This
optimization helps the process designer to select the configuration having the minimum
price. Practically, we use WPMinSAT that is an optimized version of a SAT problem that
has been proved to efficiently solve many combinatorial optimization problems. We also
provide a set of translation rules that translate a configurable business process into SAT
and WPMinSAT based models. These rules are implemented as a Java application that
takes as input an XML document exported from Signavio Process Manager Tool. We
applied our approach on a simplified example of supply chain business process model.

The rest of the paper is structured as follows. In Section 2, an example of configurable
process model including Cloud resources is presented as well as some preliminaries
about configurable business process and propositional satisfiability. Section 3 illustrates
our formalization of process configuration elements. In Section 4, based on an algorithm,
our approach is presented to find the correct and optimal process configuration. The
approach validation is depicted in Section 5. We present the related work in Section 6.
Finally, we conclude and provide insights for future work.

2 Motivating Example and Background

In this section, we present first a motivating example that presents and illustrates our
approach. Second, we review the basic notions of propositional satisfiability. Finally, we
introduce the Weighted Partial MinSAT problem.

2.1 Motivating Example: Configurable Business Process

In Figure 1, we present a simplified example of a configurable process model designed
by a process provider. It is a supply chain process model illustrating different steps
from the product purchasing to payment, processing, distributing products and the mon-
itoring of their condition and quality. The process is modeled using the Configurable
Business Process Model and Notation (C-BPMN) [Assy 2015, Hallerbach et al. 2010], a
configurable extension to BPMN1.

In a BP, the control-flow perspective describes activities and their execution ordering
through different constructors, which permit its execution [Kiepuszewski et al. 2003].
In this work, we consider four main control-flow elements: activity (represented with a
rectangle), edge (represented with arrows), event (represented with a circle) and connec-
tor (represented with a diamond). Three main connectors are used to model the splits
(e.g. s1) and the joins (e.g. j1): OR (©), exclusive OR (×) and AND (+). The resource
flow perspective describes the different resources required to execute activities in a BP.
These resources are offered by cloud providers and they can include computers as virtual

1 BPMN 2.0 specification: http://www.omg.org/spec/BPMN/2.0
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Figure 1: A supply chain configurable process model

machines, block storage, firewalls, load balancers and network devices. Indeed, this is
guaranteed by Infrastructure as a Service in Cloud Computing taking into account the
Quality of Service such availability, security, reliability, etc., as mentioned in the Service
Level Agreement. In the present approach, the cost attributes of QoS is concerned in
order to reduce it. In this paper, we consider three main cloud resources elements: storage
(e.g. storage1), network (e.g. network1), and compute (e.g. compute1). Configurable
process models are proposed to represent in a generic manner similar process models.
The control-flow variability can be captured by restricting the behavior of configurable
elements: connector and activity. The non-configurable ones represent the commonal-
ities in the configurable model. Since a configurable process can not be executed, all
configurable elements should be configured and customized in order to obtain a variant
that can be instantiated. An activity is configurable if it may be included (i.e. configured
to ON ) or excluded (i.e. configured to OFF) from the resulting variant. A connector
may be configurable to restrict its behavior. It can be configured by (i) changing its
type (e.g. from OR to AND), or/and (ii) restricting its incoming or outgoing branches.
By configuration, a connector may change its type according to a set of configuration
constraints [Rosemann and Van der Aalst 2007] (see Table 1).

Each row corresponds to the initial type that can be mapped and configured to one or
more types in the columns. For example, a configurable connector having the OR type
can be configured to any type while an AND type remains unchangeable. It is worth
noting that the connector AND should never be configured to a sequence (i.e. only one
input or output branch is maintained).

Going back to our example, a supply chain company has a number of branches selling
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OR XOR AND SEQ

OR X X X X
XOR X X
AND X

Table 1: Constraints for connectors configuration [Rosemann and Van der Aalst 2007]

different products in different countries. Depending on specific needs of a country, each
branch performs a different variant of the configurable process model of Figure 1 in terms
of structure and behavior. This example presents 7 configurable elements (6 connectors
and one activity) which are highlighted with a thicker border. For instance, activities
a1 and a6 are non-configurable, which means that they should be included in every
configured variant. Whereas, the activity a4 and the connector s1 may vary from one
process to another, as they are configurable. The resource-flow configuration is recently
proposed in [Hachicha et al. 2016] allowing to explicitly model resource allocation
variability in multi-tenant process models. This is ensured by linking an activity to
allocated resources via a specific resource connector and association arcs. Hence, specific
connectors Ac (called assignment operator) model the association between activities and
the needed resources to be executed. It models a variable number of resources allocated
to a specific activity. The resource configuration is then obtained by restricting the
behavior of these connectors in the same way as control-flow ones. This configurable
connector includes two parameters: (i) a configurable type following the same behavior
as the control flow configurable connectors and (ii) a range specifies the number of the
resources that are recommended to be allocated from each type. In this work, we propose
to find the optimal number of resources for a given configuration in order to minimize
the cost.

