
Journal of Universal Computer Science, vol. 28, no. 7 (2022), 758-775
submitted: 14/10/2021, accepted: 11/5/2022, appeared: 28/7/2022 CC BY-ND 4.0

Disassemble Byte Sequence Using Graph Attention
Network

Jing Qiu
(Zhejiang A&F University, Hangzhou, China

https://orcid.org/0000-0003-3264-1681, qiujing@zafu.edu.cn)

Feng Dong
(Harbin University of Science and Technology, Harbin, China

https://orcid.org/0000-0002-3496-4305, fengdong97@qq.com)

Guanglu Sun
(Harbin University of Science and Technology, Harbin, China

https://orcid.org/0000-0003-2589-1164, sunguanglu@hrbust.edu.cn)

Abstract: Disassembly is the basis of static analysis of binary code and is used in malicious code

detection, vulnerability mining, software optimization, etc. Disassembly of arbitrary suspicious

code blocks (e.g., for suspicious traffic packets intercepted by the network) is a difficult task.

Traditional disassembly methods require manual specification of the starting address and cannot

automate the disassembly of arbitrary code blocks. In this paper, we propose a disassembly method

based on code extension selection network by combining traditional linear sweep and recursive

traversal methods. First, each byte of a code block is used as the disassembly start address, and all

disassembly results (control flow graphs) are combined into a single flow graph. Then a graph

attention network is trained to pick the correct subgraph (control flow graph) as the final result. In

the experiment, the compiler-generated executable file, as well as the executable file generated by

hand-written assembly code, the data file and the byte sequence intercepted by the code segment

were tested, and the disassembly accuracy was 93%, which can effectively distinguish the code

from the data.

Keywords: Graph neural network, disassembly, function identification, reverse engineering,
binary code analysis
Categories: I.2.1, D.2.7, L.4.0

DOI: 10.3897/jucs.76528

1 Introduction

In software research and analysis, the source code of most software is not available or
accessible, and the software can only be analyzed effectively through binary code analysis
(BCA) [Liu et al., 2013]. In this case, BCA is an important tool for software analysis,
such as malicious code analysis, malware detection, vulnerability mining and analysis,
etc [Song et al., 2008]. For many software, vulnerabilities are hidden and not easily
detected, and BCA can be used to better discover vulnerabilities and fix them [Djoudi
and Bardin, 2015]. In the process of computer use, malware is hidden in the normal
application software to cause damage to the computer. Malware is often not open source.
Through BCA, hidden malware can be detected [Ma et al., 2020]. For malicious code

https://orcid.org/0000-0003-3264-1681
https://orcid.org/0000-0003-3264-1681
https://orcid.org/0000-0002-3496-4305
https://orcid.org/0000-0002-3496-4305
https://orcid.org/0000-0003-2589-1164
https://orcid.org/0000-0003-2589-1164

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 759

hidden in normal programs, such as advertising pop-ups, malicious access to software
usage, downloading irrelevant applications and other malicious code can greatly damage
user privacy [Cui et al., 2018]. By BCA, they can be detected. In short, for the analysis
of malicious code, BCA is a key technical tool [Cui et al., 2019].

For BCA, the usual method is to disassemble the binary code, then divide the functions
and construct a control flow graph (CFG) for each function, so as to analyze the function
and infer the role of the whole software accordingly[Anand et al., 2013, Besson et al.,
2001]. In the IA32 architecture executable binary code, there is a mixture of code and data
[Wartell et al., 2011]. Static analysis cannot distinguish between code and data [Kruegel
et al., 2004]. Direct disassembly of binary code containing data will disassemble the data
into assembly code, making it impossible to analyze the functionality of the binary code.
Therefore, distinguishing between code and data without any debugging information is a
challenging problem.

Existing BCA approaches can usually only be performed on a complete program
[Rosenblum et al., 2008]. In network transmissions, the intercepted traffic packets may
only be part of a program [Zhang et al., 2007]. For a sequence of bytes, the disas-
sembly results starting from different locations are completely different. For example,
“8BFF558BEC”, the disassembly result from 8B is “mov edi,edi/ push ebp/ mov ebp,esp”,
the disassembly result from “FF” is “call dword ptr [ebp - 0x75]/ in al, dx”, and the
disassembly result from “55” is “push ebp/ mov ebp, esp”. For a sequence of bytes, the
first few bytes may be part of the previous instruction or the sequence may start with
partial data. Thus, it is not possible to determine the starting byte position of the binary
sequence. Usually, it can only be determined manually after disassembling from different
bytes, which is very inefficient and inaccurate.

To address these problems, this paper proposes an encoding extended selection net-
work, which tries to disassemble from each byte position for an arbitrary code sequence,
and transforms the obtained disassembly results into a CFG linked to become an extended
control flow graph (ECFG). Then the correct nodes in the ECFG are distinguished by a
graph attention network [Velickovic et al., 2018] to obtain the CFG for each function.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 provides the details of the code expansion selection network. Section 4 shows
the evaluation and discussion. Finally, Section 5 summarizes our work and discusses the
future work.

2 Related work

Themain process of disassembly is to map binary code to assembly instructions according
to a certain strategy, and the common methods are mainly divided into static disassembly
and dynamic disassembly [Harris and Miller, 2005]. Static disassembly can work directly
on binary code. Dynamic disassembly, on the other hand, must be performed at program
runtime and has a lower code coverage. The traditional static disassembly work is divided
into linear sweep and recursive traversal. Linear sweep, i.e., disassembling code one
instruction after another from the start byte, cannot distinguish between mixed code and
data. The wrong disassembly of data into code will affect the subsequent disassembly
results. Recursive traversal is control-flow oriented and continues disassembling along
the control flow, but the code coverage is lower.

