
Journal of Universal Computer Science, vol. 27, no. 11 (2021), 1193-1202
submitted: 11/2/2021, accepted: 9/8/2021, appeared: 28/11/2021 CC BY-ND 4.0

On Recurrent Neural Network Based Theorem Prover
For First Order Minimal Logic

Ashot Baghdasaryan
(Russian-Armenian University, Yerevan, Armenia

https://orcid.org/0000-0003-1424-0382, baghdasaryana95@gmail.com)

Hovhannes Bolibekyan
(Yerevan State University, Yerevan, Armenia, bolibekhov@ysu.am)

Abstract: There are three main problems for theorem proving with a standard cut-free system

for the first order minimal logic. The first problem is the possibility of looping. Secondly, it

might generate proofs which are permutations of each other. Finally, during the proof some

choice should be made to decide which rules to apply and where to use them. New systems with

history mechanisms were introduced for solving the looping problems of automated theorem

provers in the first order minimal logic. In order to solve the rule selection problem, recurrent

neural networks are deployed and they are used to determine which formula from the context

should be used on further steps. As a result, it yields to the reduction of time during theorem proving.

Keywords: Automated theorem prover, Minimal logic, Loop detection, Recurrent neural network
Categories: F4.1, F4.3, I.2.3

DOI: 10.3897/jucs.76563

1 Introduction

Formalized intuitionistic logic was originally developed by [Heyting 1930]. Minimal
logic being part of intuitionistic logic, is of a great interest being a constructive logic.
Automated theorem proving problems in miminal logic have many applications in a
variety of tasks, such as expert systems, software verification and synthesis problems
and a number of other areas.

The sequent systemGM− for minimal first order logic was introduced in [Bolibekyan
and Chubaryan 2002]. GM− is a permutation-free sequent system; it avoids the permu-
tation problems of some cut-free sequent systems. GM− partly addresses the looping
problem and hence is advantageous as a system for theorem proving. However, the naive
implementation of GM− will lead to the possibility of looping.

Two types of systems with history mechanism are considered following [Bolibekyan
and Baghdasaryan 2019]. SwMin system with history mechanism for propositional
fragment of minimal logic was introduced in [Baghdasaryan and Bolibekyan 2020].
In this paper the system is extended to the first order logic where it is known that
expressibility is drastically changed in comparison to the propositional fragment. Also a
new system for first order minimal logic with another history mechanism (ScMin) is
introduced. These systems does not contain the problem of looping, but the rule selection
problem almost remains unsolved. There is a stoup selection rule, when a formula from
the context should be selected to be considered as a stoup. Similar technique originally
considered in [Baghdasaryan and Bolibekyan 2020] is developed and applied to the new
systems and the comparison between four systems is conducted.

https://orcid.org/0000-0003-1424-0382
https://orcid.org/0000-0003-1424-0382


1194 Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network…

There are different kind of systems where rule selection problem leads to proof search
inefficiency issues. For that reason those kind of systems experience some difficulties
during automated theorem proving procedures.

In an attempt to resolve the latter issue machine learning methods are leveraged in
automated theorem proving systems.

2 Related Work

Some Gentzen-style systems and loop detection mechanisms have been considered
earlier in [Herbelin 1994], [Gabbay 1991], [Howe 1997]. This approach was extended
further for propositional systems of minimal logic ([Bolibekyan and Baghdasaryan 2018],
[Bolibekyan and Baghdasaryan 2019]). However, systems based on those mechanisms
are covering only the propositional fragments. In order to have a system for first-order
minimal logic, propositional fragment have to be extended with first-order rules.

[Alemi et al. 2016], [Bridge et al. 2014] and [Kaliszyk et al. 2017] show some
approaches of applying machine learning methods in the field of automated theorem
proving. [Alemi et al. 2016] introduced neural sequence models for premise selection
in automated theorem proving, while [Bridge et al. 2014] applied two state of the art
machine learning techniques to the problem of selecting a good heuristic in a first-order
theorem prover. [Kaliszyk et al. 2017] introduced a new dataset based on Higher-Order
Logic (HOL) proofs, for the purpose of developing new machine learning-based theorem-
proving strategies. Also some benchmarks for different ML models suited for various
tasks were showed. Overall, it is showing the promise of applying machine learning to
HOL theorem proving. Our aim is about using state of the art machine learning techniques
in first-order logic in order to solve the rule selection problem.