In this example, temperature data is sent from the IoT network to the Backend
application via activity a13. Then, the activity a10 processes the received data and
estimates the quality degradation of the item based on pre-defined metrics (out of the
scope of this work). This information is processed using a compute resource and stored
in a storage one. The association between a10 and the allocated resources is ensured
by the connector c2. This assignment operator has the type AND, this means that the
activity a10 requires both resources in order to be executed. Furthermore, the connector
c1 has the type OR, then the activity a7 needs either network1, network2 or storage1
or even the three of them. Finally, while the temperature is within the pre-defined range,
the process ends with success. Otherwise, the activity a11 cancels the delivery process.

2.2 Propositional Satisfiability

A CNF (Conjunctive Normal Form) formula Σ is a conjunction (interpreted as a set)
of clauses, where a clause is a disjunction (interpreted as a set) of literals. A literal is
a positive (x) or negative (¬x) boolean variable. The two literals x and ¬x are called
complementary. A unit clause is a clause with only one literal (called unit literal). An
empty clause, is interpreted as false, while an empty CNF formula, is interpreted as true.
A set of literals is complete if it contains one literal for each variable occurring in Σ
and fundamental if it does not contain complementary literals. An interpretation I of a
Boolean formula Σ associates a value I(x) to some of the variables x appearing in Σ.
An interpretation can be represented by a fundamental set of literals, in the obvious way.
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A model of a formula Σ is an interpretation I that satisfies the formula, i.e., that satisfies
all clauses of the formula. SAT is the problem of deciding whether a given CNF formula
Σ admits a model or not. |=∗ denotes the logical consequence modulo unit propagation.
Any propositional formula can be translated into an equi-satisfiable formula in CNF
using Tseitin’s linear encoding [Tseitin 1986].

Let us now briefly describe the basic components of CDCL (Conflict-Driven Clause
Learning)-based SAT solvers [Moskewicz et al. 2001, Eén and Sörensson. 2003]. To be
exhaustive, these solvers incorporate unit propagation (enhanced by efficient and lazy
data structures), variable activity-based heuristic, literal polarity phase, clause learning,
restarts and a learnt clauses database reduction policy. Typically, a SAT solver can be
assimilated to a sequence of decision and unit propagation literals. Each literal chosen
as a decision variable is affected to a new decision. If all literals are assigned, then I
is a model of the formula and the formula is answered to be satisfiable. If a conflict is
reached by unit propagation, a new clause is derived by conflict analysis [Zhang et al.
2001] considered as a logical consequence of the initial problem. If an empty clause is
derived, then the formula is answered to be unsatisfiable.

2.3 Weighted Partial MinSAT problem

In propositional logic, as mentioned before, a variable x is a literal, as is its negation
¬x. A clause is a disjunction of literals. A weighted clause is a paire (c, w), where c
represents a clause and w represents its weight (i.e. a natural number). A weighted CNF
formula is a conjunction of weighted clauses. In addition, a truth assignment values to the
propositional variables satisfies a literal x if x takes the value true (i.e. 1) and satisfies a
literal ¬x if x takes the value false (i.e. 0). WPMinSAT problem is an extension of a SAT
problem which aims to satisfy a subset of weighted clauses. In a WPMinSAT problem,
the clauses are classified into two categories: hard clause and soft clause. A clause is hard
if in a truth assignment, the clause is evaluated to 1, otherwise it is said to be soft. The
soft clauses have an associated weight as a finite number, whereas the hard clauses have
an infinite weight. Let Φ be a WPMinSAT instance defined as a set of weighted clauses:
Φ = {(c1,∞), ..., (ck,∞), (ck+1, wk+1), ..., (cm, wm)}, where the first k clauses are
hard and the other clauses are soft. To simplify the formula, infinite weights are omitted as
follows: Φ = {(c1), ..., (ck), (ck+1, wk+1), ..., (cm, wm)}. A truth assignment satisfies
a clause c if it satisfies at least one literal of this clause, and satisfies a CNF formula if it
satisfies all the clauses of that formula. A CNF formula is satisfiable, if there exists a
truth assignment that satisfies it; otherwise, it is unsatisfiable. This could be applied to a
given weighted clause (c, w): a truth assignment values to the propositional variables
(1) satisfies this weighted clause if it satisfies c, then (2) it satisfies a weighted CNF
formula {(c1, w1), ..., (cm, wm)}, if it satisfies all its clauses c1, ..., cm. A WPMinSAT
problem for an instance of Φ consists in finding a truth assignment that satisfies all the
hard clauses and minimizes the sum of weights of the satisfied soft clauses.