Andriesse et al. tested binary files generated by disassembly tools compiled in the real
world [Andriesse et al., 2016]. They used 981 x86 and x64 binaries from C/C++ projects.
These projects were compiled using different compilers and compilation options. They

760 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

found that some high-level language constructs, such as function boundaries, were more
difficult to recover than in the literature and gave a discussion and analysis of where the
disassembler capabilities did not match the literature. Li et al. used a different approach
to evaluate against some traditional disassembly tools [Li et al., 2020]. They used 879
binaries from unused projects that used multiple compilers and optimization settings.

Bauman et al. have implemented a new binary rewriting tool that can rewrite stripped
binaries [Bauman et al., 2018]. They used two basic techniques, a superset disassembler
and an instruction rewriter, to first construct a superset containing all the legal instructions
of the binary code and redirect it to a new address using the instruction reassembly
technique in the dynamic binary instrument via indirect control flow. Miller et al. used
some heuristic rules based on the construction of the superset disassembler to calculate
each assembly instruction’s probability to confirm whether the instruction is a true
assembly instruction [Miller et al., 2019].

A data log-based disassembly technique was proposed by Flores-Montoya et al
[Flores-Montoya and Schulte, 2020]. For a stripped binary file with binary rewriting,
they found that the data log inference process is particularly suitable for disassembly
and corresponding analysis, and generates disassembly code with accurate symbolic
information based on the data log.Ammar Ben Khadra et al. proposed a tool for rule-based
disassembly methods Spedi [Ben Khadra et al., 2016]. First, all possible basic blocks
are speculated and then conflicting basic blocks are refined by analysis to complete
disassembly. Most of the call and jump table targets can be recovered at the same time
and can be adapted to obfuscation without any symbolic information.

Pei et al. used transfer learning for the disassembly task [Pei et al., 2021]. The model
is first preprocessed and trained, and then fine-tuned to perform the disassembly task,
i.e., recovering function bounds and assembly instructions. It was evaluated on a set of
x86/x64 binaries, and the experimental results showed that the method works well.

The input of the above approaches are executable files. They are not designed to
disassemble an arbitrary byte sequence. In this paper, code extension selection network
is firstly proposed to do the work. It can be used to replace or assist manual analysis for
byte sequences. It is useful in binary analysis tasks.

3 Our work

An extended control flow graph (ECFG) G is a two-tuple G = (V,E), where V is a set
of instructions, and E ⊆ V × V is the set of possible control flow transfers between the
instructions in V . Code extension selection network (CESN) is a graph neural network
(GNN) [Velickovic et al., 2018] that is used to identify the correct instruction and control
flow in an ECFG.

3.1 Disassembly

The first step in CESN is disassembling a byte sequence starting at each byte. Linear
sweep is used to obtain all possible disassembly code. The disassembly result starting
from the same position is unique. For a byte sequence {b1, · · · , bn}, let DisasmFrom(i)
be the disassembly result starting from byte i. Assuming that byte b1b2b3 can form an
assembly instruction, then the byte sequence {b1, · · · , bn} and {b4, · · · , bn} have the
same assembly result after byte b4. Thus, DisasmFrom(b4) ⊂ DisasmFrom(b1). The
whole algorithm is shown in Algorithm 1.

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 761

Algorithm 1: Disassemble a byte sequence

Input: L: a byte sequence
Output: R: disassembly result
V ← ∅, R← ∅;
foreach i ∈ L do

if ADDRESS(i) /∈ V then

D ← DisasmFrom(i);
R← R ∪D;

foreach j ∈ D do

V ← V ∪ {ADDRESS(j)}

return R

3.2 ECFG construction

The extended control flow graph (ECFG) construction algorithm is shown in Algorithm
2. The overall process is similar to the construction of the CFG. If an instruction is a jump
instruction and the jump target exists, an edge from the instruction to the jump target is
added. If it is a conditional jump, or if it is a non-jump, an edge from the instruction to
the next instruction is added [Federico and Agosta, 2016]. Figure 1 gives an example of
ECFG construction.

Algorithm 2: Build an ECFG

Input: R: disassembly result
Output: G: ECFG

G← ∅;
foreach r ∈ R do

foreach i ∈ r do
if i is a jump then

if TARGET(i) ∈ R then

G← G ∪ {i→ TARGET(i)};
if i is a conditional jump then

G← G ∪ {i→ NEXT(i)}

else

G← G ∪ {i→ NEXT(i)}

return G

762 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

66 3B C8 74 0D 83 F9 03 75 05 33 C0 40 5D C3 8B 45 08 5D C3

00: 66 3B C8 cmp cx, ax

03: 74 0D je 0x12

05: 83 F9 03 cmp ecx, 3

08: 75 05 jne 0xf

0a: 33 C0 xor eax, eax

0c: 40 inc eax

0d: 5D pop ebp

0e: C3 ret

0f: 8B 45 08 mov eax, [ebp + 8]

12: 5D pop ebp

13: C3 ret

01: 3B C8 cmp ecx, eax

03: 74 0D je 0x12

05: 83 F9 03 cmp ecx, 3

08: 75 05 jne 0xf

0a: 33 C0 xor eax, eax

0c: 40 inc eax

0d: 5D pop ebp

0e: C3 ret

0f: 8B 45 08 mov eax, [ebp + 8]

12: 5D pop ebp

13: C3 ret

02: C8 74 0D 83 enter 0xd74, -0x7d

06: F9 stc

07: 03 75 05 add esi, [ebp + 5]

0a: 33 C0 xor eax, eax

0c: 40 inc eax

0d: 5D pop ebp

0e: C3 ret

0f: 8B 45 08 mov eax, [ebp + 8]

