
Journal of Universal Computer Science, vol. 27, no. 9 (2021), 955-978
submitted: 15/12/2020, accepted: 20/6/2021, appeared: 28/9/2021 CC BY-ND 4.0

Continuations and Aspects to Tame
Callback Hell on the Web

Paul Leger
(Escuela de Ingeniería, Universidad Católica del Norte, Coquimbo, Chile

https://orcid.org/0000-0003-0969-5139, pleger@ucn.cl)

Hiroaki Fukuda
(Shibaura Institute of Technology

https://orcid.org/0000-0003-1228-3186, hiroaki@shibaura-it.ac.jp)

Ismael Figueroa
(Pragmatics Lab, http://pragmaticslab.com

https://orcid.org/0000-0003-3661-4963, ifigueroap@gmail.com)

Abstract: JavaScript is one of the main programming languages to develop highly rich responsive

and interactiveWeb applications. In these kinds of applications, the use of asynchronous operations

that execute callbacks is crucial. However, the dependency among nested callbacks, known as

callback hell, can make it difficult to understand and maintain them, which will eventually mix

concerns. Unfortunately, current solutions for JavaScript do not fully address the aforementioned

issue. This paper presents Sync/cc, a JavaScript package that works on modern browsers. This

package is a proof-of-concept that uses continuations and aspects that allow developers to write

event handlers that need nested callbacks in a synchronous style, preventing callback hell. Unlike

current solutions, Sync/cc is modular, succinct, and customizable because it does not require

ad-hoc and scattered constructs, code refactoring, or adding ad-hoc implementations such as state

machines. In practice, our proposal uses a) continuations to only suspend the current handler

execution until the asynchronous operation is resolved, and b) aspects to apply continuations in

a non-intrusive way. We test Sync/cc with a management information system that administers

courses at a university in Chile.

Keywords: Callback Hell, Aspect-Oriented Programming, Continuations, JavaScript
Categories: D.3, D.1, B.5.1

DOI: 10.3897/jucs.72205

1 Introduction

The software industry strongly focuses on rich interactive Web applications running atop
the JavaScript engine of modern browsers. Indeed, for Web applications, the use of this
programming language is close to 95% [W3Techs, 2019] and themost used programming
language as reported by the Developer Stack Overflow survey 2019 [StackoverFlow,
2019]. JavaScript, a dynamic prototype-based language with higher-order functions, is
the de facto standard for developing these applications because most modern browsers
support it. In the development of these applications, asynchronous programming has
been used to hide network latency and improve responsiveness and user interaction.
As an example, consider an interactive JavaScript application to read stories online. In

https://orcid.org/0000-0003-0969-5139
https://orcid.org/0000-0003-0969-5139
https://orcid.org/0000-0003-1228-3186
https://orcid.org/0000-0003-1228-3186
http://pragmaticslab.com
https://orcid.org/0000-0003-3661-4963
https://orcid.org/0000-0003-3661-4963

956 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

this application, every option triggers a handler, and one of them (Handler 1) needs the
network to retrieve data from a server.

In single-thread languages, such as JavaScript, asynchronous programming develop-
ers replace an invocation that blocks the whole program execution with a non-blocking
invocation that immediately returns. Whenever the asynchronous operation finishes, a
function passed as callback is executed.Apart from programming, asynchronous program-
ming has been studied widely [Zheng et al., 2011, Tilkov and Vinoski, 2010]. Following
our example, Listings 1 and 2 illustrate synchronous programming and contrast it with
asynchronous programming using a handler of a Web application that allows users to
read stories available on a server when a button is pushed.

1 function storyButtonHandler_SYNC() {
2 var URL = ”http : / / storyServer .com?” ;
3 var idStory = getElementById(”idStory”) . value ;
4

5 var story = syncRequest (URL + ”id=” + idStory) ;
6 display (story) ;
7 }

Listing 1: A synchronous version of the story button handler.

1 function storyButtonHandler_ASYNC() {
2 var URL = ”http : / / storyServer .com?” ;
3 var idStory = getElementById(”idStory”) . value ;
4 function callback (story) {
5 display (story) ;
6 }
7 asyncRequest (URL + ”id=” + idStory , callback) ;
8 }

Listing 2: An asynchronous version of the story button handler.

In the synchronous programming version of the button handler (Listing 1), the execu-
tion of syncRequest blocks the handler work until this execution finishes (Line 5). Instead,
in the asynchronous version (Listing 2), when the content of the selected story is down-
loaded from the server, the callback function is executed to display the story (Line 8).
Unlike synchronous programming, the use of asynchronous programming splits a set
of statements into an asynchronous operation (asyncRequest) and a callback that receives
the operation result (story) and executes the rest of the statements (display(story)). It is
important to highlight that asyncRequest corresponds to the native browser mechanism for
Ajax [Garrett, 2005], i.e., XMLHttpRequest. Throughout this paper, we use asyncRequest
as a generic name for any kind of asynchronous operation.

Although asynchronous programming is used in Listing 2, its implementation is still
understandable because there is a single callback with no dependencies. However, this is
not always the case in more complex software. For example, consider an application to
read books that contain chapters and images:

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 957

function bookButtonHandler () {
var URL = ”http : / / bookServer .com?” ;
var idBook = getElementById(”idBook”) . value ;

asyncRequest (URL + ”id=” + idBook , function (book) {
/ / display description about the book on the HTML

book . chaptersURL . forEach (function (chapURL) {
asyncRequest (chapURL, function (chapter) {

/ / display content of the chapter on the HTML

chapter . imagesURL. forEach (function (imgURL) {
asyncRequest (imgURL, function (img) {

/ / display images of the chapter on the HTML
});

}) ;
}) ;

}) ;
}) ;

}

Listing 3: Nested asynchronous calls inside a handler.

In bookButtonHandler of Listing 3, we can see nested callbacks because of their de-
pendencies. This is because the two nested asynchronous calls can only be invoked
when the response of the previous asynchronous operation is available. These callback
dependencies, known as callback hell [Ogden, 2019], make it difficult to understand
and maintain pieces of code [Loring et al., 2017]. In addition, these (coupled) callback
dependencies eventually end up tangling concerns in complex software. For example,
bookButtonHandler now tangles the download and display concerns. Finally, less obvious
issues appear in callback hell: potentially unexpected order of callback executions and
unclear control flow of an application execution [Alimadadi et al., 2016]. For example,
fig. 1 shows the diagram sequence that a developer must bear in mind to understand
the control flow of Listing 3, where each chapter may need to download and show a
specific set of images, which should not a) change the order in which these images are
downloaded and showed and b) mix with images of other chapters. Callback hell is
widely known in the JavaScript community; indeed, we can find a Website that only
focuses on this subject [Ogden, 2019], StackOverflow questions [Overflow, 2020a, Over-
flow, 2020b], and studies that evaluate different alternatives to address callback hell
issues [Gallaba et al., 2015, Kambona et al., 2013].

For Web application development, JavaScript developers can use libraries to address
callback dependency issues [Lindesay, 2012, McKenzie, 2014, McMahon, 2010, RxJS,
2018]. Most of them are fairly basic in that they, at best, attempt to hide nested callbacks
through the creation of artificial and dependent functions. Other alternatives are specifica-
tion ECMAScript 7 [ECMA, 2017] or Babel [McKenzie, 2014], which allow developers
to write pieces of code in a synchronous manner using specialized language constructs
such as async/await [Benton et al., 2004]. However, these alternatives scatter these con-
structs through the code and require the insertion of ad-hoc state machines to control
callback executions. In addition, these constructs semantics are fixed for developers.