3 Loop Detection

Further in the text we follow well known definitions of a formula, sequent, proof, context,
equivalence of the systems as in [Kleene 1952], [Howe 1997]. Special cases of sequents
would be considered, when the sequent would contain formulas not only in the left
(context) and the right (conclusion) parts from arrow (Γ ⇒ C) but also above the arrow

(Γ
A−→ C). That part of the formula would be called stoup and the main purpose of the

stoup is the termination of the proof.
Adding a notion of history to each sequent will assist solving looping problem. Set

of all sequents that have appeared in the proof tree is called history. On each step of the
inference one needs to go through the checking procedure to make sure if the formula
is already in the history for the considered sequence. If it is we have looping and we
backtrack. If not the new formula will be added to the history and we proceed with the
proof of a new sequent and that happens for each sequent of the inference tree.

Due to a huge number of sequents to be considered for specific checkings on each
inference step the approach becomes quite inefficient. To prevent looping much less
information can be kept.

The key point to keep the history as small as possible is adding only goal formula
to that. The rules of considered systems are introduced in a way that the context cannot
decrease; once a formula is in the context it will remain in the context of all sequents
above it in the proof tree. Two sequents are the same only when their contexts coincide.
Once the context is extended the history can be emptied, since we will never get any of



Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network… 1195

A,Γ ⇒ B; ε

Γ ⇒ A ⊃ B;H
(⊃ R1) ifA 6∈ Γ

Γ ⇒ B;H

Γ ⇒ A ⊃ B;H
(⊃ R2) ifA ∈ Γ

A,Γ ⇒ ⊥; ε

Γ ⇒ ¬A;H
(¬R1) ifA 6∈ Γ

Γ ⇒ ⊥;H

Γ ⇒ ¬A;H
(¬R2) ifA ∈ Γ

Γ ⇒ A; (C,H) Γ
B−→ C;H

Γ
A⊃B−−−→ C;H

(⊃ L) ifC 6∈ H

Γ ⇒ A; (C,H) Γ
⊥−→ C;H

Γ
¬A−−→ C;H

(¬L) ifC 6∈ H

Γ
A−→ C;H

Γ
A∧B−−−→ C;H

(∧L1)
Γ

B−→ C;H

Γ
A∧B−−−→ C;H

(∧L2)

Γ ⇒ A;H Γ ⇒ B;H

Γ ⇒ A ∧B;H
(∧R)

A,Γ ⇒ C; ε B,Γ ⇒ C; ε

Γ
A∨B−−−→ C;H

(∨L) ifA,B 6∈ Γ

Γ ⇒ A;H

Γ ⇒ A ∨B;H
(∨R1)

Γ ⇒ B;H

Γ ⇒ A ∨B;H
(∨R2)

Γ ⇒ A(b);H

Γ ⇒ ∀xA(x);H
(∀R)(1)

Γ
A(t)−−−→ C;H

Γ
∀xA(x)−−−−−→ C;H

(∀L)

Γ ⇒ A(t);H

Γ ⇒ ∃xA(x);H
(∃R)

Γ
A(b)−−−→ C;H

Γ
∃xA(x)−−−−−→ C;H

(∃L)(1)

A,Γ
A−→ B;H

A,Γ ⇒ B;H
(C)*

Γ ⇒ A; (A,H)

Γ
⊥−→ A;H

(⊥) Γ
A−→ A;H (ax)(2)

* B is a first order formula, which doesn’t contain implication, conjunction and negation. A(x) is
a formula; t is a term free for x in A(x).

b is a variable free for x in A(x) and (unless b is x) not occuring free in A(x).
(1) The variable b of the postulate shall not occur free in its conclusion (when the A(x) does not

contain the x free, then A(b) is A(x) no matter what variable b is)
(2) A can be ⊥.