12: 5D pop ebp

13: C3 ret

04: 0D 83 F9 03 75 or eax, 7503f983

09: 05 33 C0 40 5D add eax, 5d40c033

0e: C3 ret

0f: 8B 45 08 mov eax, [ebp + 8]

12: 5D pop ebp

13: C3 ret

0b: C0 40 5D C3 rol byte ptr [eax + 0x5d], c3

0f: 8B 45 08 mov eax, [ebp + 8]

12: 5D pop ebp

13: C3 ret

10: 45 inc ebp

11: 08 5D C3 or byte ptr [ebp - 0x3d], bl

(a) Code disassembly

je 12

cmp cx, ax

cmp ecx, 3

jne 0f

xor eax, eax

inc eax

pop ebp

ret

mov eax, [ebp + 8]

pop ebp

ret

cmp ecx, eax

enter 0d74, -7d

stc

add esi, [ebp + 5]

or eax, 7503f983

add eax, 5d40c033

rol byte ptr [eax + 5d], c3

inc ebp

or byte ptr [ebp - 3d], bl

(b) ECFG

Figure 1: Example of building an ECFG

3.3 ECFG pruning

In an ECFG, there are some illegal instructions. These instructions and all their preceding
instructions should be deleted. Illegal instructions are defined as follows.

1. For a conditional jump instruction, if the jump address is the instruction next to itself,
it is illegal.

2. If the target of a conditional branch instruction is illegal, the instruction is illegal.

3. If no ancestor node of a conditional branch instruction modifies the corresponding
register or flag bit, the branch instruction is illegal.

4. High-privilege instructions (such as I/O instructions) in normal user programs are
illegal.

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 763

Removing illegal instructions in an ECFG greatly improves the running speed and
reduce memory usage when analyzing large binary files.

3.4 Connected subgraph search

For a pruned ECFG, there may be multiple disconnected subgraphs. Each concatenated
subgraph corresponds to one possible CFG of a function. Functions are usually terminated
with a return/jump instruction. If a subgraph of an ECFG does not end with a return/jump
instruction, the subgraph is considered illegal and can be deleted. The search process of
the connected subgraphs is shown in Algorithm 3.

Algorithm 3: ECFG Subgraph Search

Input: G: an ECFG

Output: GS: connected subgraphs
GS ← ∅, workList← ∅, visited← ∅;
/* Search connected subgraphs */
for v ∈ G do

if v /∈ visited then
workList.push(v);
G′ ← ∅;
while workList 6= ∅ do

v′ ← workList.pop();
visited← visited ∪ {v′};
foreach p ∈ v′predecessor do

G′ ← G′ ∪ {p→ v′};
workList.push(p);

foreach p ∈ v′successor do
G′ ← G′ ∪ {v′ → p};
workList.push(p);

GS ← GS ∪G′;

/* Remove illegal subgraph */
GS.removeIf(g → !g.exists(v → v is leaf node and v is RET or JMP));

return GS

3.5 CFG prediction

For a pruned ECFG, some of the nodes are true instructions, while others may be data or
the result of disassembly from other addresses. The disassembly problem translates into
finding the true disassembly nodes in an ECFG. Graph neural network (GNN) [Scarselli
et al., 2009, Guo and Wang, 2021] is a deep learning method for feature extraction
of graph data structures. After training the graph attention neural network, the logical

764 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

A

D

C

B

FE

Target node

A

D

C

B

++++

+

++

Node feature transfer

(a)

A

B

C

D

E

F

A

B

C

D

E

F

C
lassifier

H(L) Y

(b)

Figure 2: Graph attention neural network

relationship between instructions enables the model to find all correctly disassembled
nodes in an ECFG.

An ECFG may contain one or more functions. The graph attention network assigns
different weights to different neighboring nodes [Wang et al., 2019a]. Then, it obtains
the output of each node by weighting and summing the features of the neighboring nodes
with the attention mechanism [Wang et al., 2019b]. Finally, it aggregates the features
of the neighboring nodes to the central node through node-by-node computation. Each
operation is done by cyclically traversing all nodes on the graph [Rong et al., 2020].
The GNN is demonstrated in Fig. 2. Each central node containing the features of the
neighboring nodes is classified using a fully connected network to determine whether
the node is a disassembly instruction [Goodfellow et al., 2015].

The input of the graph attention layer is a node feature vector seth = {h1, h2, . . . , hn},
hi ∈ RF , where n is the number of nodes, F is the number of node features, andR repre-
sents the features of a certain node. The output of each layer is h′ = h′

1, h
′
2, . . . , h

′
n, h

′ ∈
RF ′

. A weight matrix is trained for all nodes, W ∈ RF ′∗F , and it is the relationship
between the input F features and the output F ′ features. The attention coefficients
are eij = a(Whi,Whj), where a indicates a function that calculates the degree of
correlation between two nodes.

The vector h is the feature vector of the nodes. The subscripts i, j denote the ith
node and the jth node. To make the attention coefficients easier to compute and compare,
softmax is introduced to regularize the jth and ith node where the former is the neigh-
boring node of the latter. α is the attention coefficient, αij is the attention coefficient of

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 765

nodes hj to ji.

αij = softmaxj (eij) =
exp(eij)∑

k∈Ni
exp(eik)

(1)

Combining the first two formulas, the complete regularization formula can be obtained
as follows. The LeakyReLu is an activation function used to introduce non-linearity.