3 SAT-based Business Process Configuration

In this section, we introduce our SAT-based approach for business process configuration.
We present the formalism that we use for the behavior modeling of all possible variants
of a configurable process model while taking into account the needed cloud resources.
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3.1 Approach Overview

Our approach consists of three main steps depicted by Figure 2. Firstly, a configurable
business process including cloud resources is transformed into a WPMinSAT formalism
using propositional logic. Secondly, we propose to find all correct process configurations.
This consists in generating the set of all combinations of elements configurations (i.e.
control-flow connectors, activities and resource-flow connectors) leading to correct
process variants having the minimum cost. Typically, this means that the obtained
process models by applying each obtained combination of elements configurations
should satisfy the formulas obtained in the first step. These combinations are generated
using a WPMinSAT solver. Thirdly, once the correct configurations are obtained, the
process analysts will be able to correctly choose and configure their process variant
without any additional checking.

Configurable Business 
Process (C-BPMN)

Correct Process Variant

Correct
Configurations

List

2

3

As input

<OR,OR,AND
c
>

...
< ?,? >
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Figure 2: Our approach

In the following two sections, we present our formal approach for representing, first,
the control flow elements of a Business Process (BP) as well as a Configurable Business
Process (CBP) using SAT. Then, the cloud resources are integrated in our formalism
using WPMinSAT.

3.2 Formalizing control-flow in a Configurable Process Model

In our SAT-based formal model, each element of a Business Process (BP) is transformed
into a propositional formula using propositional variables and logical connectors like:
¬,∨,∧,→. The selection and generation of the BP variants during the configuration are
related to a conditional statement or a conditional expression represented as a simple
implication (p→ q) in classical logic. This implication is read as (if p then q). It merely
means (if p is true, then q is also true). The statement (p → q) is false only when p is
true and q is false.
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The control flow is ensured by edges that indicates the execution direction (to the
right). Each node or element have one or more inputs and one or more outputs. In this
work, we represent the input element (InputElement) for each process element e (i.e. here
it may be a connector or an activity) as a propositional variable involving the element in
question which is in turn represented by a propositional variable. Then, an implication
is added between the propositional variable e representing this current element and the
propositional variable representing the output element (OutputElement). Hence, the
relation between each element and its input and output elements can be defined as
follows:

(InputElement→ e) ∧ (e→ OutputElement) (1)

where: e, InputElement and OutputElement ∈ {connector, activity}.
In order to obtain a structurally correct process model [Weske 2007], each activity

should have only one input element (connector or another activity) and one output
element (connector or another activity). However, for each connector, the Equation (1)
is applied as many times as the number of input elements (in case of a join connector)
or output elements. In mathematical logic, implication is one of the binary connectors
of proposition calculus language. A formula in implicative form a→ b equals ¬a ∨ b
because they describe the same truth table. The Equation (1) can be easily translated into
the following clause in order to obtain a CNF formula:

ψ = (¬InputElement ∨ e) ∧ (¬e ∨OutputElement) (2)

For instance, the Equation (1) can be applied on the activity a2 that will give: (s2 →
a2) ∧ (a2 → j1). Thereafter, the formula ψ of Equation (2) (¬s2 ∨ a2) ∧ (¬a2 ∨ j1).

In the following, we use the formula ψ in order to translate a configurable process
to classical logic in a SAT, then to CNF. However, prior to that, we define in Table 2
the formalization of every configurable connector type. Table 2 depicts the mapping
between each type of BPMN connector (linked to activities) and the corresponding SAT
formulas. The first column contains the BPMN elements, the second one represents
the SAT configurable connectors formalization and the third one depicts the SAT non-
configurable connectors formalization. A connector is mapped into a disjunction between
two implications: (i) the first one represents the relation between the connector and its
input activities, and (ii) the second one represents the relation between the connector and
its output activities. Each connector and each activity is formalised using a propositional
variable.

In the Table 2, Cn refers to the configurable control-flow connector in the sec-
ond column and to the regular connector (i.e. non-configurable) in the third column.
The configurable connectors formulas define the customization behavior that consists
of restricting either the incoming (in case of joins) or outgoing branches (in case of
splits) for each type (i.e., either OR, XOR or AND based on the Table 1). Whereas
for regular connectors, formulas define their runtime behavior. The k input elements
are depicted by ink and the k output elements by outk. For instance, the formula:
((

∨
ink∈inOrjx

ink) → Cn) ∧ (Cn → out) means that: (i) during the execution of the

regular OR-join connectorCn, either one or several input elements ink are executed, and
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their execution leads to the firing of the output element out, and (ii) during the configura-
tion of the configurable OR-join Cn, one or more input elements are chosen to obtain an
executable configured connector. Furthermore, in a CBP, an activityActC is configurable
(e.g. a4) if it can be included or excluded from a process variant. The Equation 1 could be
directly applied if e =ActC is included. Otherwise, if it is removed, the equation becomes:
(InputElement → OutputElement) where: InputElement and OutputElement
∈ {connector, activity}. Therefore, a configurable activity is formalized as follows:

((InputElement→ ActC) ∧ (ActC → OutputElement))∨
(InputElement→ OutputElement) (3)

where: InputElement and OutputElement ∈ {connector, activity}.
For instance, we obtain the following formula when we apply the Equation (3) on

the configurable activity a4: ((s3 → a4) ∧ (a4 → j3)) ∨ (s3 → j3).