To address issues that arise from callback hell, this paper presents Sync/cc, a JavaScript
package that works on browsers like Mozilla Firefox [Foundation, 2018]. Sync/cc uses
continuations [Friedman and Wand, 1984, Haynes et al., 1986] and Aspect-Oriented
Programming (AOP) [Kiczales et al., 1996] to allow developers to write asynchronous
pieces of code in a synchronous style, preventing callback dependencies and, therefore,
modularizing concerns. On the one hand, continuations suspend the asynchronous han-
dler execution—but not the whole program—improving application responsiveness to

958 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

Client Server

asyncRequest(bookURL)

<<callback(book)>>

asyncRequest(chapter1)

asyncRequest(chapter2)

asyncRequest(chaptern)
…

…

…

asyncRequest(img1)

asyncRequest(img2)

asyncRequest(imgk) …

<<callbac
k(img1)>>

for chapter
in book

for img
in chapter

<<callback(c
hapter1)>>

Figure 1: Sequence diagram that shows the control flow of nested callback executions of

Listing 3.

users. On the other hand, aspects, through the oblivious interception of asynchronous
operations, allow developers to write clean, sequential-looking code that is executed in
the proper asynchronous way.As a result, our work is a practical and applied combination
of continuations and aspects, which is a novel combination in the state-of-the-art. Unlike
other proposals, Sync/cc:

1. prevents callback hell, that is callback dependencies, tangled and scattered concerns,
unexpected order of multiple callback executions, and an unclear control flow of an
application execution.

2. provides a modular solution because our proposal is completely supported by
continuations and aspects, which are general-purpose features of a programing lan-
guage. As a consequence, Sync/cc does not require specialized language constructs
that are scattered around methods using asynchronous operations.

3. is succinct because the Sync/cc implementation only requires 20 lines of indented
code if general or multi purpose abstractions like aspects and continuations are
natively supported.

4. is customizable because its implementation utilizes only two user-defined aspects.
The complexity of these aspects is hidden through the Sync/cc package.

Although this work have not presented on a conference, the notion of Sync/cc was
first presented in two smaller events to receive feedback [Leger and Fukuda, 2016, Leger

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 959

and Fukuda, 2017]. This current work is the result of a mature idea that allows us to know
its pros and cons; to develop a deep comparison between existing proposals from the state-
of-the-art/practice; a concrete implementation of a Sync/cc that now works on both the
client and server sides of a Web application; a discussion about implementation details;
and a case study in a real Web application. Sync/cc currently uses AspectScript [Toledo
et al., 2010], an aspect language for JavaScript, and Unwinder [Long, 2018], a third-party
package that supports continuations.

The rest of this paper is structured as follows. The next section reviews current pro-
posals and potential programming language mechanisms that may be used in JavaScript.
Section 3 then introduces Sync/cc through a new implementation of the bookButtonHandler
function. After presenting our proposal, Section 4 describes an application of this pro-
posal in a university management information system. In Section 5, we conclude and
describe the major challenges.

Availability. Sync/cc, with the example presented here, is a proof-of-concept that
is online and testable at http://pleger.cl/synccc, whereas its source code is available on
GitHub: http://github.com/pragmaticslaboratory/synnccc. Our proposal has been tested
in Mozilla Firefox (v80.0), Safari (v13.1), and Google Chrome (v85.0) browsers without
the need for an extension.

2 Related Work

Issues related to callback hell have already been identified (even in other areas [Zamora-
Gómez et al., 2015]), resulting in a number of proposals for the JavaScript language,
classified into libraries and specialized language constructs. Taking into account the state-
of-the-art/practice, we review these proposals and advances in programming language
mechanisms, highlighting their advantages and drawbacks. Finally, we compare and
briefly discuss these proposals.

2.1 Libraries

A number of JavaScript lightweight libraries are available on the Web [Lindesay, 2012,
McMahon, 2010, ONeal, 2007, Tato, 2010, Farias, 2009], which take advantage of first-
class and higher-order functions to mitigate callback hell issues. We illustrate these kinds
of solution with an implementation of bookButtonHandler using Async.Js [McMahon,
2010]:

http://pleger.cl/synccc
http://github.com/pragmaticslaboratory/synnccc

960 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

function bookButtonHandler_ASYNCJS() {
var URL = / / . . . as above
var idBook = / / . . . as above

function downloadAndDisplayBook(continuation) {

asyncRequest (URL + ”id=” + idBook , function (book) {
/ / display description about the book on the HTML

continuation(book) ;

}) }

function downloadAndDisplayChapters (book , continuation) {

Async . eachSeries (book . chaptersURL , function (chapter) {
/ / display content of the chapter on the HTML

continuation(chapter) ;

}) ,
) ; }

function downloadAndDisplayImages(chapter , continuation) {

chapter . imagesURL. forEach (function (imgURL) {
asyncRequest (imgURL, function (img) {

/ / display images of the chapter on the HTML

/ / No more continuations

}) ;}) ; }

Async . waterfal l ([downloadBookAndDisplay ,
downloadAndDisplayChapters ,
downloadAndDisplayImages]) ;

}

Listing 4: The book handler implementation using Async.Js.

In Listing 4, the Async.waterfall method allows developers to use a continuation-
passing style pattern [Appel and Jim, 1989] to visually hide callback dependencies.
However, similar to the original implementation of this handler (Listing 3), developers
must be aware of the dependency chain of callbacks through the use of an artificial
function (continuation) and use specialized functions (eachSeries) to enforce an order of
callback executions. In addition, this package enforces the boilerplate code with a non-
common programming style for developers, affecting understandability [Ogden, 2019].

2.2 Programming Language Mechanisms

Programming languages provide several mechanisms that may contribute to the solution
of asynchronous issues. We overview the following three widely known mechanisms:
promises, observables, and lazy evaluation.

Promises. The key idea is the creation of objects that encapsulate the eventual result
of an asynchronous computation. In contrast to standard callbacks, promises can be
passed around as first-class values, and can be freely composed using certain opera-
tors (e.g., then and catch). Albeit promises were initially supplied by externals libraries,
such as PromiseJS [Lindesay, 2012], they are nowadays a standard mechanism of
JavaScript [ECMA, 2017]. Listing 5 shows the implementation of the book handler
and asynchronous functions using promises. By using the then method, developers can
specify blueprints of what operations are to be performed after the asynchronous op-
eration, held by a promise, is completed. In the listing, we can see that a first promise,
bookPromise, retrieves the book description from the corresponding URL. When this
promise finishes, the argument function is executed. Eventually, all chapters and images

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 961

are retrieved, and, finally, all information is displayed in HTML. Note that this imple-
mentation has several issues, similar to those of plain asynchronous operations. First,
even though the complexity of callback hell is alleviated by using promises, we find that
this kind of code has several nested and/or sequential uses of the then method. Indeed,
the sole purpose of then is to ensure sequential-like behavior in terms of the eventual
results of an asynchronous operation. Second, we see that promise composition is not
straightforward, in particular, if we need to obtain as much concurrent executions as
possible. Third, an unexpected order of callbacks executions can appear in two forEach
executions. Finally, this piece of code still tangles the downloading and display concerns.

function bookButtonHandler_PROMISES_VERSION_1() {
var URL = / / . . . as above
var idBook = / / . . . as above
var bookPromise = asyncRequest (URL + ”id=” + idBook) ;

/ / an ’empty ’ promise to s tar t a sequence
var chapSeqPromise = Promise . resolve () ;

bookPromise . then (function (book) {
/ / display description about the book on the HTML

book . chaptersURL . forEach (function (chapterURL) {
chapSeqPromise = chapSeqPromise . then (function () {

return asyncRequest (chapterURL) ;
}) . then (function (chapter) {

/ / display content of the chapter on the HTML

var imgSeqPromise = Promise . resolve () ;
chapter . imagesURL. forEach (function (imgURL) {
imgSeqPromise . then (function () {

return asyncRequest (imgURL) ;
}) . then (function (image) {

/ / display images of the chapter on the HTML
});

}) ;
}) ;

}) ;
}) ;

}

Listing 5: The book handler implementation using promises.