Figure 1: The propositional system SwMin



1196 Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network…

A,Γ ⇒ B; {B}
Γ ⇒ A ⊃ B;H

(⊃ R1) A 6∈ Γ
Γ ⇒ B; (B,H)

Γ ⇒ A ⊃ B;H
(⊃ R2) A ∈ Γ, B 6∈ H

A,Γ ⇒ ⊥; {⊥}
Γ ⇒ ¬A;H

(¬R1) A 6∈ Γ
Γ ⇒ ⊥; (⊥, H)

Γ ⇒ ¬A;H
(¬R2) A ∈ Γ,⊥ 6∈ H

Γ ⇒ A; (A,H) Γ
B−→ C;H

Γ
A⊃B−−−→ C;H

(⊃ L) ifA 6∈ H

Γ ⇒ A; (A,H) Γ
⊥−→ C;H

Γ
¬A−−→ C;H

(¬L) ifA 6∈ H

Γ
A−→ C;H

Γ
A∧B−−−→ C;H

(∧L1)
Γ

B−→ C;H

Γ
A∧B−−−→ C;H

(∧L2)

Γ ⇒ A; (A,H) Γ ⇒ B; (B,H)

Γ ⇒ A ∧B;H
(∧R) ifA,B 6∈ H

A,Γ ⇒ C; {C} B,Γ ⇒ C; {C}

Γ
A∨B−−−→ C;H

(∨L) ifA,B 6∈ Γ

Γ ⇒ A; (A,H)

Γ ⇒ A ∨B;H
(∨R1) ifA 6∈ H

Γ ⇒ B; (B,H)

Γ ⇒ A ∨B;H
(∨R2) ifB 6∈ H

Γ ⇒ A(b);H

Γ ⇒ ∀xA(x);H
(∀R)(1)

Γ
A(t)−−−→ C;H

Γ
∀xA(x)−−−−−→ C;H

(∀L)

Γ ⇒ A(t);H

Γ ⇒ ∃xA(x);H
(∃R)

Γ
A(b)−−−→ C;H

Γ
∃xA(x)−−−−−→ C;H

(∃L)(1)

A,Γ
A−→ B;H

A,Γ ⇒ B;H
(C)*

Γ ⇒ A; (A,H)

Γ
⊥−→ A;H

(⊥) Γ
A−→ A;H (ax)(2)

* B is a first order formula, which doesn’t contain implication, conjunction and negation. A(x) is
a formula; t is a term free for x in A(x).

b is a variable free for x in A(x) and (unless b is x) not occuring free in A(x).
(1) The variable b of the postulate shall not occur free in its conclusion (when the A(x) does not

contain the x free, then A(b) is A(x) no matter what variable b is)
(2) A can be ⊥.

Figure 2: The propositional system ScMin



Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network… 1197

the sequents below the extended one again. Goal formulas are the only ones to be stored
in the history. If we come across a goal already in the history we have the same goal and
the same context as another sequent, that is, a loop.

There are two slightly different approaches to doing this. There is the straightforward
extension and modification of the system which we shall call a SwMin, and there is
an approach which involves storing more formulas in the history, but that detects loops
more quickly. This we will call as ScMin, and the implementation is in some cases
more efficient than the SwMin.

In scope of considered systems A,B,C are formulas, Γ , H are finite sequences of
zero or more formulas,B, Γ is shorthand for {B}∪Γ , sequent Γ ⇒ C;H has context Γ,

goal C, history H and no stoup, and sequent Γ
A−→ C;H has context Γ, goal C, history

H and stoup A. When the history has been extended we have parenthesised (C,H) for
emphasis, while by ε we denote empty history. The SwMin system is displayed in
Figure 1, and the ScMin system in Figure 2.

Theorem1. The systems SwMin/ScMin and GM− are equivalent.

The idea in proof is focused on constructing proof trees based on a given pattern
in a first system and considering inference rule under the focus as in [Bolibekyan and
Baghdasaryan 2019] for propositional fragment.

4 Rule Selection

In SwMin/ScMin systems the rule selection problem remains unsolved. There is a
stoup selection rule, when a formula from the context should be selected to be considered
as a stoup. SwProv and ScProv automated theorem provers are developed based on
SwMin and ScMin systems respectively. In order to remove the rule selection problem
SwProv and ScProv automated theorem provers were powered by neural networks,
which will be called SwNNProv and ScNNProv respectively. At every point of
the proof tree, where stoup selection rule occurred, the context formula which will be
selected as a stoup would be determined based on neural networks prediction.