αij =
exp(LeakyReLu(aT [Whi||Whk]))∑

k∈Ni
exp(LeakyReLu(aT [Whi||Whk]))

(2)

The attention coefficients between different nodes after regularization are obtained
through the above operations. It can be used to predict the output characteristics of each
node.

h′
i = σ(

∑
j∈Ni

αijWhj) (3)

W is the weight matrix multiplied by the feature. α is the attention cross-correlation
coefficient calculated previously. σ is the non-linear activation function. The jth node
(j ∈ Ni) represents all nodes adjacent to the ith node.

In order to stabilize the learning process of the self-attention mechanism, the capabil-
ities of the model is enhanced by using k independent attention mechanisms to execute
the formula to obtain the final one:

h′
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

khj) (4)

A total ofK attention mechanisms need to be considered. k represents the kth inK,
and the kth attention mechanism is ak. The linear transformation weight matrix of the
input feature under the kth attention mechanism is expressed asW k.

Using an ECFG as input, the overall task is transformed into a node classification
problem by learning all the nodes in the ECFG through graph attention networks. All
nodes in the graph are classified into correct, and invalid instructions (including disas-
sembly results from other bytes as well as data). Through training, the correct nodes in
the graph can be identified. An example of classification is given in Fig. 3. After node
classification, the correct disassembly result in the ECFG can be obtained. The correct
nodes builds the correct CFG. The first byte of the first instruction of the CFG is the
starting byte, and bytes that are not in the CFG are judged as data.

4 Experiment

4.1 Setup

4.1.1 Data set

The data set comes from three sources.

1. Win10 Professional 32-bit (version number 1507) 306 executable files under \Win-
dows \System32. The mixing of code and data in the .text section of these files is
more obvious.

766 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

je 12

cmp cx, ax

cmp ecx, 3

jne 0f

xor eax, eax

inc eax

pop ebp

ret

mov eax, [ebp + 8]

pop ebp

ret

cmp ecx, eax

enter 0d74, -7d

stc

add esi, [ebp + 5]

or eax, 7503f983

add eax, 5d40c033

rol byte ptr [eax + 5d], c3

inc ebp

or byte ptr [ebp - 3d], bl

Figure 3: Example of node classification by graph attention network

2. MASM32 \examples hand-written assembly code programs. There is less data in
the .text section of these files.

3. 128 pictures were randomly selected from internet for training and testing, including
GIF, JFIF, JPG, PNG, WEBP picture files. They are used to test the performance of
the model on data and code.

For executable files, the ground truth of disassembly code is obtained by the program
database files (PDB, which contains debugging information of the executable file). For
the disassembly result starting from a byte (single instruction), there are two cases: 1)
the disassembly result at that byte position is correct (TrueDisasm); 2) the disassembly
result at that byte position is incorrect (FalseDisasm).

The details of the data set are shown in Table 1. For compiler-generated, hand-written,
and data files, these files are extracted as byte sequences and their ECFGs are constructed.
In an ECFG, a node is a TrueDisasm, which is a true instruction corresponding to the
source code; or a FalseDisasm, which is a false instruction disassembled from data or
an incorrect address of code.

The code in a file has a high probability of having the same code style. So the training
set and test set are divided in files to avoid similar style of code in them. The training set
and test set files are divided by 5:1 to verify the robustness and effectiveness of a model.

4.1.2 Model settings

The disassembly engine used in this experiment is Capstone, and the deep learning
framework is tf_geometric, a graph neural network library based on Tensorflow. Four
layers of graph attention network are used to learn the parameters, with 8 attention
heads of each layer and the activation function LeakyRelu. The final classification is
performed using full connectivity with the activation function sigmoid. L2 regularization
is performed with a learning rate of 5e-3 and iterations of 10000.

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 767

Data set Files TrueDisasm FalseDisasm Total

Compiler-generated
Train 284 880,992 1,552,041 2,433,033

Test 22 69,311 119,834 189,145

Hand-written
Train 70 3,683 9,834 13,517

Test 14 30,647 88,284 118,931

Data
Train 108 0 471,062 471,062

Test 20 0 51,112 51,112

Total 518 984,633 2,292,167 3,276,800

Table 1: Data set in the evaluation

4.2 Result

4.2.1 Training result

The compiler-generated executables, the hand-written assembly-generated executables,
and the data files are put together for training, and the results are shown in Fig. 4.

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0 . 6

0 . 8

1 . 0

E p o c h s

 T r a i n
 T e s t
 T e s t C o m p i l e r
 T e s t A S M
 T e s t D a t a

T e s t D a t a
T e s t
T r a i n
T e s t C o m p i l e r
T e s t A S M

Figure 4: Accuracy of CESN on different data sets. TestCompiler represents the test set

of high language programs. TestASM is test set of hand-crafted programs.

Fig. 4 shows that putting all training sets together for training can classify more
accurately the disassembly results of data files, compiler-generated executables, and hand-
written assembly-generated executables. The precision, recall, F1 score, and PTrueDisasm
(the proportion of TrueDisasm predicted after classification among all generated nodes)
are introduced to have a more accurate evaluation of the model. The models trained with

768 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

all training sets, hand-crafted files, compiler-generated files are called CESN, MCG, and
CGG, respectively.

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1_score = 2× Precision×Recall/(Precision+Recall)

PDisasm = TrueDisasm/(TrueDisasm+ FalseDisasm)

Where TP refers to the predicted and actual results are TrueDisasm, TN refers to
the predicted and actual results are FalseDisasm, FP refers to the predicted result is
TrueDisasm while actual result is FalseDisasm, FN refers to the predicted result is
FalseDisasm while actual result is TrueDisasm.

Table 2 indicates the detailed evaluation metrics for the compiler-generated and
hand-written code segments of the test set, as well as the detailed evaluation metrics for
the data file.