Using the Promise.all method to simplify the use of many consecutive promises and
enforce an order of callback executions, Listing 6 shows an alternative implementation
with promises of the book handler. This implementation first downloads all the required
data (the book description, chapters, and images) into a single data structure, and then
displays these pieces of information. Here, we can see that concerns are no longer tangled,
but we still get heavily indented and nested use promises similar to callback hell.

962 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

function bookButtonHandler_PROMISES_VERSION_2() {
var URL = / / . . . as above
var idBook = / / . . . as above
var bookPromise = asyncRequest (URL + ”id=” + idBook) ;

bookPromise . then (function (book) {
return Promise . a l l (book . chaptersURL .map(function (chapterURL) {
return asyncRequest (chapterURL) . then (function (chapter) {
return Promise . a l l (chapter . imagesURL.map(function (imgURL) {
return asyncRequest (imgURL) ;

})) ;
}) ;

})) ;
}) . then (function (data) {
var bookDescription = data [0] ;
/ / display description about the book on the HTML

var chapters = data [1] ;
/ / display content of the chapter on the HTML

var images = data [2] ;
/ / display images of the chapter on the HTML

});
}

Listing 6: The book handler implementation using promises to first construct the data.

Reactive Programming. In recent years, there has been an increasing trend in the use
of reactive programming [Elliott and Hudak, 1997], a programming paradigm to deal
with data streams and their change propagation, in the context of interactive JavaScript
applications. One of the most widely used libraries is RxJS [RxJS, 2018], which features
the concept of observables, a novel abstraction for asynchronous programing that uses
reactive programming. Observables are first-class objects that emit a data stream from
a source such as a server, which may be finite or not, upon which other entities in the
application can (un)subscribe to receive and react accordingly. In contrast to promises,
observables can emit multiple asynchronous values.

function bookButtonHandler_OBSERVABLES() {
var URL = / / . . . as above
var idBook = / / . . . as above
var httpClient = / / Observable−based http c l ien t
httpClient . get (URL + ”id=” + idBook) . subscribe (function (book) {

/ / display description about the book on the HTML

book . chaptersURL . forEach (function (chapURL) {
httpClient . get (chapURL) . subscribe (function (chapter) {

/ / display content of the chapter on the HTML

chapter . imagesURL. forEach (function (imgURL) {
httpClient . get (imgURL, function (img) {

/ / display images of the chapter on the HTML
});

}) ;
}) ;

}) ;
}) ;

}

Listing 7: The book handler implementation with observables using RxJS.

Listing 7 shows an implementation of bookButtonHandler with observables. In addition
to URL and idBook, we create an observable object (httpClient) to make client-side HTTP
operations. In the piece of code, we observe that calls to httpClient.get yield observable

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 963

objects, which support subscriptions. Upon several nested subscriptions, we arrive again
at the callback hell problem. In observables, several operators from functional program-
ming (e.g., map and filter) allow developers to create complex customized data streams
and enforce an order of callback executions, but developers are still at risk of falling into
callback hell.

Regarding reacting programming approaches in research, we can find the proposals
Flapjax [Meyerovich et al., 2009] and Coherent Reaction [Edwards, 2009]. Flapjax is a
programming language defined on top of JavaScript. This variant of JavaScript introduces
two concepts: behavior and stream event, which allow developers to create compositions
of expressions. A behavior is a living/reactive variable, which is automatically updated
by an event stream that will give a stream of (infinite) discrete events whose new events
trigger additional computation. Once a developer adds a behavior to the event stream,
the behavior is updated by the event stream, hiding callbacks. Thus, event handling is
managed by the reactive behavior of the language itself (i.e., Flapjax), which updates
values that are propagated immediately based on developers-defined dependencies.
Although Flapjax hides callbacks from pieces of code, developers have to learn how to use
Flapjax and its libraries additionally to a programming style that combines synchronous
and asynchronous operations. The second one, Coherent Reaction, introduces the concept
of coherent in which an ordering of all events are dynamically decided to prevent side
effects. Coherent reactions are embedded in a new language. However, this language
does not have any concerns about (a)synchronicity but concentrates on correct reactions
based on the change of a value.

Lazy evaluation. A programming language uses a strategy that determines when an
expression is evaluated, particularly the arguments of a function call. We briefly explain
lazy evaluation, which may potentially address asynchronous issues by comparing it
with eager evaluation that many programming languages use, including JavaScript.

1 function addOne(num) { return num + 1; }
2 function display (v) { printOnTheScreen(v) ; }
3

4 display (addOne(10)) ; / / display 11

Listing 8: Piece of code used to compare evaluation strategies.

Listing 8 defines the following functions: addOne, which returns its argument in-
creased by one, and display, which just displays the argument. In Line 4, display is invoked
with an argument, a value returned from addOne with 10, displaying 11. In the eager
evaluation strategy, the argument is aggressively evaluated, meaning that the invocation
of addOne is done before invoking display. As a result, the number 11 is directly passed to
addOne. In this strategy, the next computation (e.g., display) is always blocked until the
current computation (e.g., addOne) finishes.

In contrast, in the lazy evaluation strategy, the evaluation of arguments is deferred
when the value is truly required (named strictness points). For example, the invocation
of addOne is not done until the program execution reaches Line 2 where printOnTheScreen
requires the value of v. In this strategy, the next computation (e.g., display) may not be
blocked even though the current computation (e.g., addOne) may have not finished.

964 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

1 function downloadImage(url) { /* download image */}
2 function i n i t () {
3 var image = downloadImage(url) ;
4 window. onClick = function (e) { /* cl ick handler on Window */};
5 display (image) ;
6 }

Listing 9: Applying lazy evaluation to a Web application.

Lazy evaluation may help address blocking issues as follows. Listing 9 defines
two functions: downloadImage downloads an image and init initializes an application;
we assume that downloadImage takes a certain time for downloading. The init function
first a) downloads an image (Line 3), b) adds a handler when there is a “click” on the
window (Line 4), and init finally c) shows the downloaded image on the screen (Line
5). Given that JavaScript uses eager evaluation, the init execution is blocked until
downloadImage finishes, resulting in the click handler not being able to be added. There-
fore, applying lazy evaluation enables adding the click handler because image is truly
required in Line 6, meaning that the execution of downloadImage is deferred. Although a
mechanism that emulates lazy evaluation seems to solve the blocking problem, this kind
of mechanism would not work because an asynchronous operation (e.g., downloadImage)
does not start until the data is really needed (e.g., display). This implies that the server
response can differ from the expected one; for example, when a retrieved image depends
on the time.

2.3 Specialized Language Constructs

Babel [McKenzie, 2014] is a JavaScript compiler that allows developers to use non-native
features like async/await of C# [Benton et al., 2004]. In addition, these language constructs,
with their associated behavior, are supported in the specification ECMAScript 7 [ECMA,
2017], which is already supported by some browsers. In async/await, the tagged async
functions can use the await construct, which suspends the current executing function and
yields control to the caller of the async method until the awaited asynchronous operation
is resolved. In practice, both constructs serve as syntactic sugar to ease programming
with promises: async denotes a function that returns a promise, and await waits for the
resolution of a promise or async operation (only inside a function that is already async).