4.1 Sequent To Vector Transformation

Skolem normal form representations are used in order to have more structured formulas.
Numerical representations for the sequents are introduced by assigning a specific number
to each symbol in the formula. As a result, similar sequents get identical representation
vectors (the respresentations of formulas (A ⊃ B) ⊃ A and (C ⊃ D) ⊃ C are the
same).

For assigning fixed length encoding to each sequent in the proof tree autoencoders
[Baldi 2012] are applied. Two slightly different approaches were considered. The first
one (AE) is based on the concepts of undercomplete autoencoders and is using L2 loss
function:

LossAE =
1

2N

N∑
i=1

(x(i) − x̂(i))2, (1)

where N is the number of examples, x is the numerical representation of the sequent,
while x̂ is the output of the autoencoder.



1198 Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network…

Method Retention Loss

AE 0.015

CAE 0.014

Fig. 3: Autoencoders

retention quality.

Method Precision Recall F1 Accuracy

AE + GRU 0.7 0.74 0.72 72%

CAE + GRU 0.7 0.75 0.72 73%

AE + LSTM 0.71 0.75 0.73 73%

CAE + LSTM 0.72 0.78 0.75 75%

Fig. 4: Quality metrics for SwNNProv prover.

In the second approach (CAE) the loss function is modified using the idea of con-
tractive autoencoders [Rifai et al. 2011]. As the representations of the similar sequents
are close to each other, the impact of the changes in the input to the hidden layer has to
be minimized.

LossCAE =
1

2N

N∑
i=1

(x(i) − x̂(i))2 + λ
1

N

N∑
i=1

∥∥∥∇x(i)h(x(i))
∥∥∥2
F

(2)

where ∥∥∥∇x(i)h(x(i))
∥∥∥2
F
=

M∑
j=1

L∑
k=1

(
∂h(x(i))j

∂x
(i)
k

)2

(3)

h is the hidden layer representation,N is the number of examples,M is the hidden layer
size, L is the input layer size, x is the numerical representation of the sequent, x̂ is the
output of the autoencoder, λ is the regularization hyper-parameter.

So,∇x(i)h(x(i)) is the Jacobian of the encoder and the minimisation of the Frobenius
norm of the Jacobian matrix makes the encoder to become less sensitive to the input
changes. Figure 3 is showing the comparison between two approaches in terms of
retention quality.

4.2 Recurrent Neural Networks in Proof Search

A standard library of propositional and first-order logic problems is used as a training
dataset. More than 100000 formulas are generated with the help of 5000 predefined
formulas of minimal logic. Dataset was extended using some formulas from the TPTP
problem library [Sutcliffe 2017]. Training examples are generated by passing each
element of training set to SwProv/ScProv prover. Every point of proof tree, where a
stoup formula has to be selected from the context, all sequents in that branch of tree are
considered and sequence of vectors is generated by the procedure described in ”Sequent
to Vector transformation” chapter. To differentiate successful outcomes while training
the neural network one needs to take numerical representation for each stoup candidate
formula and corresponding ground truth label (whether this is the right selection).

Two types of recurrent neural network are deployed, where the first one consists
of gated recurrent unit (GRU) [Cho et al. 2014] as recurrent layer and 2-dense layers
with skip connections [Fischer et al. 2015], while the second one consists of LSTM
[Sundermeyer et al. 2012] layer and 2-dense layers with skip connections. The output
of recurrent layer (feature vector extractor module) is concatenated with numerical
representation of stoup candidate formula and then is mapped into 2-length one-hot
encoded vector via dense layer with softmax activation function. As a final step cross



Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network… 1199

entropy is used as a loss function:

Hp(q) = − 1

N

N∑
i=1

(yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)), (4)

where y is the label and p(y) is the predicted probability of the candidate formula being
right for all N examples.

As it is more important not to omit the right subtrees (misclassify as 0) rather than to
keep wrong subtrees (misclassy as 1), loss function is modified by adding penalization
term for recall. Also, in order to have a higher value for recall metric prediction threshold
is changed. Figure 4 shows the comparison of different approaches for SwNNProv
prover in terms of precision, recall, F1 score and accuracymetrics calculated on the testing
dataset. It becomes clear, that the combination of contractive autoencoder compression
and network with LSTM cells shows the best result (75% accuracy, 0.78 recall).

As a result, the bad branches are removed from the proof tree in almost 75% of cases,
which reduces automated theorem proving duration.