Data set Model Precision Recall F1 Score PTrueDisasm Accuracy

Compiler-generated

CGG 0.82990 0.83512 0.83250 0.36875 0.87686

MCG 0.70093 0.61430 0.65476 0.32116 0.76262

CESN 0.82990 0.83512 0.83250 0.36875 0.87686

Hand-written

CGG 0.80084 0.72387 0.76041 0.24628 0.87571

MCG 0.83014 0.90497 0.86594 0.29703 0.92365

CESN 0.77208 0.71925 0.74473 0.25383 0.86565

Data

CGG – – – 0.27070 0.72930

MCG – – – 0.17606 0.82394

CESN – – – 0.05337 0.94663

Table 2: Result of test set

Table 2 shows that the proposed method can disassemble the complete code segment
for identification and also analyze the data file. The lower accuracy is caused by the fact
that the code and data are more similar, while the PTrueDisasm of the data segment is
often lower than that of the code segment.

For the identification of binary sequences, 256-bytes sequences were intercepted
from the compiler-generated test set and the hand-written data set to test the accuracy
of the proposed method for byte sequence identification. For the compiler-generated
executable files, the intercepted byte sequences were 0x500-0x600, 0x1000-0x1100,
0x1500-0x1600, and 0x2000-0x2100. Due to the small size of the manually written
assembly files, only 0x100-0x200, 0x500-0x600 were intercepted. The detailed results
are shown in Table 3.

Furthermore, 1,280-bytes sequences were intercepted from the compiler-generated
test set and the hand-written data set to test the accuracy of the method for byte sequence
identification. For the compiler-generated executable file the intercepted byte sequences
were 0x500-0xa00, 0x1000-0x1500, 0x1500-0x1a00, and due to the hand-written as-
sembly file is small, only 0x100-0x600, 0x500-0xa00 are intercepted, as shown in Table
4.

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 769

Data set Address Model Precision Recall F1 Score PTrueDisasm Accuracy

Compiler-generated

500-600

CGG 0.41107 0.89474 0.56333 0.15777 0.89946

MCG 0.44973 0.59649 0.51282 0.09613 0.91785

CESN 0.45289 0.81330 0.58180 0.12267 0.92013

Capstone 0.19455 0.97569 0.32442 0.22656 0.72570

1000-1100

CGG 0.66262 0.93705 0.77630 0.17389 0.93359

MCG 0.55895 0.57654 0.56761 0.12684 0.89199

CESN 0.67910 0.85980 0.75884 0.15569 0.93280

Capstone 0.33309 0.98440 0.49776 0.40234 0.76214

1500- 1600

CGG 0.57692 0.88920 0.69981 0.20598 0.89805

MCG 0.49645 0.59139 0.53978 0.15920 0.86522

CESN 0.60662 0.78899 0.68589 0.17382 0.90342

Capstone 0.32509 0.87273 0.47371 0.46094 0.74809

2000-2100

CGG 0.59368 0.93168 0.72524 0.23583 0.89391

MCG 0.58567 0.62961 0.60684 0.16155 0.87740

CESN 0.61961 0.84662 0.71554 0.20534 0.89884

Capstone 0.40768 0.98411 0.57653 0.23828 0.78682

Hand-written

100-200

CGG 0.76938 0.66724 0.71468 0.25481 0.84347

MCG 0.85691 0.91897 0.88686 0.31510 0.93110

CESN 0.74621 0.67931 0.71119 0.26748 0.83789

Capstone 0.95840 0.98630 0.97215 0.27344 0.98389

500-600

CGG 0.77627 0.63967 0.70138 0.149670 0.90107

MCG 0.77488 0.91341 0.83846 0.21410 0.93607

CESN 0.75503 0.62849 0.68598 0.15119 0.89549

Capstone 0.31156 0.97245 0.47193 0.30469 0.61426

Table 3: Result of 256-bytes sequences

DataSet Address Model Precision Recall F1 Score PTrueDisasm Accuracy

Compiler-generated

500-0a00

CGG 0.59291 0.90079 0.71512 0.146783 0.93066

MCG 0.55409 0.60943 0.58044 0.10626 0.91488

CESN 0.63157 0.80850 0.70916 0.12368 0.93593

Capstone 0.30723 0.91284 0.45973 0.04531 0.79614

1000-1500

CGG 0.63912 0.93114 0.75798 0.17813 0.92730

MCG 0.55887 0.59933 0.57839 0.13112 0.89317

CESN 0.66697 0.86683 0.75388 0.15891 0.93080

Capstone 0.35306 0.98702 0.52008 0.44609 0.78074

1500-1a00

CGG 0.65806 0.91224 0.76458 0.18246 0.92606

MCG 0.58377 0.61304 0.59805 0.13822 0.89154

CESN 0.68196 0.82661 0.74734 0.15954 0.92643

Capstone 0.37557 0.88131 0.52670 0.34609 0.79706

Hand-written

100-600

CGG 0.76897 0.66059 0.71068 0.18121 0.88654

MCG 0.81799 0.91563 0.86406 0.23612 0.93923

CESN 0.74725 0.71572 0.73115 0.20204 0.88897

Capstone 0.44129 0.99570 0.61154 0.28516 0.74170

500-0a00

CGG 0.79273 0.71524 0.75200 0.14990 0.92162

MCG 0.82780 0.87857 0.85243 0.17633 0.94946

CESN 0.76902 0.69338 0.72925 0.14980 0.91446

Capstone 0.28077 0.99273 0.43773 0.29219 0.58906

Table 4: Result of 1,280-bytes sequences

770 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

For the identification and analysis of binary byte sequences, it is clear from the
experiments that the method of this paper is better than the direct disassembly of binary
byte sequences using Capstone in general. Due to the mixture of code and data, the direct
disassembly work leads to low accuracy, and a large amount of data is disassembled into
assembly code incorrectly. The proposed method can effectively distinguish between
code and data. It has a better accuracy in general.