3.3 Formalizing Resource-flow in a Configurable Process Model

In this paper, the resource-flow in a configurable process is insured by specific connectors
defining the relation between an activity and the different cloud resources needed for its
execution. Hence, in propositional logic, a first implication is added between an input
activity and the connector Ac. Then, an implication is added between the propositional
variable Ac and the propositional variable representing the output element, which is in
this case the allocated resource.

Accordingly, Equations 1 and 2 (i.e. CNF Formula) may be applied in the same way
as for the control-flow where: (i) e is the specific configurable resource connector Ac,
(ii) the InputElement is an activity and (iii) the OutputElement is a resource. The
connector Ac can be either a configurable ORc, a configurable XORc or a configurable
ANDc. Like the control-flow connectors, a configurable resource connector can change
its type according to Table 1. However, only outgoing branches may be restricted in this
case. In fact, these specific connectors are always considered to be split connectors. As
one of our primary goals in this paper is to minimize the cost of the consumed cloud
resources, we add a new parameter in our formalization: the cost of an allocated resource.
In order to represent this parameter, we need to add a weight w to each resource. Hence,
we adapt the formula ψ in accordance with WPMinSAT instance. More precisely, we
add the weight at the second clause of ψ formula dealing with resource implication. We
obtain the Equation 4 which is reformulated into Equation 5.

ϕ = (¬InputElement ∨ Ac) ∧ (¬Ac ∨OutputElement, w) (4)

where: InputElement ∈ {activity} and OutputElement ∈ {resource}.
Returning to our example, the Equation (4) is applied on the connector c1 with a range

2 to obtain the following formula: (¬a4 ∨ c1)∧ (¬c1 ∨ (network1, 2)∨ (storage1, 2)∨
(network2, 2)).

ϕ = ϕh ∧ ϕs (5)
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Table 3 illustrates the formalisation of configurable and non-configurable resource
connectors using WPMinSAT formulas. In the second column, Cn indicated the config-
urable resource-flow connector, and in the third column, it refers to the regular ones (i.e.
non-configurable).

The input element is depicted by Actin (representing the activity) and the output
element by Rsroutk (representing an allocated resource). For example, the configurable
XORc-split resource connector is defined as follows:

(Actin → Cn) ∧ (Cn→ (
∨

Rsroutk
∈RsroutXorsx

Rsroutk), w)

4 WPMinSAT-basedMethod forCorrect andOptimal ProcessCon-
figuration

This section describes our WPMinSAT-based method that is centered around BP config-
uration including control-flow perspective and resource-flow perspective.

As explained in the previous section, the control-flow is translated into a CNF formula
and the resource-flow is formalized as a weighted CNF formula (i.e. a set of weighted
clauses). A weighted clause is represented by a pair (c, w), where c is a classical clause
and w is a weight that is a natural number representing the cost associated to a resource.

The classical CNF formulas are the hard clauses and the weighted CNF formulas
are the soft clauses. Then, the conjunction of the hard clauses and the soft clauses is a
weighted partial CNF formula. In our approach, the formula ψ consists in hard clauses
and the formula ϕ consists in the combination of the hard clauses ϕh and the soft clauses
ϕs (ref. Equations 4 and 5).
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In order to obtain a correct configuration satisfying the cost constraint, we start by
defining a variable Activityroot that represents the initial activity and we conjunctively
add the formulas ψ and ϕ as follows: ψ ∧ ϕ ∧Activityroot. We also define the variable
Activitytarget that represents the final activity in the process. Then, a correct process
variant is a configuration that considers the initial activity as a starting point and by
applying unit propagation, that is a rule of correct inference, reaches the final activity.
In this work, we artificially add initial and final activities to respectively represent the
unique initial point of the process model and the unique final one.
Definition 1[Correct configuration] : Let cbp a C-BPMN and let Φ be a SAT formula
that represents a transformation of cbp to a CNF formula. A configuration conf of
cbp is a process where each element e ∈ conf allows the following formula: ψ ∧ ϕ ∧
Activityroot |=∗ Activitytarget which means that:

Φ = ψ ∧ ϕ ∧Activityroot ∧ ¬Activitytarget
Φ = ψ ∧ ϕh ∧ ϕs ∧Activityroot ∧ ¬Activitytarget

where: ψ ∧ ϕh ∧ Activityroot ∧ ¬Activitytarget represents the hard clauses and ϕs

represents the soft clauses.
The Definition 1 explains how to extract the correct configuration from configurable