4.3 Inference

In order to reduce processing time during automated theorem proving, recurrent neural
networks are deployed. During theorem proving, at each point of proving tree, where rule
selection problem appears, all the candidate stoup formulas with the respective proving
subtrees are passed through neural network. For all the candidate formulas probabilities
were obtained via RNN. Then the candidate formula with the highest probability is
selected as stoup and proof tree is extended in that direction. If it brings to unsuccessful
proof, it continues with selecting the other candidate formula as stoup with the higher
probability and so on. For non-provable sequents theorem prover is exploring the whole
space of candidate formulas and brings up with non-provable conclusion.

As the recurrent neural network inference is computationally very expensive and the
main goal was to reduce time consumption during proof search, some inference time
reductions and benchmarkings are done. NVIDIA TensorRT is applied to the model for
getting the benefits like layer/tensor fusion and automatic precision calibration during the
inference. It turns out, that using float16 instead of float32 during inference does not affect
significantly to the accuracy of the model, while it drastically speeds up the inference.
Figure 5 shows the comparison between several GPUs with different architectures as
well as the models with and without TesnorRT and with float32 or float16 arithmetics in
terms of how many inferences can be done in a second.

GPU Architecture without
TensorRT
(inf/sec)

TensorRT
float32
(inf/sec)

TensorRT
float16
(inf/sec)

Nvidia P100 Pascal 870 1200 1400
Nvidia K80 Kepler 250 350 400
Nvidia V100 Volta 1100 1600 3100
Nvidia T4 Turing 740 1000 1900
Nvidia Jetson Nano Maxwell 50 65 70

Fig. 5: Inference benchmark for SwNNProv.



1200 Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network…

5 Results

In order to demonstrate the power of the RNN based provers the following formula was
passed to the SwProv and SwNNProv:

⇒ (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)
The following part is the same for the both provers:

...
(A ⊃ B), (A ⊃ ¬B), A ⇒ ⊥
(A ⊃ B), (A ⊃ ¬B) ⇒ ¬A

⇒ (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)

At this point, rule selection problem has been detected. After passing the proof sub-
tree and candidate formulas to the RNN, SwNNProv prover predicts that the ”right”
choice for the stoup is (A ⊃ ¬B):

(A ⊃ B), (A ⊃ ¬B), A ⇒ A

...
(A ⊃ B), (A ⊃ ¬B), A ⇒ B

(A ⊃ B), (A ⊃ ¬B), A
¬B−−→ ⊥

(A ⊃ B), (A ⊃ ¬B), A
A⊃¬B−−−−→ ⊥

(A ⊃ B), (A ⊃ ¬B), A ⇒ ⊥
Rule selection problem occurs one more time. At this time SwNNprov recommends to
continue with (A ⊃ B) as a stoup:

(A ⊃ B), (A ⊃ ¬B), A ⇒ A (A ⊃ B), (A ⊃ ¬B), A
B−→ B

(A ⊃ B), (A ⊃ ¬B), A
A⊃B−−−→ B

(A ⊃ B), (A ⊃ ¬B), A ⇒ B

In contrast, SwProv will make many unnecessary computations while trying to enrich
the proof tree using all the candidate stoup formulas.

In result of constructing new proof systems for the minimal first-order logic and
deploying concept of neural network in the prover experiments revealed proof search
space reduction and the level of accuracy up to 75% training 150 epochs.

Compared to the prover without neural network time spent for the proof is reduced
for almost twice. Figure 6 shows the comparison between SwProv/ScProv
(based on SwMin/ScMin system, with the rule selection problem) and
SwNNProv/ScNNProv (LSTM network powered prover) automatic theo-
rem provers. Experiments are done on NVIDIA 1080Ti GPU with 8 core processors. In
complex formulas RNN powered provers obviously are performing much efficient and
faster.

6 Conclusion and Future Work

In this paper, three main problems of theorem proving with a Gentzen-style cut-free
system of minimal logic are considered. The main contribution of this work is the
extension of propositional fragments of minimal logic systems with first-order logic rules
as well as the approach to solve the rule selection problem, in the way of expressing it



Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network… 1201

as a machine learning problem and proposing methods for solving it based on recurrent
neural networks. A discussion on different representations of sequents has been provided.
In particular, representations using two types of autoencoders have been proposed.

