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Abstract: Disassembly is the basis of static analysis of binary code and is used in malicious code

detection, vulnerability mining, software optimization, etc. Disassembly of arbitrary suspicious

code blocks (e.g., for suspicious traffic packets intercepted by the network) is a difficult task.

Traditional disassembly methods require manual specification of the starting address and cannot

automate the disassembly of arbitrary code blocks. In this paper, we propose a disassembly method

based on code extension selection network by combining traditional linear sweep and recursive

traversal methods. First, each byte of a code block is used as the disassembly start address, and all

disassembly results (control flow graphs) are combined into a single flow graph. Then a graph

attention network is trained to pick the correct subgraph (control flow graph) as the final result. In

the experiment, the compiler-generated executable file, as well as the executable file generated by

hand-written assembly code, the data file and the byte sequence intercepted by the code segment

were tested, and the disassembly accuracy was 93%, which can effectively distinguish the code

from the data.
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1 Introduction

In software research and analysis, the source code of most software is not available or
accessible, and the software can only be analyzed effectively through binary code analysis
(BCA) [Liu et al., 2013]. In this case, BCA is an important tool for software analysis,
such as malicious code analysis, malware detection, vulnerability mining and analysis,
etc [Song et al., 2008]. For many software, vulnerabilities are hidden and not easily
detected, and BCA can be used to better discover vulnerabilities and fix them [Djoudi
and Bardin, 2015]. In the process of computer use, malware is hidden in the normal
application software to cause damage to the computer. Malware is often not open source.
Through BCA, hidden malware can be detected [Ma et al., 2020]. For malicious code
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hidden in normal programs, such as advertising pop-ups, malicious access to software
usage, downloading irrelevant applications and other malicious code can greatly damage
user privacy [Cui et al., 2018]. By BCA, they can be detected. In short, for the analysis
of malicious code, BCA is a key technical tool [Cui et al., 2019].

For BCA, the usual method is to disassemble the binary code, then divide the functions
and construct a control flow graph (CFG) for each function, so as to analyze the function
and infer the role of the whole software accordingly[Anand et al., 2013, Besson et al.,
2001]. In the IA32 architecture executable binary code, there is a mixture of code and data
[Wartell et al., 2011]. Static analysis cannot distinguish between code and data [Kruegel
et al., 2004]. Direct disassembly of binary code containing data will disassemble the data
into assembly code, making it impossible to analyze the functionality of the binary code.
Therefore, distinguishing between code and data without any debugging information is a
challenging problem.

Existing BCA approaches can usually only be performed on a complete program
[Rosenblum et al., 2008]. In network transmissions, the intercepted traffic packets may
only be part of a program [Zhang et al., 2007]. For a sequence of bytes, the disas-
sembly results starting from different locations are completely different. For example,
“8BFF558BEC”, the disassembly result from 8B is “mov edi,edi/ push ebp/ mov ebp,esp”,
the disassembly result from “FF” is “call dword ptr [ebp - 0x75]/ in al, dx”, and the
disassembly result from “55” is “push ebp/ mov ebp, esp”. For a sequence of bytes, the
first few bytes may be part of the previous instruction or the sequence may start with
partial data. Thus, it is not possible to determine the starting byte position of the binary
sequence. Usually, it can only be determined manually after disassembling from different
bytes, which is very inefficient and inaccurate.

To address these problems, this paper proposes an encoding extended selection net-
work, which tries to disassemble from each byte position for an arbitrary code sequence,
and transforms the obtained disassembly results into a CFG linked to become an extended
control flow graph (ECFG). Then the correct nodes in the ECFG are distinguished by a
graph attention network [Velickovic et al., 2018] to obtain the CFG for each function.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 provides the details of the code expansion selection network. Section 4 shows
the evaluation and discussion. Finally, Section 5 summarizes our work and discusses the
future work.

2 Related work

Themain process of disassembly is to map binary code to assembly instructions according
to a certain strategy, and the common methods are mainly divided into static disassembly
and dynamic disassembly [Harris and Miller, 2005]. Static disassembly can work directly
on binary code. Dynamic disassembly, on the other hand, must be performed at program
runtime and has a lower code coverage. The traditional static disassembly work is divided
into linear sweep and recursive traversal. Linear sweep, i.e., disassembling code one
instruction after another from the start byte, cannot distinguish between mixed code and
data. The wrong disassembly of data into code will affect the subsequent disassembly
results. Recursive traversal is control-flow oriented and continues disassembling along
the control flow, but the code coverage is lower.