BP with configurable resource allocation. Hence, the Definition 1 implies that a config-
urable process including control-flow and resource-flow have one correct configuration
iff the formula Φ admits one assignment to the variables such that all hard clauses are
satisfied and the total weight of satisfied soft clauses is minimized. This means that a
correct process is possible iff the Φ formula has an assignment deduced by unit prop-
agation (also called Boolean constraint propagation). Hence, a correct configuration
can be extracted using unit propagation. This later is an automated theorem proving
procedure used to simplify a set of clauses. Also, it is one of the key processes and the
most used one in SAT resolution algorithms. Its working principle is the following: until
that formula contains a unitary clause, assign true to its literals. In the weighted partial
MinSAT case, a unit propagation is started, although restricts it to hard clauses as soft
clauses need not be definitely satisfied.

Table 2 shows the translation of (non-)configurable control-flow connectors of BP to
SAT formulas. Similarly, the resource-flow connectors are formalized using WPMinSAT
formulas in Table 3. The formulas in both tables are basically derived from Equations 1
and 4. Based on this formalization of all configurable process model elements, we
define Algorithm 1. Hence, this algorithm allows to formalise a configurable process
model as follows. First, the formula Φ, ψ and ϕ are declared and initialised (lines 1).
Second, a for each loop iterates over all the elements e of a configurable business process
CBP . Thereafter, the algorithm applies the corresponding formalization (defined in
Tables 2 and 3) : RC_SAT (e), RNC_SAT (e), RCA_SAT (e), RNC_SAT (e), RA_SAT (e),
RCR_SAT (e, w) and RNCR_SAT (e, w) (lines 2 to 16). For instance, if the element e is a
configurable control-flow connector, the relation RC_SAT (e) (i.e. the second column
of Table 2) is applied to obtain the corresponding formula (lines 3 and 4). Similarly,
RNC_SAT (e) is applied for non-configurable control-flow connectors (lines 5 and 6).
The configurable activities are formalized using RCA_SAT (e) relation that is based on
Equation 3 (lines 7 and 8). Regarding non-configurable activity, its formalization is
carried out by applying the relation RA_SAT (e) based on Equation 1 having e as the
non-configurable activity in question (lines 9 and 10). Until now, all the formalization,
concerning the control-flow connectors and activities, is assigned to the formula ψ.

On the other hand, a configurable resource-flow connector e is formalized using
the relation RCR_SAT (ei, w) with the weight w (ref. the second column of Table 3).
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This weight of the formula ϕ represents the cost of each resource of current resource-
flow connector e. This formula RCR_SAT (ei, w) is repeated using a for loop as many
times as the value of range (lines 11, 12 and 13). In the same way, RNCR_SAT (ei, w)
(ref. the third column of Table 3) is used to formalize all non-configurable resource-
flow connectors (lines 14, 15 and 16). The formalisation of resource-flow connectors is
affected to the formula ϕ.

Finally, the formula Φ is defined by the conjunction between ψ, ϕ, Activityroot
and ¬Activitytarget, then it is returned as the output of the algorithm (lines 17 and 18).
Let us consider the set of activities and connectors as depicted in configurable business
process in Figure 1. In this example, we omit the IoT network part, we are only interested
in the Web application and Backend application parts to demonstrate the feasibility of
our approach. The Algorithm 1 is applied to this configurable business process including
control-flow and resource-flow. The control-flow consists of non-configurable con-
nectors like s2, j1, s4, j4, configurable connectors like s1, s3, j2, j3, non-configurable
activities: a1, a2, a3, a4, a5, a7, a8, a9, a10, a11 and configurable activity like a4. In ad-
dition, resource-flow contains the connectors c1 with the resources network1, storage1
and network2 related to activity a4, given that each resource here has a cost is equal 1.
The range of this connector is equal 2. Also, it contains the connectors c2 that connects
the resources compute1 and storage2 to activity a10 with a range which is worth 1.

The following formulasψ andϕ represent the formalization of the different (non-)con-
figurable control-flow connectors and (non-)configurable resource allocation connectors.
ψ is obtained by applying the Algorithm 1, in particular lines 3, 5, 7 and/or 9, while Φ is
obtained by applying the lines 11 and/or 14. In sequel, Φ is the disjunction between ψ, ϕ,
initial activity and target activity and is obtained by applying the line 17 of Algorithm 1.