Listing 10 shows an implementation of the book button handler using async/await. This
implementation shows that the use of async/await permits avoiding callback dependencies
and modularizes concerns; for example, the display concern is not inside callbacks. In
Line 5, the handler execution is suspended until the value of book is available. In all
calls of asyncRequest, the last parameter is now a function with an empty body and can
be omitted because this callback is no longer necessary. This is because the handler
execution cannot continue until the value is available or an exception is triggered.

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 965

Related Work Our Proposal: Sync/ccPure Callback Hell

Figure 2: From a) to d), general code shapes for existing asynchronous programming

proposals with their issues: nested callbacks (nest code) result in tangled concerns

(color). (a) Typical callback hell, (b) Tangled concerns due to function composition, (c)

Heavily nested then and subscribe operations, and (d) Specialized language constructs

like async/await results in scattered keywords. Finally, (e) Our proposal, Sync/cc.

1 async function bookButtonHandler_ASYNC_AWAIT() {
2 var URL = / / . . . as above
3 var idBook = / / . . . as above
4 var book = await asyncRequest (URL + ”id=” + idBook , function (){}) ;
5

6 var chapters = book . chaptersURL .map(async function (chapURL) {
7 return await asyncRequest (chapURL, function (){}) ;
8 });
9

10 var images = chapters .map(function (chapter) {
11 return chapter . imagesURL.map(async function (imgURL) {
12 return await asyncRequest (imgURL, function (){}) ;
13 }) ;}) ;
14

15 / / display book description , chapters , and images on the HTML
16 }

Listing 10: The book button handler implementation using async/await.

The async/await constructs unfortunately present an issue: Constructs are scattered
around the function body and the callers of this function, especially if asynchronous and
synchronous pieces of code are mixed. For example, these two constructs appear six
times in the implementation.

From ECMAScript 6 [ECMA, 2016], JavaScript officially introduces the language
constructs generator/yield as a core of the language. Inside a generator function, a devel-
oper can use the construct yield to keep the stack frame, which can be considered as a
continuation. Then, the developer can restart the continuation by invoking the method
next() of a generator object created from the execution of the generator function. Con-
structs generator/yield can solve callback hells; however, the solution presents the same
two issues as async/await: scattered specialized constructs over a piece of code and fixed
semantics that should be added to the programming language.

Summary. Fig. 2 presents a rough sketch of the shape of the source code in the case
of each of the solutions presented here: plain asynchronous programming, JavaScript
libraries, mechanisms, and specialized language constructs. The first shape illustrates the

966 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

Proposals
Benefits

Plain asynchronous
programming

Libraries
(e.g., Async)

Mechanisms
(e.g., Promises)

Specialized
constructs

(e.g., async/await)

Natively supported

No nested callbacks

No nested tangled concerns

No require advanced knowledge
No unexpected callback order
(or the order can be forced)

No artificial function required

No scattered (new) constructs

Synchronous style

Table 1: Comparison summary among existing proposals.

pure callback hell using plain asynchronous programming. The following two shapes
present mixed concerns and nested callbacks.Amore advanced proposal using specialized
constructs for callback hell, such as async/await, does not present nested callbacks but a
mix of concerns through scattered ad-hoc keywords. Following the same taxonomy as
the figure, Table 1 summarizes different benefits of existing proposals, where we can
easily figure out that specialized constructs offer more benefits than the rest of existing
proposals. Although existing proposals present a similar behavior in terms of network
requests and code execution, we argue that the difficulties for writing, maintaining, and
modularizing a piece of code with callback hell provides a solid motivation for our work,
especially considering that code indentation and shape have been identified as a good
indicator for measuring complexity in terms of software development [Hindle et al.,
2009].

3 Sync/cc

Showing a new version of bookButtonHandler, this section presents Sync/cc, which is
distributed as a JavaScript package. Unlike previous proposals, Sync/cc does not require
nested callbacks, artificial functions, and specialized mechanisms/constructs for callback
hell. In addition, our proposal allows developers to customize Sync/cc’s semantics
because its implementation only needs two aspects, which programmers do not need to
understand if Sync/cc’s semantics is not modified. Finally, our proposal currently works
on both the client and server sides of a JavaScript Web application.

Listing 11 presents the bookButtonHandler implementation with Sync/cc. Every time
asyncRequest is called, Sync/cc returns the control to the application avoiding blocking
the user experience in the Web application until the response of this request is available.
Like async/await, our proposal then resumes the handler execution from the left hand
assignment of each asyncRequest call (e.g., var book = ...). As a consequence of the sus-
pension and resumption of a handler execution in each asynchronous request, the order
of callback executions is not potentially modified in an unexpected manner if there are
more asynchronous requests into the handler. Similar to async/await, the last parameter in
the asynchronous operation is now a function with an empty body that can be omitted
because this callback is no longer necessary.

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 967

function bookButtonHandler_SYNC_CC() {
var URL = / / . . . as above
var idBook = / / . . . as above
var book = asyncRequest (URL+”id=”+idBook , function (){}) ;

var chapters = book . chaptersURL .map(function (chapURL) {
return asyncRequest (chapURL, function (){}) ;

}) ;

var images = chapters .map(function (chapter) {
return chapter . imagesURL.map(function (imgURL) {
return asyncRequest (imgURL, function (){}) ;

}) ;}) ;

/ / display book description , chapters , and images on the HTML
}

Listing 11: The book handler implementation using Sync/cc.

A+

A-

Download &
Show Story

Text of the
downloaded
story

Story Options
1 2

3 4

Web application Handler
(source code) Server

asyncRequest(…);

Figure 3: An overview of Sync/cc.

Fig. 3 shows in four steps how Sync/cc works on a Web application. First, the
Web application receives a request to execute a handler. Second, the handler invokes
an asynchronous operation. Third, Sync/cc suspends the handler execution when this
operation is executed and yields control to the Web application. Finally, our proposal
resumes the handler execution when the server response is resolved. Like other proposals
like async/await, Sync/cc the handler execution is suspended until the server response is
available.

3.1 Use of Continuations in Sync/cc

This section briefly introduces continuations and then explains how Sync/cc uses them.
Programming languages like Scheme provide continuations [Friedman and Wand, 1984,
Haynes et al., 1986], which capture and store the current program control state as a
first-class value. If this value is a function, it can be called and the current continuation
will be replaced with the stored continuation. Unwinder [Long, 2018] is a JavaScript
package, which is currently discounted but is still useful for our purpose, that captures the
current continuation with a built-in function, named callCC. We illustrate continuations
in Unwinder through a piece of code that captures the execution of a function creating a
nickname from a name and lastname (Listing 12):

968 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

1 var kont ;
2

3 function createNick (name, lastname) {
4 return (function () {
5 kont = callCC(cont => cont) ;
6 return typeof (kont) == ” str ing”? kont : name + ” . ” ;}) () +
7 lastname ;
8 }
9

10 show(createNick (”alan” ,” turing”)) ; / / shows alan . turing
11 i f (typeof (kont) == ”function”) kont (”a”) ; / / shows aturing

Listing 12: Use of continuations in the Unwinder package.

Start createNick
(“alan”,”turing”)

show
(“alan.turing”)

typeof(kont) ==
“function”

End

kont(“a”)
declarations &
assignments

kont (parameter)

return
+
“turing”

(function() {… return “alan.”; }) ();

Figure 4: The Process Flow Diagram (PFD) of Listing 12, which uses the continuation

kont. The invocation of kont uses a parameter to replace the return value of the

anonymous function inside of createNick (i.e., “return ”alan””).