Andriesse et al. tested binary files generated by disassembly tools compiled in the real
world [Andriesse et al., 2016]. They used 981 x86 and x64 binaries from C/C++ projects.
These projects were compiled using different compilers and compilation options. They
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found that some high-level language constructs, such as function boundaries, were more
difficult to recover than in the literature and gave a discussion and analysis of where the
disassembler capabilities did not match the literature. Li et al. used a different approach
to evaluate against some traditional disassembly tools [Li et al., 2020]. They used 879
binaries from unused projects that used multiple compilers and optimization settings.

Bauman et al. have implemented a new binary rewriting tool that can rewrite stripped
binaries [Bauman et al., 2018]. They used two basic techniques, a superset disassembler
and an instruction rewriter, to first construct a superset containing all the legal instructions
of the binary code and redirect it to a new address using the instruction reassembly
technique in the dynamic binary instrument via indirect control flow. Miller et al. used
some heuristic rules based on the construction of the superset disassembler to calculate
each assembly instruction’s probability to confirm whether the instruction is a true
assembly instruction [Miller et al., 2019].

A data log-based disassembly technique was proposed by Flores-Montoya et al
[Flores-Montoya and Schulte, 2020]. For a stripped binary file with binary rewriting,
they found that the data log inference process is particularly suitable for disassembly
and corresponding analysis, and generates disassembly code with accurate symbolic
information based on the data log.Ammar Ben Khadra et al. proposed a tool for rule-based
disassembly methods Spedi [Ben Khadra et al., 2016]. First, all possible basic blocks
are speculated and then conflicting basic blocks are refined by analysis to complete
disassembly. Most of the call and jump table targets can be recovered at the same time
and can be adapted to obfuscation without any symbolic information.

Pei et al. used transfer learning for the disassembly task [Pei et al., 2021]. The model
is first preprocessed and trained, and then fine-tuned to perform the disassembly task,
i.e., recovering function bounds and assembly instructions. It was evaluated on a set of
x86/x64 binaries, and the experimental results showed that the method works well.

The input of the above approaches are executable files. They are not designed to
disassemble an arbitrary byte sequence. In this paper, code extension selection network
is firstly proposed to do the work. It can be used to replace or assist manual analysis for
byte sequences. It is useful in binary analysis tasks.

3 Our work

An extended control flow graph (ECFG) G is a two-tuple G = (V,E), where V is a set
of instructions, and E ⊆ V × V is the set of possible control flow transfers between the
instructions in V . Code extension selection network (CESN) is a graph neural network
(GNN) [Velickovic et al., 2018] that is used to identify the correct instruction and control
flow in an ECFG.

3.1 Disassembly

The first step in CESN is disassembling a byte sequence starting at each byte. Linear
sweep is used to obtain all possible disassembly code. The disassembly result starting
from the same position is unique. For a byte sequence {b1, · · · , bn}, let DisasmFrom(i)
be the disassembly result starting from byte i. Assuming that byte b1b2b3 can form an
assembly instruction, then the byte sequence {b1, · · · , bn} and {b4, · · · , bn} have the
same assembly result after byte b4. Thus, DisasmFrom(b4) ⊂ DisasmFrom(b1). The
whole algorithm is shown in Algorithm 1.
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Algorithm 1: Disassemble a byte sequence

Input: L: a byte sequence
Output: R: disassembly result
V ← ∅, R← ∅;
foreach i ∈ L do

if ADDRESS(i) /∈ V then

D ← DisasmFrom(i);
R← R ∪D;

foreach j ∈ D do

V ← V ∪ {ADDRESS(j)}

return R

3.2 ECFG construction

The extended control flow graph (ECFG) construction algorithm is shown in Algorithm
2. The overall process is similar to the construction of the CFG. If an instruction is a jump
instruction and the jump target exists, an edge from the instruction to the jump target is
added. If it is a conditional jump, or if it is a non-jump, an edge from the instruction to
the next instruction is added [Federico and Agosta, 2016]. Figure 1 gives an example of
ECFG construction.

Algorithm 2: Build an ECFG

Input: R: disassembly result
Output: G: ECFG

G← ∅;
foreach r ∈ R do

foreach i ∈ r do
if i is a jump then

if TARGET(i) ∈ R then

G← G ∪ {i→ TARGET(i)};
if i is a conditional jump then

G← G ∪ {i→ NEXT(i)}

else

G← G ∪ {i→ NEXT(i)}

return G



762 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

66 3B C8 74 0D 83 F9 03 75 05 33 C0 40 5D C3 8B 45 08 5D C3

00: 66 3B C8    cmp  cx, ax

03: 74 0D         je  0x12  

05: 83 F9 03     cmp  ecx, 3  

08: 75 05          jne  0xf  

0a: 33 C0         xor  eax, eax  

0c: 40               inc  eax  

0d: 5D              pop  ebp  

0e: C3              ret    

0f: 8B 45 08     mov  eax, [ebp + 8]  