ψ = (a1 → s1) ∧ s1 → (s2 ∨ j2) ∧ (s1 → s2) ∧ (s2 → (a2 ∧ ¬a3) ∨ s2 →
(a3∧¬a2)) ∧ ((s1∨s3)→ j2)∧(j2 → a5) ∧ ((a2∧¬a3)→ j1∨(a3∧¬a2)→
j1)∧ (j1 → s3) ∧ (j1 → s3)∧ (s3 → (a4 ∨ j2)) ∧ ((a4 ∨ a6)→ j3)∧ (j3 →
a7) ∧ (a10 → j4)∧ ((j4 → a11)∨ (j4 → ¬a11)) ∧ (s3 → a4)∧ (a4 → j3)∨
(s3 → j3) ∧ (a1 → s1) ∧ (s2 → a2)∧(a2 → j1) ∧ (s2 → a3)∧(a3 → j1) ∧
(j2 → a5)∧(a5 → a6) ∧ (j3 → a7)∧(a7 → a8) ∧ (a7 → a8)∧(a8 → a9) ∧
(a8 → a9) ∧ (a9 → a10) ∧ (a9 → a10) ∧ (a10 → j4) ∧ (j4 → a11)

ϕ = (a4 → c1) ∧ (c1 → (network11 , 2 ∨ storage11 , 2 ∨ network21 , 2)) ∧
(a4 → c1) ∧ (c1 → (network12 , 2 ∨ storage12 , 2 ∨ network22 , 2)) ∧
(a10 → c2) ∧ (c2 → (compute1, 1 ∧ storage2, 1)

Therefore, the formula Φ = ψ ∧ ϕ ∧ a1 ∧ ¬a11.

5 Evaluation: SAT Problems Induced by Business Process

In this section, we evaluate the quality and the efficiency of our work. The proposed
approach was tested and developed using as input the real configurable business process
of Figure 1. Using our formal model, the SAT formula Φ is defined and then represented
using DIMACS format that is a standard interface to SAT solvers. The DIMACS format
is obtained after the execution of the Algorithm 1 described above on our configurable
process example. This format is used to define a Boolean expression, written in CNF
formulas which is stored using a file having for extension .dimacs. This file is used as
input of the used solver. Each line in this file is a list of variables separated by spaces
and ended with 0. This list represents a clause which is a disjunction of literals and a
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Algorithm 1: Configurable Business Processes to SAT

Input: Configurable Business Process CBP
Output: Formula Φ represents a WPMinSAT formalization

1 Φ, ψ and ϕ are a CNF formulas;

/* Iterates over all elements of CBP */
2 for each e ∈ CBP do

3 if type(e) = {configurable control-flow connector} then
4 ψ ← RC_SAT (e);

5 if type(e) = {non-configurable control-flow connector} then
6 ψ ← RNC_SAT (e);

7 if type(e) = {configurable activity} then
8 ψ ← RCA_SAT (e);

9 if type(e) = {non-configurable activity} then
10 ψ ← RA_SAT (e);

11 if type(e) = {configurable resource-flow connector} then
12 for all i ∈ range do
13 ϕ← RCR_SAT (ei, w);

14 if type(e) = {non-configurable resource-flow connector} then
15 for all i ∈ range do
16 ϕ← RNCR_SAT (ei, w);

17 Φ← ψ ∧ ϕ ∧Activityroot ∧ ¬Activitytarget;
18 return Φ;

literal is either a positive variable x or its negation ¬x. In the file .dimacs, a variable
is represented by an integer between 1 and n and its negation ¬ is represented by the
sign −. The clauses are distinct and may not simultaneously contain opposite literals.
Hence, the lines of a file .dimacs represent the conjunction of the clauses of the problem.
Each line of a file .dimacs represents a CNF format knowing that the first integer in the
clause is its weight. The weights must be greater than or equal to 1. The first line of a
file .dimacs is written as following: p wcnf n c top. As the hard clauses
have ∞ weight, the weight top is ∞. Since the weight of each hard clause must be
equal or greater than top and the weight of each soft clause must be smaller than top, we
define it as the maximum weight of the used resources in a CBP model multiplied by
2. In addition, n indicates the number of variables that is the number of activities and
connectors. Moreover, c is the exact number of clauses contained in the file.

In the sequel, we used the MinSatz2 solver [Li et al. 2012] that takes the file .dimacs
as an argument. This solver is based on a branch and bound algorithm for the minimum
satisfiability problem. This problem decides if a weighted partial MinSAT formula is
evaluated to true. In this case, the formula is satisfiable (SAT) and the optimum solution
is found. Otherwise, the formula is unsatisfiable (UNSAT). Due to space concerns, an

2 https://home.mis.u-picardie.fr/ cli/minsatz2013.c
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extract of the .dimacs file generated from our motivating example is represented in the
Listing 1.�

p wcnf 25 48 4
4 −1 2 0
4 −2 3 −2 4 0
4 −2 3 0
4 −3 5 −3 6 0

. . . .
� �
Listing 1: An extract of .dimacs file with 25 variables and 48 clauses.

In the Listing 1, each line represents a clause that is a sequence of distinct non-null
numbers between−n and n, that ends with 0 on the same line. The opposite literals x and
−x do not belong to the same line. In addition, positive number denotes the corresponding
variable and the negative one denotes the negation of the corresponding variable. The
MinSatz solver checks the existence of the correct configurations and generates them
if they exist. Else, the MinSatz solver returns UNSAT i..e, the configurable business
process does not contain any correct configuration.