Fig. 4 shows a flowchart of the piece of code above. In Line 5, the piece of code
captures and stores the continuation in kont, bound from cont, before concatenating name
with ”.”. This capture takes place in Line 10 when createNick is called. The result of
createNick is passed to show, and then the string ”alan.turing” is displayed. Line 11 executes
the continuation bound to kont with ”a” as parameter, which replaces the return of the
anonymous function of Line 4 (i.e., return ”alan.” → return ”a”). As a result, ”aturing” is
displayed (”aturing” = (name = ”a”) + (lastname = ”turing”)). Note that the if expression
(Line 6) and if statement (Line 11) are used to differentiate when a continuation is
created from being called. A continuation is a function (Line 9) if this continuation has
been created but not called, otherwise the continuation is bound to the value passed by
parameter when it is called (i.e., ”a” in this piece of code).

If developers need to suspend a handler execution, a continuation should be created
at the end of the top-level script because after this execution there is no statements to be
executed. For example, Listing 13 shows that the handler execution of showMessageHandler
suspends due to the invocation of the continuation suspend:

function showMessageHandler () {
show(”This message will be shown”) ;
suspend () ;
show(”This message will never be shown”) ;

}

var suspend = callCC(cont => cont) ;

Listing 13: Suspending a JavaScript script with continuations.

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 969

Sync/cc uses two continuations: the first one is used to suspend a handler execution
just after an asynchronous operation invocation, and the second one is used to resume
the handler execution when the asynchronous operation response is available.

3.1.1 Continuations in Programming Languages

Although continuations can be hard to be implemented efficiently [Appel, 1992], some
programming languages like C#, Python, and Scala already include these abstractions1.
In particular, whereas the JavaScript specification [ECMA, 2017] does not include con-
tinuations, some interpreters of this language like Rhino [Mozilla, 1997] already include
this abstraction in a native way. Additionally, it is possible to find researches oriented
to properly implement continuations on top of plain JavaScript [Thivierge and Feeley,
2012].

Unwinder follows a transformation approach to implement continuations. Unsur-
prisingly, in the JavaScript software ecosystem, including mainstream projects such as
TypeScript [TypeScript, 2012], Angular [Angular, 2012], and other packages such as
Browserify [Browserling, 2018], Babel [McKenzie, 2014], the usage of (whole-program)
transformation pipelines is used in practice as the de-facto mechanism for implemen-
tation of novel features on top of Vanilla Javascript. Fortunately, as Listing 11 shows,
continuations and their transformations are hidden for developers.

As the next section shows, continuations on themselves are not sufficient to tame
callback hell. This is because programmers have to be aware of suspending/resuming a
program execution, which is similar to the use of async/await in C#.

3.2 Use of Aspects in Sync/cc

This section briefly explainsAspect-Oriented Programming (AOP) [Kiczales et al., 1996]
using AspectScript [Toledo et al., 2010]. We then explain how this aspect language is
used in Sync/cc. As mentioned previously, developers only need to understand the
mechanism behind AOP, when customizations of Sync/cc’s semantics are required.

In the pointcut-advice model of AOP, crosscutting behavior is defined by means of
pointcuts and advices, which are encapsulated by an abstraction named aspect. Execution
points at which an advice may be executed are called (dynamic) join points. A pointcut
matches a set of join points, and an advice is the action to be taken before, around, or
after the matched join point. An around advice can invoke the original computation
of the matched join point, known as the proceed invocation. Examples of crosscutting
behaviors that can be modularized using aspects are security [Toledo and Tanter, 2013],
logging [Miles, 2004], and event handling [Leger et al., 2013].

In AspectScript, an aspect is a JavaScript object with three properties: a point-
cut, an advice, and an advice kind. The two first properties are functions that receive
a join point object as parameter. The advice kind property is a constant that indi-
cates when the advice is executed (i.e., before, around, or after). For example, the
notificationOfBookHandler aspect of Listing 14 logs a message after each execution of
the bookButtonHandler function. In this aspect, the pointcut matches join points that rep-
resent executions of bookButtonHandler and the advice, which is executed after each
bookButtonHandler execution, logs a message.

1 https://en.wikipedia.org/wiki/Continuation

https://en.wikipedia.org/wiki/Continuation

970 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

var notificationOfBookHandler = {
pointcut : function (jp) {

/ / i f jp i s an execution of the bookButtonHandler function
return jp . isExec () && jp . fun == bookButtonHandler

} ,

advice : function (jp) {
/ / function executed when jp is matched
log (”bookButtonHandler was executed”) ;

} ,

kind : AFTER
};

/ / deployment of the aspect
AspectScript . deploy (notificationOfBookHandler) ;

Listing 14: An aspect that shows a message when a handler is executed.

Listing 15 shows the complete implementation of Sync/cc, which uses two aspects.
The first aspect executes its advice around an asynchronous operation call. The second
aspect triggers its advice after the execution of the associated callback to the asynchronous
operation; in the book handler example, Listing 11, the callback is the second and last
parameter of asyncRequest.

var Synccc = function () {
this . kont ; / / to resume an handler execution
this . suspend ; / / to suspend an handler execution

this . asyncOperation = {
pointcut : function (jp) {
return jp . isCall () && jp . fun == asyncRequest ;} ,

advice : function (jp) {

var response = 1 jp.proceed(); / / executing asyncRequest

2 kont = callCC(cont => cont);

i f (typeof (kont) == ”function”) {

3 suspend();

}
else {
return kont ;

}
} ,
kind : AROUND

};

this . asyncCallback = {
pointcut : function (jp) {
return jp . isExec () && jp . fun == callback

} ,
advice : function (jp) {
var response = jp . args [0] ; / / 1s t arg to callback
kont (response) ; / / resuming the asyncOperation advice

} ,
kind : AFTER

};
}

}

Listing 15: Implementation of Sync/cc.

The asyncOperation aspect matches the call of asyncRequest and its around advice

carries out three tasks. The task 1 executes the original computation. The task 2

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 971

creates a continuation (kont) that represents the execution of this advice and the rest of the
handler execution. Finally, the advice suspends the handler execution using the suspend

continuation (task 3). The asyncCallback aspect matches the callback execution, and its
advice resumes the kont continuation with the response of the asynchronous operation. As
a consequence, the execution of the asyncOperation advice, which replaces the asyncRequest
execution, is resumed to return the already available response of the operation (Fig. 5).
Thereby, the implementation of bookButtonHandler with Sync/cc (Listing 11) can now use
the Array.mapmethod instead of Array.forEach, which is used in the original implementation
of this handler (Listing 3) because it only iterates the array without returning a new array
as a result.

3.2.1 Aspects in Programming Languages

In the literature, we can find various aspect languages, for example, AspectJ [Kiczales
et al., 2001] for Java, AspectS [Hirschfeld, 2002] for Squeak, AspectScheme [Dutchyn
et al., 2006] for Scheme, and AspectScript for JavaScript. Similar to Unwinder and other
relevant projects mentioned in Section 3.1.1, AspectScript also follows a transformation
of the source code of a program.

As the previous section shows, aspects on themselves are not sufficient to tame
callback hell. This is because programmers have to suspend/resume a handler execution
when an asynchronous request is called, and its result is used.

3.3 Semantics Customization of Sync/cc

Developers can use the Sync/cc package without knowing howAOP works, especially
these two aspects. Nevertheless, if developers require customize Sync/cc’s semantics,
some AOP knowledge is required. Next, we explain what customizations can be done
when developers modify these aspects.