12: 5D              pop  ebp  

13: C3              ret    

01: 3B C8      cmp  ecx, eax  

03: 74 0D       je  0x12  

05: 83 F9 03   cmp  ecx, 3  

08: 75 05        jne  0xf  

0a: 33 C0       xor  eax, eax  

0c: 40             inc  eax  

0d: 5D            pop  ebp  

0e: C3             ret    

0f: 8B 45 08   mov  eax, [ebp + 8]  

12: 5D            pop  ebp  

13: C3            ret    

02: C8 74 0D 83      enter  0xd74, -0x7d  

06: F9                      stc    

07: 03 75 05            add  esi, [ebp + 5]  

0a: 33 C0                 xor  eax, eax  

0c: 40                       inc  eax  

0d: 5D                      pop  ebp  

0e: C3                      ret    

0f: 8B 45 08             mov  eax, [ebp + 8]

12: 5D                      pop  ebp  

13: C3                      ret    

04: 0D 83 F9 03 75    or  eax, 7503f983

09: 05 33 C0 40 5D    add  eax, 5d40c033  

0e: C3                         ret    

0f: 8B 45 08                mov  eax, [ebp + 8]  

12: 5D                         pop  ebp  

13: C3                         ret    

0b: C0 40 5D C3     rol  byte ptr [eax + 0x5d], c3  

0f: 8B 45 08            mov  eax, [ebp + 8]  

12: 5D                     pop  ebp  

13: C3                     ret    

10: 45                 inc  ebp  

11: 08 5D C3     or  byte ptr [ebp - 0x3d], bl  

(a) Code disassembly

je  12

cmp  cx, ax

cmp  ecx, 3

jne  0f

xor  eax, eax

inc  eax

pop  ebp

ret

mov  eax, [ebp + 8]

pop  ebp

ret

cmp  ecx, eax  

enter  0d74, -7d

stc

add  esi, [ebp + 5]

or  eax, 7503f983

add  eax, 5d40c033  

rol  byte ptr [eax + 5d], c3 

inc  ebp  

or  byte ptr [ebp - 3d], bl 

(b) ECFG

Figure 1: Example of building an ECFG

3.3 ECFG pruning

In an ECFG, there are some illegal instructions. These instructions and all their preceding
instructions should be deleted. Illegal instructions are defined as follows.

1. For a conditional jump instruction, if the jump address is the instruction next to itself,
it is illegal.

2. If the target of a conditional branch instruction is illegal, the instruction is illegal.

3. If no ancestor node of a conditional branch instruction modifies the corresponding
register or flag bit, the branch instruction is illegal.

4. High-privilege instructions (such as I/O instructions) in normal user programs are
illegal.
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Removing illegal instructions in an ECFG greatly improves the running speed and
reduce memory usage when analyzing large binary files.

3.4 Connected subgraph search

For a pruned ECFG, there may be multiple disconnected subgraphs. Each concatenated
subgraph corresponds to one possible CFG of a function. Functions are usually terminated
with a return/jump instruction. If a subgraph of an ECFG does not end with a return/jump
instruction, the subgraph is considered illegal and can be deleted. The search process of
the connected subgraphs is shown in Algorithm 3.

Algorithm 3: ECFG Subgraph Search

Input: G: an ECFG

Output: GS: connected subgraphs
GS ← ∅, workList← ∅, visited← ∅;
/* Search connected subgraphs */
for v ∈ G do

if v /∈ visited then
workList.push(v);
G′ ← ∅;
while workList 6= ∅ do

v′ ← workList.pop();
visited← visited ∪ {v′};
foreach p ∈ v′predecessor do

G′ ← G′ ∪ {p→ v′};
workList.push(p);

foreach p ∈ v′successor do
G′ ← G′ ∪ {v′ → p};
workList.push(p);

GS ← GS ∪G′;

/* Remove illegal subgraph */
GS.removeIf(g → !g.exists(v → v is leaf node and v is RET or JMP));

return GS

3.5 CFG prediction

For a pruned ECFG, some of the nodes are true instructions, while others may be data or
the result of disassembly from other addresses. The disassembly problem translates into
finding the true disassembly nodes in an ECFG. Graph neural network (GNN) [Scarselli
et al., 2009, Guo and Wang, 2021] is a deep learning method for feature extraction
of graph data structures. After training the graph attention neural network, the logical
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Figure 2: Graph attention neural network

relationship between instructions enables the model to find all correctly disassembled
nodes in an ECFG.