!: including activity a4 %: without activity a4
s1 s3 j2 j3 c1 c2 a4 s1 s3 j2 j3 c2 a4
OR OR OR OR XOR-AND-OR AND ! OR OR OR OR AND %

XOR OR OR OR XOR-AND-OR AND ! XOR OR OR OR AND %

AND OR OR OR XOR-AND-OR AND ! AND OR OR OR AND %

OR XOR OR OR XOR-AND-OR AND ! OR XOR OR OR AND %

XOR XOR OR OR XOR-AND-OR AND ! XOR XOR OR OR AND %

AND XOR OR OR XOR-AND-OR AND ! AND XOR OR OR AND %

OR AND OR OR XOR-AND-OR AND ! OR AND OR OR AND %

XOR AND OR OR XOR-AND-OR AND ! XOR AND OR OR AND %

AND AND OR OR XOR-AND-OR AND ! AND AND OR OR AND %

OR OR XOR OR XOR-AND-OR AND ! OR OR XOR OR AND %

XOR OR XOR OR XOR-AND-OR AND ! XOR OR XOR OR AND %

OR XOR XOR OR XOR-AND-OR AND ! OR XOR XOR OR AND %

XOR XOR XOR OR XOR-AND-OR AND ! XOR XOR XOR OR AND %

OR AND AND OR XOR-AND-OR AND ! OR AND AND OR AND %

AND AND AND OR XOR-AND-OR AND ! AND AND AND OR AND %
OR OR OR XOR XOR-AND-OR AND ! OR OR OR XOR AND %

XOR OR OR XOR XOR-AND-OR AND ! XOR OR OR XOR AND %
OR XOR OR XOR XOR-AND-OR AND ! OR XOR OR XOR AND %

XOR XOR OR XOR XOR-AND-OR AND ! XOR XOR OR XOR AND %

OR OR XOR XOR XOR-AND-OR AND ! OR OR XOR XOR AND %
XOR OR XOR XOR XOR-AND-OR AND ! XOR OR XOR XOR AND %

OR XOR XOR XOR XOR-AND-OR AND ! OR XOR XOR XOR AND %

XOR XOR XOR XOR XOR-AND-OR AND ! XOR XOR XOR XOR AND %

AND AND OR AND XOR-AND-OR AND ! AND AND OR AND AND %
AND AND AND AND XOR-AND-OR AND ! AND AND AND AND AND %

Table 4: All correct configurations

The different correct configurations obtained using our solver are represented in the
Table 4. We can distinguish two groups of configurations depending on the activity a4
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configuration. On the left-hand side of this table, all correct configurations including the
activity a4 are presented. The correct configurations without the activity a4 are depicted
by the right-hand side of this table. This later group does not include the connector c1 as
well since it is linked to a4. We use MinSatz solver as a WPMinSAT solver in order to
reason about a configurable process model including resource allocation configuration.
WPMinSAT solver is a system used to decide satisfiability. The MinSatz solver was
given 3 seconds to complete the satisfiability checks on our motivating example. Then,
we propose to find for each correct configuration the optimal cloud resources allocation.
For this aim, we select the optimal number of resources for a given configuration in order
to minimize the global process cost. The configuration highlighted is the optimal one
in case of a configuration containing activity a4 with the cost 6. On the other hand, the
optimal configuration without a4 is highlighted and has the minimal cost that is equal 2.

Tool support

In order to allow the usability of our proposal, we implemented a Java application 3 that
automatically transforms a configurable business process into DIMACS. The input to our
tool is a BPMN file (i.e., an XML file exported from Signavio Process Manager Tool) that
represents our configurable process model. The output of this tool is the DIMACS file
that is used then as an input of the Sat Solver. In practice, the analyst needs to model the
configurable process model using the Signavio Tool. He/she specifies the configurable
connectors as well as the required Cloud resources for each activity. Then, once the
BPMN 2.0 file is generated, our implemented tool is used to generate the DIMACS
file. Afterwards, the SAT Solver is executed to obtain the optimal and correct process
configurations. Finally, the analyst picks the appropriate process configuration that is
suitable to his/her needs.