Example SwProv SwNNProv ScProv ScNNProv Provable
(A ∧ ¬A) ⊃ B 1.7 1.5 1.7 1.6 No
(A ⊃ B) ⊃ (A ⊃ C) ⊃ (A ⊃ (B ⊃ C)) 2.6 1.2 2.9 1.3 Yes
((¬¬A ⊃ A) ⊃ A) ∨ (¬A ⊃ ¬A) ∨
(¬¬A ⊃ ¬¬A) ∨ (¬¬A ⊃ A)

4.4 4.6 4.3 4.6 Yes

¬¬((¬A ⊃ B) ⊃ (¬A ⊃ ¬B) ⊃ A) 42 25 33 19 Yes
((((A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃
C)))) ⊃ C) ⊃ ((B ⊃ C) ⊃ (((((A ⊃
B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)))) ∨ B) ⊃
C))

37 16 45 21 Yes

(((((A ⊃ B) ⊃ ((C ⊃ B) ⊃ ((A ∨ C) ⊃
B)))) ⊃ C) ⊃ (((((A ⊃ B) ⊃ ((C ⊃
B) ⊃ ((A ∨ C) ⊃ B)))) ⊃ ¬C) ⊃
¬(((A ⊃ B) ⊃ ((C ⊃ B) ⊃ ((A ∨ C) ⊃
B))))))

129 15 183 27 Yes

(((G ⊃ A) ⊃ J) ⊃ ((P ∨ (Q ∧ P )) ⊃
P ) ⊃ E) ⊃ (((H ⊃ B) ⊃ I) ⊃ C ⊃
J ⊃ (A ⊃ H) ⊃ F ⊃ G ⊃ (((C ⊃ C) ⊃
I) ⊃ ((P ∨ (Q ∧ P )) ⊃ P )) ⊃ (A ⊃
C) ⊃ (((F ⊃ A) ⊃ B) ⊃ I) ⊃ E)

869 174 950 213 Yes

(((((G ⊃ A) ⊃ J) ⊃ D ⊃ E) ⊃ (((H ⊃
B) ⊃ I) ⊃ C ⊃ J ⊃ (A ⊃ H) ⊃ F ⊃
G ⊃ (((C ⊃ B) ⊃ I) ⊃ D) ⊃ (A ⊃
C) ⊃ (((F ⊃ A) ⊃ B) ⊃ I) ⊃ E)) ∧
B) ⊃ ((((G ⊃ A) ⊃ J) ⊃ D ⊃ E) ⊃
(((H ⊃ B) ⊃ I) ⊃ C ⊃ J ⊃ (A ⊃
H) ⊃ F ⊃ G ⊃ (((C ⊃ B) ⊃ I) ⊃
D) ⊃ (A ⊃ C) ⊃ (((F ⊃ A) ⊃ B) ⊃
I) ⊃ E))

1359 96 1743 121 Yes

¬∃x∀y(q(y) ⊃ r(x, y)) ∧ ∃x∀y(s(y) ⊃
r(x, y)) ⊃ ¬∀x(q(x) ⊃ s(x))

152 32 173 36 Yes

(∀x((f(x) ∧ (g(x) ∨ h(x))) ⊃ q(x)) ∧
(∀y((q(y) ∧ h(y)) ⊃ p(y)) ∧ ∀z(k(z) ⊃
h(z)))) ⊃ ∀t((f(t) ∧ k(t)) ⊃ p(z))

72 12 79 14 Yes

Fig. 6: Proving time comparison (in miliseconds).

In order to solve the rule selection problem a new approach with recurrent neural
networks was introduced. Our contribution in this part was to adapt these algorithms to the
automated theorem provers for reducing the proof tree, which to the best of our knowledge
have never been addressed before. Also, some optimizations and benchmarkings are
done in order to have a faster models during inference of neural networks.

From an experimental point of view, our contribution lies in the comparison of
models developed for solving the rule selection problem, which are using two methods
of compression and two types of recurrent neural networks with LSTM and GRU cells.
Results are showing that our approach obtains a good outcome and it reduces the proof
time for almost twice. Future research should be devoted to the development of new
types of machine learning models (bidirectional RNNs, attention mechanisms) and to the
training of new models based on enriched dataset of first order minimal logic formulas.
Future research could continue to explore the modal fragments (S4, S5) of minimal logic.