An ECFG may contain one or more functions. The graph attention network assigns
different weights to different neighboring nodes [Wang et al., 2019a]. Then, it obtains
the output of each node by weighting and summing the features of the neighboring nodes
with the attention mechanism [Wang et al., 2019b]. Finally, it aggregates the features
of the neighboring nodes to the central node through node-by-node computation. Each
operation is done by cyclically traversing all nodes on the graph [Rong et al., 2020].
The GNN is demonstrated in Fig. 2. Each central node containing the features of the
neighboring nodes is classified using a fully connected network to determine whether
the node is a disassembly instruction [Goodfellow et al., 2015].

The input of the graph attention layer is a node feature vector seth = {h1, h2, . . . , hn},
hi ∈ RF , where n is the number of nodes, F is the number of node features, andR repre-
sents the features of a certain node. The output of each layer is h′ = h′

1, h
′
2, . . . , h

′
n, h

′ ∈
RF ′

. A weight matrix is trained for all nodes, W ∈ RF ′∗F , and it is the relationship
between the input F features and the output F ′ features. The attention coefficients
are eij = a(Whi,Whj), where a indicates a function that calculates the degree of
correlation between two nodes.

The vector h is the feature vector of the nodes. The subscripts i, j denote the ith
node and the jth node. To make the attention coefficients easier to compute and compare,
softmax is introduced to regularize the jth and ith node where the former is the neigh-
boring node of the latter. α is the attention coefficient, αij is the attention coefficient of
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nodes hj to ji.

αij = softmaxj (eij) =
exp(eij)∑

k∈Ni
exp(eik)

(1)

Combining the first two formulas, the complete regularization formula can be obtained
as follows. The LeakyReLu is an activation function used to introduce non-linearity.

αij =
exp(LeakyReLu(aT [Whi||Whk]))∑

k∈Ni
exp(LeakyReLu(aT [Whi||Whk]))

(2)

The attention coefficients between different nodes after regularization are obtained
through the above operations. It can be used to predict the output characteristics of each
node.

h′
i = σ(

∑
j∈Ni

αijWhj) (3)

W is the weight matrix multiplied by the feature. α is the attention cross-correlation
coefficient calculated previously. σ is the non-linear activation function. The jth node
(j ∈ Ni) represents all nodes adjacent to the ith node.

In order to stabilize the learning process of the self-attention mechanism, the capabil-
ities of the model is enhanced by using k independent attention mechanisms to execute
the formula to obtain the final one:

h′
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

khj) (4)

A total ofK attention mechanisms need to be considered. k represents the kth inK,
and the kth attention mechanism is ak. The linear transformation weight matrix of the
input feature under the kth attention mechanism is expressed asW k.

Using an ECFG as input, the overall task is transformed into a node classification
problem by learning all the nodes in the ECFG through graph attention networks. All
nodes in the graph are classified into correct, and invalid instructions (including disas-
sembly results from other bytes as well as data). Through training, the correct nodes in
the graph can be identified. An example of classification is given in Fig. 3. After node
classification, the correct disassembly result in the ECFG can be obtained. The correct
nodes builds the correct CFG. The first byte of the first instruction of the CFG is the
starting byte, and bytes that are not in the CFG are judged as data.

4 Experiment

4.1 Setup

4.1.1 Data set

The data set comes from three sources.

1. Win10 Professional 32-bit (version number 1507) 306 executable files under \Win-
dows \System32. The mixing of code and data in the .text section of these files is
more obvious.
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je  12

cmp  cx, ax

cmp  ecx, 3

jne  0f

xor  eax, eax

inc  eax

pop  ebp

ret

mov  eax, [ebp + 8]

pop  ebp

ret

cmp  ecx, eax  

enter  0d74, -7d

stc

add  esi, [ebp + 5]

or  eax, 7503f983

add  eax, 5d40c033  

rol  byte ptr [eax + 5d], c3 

inc  ebp  

or  byte ptr [ebp - 3d], bl 

Figure 3: Example of node classification by graph attention network

2. MASM32 \examples hand-written assembly code programs. There is less data in
the .text section of these files.

3. 128 pictures were randomly selected from internet for training and testing, including
GIF, JFIF, JPG, PNG, WEBP picture files. They are used to test the performance of
the model on data and code.

For executable files, the ground truth of disassembly code is obtained by the program
database files (PDB, which contains debugging information of the executable file). For
the disassembly result starting from a byte (single instruction), there are two cases: 1)
the disassembly result at that byte position is correct (TrueDisasm); 2) the disassembly
result at that byte position is incorrect (FalseDisasm).

The details of the data set are shown in Table 1. For compiler-generated, hand-written,
and data files, these files are extracted as byte sequences and their ECFGs are constructed.
In an ECFG, a node is a TrueDisasm, which is a true instruction corresponding to the
source code; or a FalseDisasm, which is a false instruction disassembled from data or
an incorrect address of code.