6 Related Work

Several approaches have been proposed to model variability and to provide a correctness
verification of the configurable process models [Gottschalk et al. 2008, Rosemann and
Van der Aalst 2007, van der Aalst et al. 2012, Schnieders and Puhlmann 2006, Hallerbach
et al. 2010, Kumar and Yao 2012, La Rosa et al. 2009, Asadi et al. 2014, Assy and
Gaaloul 2016]. In this context and in [Gottschalk et al. 2008], Gottschalk et al. propose
an approach for extending YAWL language, as a common workflow modelling language
with opportunities for predefining alternative model versions within a single workflow
model. They propose to allow the configuration of workflow models to a relevant variant
in a controlled way. Configurable Event-Driven Process Chains (C-EPCs) [Rosemann
and Van der Aalst 2007] is an extended reference modelling language which allows
capturing the core configuration patterns. The authors define the formalization of C-
EPCs as well as examples for typical configurations. In addition, they propose the
identification of a comprehensive list of configuration patterns and they test the quality
of these extensions in some experiments. Van der Aalst et al. [van der Aalst et al. 2012]
propose an approach inspired by the “operating guidelines” used for partner synthesis
for verifying that configurations do not lead to behavioral issues like deadlocks and
livelocks. They represent the configuration process as an external service, and compute
a characterization of all such services which meet particular requirements via the notion

3 https://github.com/aaitwakrime/CPMtoWPMinSAT
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of configuration guideline. [Schnieders and Puhlmann 2006] proposes an approach
for process family architecture modeling and implementation. The authors propose
a set of variability mechanisms for BPMN and outlined their implementation using
HyperSenses program generators. In the approach [Hallerbach et al. 2010], the modeling
of a reference process model which represents a base process model is discussed. The
necessary adjustments of this process are treated to configure this base process model to
different process variants. This is done by introducing the Provop framework.

Other authors focused also on the issue of process models configuration. For example,
in [Assy and Gaaloul 2016] the different variants of configurable process models are
derived based on domain constraints and business rules. The work presented in [Kumar
and Yao 2012] shows how process templates can be combined with business rules to
design flexible business processes. This idea is applied to separate the basic process
flow from the business policy elements. Another approach to capture variability in
process models is represented in [La Rosa et al. 2009]. This approach proposes a formal
framework for representing system variability that allows to detect circular dependencies
and contradictory constraints in questionnaire models. In [Asadi et al. 2014] an approach
including formal representations and algorithms based on logical reasoning is proposed.
Moreover, in this work, the validation in the context of customization of process variants
is discussed.

Resource allocation in business process management and configuration has been
regarded in a number of approaches. In [Kumar and Yao 2012], an approach is proposed
to model configurable business processes integrating control flow, resource needs and
data by applying business rules to a generic process template. The authors of [Havur
et al. 2016] define an approach to achieve an optimal scheduling of work items that
have dependencies and resource conflicts in Business Process Management Systems.
To the best of our knowledge, so far, surprisingly little effort has been put into the
configurable business process models including resource-flow using a formal model with
a focus on cost-efficient resource allocation. In [Hachicha et al. 2016], the resource-flow
connectors are proposed to select the needed resources by each activity. These connectors
are used in our paper, however, this work does not propose a formal model for a resources
configuration taking into account an important constraint namely cost.

On the other hand, a number of works emphasize the value of SAT inside, for instance,
product line engineering, business process, Cloud Computing, etc. For instance, in
[Mendonca 2009, He et al. 2018] propositional logic and SAT are used to analyze feature
models which is a popular variability modeling notation used in product line engineering.
[Bo et al. 2017] proposes the use of improved separation of duty algebra to describe
a satisfiability problem of qualification requirements and quantification requirements.
This is being done to provide a separation of duty and binding of duty requirements. And
also in the other works [Ait Wakrime 2017, Ait Wakrime et al. 2015, Ait Wakrime and
Jabbour 2016], SAT-based approach is used to relax the failed queries through rewriting
them in the Cloud Computing exactly in the Software as a Service (SaaS). In addition,
SAT is adopted to compute a minimum composition within preserved-privacy of SaaS
Services and Data as a Service (DaaS) Services for a given customer’s request.

In summary, our approach proposes an extension of [Ait Wakrime et al. 2019]
allowing to verify the configurable business process models but also to optimize the
cost of their deployment in a Cloud environment using the SAT. The major differences
from the above cited approaches are the following points: (1) It generates structurally
correct process configuration options that do not contain run-time errors. (2) It generates
all correct options from the beginning (at design time) which allows to assist process
designer during the configuration time. (3) Since SAT has gained considerable audience
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with the advent of a new generation of SAT solvers during these last few years, the
application of SAT techniques to configurable business process offers many benefits
in terms of their analyses concerning the generation of correct configuration including
optimal resource allocation.

7 Conclusion and Further Work

In this work, we propose an approach for ensuring correct process configuration while
taking into consideration cloud resource configuration. We use a formal model based
on SAT and WPMinSAT in order to find these configurations and to select the optimal
resources number for a minimal cost. Hence, we help process analysts in configuring
correct processes while optimizing their deployment cost. We showed the applicability
of our approach and we validated it using a WPMinSAT solver. As future work, we aim
to consider the different pricing strategies proposed by the cloud providers. For example,
AWS proposes the following pricing strategies: on-demand, reserved, spot, and savings
plans. We also plan to apply our proposed approach on large scale configurable business
processes.
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