Although aspects of Listing 11 show that Sync/cc only works with asyncRequest, our
proposal allows developers to customize what asynchronous operations intercept. For
this customization, developers only need to change the functions that must be matched
by pointcuts. Indeed, an application interface as a function SyncCC.setAsyncOperation(..)
would enable Sync/cc works on different kinds of asynchronous operations available on
frameworks such as JQuery, Prototype, YUI, MooTools, etc. In addition, our proposal can
be adapted to different and unforeseen semantics of asynchronous operations. We briefly
explain two examples where Sync/cc customizations may be useful. First, handling
exceptions inside callbacks is challenging because of its unclear propagation [Ploski
and Hasselbring, 2005]. Using Sync/cc, we may customize the asyncCallback aspect (List-
ing 15) to trigger/propagate an exception when, for example, the server response is
timeout. Second, consider an asyncRequestFromMultipleServers method which sends multi-
ple requests to different servers and only uses the first server response that is received
(e.g., a geo-location service). By modifying both previous aspects used to implement
Sync/cc, our proposal can discard all server responses after the first response.

3.4 Implementation Details

As aspects and continuations are not natively supported in JavaScript, it is necessary
to use some libraries available on NPM [NPM, 2018], a large repository of JavaScript

972 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

function bookButtonHandler() {
 //code omitted

 var book = asyncRequest(…, function(book){…});

 //code omitted
}

//advice of asyncOperation
advice: function (jp) {
 var response = jp.proceed();

 kont = callCC(cont => cont);
 if (typeof(kont) == “function”) suspend();
 return response;
}

Figure 5: Behavior of the asyncOperation advice to return a value to the assignment of an

asynchronous operation.

Overhead/Example Story Book

(Server-side) Performance with only CPU usage 300%

(Client-side) Performance with network latency 6.6% 13.3%

Table 2: Sync/cc performance overload with story and book examples. First, overload

considering network latency, and then only CPU usage.

libraries available as packages. This section describes the use of these libraries to support
Sync/cc in Web applications.

Fig. 6 shows the workflow used to support in Sync/cc. This workflow depicts
the use of AspectScript and Unwinder. To use our proposal, a JavaScript program-
mer instruments to instrument a script that contains asynchronous requests to add
aspects and continuations support. Then, the workflow utilizes the Browserify pack-
age [Browserling, 2018] to bundle in only one JavaScript file that is compatible with
existing browsers (e.g., Mozilla Firefox).

Table 2 shows a performance evaluation of Sync/cc in the server and client side. For
both evaluations, we used Mozilla Firefox (v70.x) [Foundation, 2018] on a Macbook Pro
(2017), 3.1 GHz Dual-Core Intel Core i5 with 8GB of RAM running macOS Catalina. The
table shows that the runtime of aspect and continuations affects performance, that is the
server-side.Although performance results are important, they do not really affect handlers
of interactive JavaScript applications because of asynchronous operation latency. In the
client-side, we have tested the two examples presented here (story and book handlers)
on the Sync/cc Website without any noticeable difference (between 6.6% and 13.3%)
over the Web application without Sync/cc. In addition, as aspects and continuations
are general purpose abstractions, Sync/cc may not need any kind of instrumentation or
additional libraries to work if these abstractions are natively supported. Finally, note
these values are for reference only because this is not an optimized production-ready
implementation, meaning that it is useful to see the orders of magnitude rather than
specific performance numbers.

4 Case Study: AManagement Information System to Administer
University Courses

The Catholic University of the North (http://www.ucn.cl) is located in two cities of
Chile. As of 2017, this university is home to 11,164 students, and has 38 undergraduate
program studies that are lectured in 35 academic units. Courses administration is carried

http://www.ucn.cl

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 973

script.js

Synccc.js

Adding aspect
support

Adding
Continuation

support
Packing for

the Web

AspectScript Unwinder Browserify

bundle.jsAdding aspect
support

Instrumentation (weaver)

Figure 6: Workflow of libraries used to support aspects and continuations in Sync/cc.

PHP file
that generates

HTML with a JavaScript
file that creates

the report

Web page that
shows an interactive

report

client side server side

an HTML page

Tongoy-UCN

PHP file
that generates

HTML
Web page that

shows an interactive
report

client side server side

an HTML page

reportGeneration.js

AspectScript.js

Tongoy-UCN with Sync/cc

synccc.js

Figure 7: The current Tongoy-UCN implementation versus a version that applies

Sync/cc.

out by a Management Information System (MIS) [Laudon and Laudon, 2016] called
Tongoy-UCN [Ross, 2018]. This system uses Web technologies to allow a) students to
register their attendance, access their grades, and comment lectures, and b) professors to
take attendance, publish grades, and define a course plan. In addition, Tongoy-UCN is
able to create different kinds of reports. ThisWeb system approximately administers 2,500
courses per semester that are lectured in 33 academics units (94.2%) at the university.

One of Tongoy-UCN’s features is showing a report about a running course in a Web
page. This report includes the grades and attendance of students, as well as the state of a
specific course. The creation of a course report requires information from four different
sources in Tongoy-UCN (i.e., tables of a database). This report is generated by a script
that is within an HTMLWeb page (client-side). To generate the report, this script executes
four nested asynchronous operations, where each one receives information of a source
(Listing 16). These asynchronous operations illustrate callback hell. Note that although
these four information requests come from the same database, creating only one request
that receives all information would require an ad-hoc modification of the Tongoy-UCN
backend to only implement this feature in the front-end, where this script is executed.

function reportGeneration (parameters) {
/ / Variables and functions are translated to English
/ / For clar i f icat ion , some piece of code are subtly modified

asyncRequest (”professor /pbd .php?op=ea” , function (sAttendance){
asyncRequest (”professor /pbd .php?op=en” , function (sDegree){
asyncRequest (”professor /pbd .php?op=es” , function (cState){
asyncRequest (”professor /pbd .php?op= l i s t ” , function (cInstance){

/ / process retrieved information
displayReport (/* processed information */) ;

}) ;
}) ;

}) ;
}) ;

}

Listing 16: Callback hell in the generation of a course report in Tongoy-UCN.

974 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

Overhead/Example Tongoy’s script

Script length 3,081%

Performance with network latency 15.3%

Table 3: Sync/cc overload in its application in Tongoy.

We applied Sync/cc in a development version of Tongoy-UCN to verify if our pro-
posal can address issues related to callback hell. Listing 17 illustrates this application
in the generation of a course report in Tongoy-UCN. In this listing, we can easily see
that the four nested asynchronous operations disappear, and empty callbacks could be
removed. In addition, we can see that each asynchronous operation returns and binds the
required information to a variable. Unlike existing proposals discussed in related work
(Section 2), we can see this solution does not require:

– additional (and artificial) functions,

– any nested function declarations,

– to enforce an order of callback executions, and

– to scatter specialized (and ad-hoc) language constructs in the piece of code.

function reportGeneration_SYNCCC(parameters) {
/ / Variables and functions are translated to English
/ / For clar i f icat ion , some piece of code are subtly modified

var sAttendance , sDegree , cState , cInstance ;

sAttendance = asyncRequest (”professor /pbd .php?op=ea”) ;
sDegree = asyncRequest (”professor /pbd .php?op=en”) ;
cState = asyncRequest (”professor /pbd .php?op=es”) ;
cInstance = asyncRequest (”professor /pbd .php?op= l i s t ”) ;

/ / process retrieved information
displayReport (/* processed information */) ;

}

Listing 17: The course report implementation using Sync/cc in Tongoy-UCN.