Table 5 lists PTrueDisasm of CESN on test set. In real-world situations, since it is
not known whether the input byte sequences belong to compiler-generated, hand-written-
generated or data, CESN is used for testing and analysis.

All bytes 256-bytes 1,280-bytes

Compiler-generated 0.36875 0.16438 0.14738

Hand-written 0.25383 0.20933 0.17592

Data 0.05337 0.05337 0.05337

Table 5: PTrueDisasm of CESN on test set

4.3 Discussion

4.3.1 Disassembly

Table 2 and Table 3 shows that the accuracy is about 87% and the F1 score is 79% in the
identification of the instructions of the complete code segment; the accuracy is about
91% and the F1 score is 71% in the identification of the disassembly instructions of the
code segment. The accuracy calculates the number of correctly identified nodes among
all nodes. In the real scenario, the recognition as FalseDisasm does not have analytical
significance, so in the F1 score calculation, only the result of TrueDisasm is calculated.

CESN is not ideal for the recognition of disassembly instructions for complete code
segments and code fragments, which is caused by the more similar code and data. File
where.exe was randomly selected for detailed analysis. The results were divided into the
following two cases.

4.3.1.1 FalseDisasm is predicted as TrueDisasm

In Fig. 5, code between 0x4015AC and 0x4015B9 is the true disassembly. CESN de-
termines that the corresponding instructions at all addresses in the figure are correct.
However, there is a misjudgment at 0x4015B0 and 0x4015B4. The byte 80 33 C0 at
0x4015B0 is identified as instruction “xor byte ptr [ebx], 0xc0”, and the byte 89 04 7B
at 0x4015B4 is identified as instruction “mov dword ptr [ebx + edi*2], eax”. This is
probably due to the fact that the instruction at 0x4015B0 is similar to the instruction at
0x4015B1, and the instruction at 0x4015B4 is similar to the instruction at 0x4015B3.
This can be corrected according to the control flow.

In Fig. 6, the true disassembly is between 0x4015E0 to 0x4015EA and it is judged as
TrueDisasm. This may be due to the existence of similar instructions in the training set
that are all TrueDisasm, leading to a similar situation in the test set where FalseDisasm
is judged as TrueDisasm. Since the instruction pop ebp does not have a parent in the

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 771

0x4015AC BE 7A 00 07 80 mov esi, 8007007Ah

0x4015B1 33 C0 xor eax, eax

0x4015B3 66 89 04 7B mov [ebx+edi*2], ax

0x4015B7 5F pop edi

0x4015B8 5B pop ebx

0x4015B9 EB 0C jmp short loc_4015C7

(a) Real Disassembly

0x4015ac mov esi, 0x8007007a

0x4015b1 xor eax, eax

0x4015b3 mov word ptr [ebx + edi*2], ax

0x4015b7 pop edi

0x4015b8 pop ebx

0x4015b9 jmp 0x4015c7

0x4015b0 xor byte ptr [ebx], 0xc0

0x4015af pop es0x4015ae add byte ptr [edi], al

0x4015b4 mov dword ptr [ebx + edi*2], eax

0x4015b5 add al, 0x7b

(b) ECFG

Figure 5: FalseDisasm is predicted as TrueDisasm in where.exe

0x4015E0 33 FF xor edi, edi

0x4015E2 89 5D E0 mov [ebp+var_20], ebx

0x4015E5 47 inc edi

0x4015E6 89 5D D0 mov [ebp+var_30], ebx

0x4015E9 57 push edi

0x4015EA 53 push ebx

(a) Real Disassembly

0x4015e0 xor edi, edi

0x4015e2 mov dword ptr [ebp - 0x20], ebx

0x4015e5 inc edi

0x4015e6 mov dword ptr [ebp - 0x30], ebx

0x4015e9 push edi

0x4015ea push ebx

0x4015e4 loopne 0x40162d

0x4015e3 pop ebp

(b) ECFG

Figure 6: FalseDisasm is predicted as TrueDisasm in where.exe

control flow, and the target of loopne (0x40162d) is FalseDisasm at both the real case and
the predicted result, some heuristic rules could be applied to remove the false instruction
at 0x4015E3 and 0x4015E4.

4.3.1.2 TrueDisasm is predicted as FalseDisasm

In Fig. 7, the true disassembly is between 0x401905 and 0x40191B. However, in the
prediction result of CESN, the instruction at 0x401913 is discriminated as FalseDisasm.
This may be due to the fact that there are fewer consecutive mov instructions in the
training set and the model is not sensitive to the address articulation.

772 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

0x401905 85 C0 test eax, eax

0x401907 0F 84 B9 00 00 00 jz loc_4019C6

0x40190D FF 75 D4 push [ebp+var_2C]

0x401910 8B 55 DC mov edx, [ebp+var_24]

0x401913 8B CE mov ecx, esi

0x401915 FF 75 D0 push [ebp+var_30]

0x401918 FF 75 E0 push [ebp+var_20]

0x40191B E8 2B 0D 00 00 call _FindforFileRecursive@20

(a) Real Disassembly

0x401905 test eax, eax

0x401907 je 0x4019c6

0x40190d push dword ptr [ebp - 0x2c]

0x40190b add byte ptr [eax], al

0x401910 mov edx, dword ptr [ebp - 0x24]

0x401913 mov ecx, esi

0x401915 push dword ptr [ebp - 0x30]

0x401918 push dword ptr [ebp - 0x20]

0x40191b call 0x40264b

0x401912 fmul qword ptr [ebx - 0x2f8a0032]

0x401911 push ebp

0x40190f aam 0x8b

0x401914 into

(b) Extended Control Flow Graph

Figure 7: TrueDisasm is predicted as FalseDisasm in where.exe

In Fig. 8, the real disassembly is between 0x401B10 and 0x401B33. However, the
model judges the instructions at 0x401B26, 0x401B2B, and 0x401B2E as data. It is
probably due to the fact that the bytes corresponding to these instructions in the model
training set are data. In a real scenario, it is not possible to have a broken control flow.