1202 Baghdasaryan A., Bolibekyan H.: On Recurrent Neural Network…

References

[Alemi et al. 2016] Alexander A. Alemi, François Chollet, Niklas Eén, Geoffrey Irving, Christian
Szegedy, Josef Urban: “DeepMath - deep sequence models for premise selection”. NIPS’16:
Proceedings of the 30th International Conference on Neural Information Processing Systems,
2243–2251 (2016)

[Baghdasaryan and Bolibekyan 2020] A.R. Baghdasaryan, H.R. Bolibekyan: “OnMachine Learn-
ing Powered Theorem Prover for Propositional Fragment of Minimal Logic”, Collaborative Tech-
nologies and Data Science in Artificial Intelligence Applications, Logos Verlag Berlin, pp. 135-142
(2020)

[Baldi 2012] P. Baldi: Autoencoders, “Unsupervised Learning and Deep Architectures”, (2012)

[Bolibekyan and Baghdasaryan 2018] Bolibekyan H., Baghdasaryan A.: “On some systems of
minimal predicate logic with history mechanism”, The Bulletin of Symbolic Logic, Volume 24,
Number 2, pp. 232-233 (2018)

[Bolibekyan and Baghdasaryan 2019] H.R. Bolibekyan, A.R. Baghdasaryan: “On some systems
of propositional minimal logic with loop detection”, Reports of NAS RA, Volume 119, Number 2,
pp. 110-115 (2019)

[Bolibekyan and Chubaryan 2002] Bolibekyan H.R., Chubaryan A.A.: “On the sequent systems
of weak arithmetics”, Doklady National’noy Akademii Nauk RA, vol. 102, N3, pp. 214-218 (in
Russian), (2002)

[Bridge et al. 2014] Bridge, J.P., Holden, S.B., Paulson, L.C.: “Machine Learning for First-Order
Theorem Proving”. J Autom Reasoning 53, 141–172 (2014)

[Cho et al. 2014] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio: “On the Properties of
Neural Machine Translation: Encoder–Decoder Approaches”, (2014)

[Fischer et al. 2015] P. Fischer, O. Ronneberger, T. Brox: U-Net: “Convolutional Networks for
Biomedical Image Segmentation”, (2015)

[Gabbay 1991] Gabbay D .: “Algorithmic proof with diminishing resources.“, Springer Lecture
Notes in Computer Science, vol 1, pp.156-173. (1991)

[Herbelin 1994] Herbelin, H. A λ-calculus Structure Isomorphic to Gentzen-style Sequent Calcu-
lus Structure. Springer Computer Science Logic LNCS, v. 933, pp. 61-75. (1994).

[Heyting 1930] A. Heyting, Sur la logique intuitionniste, Bull. Acad. Royale Belgique 16 (1930),
957–963.

[Howe 1997] Howe J.M.: “Two Loop Detection Mechanisms: a Comparison.”, Springer Lecture
Notes in Artificial Intelligence, Volume 1227, pp. 188–200. (1997)

[Kaliszyk et al. 2017] C. Kaliszyk, F. Chollet, C. Szegedy: HolStep: “A machine learning dataset
for higher-order logic theorem proving”. ICLR (2017)

[Kleene 1952] Kleene S.C.: “Introduction to metamathematics.”, D.Van Nostrand Comp., Inc.,
New York- Toronto, (1952)

[Rifai et al. 2011] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio: “Contractive Auto-
Encoders: Explicit Invariance During Feature Extraction”, ICML’11: Proceedings of the 28th
International Conference on International Conference on Machine Learning, pp. 833–840, (2011)

[Sundermeyer et al. 2012] M. Sundermeyer, R. Schluter, H. Ney: “LSTM neural networks for
language modeling”, INTERSPEECH, pp. 194–197, (2012)

[Sutcliffe 2017] G. Sutcliffe: “The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0”, Journal of Automated Reasoning, Volume 59, Number 4, pp. 483-502,
(2017)


	Introduction
	Related Work
	Loop Detection
	Rule Selection
	Sequent To Vector Transformation
	Recurrent Neural Networks in Proof Search
	Inference

	Results
	Conclusion and Future Work