The code in a file has a high probability of having the same code style. So the training
set and test set are divided in files to avoid similar style of code in them. The training set
and test set files are divided by 5:1 to verify the robustness and effectiveness of a model.

4.1.2 Model settings

The disassembly engine used in this experiment is Capstone, and the deep learning
framework is tf_geometric, a graph neural network library based on Tensorflow. Four
layers of graph attention network are used to learn the parameters, with 8 attention
heads of each layer and the activation function LeakyRelu. The final classification is
performed using full connectivity with the activation function sigmoid. L2 regularization
is performed with a learning rate of 5e-3 and iterations of 10000.
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Data set Files TrueDisasm FalseDisasm Total

Compiler-generated
Train 284 880,992 1,552,041 2,433,033

Test 22 69,311 119,834 189,145

Hand-written
Train 70 3,683 9,834 13,517

Test 14 30,647 88,284 118,931

Data
Train 108 0 471,062 471,062

Test 20 0 51,112 51,112

Total 518 984,633 2,292,167 3,276,800

Table 1: Data set in the evaluation

4.2 Result

4.2.1 Training result

The compiler-generated executables, the hand-written assembly-generated executables,
and the data files are put together for training, and the results are shown in Fig. 4.

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0 . 6

0 . 8

1 . 0

 

E p o c h s

 T r a i n
 T e s t
 T e s t C o m p i l e r
 T e s t A S M
 T e s t D a t a

T e s t D a t a
T e s t
T r a i n
T e s t C o m p i l e r
T e s t A S M

Figure 4: Accuracy of CESN on different data sets. TestCompiler represents the test set

of high language programs. TestASM is test set of hand-crafted programs.

Fig. 4 shows that putting all training sets together for training can classify more
accurately the disassembly results of data files, compiler-generated executables, and hand-
written assembly-generated executables. The precision, recall, F1 score, and PTrueDisasm
(the proportion of TrueDisasm predicted after classification among all generated nodes)
are introduced to have a more accurate evaluation of the model. The models trained with
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all training sets, hand-crafted files, compiler-generated files are called CESN, MCG, and
CGG, respectively.

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1_score = 2× Precision×Recall/(Precision+Recall)

PDisasm = TrueDisasm/(TrueDisasm+ FalseDisasm)

Where TP refers to the predicted and actual results are TrueDisasm, TN refers to
the predicted and actual results are FalseDisasm, FP refers to the predicted result is
TrueDisasm while actual result is FalseDisasm, FN refers to the predicted result is
FalseDisasm while actual result is TrueDisasm.

Table 2 indicates the detailed evaluation metrics for the compiler-generated and
hand-written code segments of the test set, as well as the detailed evaluation metrics for
the data file.

Data set Model Precision Recall F1 Score PTrueDisasm Accuracy

Compiler-generated

CGG 0.82990 0.83512 0.83250 0.36875 0.87686

MCG 0.70093 0.61430 0.65476 0.32116 0.76262

CESN 0.82990 0.83512 0.83250 0.36875 0.87686

Hand-written

CGG 0.80084 0.72387 0.76041 0.24628 0.87571

MCG 0.83014 0.90497 0.86594 0.29703 0.92365

CESN 0.77208 0.71925 0.74473 0.25383 0.86565

Data

CGG – – – 0.27070 0.72930

MCG – – – 0.17606 0.82394

CESN – – – 0.05337 0.94663

Table 2: Result of test set

Table 2 shows that the proposed method can disassemble the complete code segment
for identification and also analyze the data file. The lower accuracy is caused by the fact
that the code and data are more similar, while the PTrueDisasm of the data segment is
often lower than that of the code segment.

For the identification of binary sequences, 256-bytes sequences were intercepted
from the compiler-generated test set and the hand-written data set to test the accuracy
of the proposed method for byte sequence identification. For the compiler-generated
executable files, the intercepted byte sequences were 0x500-0x600, 0x1000-0x1100,
0x1500-0x1600, and 0x2000-0x2100. Due to the small size of the manually written
assembly files, only 0x100-0x200, 0x500-0x600 were intercepted. The detailed results
are shown in Table 3.