4.3.2 Compiler-generated and hand-written data set

Executables, which are built with different compilers, optimization options, and architec-
tures, contain the features belonging to the compilers. Common approaches are currently
based on these features for disassembly, function identification or similarity matching.
However, these features may not work well for assembly programs which may not have
standard features. The proposed method is not based on the head and tail features of
functions, and can effectively disassemble the hand-written executables. As shown in
Table 2, Table 3, and Table 4, the accuracy of CESN in hand-written reaches 87% and
the F1 score is 74%. The accuracy in the code fragment reaches 88% and the F1 score is
71%.

4.3.3 Code and data distinction

CESN can disassemble any byte sequence and identify code and data in it. For an ECFG,
the instructions in the graph contain true and false instructions. Among them, in the

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 773

0x401B10 E8 C2 21 00 00 call _SaveLastError@0

0x401B15 57 push edi

0x401B16 E8 8A 56 00 00 call ___acrt_iob_func

0x401B1B 59 pop ecx

0x401B1C 8B C8 mov ecx, eax

0x401B1E E8 6B 22 00 00 call _ShowLastErrorEx@8

0x401B23 8D 4D FC lea ecx, [ebp+var_4]

0x401B26 E8 93 30 00 00 call _FreeMemory@4

0x401B2B 8D 4D F4 lea ecx, [ebp+var_C]

0x401B2E E8 DC 36 00 00 call _DestroyDynamicArray@4

0x401B33 E9 7F FE FF FF jmp loc_4019B7

(a) Real Disassembly

0x401b10 call 0x403cd7

0x401b15 push edi

0x401b16 call 0x4071a5

0x401b1b pop ecx

0x401b1c mov ecx, eax

0x401b1e call 0x403d8e

0x401b23 lea ecx, [ebp - 4]

0x401b26 call 0x404bbe

0x401b2b lea ecx, [ebp - 0xc]

0x401b2e call 0x40520f

0x401b33 jmp 0x4019b7

0x401b13 add byte ptr [eax], al

0x401b18 push esi

0x401b19 add byte ptr [eax], al

0x401b12 and dword ptr [eax], eax

0x401b14 add byte ptr [edi - 0x18], dl

0x401b17 mov dl, byte ptr [esi]

0x401b1a add byte ptr [ecx - 0x75], bl

0x401b1d enter 0x6be8, 0x22

0x401b21 add byte ptr [eax], al0x401b24 dec ebp

0x401b25 cld

0x401b29 add byte ptr [eax], al

0x401b2c dec ebp

...

0x401b2d hlt

0x401b2f fdiv qword ptr [esi]

0x401b30 add byte ptr ss 0x401b31 add byte ptr [eax], al

(b) ECFG

Figure 8: TrueDisasm is predicted as FalseDisasm in where.exe

complete code segment, about 30% instructions are true. In the code segment, about
20% instructions are true. In the data, there is no disassembly code, i.e., the number of
instructions should be 0.

Table 5 shows that CESN can distinguish more obviously whether a byte sequence
belongs to code or data. In the real scenario, for a byte sequence, if there are more than
10% TrueDisasm, it can be considered that the byte sequence contains code.

5 Conclusions and future work

In this paper, a new disassembly method is proposed. First, by disassembling each byte of
the byte sequence as the first address in turn, an ECFG is constructed for the disassembly
results, and the graph nodes are classified using a graph attention network to obtain the
correct CFG. The experimental results show that the proposed approach can effectively
disassemble binary code sequences and provide a new way of thinking to distinguish

774 Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ...

code and data, which possesses good applicability even in the face of complex data sets
with complex data and different code writing styles.

However, there are three shortcomings. First, the proposed method cannot identify
indirect jumps. It can be considered to introduce dynamic analysis or use link prediction
in graph neural network to find the addresses of indirect jumps. Second, disassembly
rules could be used to optimize the graph neural network after it classifies nodes. The
rules include data segments must be preceded by jump instructions, functions end with
jump, return, call instructions, etc. These rules filter out the misclassified nodes. Finally,
the bytes is used as node features, ignoring the relationship between bytes. In future,
embedding could be used to obtain a larger feature space.

Acknowledgment

This work is supported by National Natural Science Foundation of China 61702140,
Heilongjiang Provincial Natural Science Foundation of China F2018017, the Fundamen-
tal Research Foundation for Universities of Heilongjiang Province LGYC2018JC015,
and Zhejiang A&F University Research Development Fund Talent Initiation Project
2021LFR048.

References

[Anand et al., 2013] Anand, K., Smithson, M., Elwazeer, K., Kotha, A., Gruen, J., Giles, N., and
Barua, R. (2013). A compiler-level intermediate representation based binary analysis and rewriting
system. In EuroSys ’13.

[Andriesse et al., 2016] Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A., and Bos, H.
(2016). An in-depth analysis of disassembly on full-scale x86/x64 binaries. In 25th USENIX
Security Symposium (USENIX Security 16), pages 583–600.