Because of the current Tongoy-UCN implementation, the integration between Sync/cc
and Tongoy-UCN required a small refactoring. Fig. 7 shows the refactoring in this system
component to use Sync/cc, which adds the AspectScript runtime and Sync/cc libraries.
Because our current proposal requires code instrumentation to work, we separated the
instrumented code in a single JavaScript file (generationReport.js) to prevent confusion in
a PHP programmer because the current Tongoy-UCN implementation mixes client and
serve code. As Table 3 shows, its increment in terms of script length and performance
considering network latency remain similar to the book example shown in Table 2; this
is because both scripts have a potentially equivalent number of nested callbacks. Finally,
although someone may suggest that this refactoring illustrates a sign of weakness of
Sync/cc, we argue that this refactoring is even recommended in the current Tongoy-UCN
implementation because the server-side (PHP) and client-side (JavaScript) concerns are
now mixed.

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 975

5 Conclusions

Because there is a strong push to build complex, interactive, and highly responsive
JavaScript applications, appropriate abstractions for asynchronous programming are
crucial. In this kind of programming, callbacks are widely used nowadays. Unfortunately,
callback dependencies (a.k.a. callback hell) are likely to appear and make it difficult
to eventually understand and maintain pieces of code that crosscut concerns. Current
proposals do not fully address callback dependencies. Using general and multi-purpose
concepts in programming languages, this paper proposes Sync/cc, a JavaScript package
to prevent callback hell using continuations and aspects. Continuations prevent the need
to execute statements in callback bodies and aspects apply continuations without the
need to modify the code.

Regarding future work, we plan to conduct usability tests to claim this proposal is a
good option for developers that must deal with asynchronous programming. For example,
developers may make errors when are maintaining a module that uses an asynchronous
operation because the absence of some construct (e.g., async/await) or framework that
indicates this kind of operation. Similar to the user-study applied in [Rossbach et al.,
2010], we plan to carry out a usability evaluation where a set of developers will modify
a module of a Web application. This module will use asynchronous operations and
developers will modify it using existing proposals and Sync/cc in order to compare them.

Acknowledgments

We are grateful to Dominique Leger for her help in clarifying our initial intuition. In
addition, we thank Felipe Ruiz (felipe.ruiz@alumnos.ucn.cl) and ErikAstorga (eab008@
alumnos.ucn.cl) for their efforts to develop a working and usable version of Sync/cc in
modern browsers.

References

[Alimadadi et al., 2016] Alimadadi, S., Mesbah, A., and Pattabiraman, K. (2016). Understand-
ing asynchronous interactions in full-stack JavaScript. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 1169–1180, Austin, USA.

[Angular, 2012] Angular (2012). Angular: A typed JavaScript. https://angular.io/. Accessed:
2021-01-20.

[Appel, 1992] Appel, A. W. (1992). Compiling with Continuations. Cambridge University Press.

[Appel and Jim, 1989] Appel, A. W. and Jim, T. (1989). Continuation-passing, closure-passing
style. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 89), pages 293–302, Austin, USA.

[Benton et al., 2004] Benton, N., Cardelli, L., and Fournet, C. (2004). Modern concurrency

abstractions for C]. ACM Transactions on Programming Languages and Systems, 26(5):769–804.

[Browserling, 2018] Browserling (2018). Browserify: A tool for compiling node-flavored com-
monjs modules for the browser. http://browserify.org. Accessed: 2020-01-20.

[Dutchyn et al., 2006] Dutchyn, C., Tucker, D. B., and Krishnamurthi, S. (2006). Semantics and
scoping of aspects in higher-order languages. Science of Computer Programming, 63(3):207–239.

[ECMA, 2016] ECMA (2016). ECMAScript 6: A scripting-language specification for JavaScript
- https://www.ecma-international.org/ecma-262/6.0. Accessed: 2020-01-20.

felipe.ruiz@alumnos.ucn.cl
eab008@alumnos.ucn.cl
eab008@alumnos.ucn.cl
https://angular.io/
http://browserify.org
https://www.ecma-international.org/ecma-262/6.0

976 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

[ECMA, 2017] ECMA (2017). ECMAScript 7: A scripting-language specification for JavaScript
- https://www.ecma-international.org/ecma-262/7.0. Accessed: 2020-01-20.

[Edwards, 2009] Edwards, J. (2009). Coherent reaction. In Proceedings of the 24th ACM SIG-
PLAN Conference Companion on Object Oriented Programming Systems Languages and Applica-
tions, pages 925–932, Orlando, Florida, USA.

[Elliott and Hudak, 1997] Elliott, C. and Hudak, P. (1997). Functional reactive animation. In
Proceedings of the Second ACM SIGPLAN International Conference on Functional Programming
(ICFP ’97), pages 263–273, Amsterdam, The Netherlands.

[Farias, 2009] Farias, B. (2009). A utility to hoist nested callbacks. Accessed: 2020-01-20.

[Foundation, 2018] Foundation, T. M. (2018). Firefox: A free and open-source web browser.
Accessed: 2020-01-20.

[Friedman and Wand, 1984] Friedman, D. P. and Wand, M. (1984). Reification: Reflection with-
out metaphysics. In Proceedings of the Annual ACM Symposium on Lisp and Functional Program-
ming, pages 348–355.

[Gallaba et al., 2015] Gallaba, K., Mesbah, A., and Beschastnikh, I. (2015). Don’t call us, we’ll
call you: Characterizing callbacks in JavaScript. In ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 1–10, Beijing, China.

[Garrett, 2005] Garrett, J. J. (2005). Ajax: A new approach to Web applications. https:
//adaptivepath.org/ideas/ajax-new-approach-web-applications/. Accessed: 2020-01-20.

[Haynes et al., 1986] Haynes, C., Friedman, D., and Wand, M. (1986). Obtaining coroutines with
continuations. Computer Languages, 11(3):143–153.

[Hindle et al., 2009] Hindle, A., Godfrey, M. W., and Holt, R. C. (2009). Reading beside the
lines: Using indentation to rank revisions by complexity. Science of Computer Programming,
74(7):414–429.

[Hirschfeld, 2002] Hirschfeld, R. (2002). AspectS – aspect-oriented programming with Squeak.
In Akşit, M., Mezini, M., and Unland, R., editors, International Conference NetObjectDays on
Components, Architectures, Services, and Applications for a Networked World, volume 2591 of
Lecture Notes in Computer Science, pages 216–232. Springer-Verlag.

[Kambona et al., 2013] Kambona, K., Boix, E. G., and De Meuter, W. (2013). An evaluation of
reactive programming and promises for structuring collaborative web applications. In Proceedings
of the 7th Workshop on Dynamic Languages and Applications (DYLA), pages 1–9, Montpellier,
France.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,
W. (2001). An overview of AspectJ. In Knudsen, J. L., editor, Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), number 2072 in Lecture Notes in
Computer Science, pages 327–353, Budapest, Hungary. Springer-Verlag.

[Kiczales et al., 1996] Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C., Maeda, C.,
and Mendhekar, A. (1996). Aspect oriented programming. In Special Issues in Object-Oriented
Programming. Max Muehlhaeuser (general editor) et al.

[Laudon and Laudon, 2016] Laudon, K. and Laudon, J. (2016). Management information system.
Pearson Education India.

[Leger and Fukuda, 2016] Leger, P. and Fukuda, H. (2016). Using continuations and aspects to
tame asynchronous programming on the web. In Proceedings of the Workshop on Foundations of
Aspect-Oriented Languages (FOAL 2016), pages 79–82, Malaga, Spain.