Furthermore, 1,280-bytes sequences were intercepted from the compiler-generated
test set and the hand-written data set to test the accuracy of the method for byte sequence
identification. For the compiler-generated executable file the intercepted byte sequences
were 0x500-0xa00, 0x1000-0x1500, 0x1500-0x1a00, and due to the hand-written as-
sembly file is small, only 0x100-0x600, 0x500-0xa00 are intercepted, as shown in Table
4.
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Data set Address Model Precision Recall F1 Score PTrueDisasm Accuracy

Compiler-generated

500-600

CGG 0.41107 0.89474 0.56333 0.15777 0.89946

MCG 0.44973 0.59649 0.51282 0.09613 0.91785

CESN 0.45289 0.81330 0.58180 0.12267 0.92013

Capstone 0.19455 0.97569 0.32442 0.22656 0.72570

1000-1100

CGG 0.66262 0.93705 0.77630 0.17389 0.93359

MCG 0.55895 0.57654 0.56761 0.12684 0.89199

CESN 0.67910 0.85980 0.75884 0.15569 0.93280

Capstone 0.33309 0.98440 0.49776 0.40234 0.76214

1500- 1600

CGG 0.57692 0.88920 0.69981 0.20598 0.89805

MCG 0.49645 0.59139 0.53978 0.15920 0.86522

CESN 0.60662 0.78899 0.68589 0.17382 0.90342

Capstone 0.32509 0.87273 0.47371 0.46094 0.74809

2000-2100

CGG 0.59368 0.93168 0.72524 0.23583 0.89391

MCG 0.58567 0.62961 0.60684 0.16155 0.87740

CESN 0.61961 0.84662 0.71554 0.20534 0.89884

Capstone 0.40768 0.98411 0.57653 0.23828 0.78682

Hand-written

100-200

CGG 0.76938 0.66724 0.71468 0.25481 0.84347

MCG 0.85691 0.91897 0.88686 0.31510 0.93110

CESN 0.74621 0.67931 0.71119 0.26748 0.83789

Capstone 0.95840 0.98630 0.97215 0.27344 0.98389

500-600

CGG 0.77627 0.63967 0.70138 0.149670 0.90107

MCG 0.77488 0.91341 0.83846 0.21410 0.93607

CESN 0.75503 0.62849 0.68598 0.15119 0.89549

Capstone 0.31156 0.97245 0.47193 0.30469 0.61426

Table 3: Result of 256-bytes sequences

DataSet Address Model Precision Recall F1 Score PTrueDisasm Accuracy

Compiler-generated

500-0a00

CGG 0.59291 0.90079 0.71512 0.146783 0.93066

MCG 0.55409 0.60943 0.58044 0.10626 0.91488

CESN 0.63157 0.80850 0.70916 0.12368 0.93593

Capstone 0.30723 0.91284 0.45973 0.04531 0.79614

1000-1500

CGG 0.63912 0.93114 0.75798 0.17813 0.92730

MCG 0.55887 0.59933 0.57839 0.13112 0.89317

CESN 0.66697 0.86683 0.75388 0.15891 0.93080

Capstone 0.35306 0.98702 0.52008 0.44609 0.78074

1500-1a00

CGG 0.65806 0.91224 0.76458 0.18246 0.92606

MCG 0.58377 0.61304 0.59805 0.13822 0.89154

CESN 0.68196 0.82661 0.74734 0.15954 0.92643

Capstone 0.37557 0.88131 0.52670 0.34609 0.79706

Hand-written

100-600

CGG 0.76897 0.66059 0.71068 0.18121 0.88654

MCG 0.81799 0.91563 0.86406 0.23612 0.93923

CESN 0.74725 0.71572 0.73115 0.20204 0.88897

Capstone 0.44129 0.99570 0.61154 0.28516 0.74170

500-0a00

CGG 0.79273 0.71524 0.75200 0.14990 0.92162

MCG 0.82780 0.87857 0.85243 0.17633 0.94946

CESN 0.76902 0.69338 0.72925 0.14980 0.91446

Capstone 0.28077 0.99273 0.43773 0.29219 0.58906

Table 4: Result of 1,280-bytes sequences
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For the identification and analysis of binary byte sequences, it is clear from the
experiments that the method of this paper is better than the direct disassembly of binary
byte sequences using Capstone in general. Due to the mixture of code and data, the direct
disassembly work leads to low accuracy, and a large amount of data is disassembled into
assembly code incorrectly. The proposed method can effectively distinguish between
code and data. It has a better accuracy in general.

Table 5 lists PTrueDisasm of CESN on test set. In real-world situations, since it is
not known whether the input byte sequences belong to compiler-generated, hand-written-
generated or data, CESN is used for testing and analysis.

All bytes 256-bytes 1,280-bytes

Compiler-generated 0.36875 0.16438 0.14738

Hand-written 0.25383 0.20933 0.17592

Data 0.05337 0.05337 0.05337

Table 5: PTrueDisasm of CESN on test set

4.3 Discussion

4.3.1 Disassembly

Table 2 and Table 3 shows that the accuracy is about 87% and the F1 score is 79% in the
identification of the instructions of the complete code segment; the accuracy is about
91% and the F1 score is 71% in the identification of the disassembly instructions of the
code segment. The accuracy calculates the number of correctly identified nodes among
all nodes. In the real scenario, the recognition as FalseDisasm does not have analytical
significance, so in the F1 score calculation, only the result of TrueDisasm is calculated.