[Bauman et al., 2018] Bauman, E., Lin, Z., and Hamlen, K. W. (2018). Superset disassembly:
Statically rewriting x86 binaries without heuristics. In Proceedings 2018 Network and Distributed
System Security Symposium. Internet Society.

[Ben Khadra et al., 2016] Ben Khadra, M. A., Stoffel, D., and Kunz, W. (2016). Speculative
disassembly of binary code. In Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. ACM.

[Besson et al., 2001] Besson, F., Jensen, T. P., and Métayer, D. L. (2001). Model checking secu-
rity properties of control flow graphs. J. Comput. Secur., 9:217–250.

[Cui et al., 2019] Cui, Z., Du, L., Wang, P., Cai, X., and Zhang, W. (2019). Malicious code
detection based on cnns and multi-objective algorithm. J. Parallel Distributed Comput., 129:50–58.

[Cui et al., 2018] Cui, Z., Xue, F., Cai, X., Cao, Y., ge Wang, G., and Chen, J. (2018). Detection
of malicious code variants based on deep learning. IEEE Transactions on Industrial Informatics,
14:3187–3196.

[Djoudi and Bardin, 2015] Djoudi, A. and Bardin, S. (2015). Binsec: Binary code analysis with
low-level regions. In TACAS.

[Federico and Agosta, 2016] Federico, A. D. and Agosta, G. (2016). A jump-target identifica-
tion method for multi-architecture static binary translation. 2016 International Conference on
Compliers, Architectures, and Sythesis of Embedded Systems (CASES), pages 1–10.

[Flores-Montoya and Schulte, 2020] Flores-Montoya, A. and Schulte, E. (2020). Datalog disas-
sembly. In 29th USENIX Security Symposium (USENIX Security 20), pages 1075–1092.

Qiu J., Dong F., Sun G.: Disassemble Byte Sequence Using Graph ... 775

[Goodfellow et al., 2015] Goodfellow, I. J., Bengio, Y., and Courville, A. C. (2015). Deep learn-
ing. Nature, 521:436–444.

[Guo and Wang, 2021] Guo, Z. and Wang, H. (2021). A deep graph neural network-based mecha-
nism for social recommendations. IEEE Transactions on Industrial Informatics, 17:2776–2783.

[Harris and Miller, 2005] Harris, L. C. and Miller, B. P. (2005). Practical analysis of stripped
binary code. SIGARCH Comput. Archit. News, 33:63–68.

[Kruegel et al., 2004] Kruegel, C., Robertson, W., Valeur, F., and Vigna, G. (2004). Static disas-
sembly of obfuscated binaries. In USENIX security Symposium, volume 13, pages 18–18.

[Li et al., 2020] Li, K., Woo, M., and Jia, L. (2020). On the generation of disassembly ground
truth and the evaluation of disassemblers. In Proceedings of the 2020ACMWorkshop on Forming
an Ecosystem Around Software Transformation, FEAST’20, page 9–14, New York, NY, USA.
Association for Computing Machinery.

[Liu et al., 2013] Liu, K., Tan, H. B. K., and Chen, X. (2013). Binary code analysis. Computer,
46:60–68.

[Ma et al., 2020] Ma, Z., Ge, H., Wang, Z., Liu, Y., and Liu, X. (2020). Droidetec: Android
malware detection and malicious code localization through deep learning. ArXiv, abs/2002.03594.

[Miller et al., 2019] Miller, K., Kwon, Y., Sun, Y., Zhang, Z., Zhang, X., and Lin, Z. (2019). Prob-
abilistic disassembly. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE.

[Pei et al., 2021] Pei, K., Guan, J., Williams-King, D., Yang, J., and Jana, S. (2021). XDA:
Accurate, robust disassembly with transfer learning. In Proceedings 2021 Network and Distributed
System Security Symposium. Internet Society.

[Rong et al., 2020] Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep
graph convolutional networks on node classification. In ICLR.

[Rosenblum et al., 2008] Rosenblum, N. E., Zhu, X., Miller, B. P., and Hunt, K. (2008). Learning
to analyze binary computer code. In AAAI.

[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.
(2009). The graph neural network model. IEEE Transactions on Neural Networks, 20:61–80.

[Song et al., 2008] Song, D. X., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M. G., Liang,
Z., Newsome, J., Poosankam, P., and Saxena, P. (2008). Bitblaze: A new approach to computer
security via binary analysis. In ICISS.

[Velickovic et al., 2018] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., and
Bengio, Y. (2018). Graph attention networks. ArXiv, abs/1710.10903.

[Wang et al., 2019a] Wang, X., He, X., Cao, Y., Liu, M., and Chua, T.-S. (2019a). Kgat: Knowl-
edge graph attention network for recommendation. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

[Wang et al., 2019b] Wang, X., Ji, H., Shi, C., Wang, B., Cui, P., Yu, P., and Ye, Y. (2019b).
Heterogeneous graph attention network. The World Wide Web Conference.

[Wartell et al., 2011] Wartell, R., Zhou, Y., Hamlen, K. W., Kantarcioglu, M., and Thuraisingham,
B. (2011). Differentiating code from data in x86 binaries. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 522–536. Springer.

[Zhang et al., 2007] Zhang, Q., Reeves, D. S., Ning, P., and Iyer, S. P. (2007). Analyzing network
traffic to detect self-decrypting exploit code. In Proceedings of the 2nd ACM symposium on
Information, computer and communications security, pages 4–12.

	Introduction
	Related work
	Our work
	Disassembly
	ECFG construction
	ECFG pruning
	Connected subgraph search
	CFG prediction

	Experiment
	Setup
	Data set
	Model settings

	Result
	Training result

	Discussion
	Disassembly
	Compiler-generated and hand-written data set
	Code and data distinction

	Conclusions and future work