[Leger and Fukuda, 2017] Leger, P. and Fukuda, H. (2017). Sync/cc: Continuations and aspects
to tame callback dependencies on JavaScript handlers. In Proceedings of the 32th Annual ACM
Symposium on Applied Computing (SAC 2017), pages 1245–1250, Marrakech, Morocco.

https://www.ecma-international.org/ecma-262/7.0
https://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://adaptivepath.org/ideas/ajax-new-approach-web-applications/

Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb 977

[Leger et al., 2013] Leger, P., Tanter, É., and Douence, R. (2013). Modular and flexible causality
control on the web. Science of Computer Programming, 78(9):1538–1558.

[Lindesay, 2012] Lindesay, F. (2012). Promise: A library for promises in JavaScript. https:
//www.promisejs.org. Accessed: 2020-01-20.

[Long, 2018] Long, J. (2018). Unwinder: A call/cc library. https://www.npmjs.com/package/
unwinder-engine. Accessed: 2021-04-20.

[Loring et al., 2017] Loring, M., Marron, M., and Leijen, D. (2017). Semantics of asynchronous
JavaScript. In Proceedings of the 13th ACM SIGPLAN International Symposium on on Dynamic
Languages, pages 51–62, Vancouver, BC, Canada.

[McKenzie, 2014] McKenzie, S. (2014). Babel: A compiler for writing ES6 and ES7 generation
JavaScript. https://babeljs.io. Accessed: 2020-01-20.

[McMahon, 2010] McMahon, C. (2010). Async.Js: A library for working with asynchronous
JavaScript. https://github.com/caolan/async. Accessed: 2020-01-20.

[Meyerovich et al., 2009] Meyerovich, L., Guha,A., Baskin, J., Cooper, G., Greenberg, M., Brom-
field, A., and Krishnamurthi, S. (2009). Flapjax: A programming language for ajax applications.
In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, pages 1–20, Orlando, Florida, USA.

[Miles, 2004] Miles, R. (2004). AspectJ Cookbook: Aspect Oriented Solutions to Real-World
Problems. O’Reilly Media.

[Mozilla, 1997] Mozilla (1997). Rhino: An open-source implementation of JavaScript written
entirely in Java. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino. Accessed:
2021-04-10.

[NPM, 2018] NPM (2018). NPM: A package manager online for JavaScript. https://www.npmjs.
com. Accessed: 2020-01-20.

[Ogden, 2019] Ogden, M. (2019). A website about callback hell. http://callbackhell.com. Ac-
cessed: 2019-01-03.

[ONeal, 2007] ONeal, A. (2007). FuturesJS: Asynchronous library in JavaScript using futures.
https://github.com/FuturesJS. Accessed: 2020-01-20.

[Overflow, 2020a] Overflow, S. (2020a). Callback hell on stackoverflow: How to
avoid nested asynchronous operations. https://stackoverflow.com/questions/4234619/
how-to-avoid-long-nesting-of-asynchronous-functions-in-node-js. Accessed: 2020-01-17.

[Overflow, 2020b] Overflow, S. (2020b). Callback hell on stackoverflow: Prob-
lems with asynchronous operations. https://stackoverflow.com/questions/14220321/
how-do-i-return-the-response-from-an-asynchronous-call/14220323. Accessed: 2020-01-17.

[Ploski and Hasselbring, 2005] Ploski, J. and Hasselbring, W. (2005). The callback problem in
exception handling. In Proceedings of ECOOP Workshop on Exception Handling in Object-
Oriented Systems, pages 39–62, Montpellier, France.

[Ross, 2018] Ross, E. (2018). Tongoy-UCN: A management information systems to admin
university’s courses. https://tongoy.ucn.cl. Accessed: 2020-01-20.

[Rossbach et al., 2010] Rossbach, C., Hofmann, O., and Witchel, E. (2010). Is transactional
programming actually easier? In Proceedings of ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 47–56, Bangalore, India.

[RxJS, 2018] RxJS (2018). Reactive extensions for JavaScript. Accessed: 2020-01-20.

[StackoverFlow, 2019] StackoverFlow (2019). Developer survey results. https://insights.
stackoverflow.com/survey/2019. Accessed: 2020-01-20.

https://www.promisejs.org
https://www.promisejs.org
https://www.npmjs.com/package/unwinder-engine
https://www.npmjs.com/package/unwinder-engine
https://babeljs.io
https://github.com/caolan/async
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://www.npmjs.com
https://www.npmjs.com
http://callbackhell.com
https://github.com/FuturesJS
https://stackoverflow.com/questions/4234619/how-to-avoid-long-nesting-of-asynchronous-functions-in-node-js
https://stackoverflow.com/questions/4234619/how-to-avoid-long-nesting-of-asynchronous-functions-in-node-js
https://stackoverflow.com/questions/14220321/how-do-i-return-the-response-from-an-asynchronous-call/14220323
https://stackoverflow.com/questions/14220321/how-do-i-return-the-response-from-an-asynchronous-call/14220323
https://tongoy.ucn.cl
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

978 Leger P., Fukuda H., Figueroa I.: Continuations and Aspects to Tame Callback Hell on theWeb

[Tato, 2010] Tato, L. (2010). Wait.for: Sequential programming for NodeJs/JavaScript. https:
//github.com/luciotato/waitfor. Accessed: 2020-01-20.

[Thivierge and Feeley, 2012] Thivierge, E. and Feeley, M. (2012). Efficient compilation of tail
calls and continuations to javascript. In Proceedings of the 2012 Annual Workshop on Scheme and
Functional Programming, pages 47–57, Copenhagen, Denmark. ACM.

[Tilkov and Vinoski, 2010] Tilkov, S. and Vinoski, S. (2010). Node.js: Using JavaScript to build
high-performance network programs. IEEE Internet Computing, 14(6):80–83.

[Toledo et al., 2010] Toledo, R., Leger, P., and Tanter, É. (2010). AspectScript: Expressive aspects
for theWeb. In Proceedings of the 9th ACM International Conference on Aspect-Oriented Software
Development (AOSD 2010), pages 13–24, Rennes and Saint Malo, France. ACM Press.

[Toledo and Tanter, 2013] Toledo, R. and Tanter, É. (2013). Secure and modular access control
with aspects. In Kinzle, J., editor, Proceedings of the 12th International Conference on Aspect-
Oriented Software Development (AOSD 2013), pages 157–170, Fukuoka, Japan. ACM Press.

[TypeScript, 2012] TypeScript (2012). TypeScript: A typed JavaScript. https://www.
typescriptlang.org/. Accessed: 2021-04-10.

[W3 Techs, 2019] W3 Techs (2019). Usage of client-side programming languages. https://
w3techs.com/technologies/history_overview/client_side_language/all. Accessed: 2020-01-20.

[Zamora-Gómez et al., 2015] Zamora-Gómez, E., García-López, P., and Mondéjar, R. (2015).
Continuation complexity: A callback hell for distributed systems. In European Conference on
Parallel Processing (EURO-PAR), pages 286–298, Vienna, Austria.

[Zheng et al., 2011] Zheng, Y., Bao, T., and Zhang, X. (2011). Statically locating web application
bugs caused by asynchronous calls. In Proceedings of the 11th International World Wide Web
Conference (WWW 2011), pages 805–814, Hyderabad, India.

https://github.com/luciotato/waitfor
https://github.com/luciotato/waitfor
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://w3techs.com/technologies/history_overview/client_side_language/all
https://w3techs.com/technologies/history_overview/client_side_language/all

	Introduction
	Related Work
	Libraries
	Programming Language Mechanisms
	Specialized Language Constructs

	Sync/cc
	Use of Continuations in Sync/cc
	Continuations in Programming Languages

	Use of Aspects in Sync/cc
	Aspects in Programming Languages

	Semantics Customization of Sync/cc
	Implementation Details

	Case Study: A Management Information System to Administer University Courses
	Conclusions