CESN is not ideal for the recognition of disassembly instructions for complete code
segments and code fragments, which is caused by the more similar code and data. File
where.exe was randomly selected for detailed analysis. The results were divided into the
following two cases.

4.3.1.1 FalseDisasm is predicted as TrueDisasm

In Fig. 5, code between 0x4015AC and 0x4015B9 is the true disassembly. CESN de-
termines that the corresponding instructions at all addresses in the figure are correct.
However, there is a misjudgment at 0x4015B0 and 0x4015B4. The byte 80 33 C0 at
0x4015B0 is identified as instruction “xor byte ptr [ebx], 0xc0”, and the byte 89 04 7B
at 0x4015B4 is identified as instruction “mov dword ptr [ebx + edi*2], eax”. This is
probably due to the fact that the instruction at 0x4015B0 is similar to the instruction at
0x4015B1, and the instruction at 0x4015B4 is similar to the instruction at 0x4015B3.
This can be corrected according to the control flow.

In Fig. 6, the true disassembly is between 0x4015E0 to 0x4015EA and it is judged as
TrueDisasm. This may be due to the existence of similar instructions in the training set
that are all TrueDisasm, leading to a similar situation in the test set where FalseDisasm
is judged as TrueDisasm. Since the instruction pop ebp does not have a parent in the
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0x4015AC BE 7A 00 07 80     mov     esi, 8007007Ah

0x4015B1  33 C0                     xor     eax, eax

0x4015B3  66 89 04 7B           mov     [ebx+edi*2], ax

0x4015B7  5F                          pop     edi

0x4015B8  5B                          pop     ebx

0x4015B9  EB 0C                    jmp    short loc_4015C7

(a) Real Disassembly

0x4015ac mov esi, 0x8007007a

0x4015b1 xor eax, eax

0x4015b3 mov word ptr [ebx + edi*2], ax

0x4015b7 pop edi

0x4015b8 pop ebx

0x4015b9 jmp 0x4015c7

0x4015b0 xor byte ptr [ebx], 0xc0

0x4015af pop es0x4015ae add byte ptr [edi], al

0x4015b4 mov dword ptr [ebx + edi*2], eax

0x4015b5 add al, 0x7b

(b) ECFG

Figure 5: FalseDisasm is predicted as TrueDisasm in where.exe

0x4015E0 33 FF            xor     edi, edi

0x4015E2 89 5D E0      mov     [ebp+var_20], ebx

0x4015E5 47                 inc     edi

0x4015E6 89 5D D0     mov     [ebp+var_30], ebx

0x4015E9 57                 push    edi

0x4015EA 53                push    ebx

(a) Real Disassembly

0x4015e0 xor edi, edi

0x4015e2 mov dword ptr [ebp - 0x20], ebx

0x4015e5 inc edi

0x4015e6 mov dword ptr [ebp - 0x30], ebx

0x4015e9 push edi

0x4015ea push ebx

0x4015e4 loopne 0x40162d

0x4015e3 pop ebp

(b) ECFG

Figure 6: FalseDisasm is predicted as TrueDisasm in where.exe

control flow, and the target of loopne (0x40162d) is FalseDisasm at both the real case and
the predicted result, some heuristic rules could be applied to remove the false instruction
at 0x4015E3 and 0x4015E4.

4.3.1.2 TrueDisasm is predicted as FalseDisasm

In Fig. 7, the true disassembly is between 0x401905 and 0x40191B. However, in the
prediction result of CESN, the instruction at 0x401913 is discriminated as FalseDisasm.
This may be due to the fact that there are fewer consecutive mov instructions in the
training set and the model is not sensitive to the address articulation.
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0x401905 85 C0                          test    eax, eax

0x401907 0F 84 B9 00 00 00      jz      loc_4019C6

0x40190D FF 75 D4                    push    [ebp+var_2C]    

0x401910 8B 55 DC                    mov     edx, [ebp+var_24]

0x401913 8B CE                          mov     ecx, esi        

0x401915 FF 75 D0                     push    [ebp+var_30]    

0x401918 FF 75 E0                      push    [ebp+var_20]    

0x40191B E8 2B 0D 00 00          call    _FindforFileRecursive@20 

(a) Real Disassembly

0x401905 test eax, eax

0x401907 je 0x4019c6

0x40190d push dword ptr [ebp - 0x2c]

0x40190b add byte ptr [eax], al

0x401910 mov edx, dword ptr [ebp - 0x24]

0x401913 mov ecx, esi

0x401915 push dword ptr [ebp - 0x30]

0x401918 push dword ptr [ebp - 0x20]

0x40191b call 0x40264b

0x401912 fmul qword ptr [ebx - 0x2f8a0032]

0x401911 push ebp

0x40190f aam 0x8b

0x401914 into

(b) Extended Control Flow Graph

Figure 7: TrueDisasm is predicted as FalseDisasm in where.exe

In Fig. 8, the real disassembly is between 0x401B10 and 0x401B33. However, the
model judges the instructions at 0x401B26, 0x401B2B, and 0x401B2E as data. It is
probably due to the fact that the bytes corresponding to these instructions in the model
training set are data. In a real scenario, it is not possible to have a broken control flow.

4.3.2 Compiler-generated and hand-written data set

Executables, which are built with different compilers, optimization options, and architec-
tures, contain the features belonging to the compilers. Common approaches are currently
based on these features for disassembly, function identification or similarity matching.
However, these features may not work well for assembly programs which may not have
standard features. The proposed method is not based on the head and tail features of
functions, and can effectively disassemble the hand-written executables. As shown in
Table 2, Table 3, and Table 4, the accuracy of CESN in hand-written reaches 87% and
the F1 score is 74%. The accuracy in the code fragment reaches 88% and the F1 score is
71%.

4.3.3 Code and data distinction

CESN can disassemble any byte sequence and identify code and data in it. For an ECFG,
the instructions in the graph contain true and false instructions. Among them, in the
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0x401B10 E8 C2 21 00 00             call    _SaveLastError@0 

0x401B15 57                                  push    edi

0x401B16 E8 8A 56 00 00            call    ___acrt_iob_func

0x401B1B 59                                 pop     ecx

0x401B1C 8B C8                           mov     ecx, eax

0x401B1E E8 6B 22 00 00            call    _ShowLastErrorEx@8 

0x401B23 8D 4D FC                     lea     ecx, [ebp+var_4]

0x401B26 E8 93 30 00 00             call    _FreeMemory@4 

0x401B2B 8D 4D F4                     lea     ecx, [ebp+var_C]

0x401B2E E8 DC 36 00 00           call    _DestroyDynamicArray@4

0x401B33 E9 7F FE FF FF           jmp     loc_4019B7

(a) Real Disassembly

0x401b10 call 0x403cd7

0x401b15 push edi

0x401b16 call 0x4071a5

0x401b1b pop ecx

0x401b1c mov ecx, eax

0x401b1e call 0x403d8e

0x401b23 lea ecx, [ebp - 4]

0x401b26 call 0x404bbe

0x401b2b lea ecx, [ebp - 0xc]

0x401b2e call 0x40520f

0x401b33 jmp 0x4019b7

0x401b13 add byte ptr [eax], al

0x401b18 push esi

0x401b19 add byte ptr [eax], al

0x401b12 and dword ptr [eax], eax

0x401b14 add byte ptr [edi - 0x18], dl

0x401b17 mov dl, byte ptr [esi]

0x401b1a add byte ptr [ecx - 0x75], bl

0x401b1d enter 0x6be8, 0x22

0x401b21 add byte ptr [eax], al0x401b24 dec ebp

0x401b25 cld

0x401b29 add byte ptr [eax], al

0x401b2c dec ebp

...

0x401b2d hlt

0x401b2f fdiv qword ptr [esi]

0x401b30 add byte ptr ss 0x401b31 add byte ptr [eax], al

(b) ECFG

Figure 8: TrueDisasm is predicted as FalseDisasm in where.exe

complete code segment, about 30% instructions are true. In the code segment, about
20% instructions are true. In the data, there is no disassembly code, i.e., the number of
instructions should be 0.

Table 5 shows that CESN can distinguish more obviously whether a byte sequence
belongs to code or data. In the real scenario, for a byte sequence, if there are more than
10% TrueDisasm, it can be considered that the byte sequence contains code.

5 Conclusions and future work

In this paper, a new disassembly method is proposed. First, by disassembling each byte of
the byte sequence as the first address in turn, an ECFG is constructed for the disassembly
results, and the graph nodes are classified using a graph attention network to obtain the
correct CFG. The experimental results show that the proposed approach can effectively
disassemble binary code sequences and provide a new way of thinking to distinguish
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code and data, which possesses good applicability even in the face of complex data sets
with complex data and different code writing styles.

However, there are three shortcomings. First, the proposed method cannot identify
indirect jumps. It can be considered to introduce dynamic analysis or use link prediction
in graph neural network to find the addresses of indirect jumps. Second, disassembly
rules could be used to optimize the graph neural network after it classifies nodes. The
rules include data segments must be preceded by jump instructions, functions end with
jump, return, call instructions, etc. These rules filter out the misclassified nodes. Finally,
the bytes is used as node features, ignoring the relationship between bytes. In future,
embedding could be used to obtain a larger feature space.
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